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PREFACE

An engineer always endeavours to design structural or machine members that are
sate, durable and economical. To accomplish this, he has to evaluate the load-carrying
capacity of the members so that they are able to withstand the various forces acting
on them. The subject Strength of Materials deals with the strength, stability and rigidity
of various structural or machine members such as beams, columns, shafts, springs,
cylinders, etc. These days, a number of books on the subject are available in the
market. However, it is observed that most of the books are feature-wise fine when
considered on parameters like coverage of a topic, lucidity of writing, variety of solved
and unsolved problems, quality of diagrams, etc., but usually, the students have to
supplement a book with another book for one reason or the other. The present book
aims to cover all good features in a single book.

The book 1s mainly aimed to be useful to degree-level students of mechanical and
civil engineering as well as those preparing for AMIE and various other competitive
examinations. However, diploma-level students will also find the book to be of immense
use. The book will also benefit post-graduate students to some extent as it also contains
some advance topics like bending of curved bars, rotating discs and cylinders, plastic
bending and circular plates, etc. The salient features of the book are the following:

. A moderately concise and compact book covering all major topics
Simple language to make it useful even to the average and weak students
¢ Logical and evolutionary approach in descriptions for better imagination and
visualisation
Physical concepts from simple and readily comprehensible principles
Large number of solved examples

e Theoretical questions as well as sufficient number of unsolved problems at the

end of each chapter

e Summary at the end of each chapter

¢ An appendix containing objective-type gquestions

¢ Another appendix containing important relations and results

It 1s expected that students using this book might have completed a course in
applied mechanics. Chapters | and 2 introduce the concept of simple and compound
stresses at a point. It i1s shown that an axial load may produce shear stresses along
with normal stresses depending upon the section considered. The utility of Mohr’s
circle in transformation of stress at a point is also discussed. Chapter 3 explains the
concept of strain energy that forms the basis of analysis in many cases. Chapters 4 to
8 are related to beams which may be simply supported, fixed at one or both ends or
continuous having more than two supports. The analysis includes the computations
of bending moment, shear force and bending and shear stresses under transverse
loads. The concept of plastic deformations of beams beyond the elastic limit, being
an advanced topic is taken up later and is discussed in Chapter 16. Sometimes, curved
members such as rings and hooks are also loaded. Chapter 9 discusses the stresses
developed in such members. The theory of torsion is developed in Chapter 10 which



6 Preface

also includes its application to shafts transmitting power. The springs based on the
same theory are discussed in the subsequent chapter. Columns are important members
of structures. Chapter 12 discusses the equilibrium of columns and struts, However,
the computation of stress in plane frame structures which is mostly included in the
civil engineering curriculum is discussed later in Chapter 17. Some other important
machine members include cylinders and spheres under internal or external pressures;
flywheels, discs and cylinders which rotate while performing the required function;
circular plates under concentrated or uniform loads. These topics are covered in
chapters 13 to15. Chapter 18 discusses the properties of materials as well as the methods
to determine the same.

Though students are expected to exert and solve the numerical problems given at
the end of each chapter, hints to most of these are available at the publisher’s website
of the book for the benefit of average and weak students. However, full solutions of
the unsolved problems are available to the faculty members at the same site. The
facility can be availed by logging on to http://www.mhhe.com/rattan

In preparing the script, I relied heavily on the works of renowned authors whose
writings are considered classics in the field. I am indeed indebted to them. 1 sincerely
acknowledge the help of my many colleagues, who helped me in one form or the
other in preparing this treatise. I also acknowledge the efforts of the editorial and
production staff at Tata McGraw-Hill for taking pains in bringing out this book in an
excellent format.

I am immensely thankful to the following reviewers who went through the
manuscript and enriched it with their feedback.

Name Affiliation

Anup Maiti Haldia Institute of Tech., Haldia,
West Bengal

P K Kundu Dept. of Mechanical Engineering,
Heritage Institute of Technology,
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Finally, I am also indebted to my wife, Neena, and my children Ravneet and Jasmeet,
for being patient with me while I went about the arduous task of preparing the
manuscript. But for their sacrifice, I would not have been able to complete it in the
most satisfying way.
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3.1 INTRODUCTION
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A variety of solved examples to
reinforce the concepts.
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5.6 REINFORCED CONCRETE BEAMS

Cloncrese is o materkal which has compressive
v

swengih but is very weak in tension. AL times
it develops cracks, thus reducing lis iensibe
strength o pero. To compensate for this
m-ﬂm-uﬂ-hhﬂnnh
done o the lerwion dde of concrewe
-ldhhmﬂ-n-:'—mdwilhnl
2 the (nanimum disewe From the neutral siis Fig. 5.35
off the beam (Fig. 5.15).
The avsmmptions We made i te reinforced comorete heams:
1. Zowo piress @ e concocie oo isison ds
2. Uniform sress in e steel
¥, Stress proportiomal B strain in the concrete
4. Surain proportional o dismoce fom sovrml axis
Assumption § i mol tnae as concrese does 0ol obey he Hooke's law, However, &
i valie may be mhen of the modulus over the mage of stress used. The lest
EEsumpLen in tnee for pure besding mnd i slso implics that boe s oo relative dip
hetween cancrele and socl,
Conslier the cme of rectangulss seoion s shown in Fig, 535
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m = modalar mibo ESE
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Concise and comprehensive
treatment of topics with
emphasis on fundamental
concepts.
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@ Review Questions

1. Whai do you meas by ihe e pevirsl sxis sl povml surface T

L Develop the theory of simpls hending, clearly smacimg the susmphons. maide.
d M E
= = = T bersdi M

Y. Prowe the relation lf X of cimaphe ng- a1

&, What do you mean by the e fhiiched begns? Develop o relatvon for the

& Pt et oty W s S i 1 A number of theoretical
B S b i gt s el questions and unsolved
T e e Bl s bt el ot el ot problems for practice to
P e i Moo o et Wi s st o widen the horizon of
16, Whet i e mkiie i e for rectengala socrons? comprehension of the topic.

1L A 4k load acts on 8 short colamn of B0 mm = 60 ma rectangular amss-

section of o poiet M) mm from the shorer vide ad 15 mun from ithe loager
slide. Plnd the mazhmom ensile sad compressive wreises in ihe section.

(10,4 MPa: 27.1 MFa)

1Z. A hollow circular bar wsed a8 0 beam bas an outside Eameter twice of the

inside dismeter, If 1 is subjecied o 8 mazimom bending momeni of 40 kN.m

and 15 allowable bemding ciredd is 100 MPa, dsermine the intide dismeesr of

K\ the bar. dLomm
{/_ Slope and Defiection . N\

7.11 BETTI'S THEOREM OF RECIPROCAL DEFLECTIONS

1t iy e stmied nn follows:

In an elasic sysiem, the exviernal work dome by @ forre aciing ai P during the
dnfleriony cond by another e @ (3 i egual b the extermal work done by the
Jurce ai 3 during the deflections cawsed by the force ai P

Summary at the end of each h“mgﬁ_l'
chapter recapitulates the g
inferences for quick revision. @

& [Fzcessive deflections can cause wisihle or invisible coacls in heams, Allsn,

expesarve deflections perceptible by maked eye grve a fecling of unsafe straciore
o ithe occapants of a building causing sdverse cffect on thaeir health.

* The designing of a beam from deflection aspect is kosown as srffiveas cninenm

» Deflection prafile of a beam is knowns as its slastic curve.,

o Civomning differensiod sguwarion of 4 beam usder the acthon of besding moment.
is Eld*yidv’ ym M

= M mcthbods to fimd the shype wd deflecion of & beam are double megradion
method, Micanlay's melhod, area-faoment method, simin energy method snd

conjugals besin metksl
¢ o double inegreison method, the equation of e clastic curve s imcgzsicd
rwkon o ohisen the deflection of ihe heam a2 any crods-seciion. The constanis of
inoegratine ane found by applying the and conditioss.
k = o Macsuley's method 5 single eqasthon is writien for the bending momenl lor _/
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Example 3.7 A fift is operated by three ropes sach having 25 wires af 1.4 mm
diameter. The cage wnipha 1.2 LN and the wnlghi of te mope L 4.0 Mim lergik
Ptermine ihe mariemm load carvied by o G i coch wire is of 36 m leegeh and the
L oyt (1) winhows asy deop () with o deop of 90 e during opsreion,

E (rope] = 72 iPa and allowable strecs = [15 MPa

Solution Toud acea of croms soction, A = ;.{IA}’HEI-!H:: 1203 mm?

The macimuni siress occurs 2 the op of the wire rope where the weight of the
o b6 o b
Thus maximam kad = weight of cage + weight of mope
= M4+ IxBxd]=16536M

» i 6336
m“uhmﬂ-m-luﬂh
Equivalonl static streas available for carrytng the losd = 115 - 128 = 1022 MPa

Thus, squivalent static load thal can be carmisd,
Fo=1022x=133= 13214H

The extension of the rope, 4 = % =511 mm International system of units (Sl)

1"With oo, Lt W b e wekght whichh cum b aprplicd swikdcnly, W, A= 5 2.4 throughout the book for

3
50 WA 95 mem e, L2t b gt universal approval.
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o W= 225N or L295EN
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Eprings

When they are acted upon by an axial fosd,
there s anisl exbemsion and when there s =
axial porgue, there 15 & change in the radins of
ourvasure of ihe spring coils. In the lafer cise,
e s ury angralar rotation of the roe cod and
it nctbon b kncen &8 wind-g,

1) Under Axial Load

Let W= Axial losd
I = Mean coll diameier

¥ = Mean coil mdius

d = wire diameier

o = wodnl angle of redist slong e wire

d = deflection of W along e axis of
the colls

= numiber of coils Fh e

1= length of wire

& shafl with a pure torque WE. Bending and shear effects may be negleciad.
Then d = g. K [approximately)

T WRI__30WRi
" & "Gy ol
_ RWR(2eRa) _ G4WR'n
Grd* G
WR']

Gud*

Abow l=2pfa, =

q

Deflection of the spring. d = Rig =

%

A shown in Fig. 1.1, the action of losd Won any cross-section is #o twist if ke

(1.3}

Simple diagrams for easy
visualization of the explanations.
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Appendix containing multiple
choice questions to prepare for
competitive examinations.
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SIMPLE
STRESS
AND STRAIN

1.1 INTRODUCTION

External forces acting on individual structural or machine members of an engineering
design are common. An engineer always endeavours to have such a design so that
these are safe, durable and economical. Thus load carrying capacity of the members
being designed is of paramount importance to know their dimensions to have the
minimum cost. The subject Strength of Materials deals with the strength or the load-
carrying capacity of various members such as beams and columns. It also considers
their stability and rigidity. Theory of structures involves the application of these
principles to structures made up of beams, columns, slabs and arches.

Force acting on a body is termed as load. A concentrated load is also known as a
point load and a distributed load over a length is known as distributed load. Distributed
load of constant value is called uniformly distributed load. If a structure as a whole is
in equilibrium, its members are also in equilibrium individually which implies that
the resultant of all the forces acting on a member must be zero. However, the forces
acting on a body tend to deform or torn the body. For example, a load P acting on a
body tends to pull it apart (Fig. 1.1a). This type of pull may also be applied if one end
of the body is fixed (Fig. 1.14). In this case, the balancing force is provided by the
reaction of the fixed end. Such type of pulling force 1s known as tension or rensile
force. A tensile force tends to increase the length and decrease the cross-section of
the body.

In a similar way, a force tending to push or compress a body is known as compression

or compressive force which tends to shorten the length (Fig. 1.1¢).
X

- - P =P P s P

X (a) 1 (b) (0
Fig. 1.1



Strength of Materials

Usually, the forces acting on a body along the longitudinal axis are known as
direct or axial forces and the forces acting normal to the longitudinal axis of a body
are known as transverse or normal forces.

In the elementary theory of analysis, a material subjected to external forces is
assumed to be perfectly elastic, i.e. the deformations caused to the body totally
disappear as soon as the load or forces are removed. Other assumptions are that the
materials are isotropic (same properties in all directions) and homogeneous (same
properties anywhere in the body).

1.2 STRESS

The applied external forces on a body are transmitted to the supports through
the material of the body. This phenomenon tends to deform the body and causes
it to develop equal and opposite internal forces. These internal forces by virtue
of cohesion between particles of the material tend to resist the deformation. The
magnitude of the internal resisting forces is equal to the applied forces but the direction
1s opposite. .

Let the member shown in Fig. 1.1a be cut through the section X-X as shown in
Fig. 1.2. Now, each segment of the member is in equilibrium under the action of
force P and the internal resisting force. The resisting force per unit area of the
surface is known as intensity of stress or simply stress and is denoted by o. Thus if
the load P is assumed as uniformly distributed over a sectional area A, then the
stress O is given by

X
R R
X
Fig. 1.2
o= P/A (1.1)

However, if the intensity of stress is not uniform throughout the body, then the
stress at any point is defined as

o= 0P/0A
where 0A = Infinitesimal area of cross-section
and &P = Load applied on area 84
The stress may be tensile or compressive depending upon the nature of forces

applied on the body.
Stress at the elastic limat 1s usually referred as proof stress.

{Units

The unit of stress is N/m? or Pascal (Pa). However, this is a very small unit, almost the
stress due to placing an apple on an area of 1 m*, Thus it is preferred to express stress
in units of MN/m? or MPa.
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1 MN/m2=1MPa=1 x10°N/m? = 1 N/mm?
Also 1 GPa = 1000 MPa = 1000 N/mm* = | kN/mm?

In numerical problems, it is always convenient to express the units of stress
mentioned in MPa and GPa in the form of N/mm?.

1.3 SHEAR STRESS

When two equal and opposite parallel forces not in the same line act on two parts of
a body, then one part tends to slide over or shear from the other across any section and
the stress developed 1s termed as shear stress. In Fig. 1.3a and b, the material is
sheared along any section X-X whereas in a riveted joint (Fig.1.3¢), the shearing 1s
across the rivet diameter.

i
SHEARING
] p F
4 7 i | N _d
X'p X P
(a) (b) (c)
Fig. 1.3

If P is the force applied and A is the area being sheared, then the intensity of shear
stress is given by

T= P/A (1.2)
and if the intensity of shear stress varies over an area,
T= OP/OA

Remember that shear stress is always tangential to the area over which it acts.

Complimentary Shear Stress

mr-']-ﬂ_

Consider an infinitely small D C D T c
rectangular element ABCD under 7 T T
shear stress of intensity Tacting on y T
planes AD and BC as shown in Fig.
1.44. It1s clear from the figure that }.
the shear stress acting on the At X G f 24
element will tend to rotate the (@) Fia. 1.4 (b)
block in the clockwise direction. g9- &
As there is no other force acting on the element, static equilibrium of the element can
only be attained if another couple of the same magnitude is applied in the counter-
clockwise direction. This can be achieved by having shear stress of intensity T on the
faces AB and CD (Fig. 1.4b).

Assuming x and y to be the lengths of the sides AB and BC of the rectangular
element and a unit thickness perpendicular to the figure,
The force of the given couple = 7.(y.1)
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The moment of the given couple = (1.v).x

Similarly,

The force of balancing couple = 77.(x.1)

The moment of balancing couple = (7".x).y

For equilibrium, equating the two,

(ty)x=(t'x)y or =1
which shows that the magnitude of the balancing shear stresses is the same as of the
applied stresses. The shear stresses on the transverse pair of faces are known as
complimentary shear stresses. Thus every shear stress is always accompanied by an
equal complimentary shear stress on perpendicular planes.

Owing to the characteristic of complimentary shear stresses for the equilibrium of
members subjected to shear stresses, near a free boundary on which no external force
acts, the shear stress must follow a direction parallel to the boundary. This is because
any component of the shear force perpendicular to the surface will find no
complimentary shear stress on the boundary plane. The presence of complimentary
shear stress may cause an early failure of anisotropic materials such as timber which
is weaker in shear along the grain than normal to the grain.

1.4 STRAIN

The deformation of a body under a load is proportional to its length. To study the
behaviour of a material, 1t is convenient to study the deformation per unit length of a
body than its total deformation. The elongation per unit length of a body is known as
strain and 1s denoted by Greek symbol & If A is the elongation of a body of length L,
the strain £ 1s given by
g=A/L (1.3)
As 1t is a ratio of similar quantities, it is dimensionless.

Shear Strain

A rectangular element of a body is distorted by shear
stresses as shown in Fig. 1.5. If the lower surface is assumed '/
to be fixed, the upper surface slides relative to the lower
surface and the comer angles are altered by angle @. Shear
strain 1s defined as the change in the right angle of the
element measured in radians and is dimensionless. Fig. 1.5

T -

1.5 MODULAS OF ELASTICITY AND MODULUS
OF RIGIDITY

For elastic bodies, the ratio of stress to strain is constant and is known as Young's
Modulus or the Modulus of Elasticity and is denoted by E, i.e.,
E=o0le (1.4)
Strain has no units as it is a ratio. Thus E has the same units as stress.
The materials that maintain this ratio are said to obey Hook's law which states that
within elastic limits, strain is proportional to the stress producing it. The elastic limit
of a material is determined by plotting a tensile test diagram (Refer section 1.15).
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Young’s modulus is the stress required to cause a unit strain. As a unit strain means
elongation of a body equal to original length (since €= A/L), this implies that Young’s
modulus is the stress or the force required per unit area to elongate the body by its
original size or to causes the length to be doubled. However, for most of the engineering
materials, the strain does not exceed 1/1000. Obviously, mild steel has a much higher
value of Young’s modulus E as compared to rubber.

Similarly, for elastic matenals, the shear strain is found to be proportional to the
applied shear stress within the elastic limit. Modulus of rigidity or shear modulus
denoted by G is the ratio of shear stress to shear strain, i.e.

G =1l (1.5)

1.6 ELONGATION OF A BAR

An expression for the elongation of a bar of length L and cross-sectional area A under
the action of a force P is obtained below:

As E= E_ . E= E or E = i
€ E L AE
: PL
Thus elongation of a bar of length L, = 15 (1.6)

1.7 PRINCIPLE OF SUPERPOSITION

The principle of superposition states that if a body is acted upon by a number of loads
on various segments of a body, then the net effect on the body is the sum of the effects
caused by each of the loads acting independently on the respective segment of the
body. Thus each segment can be considered for its equilibrium. This is done making
a diagram of the segment alongwith various forces acting on it. This diagram is
generally referred as free body diagram. The principle of superposition is applicable
to all parameters like stress, strain and deflection. However, it is not applicable to
materials with non-linear stress-strain characteristics which do not follow Hook's law.

Example 1.1 A steel bar of 25-mm diameter is acted upon by forces as shown in
Fig. 1.6a. What is the total elongation of the bar? Take E = 190 GPa.

A B _C D

=t

i |
60 kN-l—EﬂkN-t-—;i — 30 kN —=50 kN

A B C D
2 m—l-+-g‘l—mH-t 3 m—»]
(a)
A B B C : D
60 —=— —60 Eﬂ<—|:—+ 80 50— ]—~ 50
A B B C D C D
(b)
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Solution Area of the section = % (25)* = 490.88 mm?, E = 190 GPa

= 190 000 N/mm?
Forces in various segments are considered by taking free-body diagram of each
segment as follows (Fig. 1.65):

Segment AB: At section AA, it is 60 kN tensile and for force equilibrium of this
segment, it is to be 60 kN tensile at BB also.
Segment BC:
Force at section BB = 60 kN (as above) + 20 kN (tensile force at section BB)
= 80 kN (tensile) = Force at section CC

Segment CD:
Force at section CC = 80 kN (as above) — 30 kN (compressive force at section CC)
= 50 kN (tensile) = Force at section DD

PL
Elongation i1s given by, A= —
g 1S g y AE

i

~ 490.88 x 190 000

(60 000 x 2000 + 80 000 x 1000 + 50 000 x 3000) = 3.75 mm

Example 1.2 A steel circular bar has three segments as shown in Fig. 1.7a.
Determine

(i) the total elongation of the bar
(ii) the length of the middle segment to have zero elongation of the bar
(i) the diameter of the last segment to have zero elongation of the bar
Take E = 205 GPa.

AA
4 B G D
:E 115 mm _E‘QDHNTBBDkL zui m —» 80 kN
? 30 mm P
A B o o
~— 150 mm —=++—— 200 mm ot 250 mm ——=
(a)
A B c D
50 kN —=— —— - —= 80 kN
50 kN 80 kN
A B C D
B C
250 kN — «— 250 kN
B &
Fig* 1.7

Solution Forces in various segments (Fig. 1.7b):
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(1) Segment CD: At section DD, it 1s 80 kN tensiles and for force equilibrium of this
segment, at CC also it is to be 80 kN tensile. '

Segment BC:

Force at section CC = 80 kN (as above) — 330 kN (compressive force at section CC)
= — 250 kN (compressive) = Force at section BB

Segment AB:

Force at section BB = — 250 kN (as above) + 300 kN (tensile force at section BB)
= 50 kN (tensile) = Force at section AA

Total elongation,

A 1 [50{)[}[1::{150_250000x200+80m{}x250)
T (m/4) x 205 000 152 30° 20°
1
= 161007 (33 333.3 - 55555.5+50000)=0.173 mm
(11) Let the length of the middle segment be L to have zero elongation of the bar.
I 250 000 x L
Th A= 33 333.3 - + 350000 |=0
©n 161 007 ( 302 J
30°
or L= 250 000 x 83 333.3 = 300 mm
(111) Let the diameter of the last segment be 4 to have zero elongation of the bar.
1 80 X 2
A= [33 333.3 — 55 555.5 + S0 000 50}20
161 007 d-
80 000 x 250
2 — — g‘ﬂ‘ﬂ =
d 22 2322 or d=30mm

1.8 BARS OF TAPERING SECTION

Bars of tapering section can be of conical section or of trapezoidal section with uniform
thickness.

Conical Section

D
Consider a bar of conical section under the J
action of axial force P as shown in Fig. 1.8. P
-
Let D = diameter at the larger end
d = diameter at the smaller end bt X ] 5|__
L = length of the bar L s S
E = Young's modulus of the bar Fig. 1.8
material
Consider a very small length &x at a distance x from the small end.
The diameter at a distance x from the smallend =d + 2 — 4 x

L
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The extension of a small length

_ P.ox [ﬂ PLJ
s R e
[ D—-d AE
" + 4
4[::1 T x] E
L
Extension of the whole rod = I dx
om(d + (D - d)_th) E

=£L a+ 24 . -z.dx=_ 4P L ! i
nE >, /7 E (D -d)| (d +D - d)x/L)

4PL l_l ___4PL  (D-d)_ 4PL
“RED - d) nED -d)\ dD | mEdD

D (1.7)

Trapezoidal Section of Uniform Thickness

Let
B = width at the larger end b = width at the smaller end

t = thickness of the section L = length of the bar
E = Young’s modulus of the bar material

Consider a very small length x at a | et
distance x from the small end of the rod e -]

(Fig.1.9). bI p o p
The width at a distance x from the

small end e X —] e
B-b R
=b+ 3 Xx=b + kx

...[Taking k = (B — b)/L] Fig. 1.9
The area of cross-section at this distance = (b + kx).1
Pdéx
(b+ kxt.E

e—m—

The extension of the small length =

Extension of the whole rod

= teman, [

pL
(b+k:r)IE I -!;(b+kr)

1 i P
—=[1 b+kal = —I|1
rEk[Dg’( gt ME[DE"
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1.9 ELONGATION DUE TO SELF-WEIGHT

The elongation due to self-weight of bars of rectangular and conical sections may be
considered as follows:

Rectangular Section sesgeresaet
Consider a bar hanging freely under its own weight as shown
in Fig: 1.10.
Consider a small length éx of the bar at a distance x from
the free end. Jr_ ]
Let A = area of cross-section of the bar V777 éx
w = weight per unit length of the bar _f
= weight of the whole bar = wL X
W, = weight of the bar below the small section = wx }_
5 5 —=
The extension of a small length = W02 P e .
A.E A.E Fig. 1.10
Extension of the whole rod
T wx w [ % 4 WL2 _wlLL WL
=|—dx=—| — (1.9)
-’ AE AE| 2 ZAE 2AE ~ 2AE

= deformation due to a weight W at the lower end/2

~ Thus the deformation of the bar under its own weight is equal to half the deformation
due to a direct load equal to the weight of the body applied at the lower end.

Conical Section

Consider a small length éx of the bar at a distance x fromthe T
free end (Fig. 1.11).

Let A = area of cross-section at the small length

w = weight per unit volume of the bar L

W, = weight of the bar below the section = wAx/3

W.0x wAxOx B2

The extension of a small length =

AE  3AE
L
WAJ: W
Extension of the whole rod = I 3AE 3.& x.dx
_ wi? (1.10)
6FE

Comparing it with Eq. 1.9, this elongation is one-third that of the rectangular section
of the same length under own weight of the bar.

1.10 COLUMN OF UNIFORM STRENGTH

Let a bar of varying cross-sectional area be acted upon by a load P as shown in
Fig. 1.12. Consider a small length dx at a distance x from the top.
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Let A = area at distance x
A + dA = area at distance x + dx
w = weight per unit velume of

the bar o.A
Considering the balance of forces acting
on the small length,
O(A + dA) = 0 A + weight of
the small length dx of the bar w.A.dx
or O(A+ dA) = A + wAdx
or O.dA = wAdx or A . dx
A ©
Integrating both sides, log, A = EI +C
At the top, where x =0, let AreaA =a
Then, log,a=04+C or C=log,a
A
Thus log, A = LA log,a or log, — = Zx
o a O
or A e /o
a
or A = ge"® (1.11)

1.11 STATICALLY INDETERMINATZ SYSTEMS

When a system comprises two or more membe.s of different materials, the forces in
various members cannot be determined by th< principle of statics alone. Such systems
are known as statically indeterminate syst:ms. In such systems, additional equations
are required to supplement the equation: of statics to determine the unknown forces.
Usually, these equations are obtained irom deformation conditions of the system and
are known as compatibility equations. A compound bar is a case of an indeterminate
system and 1s discussed below:

Compound Bar

A bar consisting of two or mere bars of different materials in parallel 1s known as a
composite or compound bar. in such a bar, the sharing of load by each can be found
by applying equilibrium and the compatibility equations.

Consider the case of a solid bar 5
enclosed in a hollow tube ¢s shown in IIIITIGIIIIIIIIIIEIA
Fig. 1.13. Let the subscrints 1 and 2 p-{ =1 o P
denote the solid bar and the hollow _|777;7777777777777777a
tube respectively.

Equilibrium equation As the Fig. 1.13
total load must be equal to the load taken by individual members,
P=P +P, (i)
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a

Compatibility equation The deformation of the bar must be equal to the tube.

AL _ BL ar- (B PAE,
AL AE A B,

Inserting (i1) in (1),

(i1)

po BAE  p _ BAE+PAE _ B(AE + AE)

AE, AE, AE,
or P, = 45
P.
Similaly. Bt
AE + A,

(1.12)

(1.13)

Example 1.3 Three equally spaced rods in the same vertical plane support a
rigid bar AB. Two outer rods are of brass, each 600-mm long and of 25-mm diameter.
The central steel rod is 800-mm long and 30 mm in diameter. Determine the forces in
the bars due to an applied load of 120 kN through the mid-point of the bar. The bar

remains horizontal after the application of load. Take E_/E, = 2.

Solution Refer Fig. 1.14.
As the bar remains horizontal after the —| e 30 mm

application of load, the elongation of each of ~ E ol
the brass bars and of the steel bar are the same. % o T
m -
From compatibility equation, A, = A, E E E E 5
%)
. Bl _PL 5 587
AE, AE, ks | it | R | l
“ AL + i
L, E,|d
or P, = —%.=2| =2 120 kN
S LE, (ds |
, Fig. 1.14
_ 800 1(35Y
600 2(30 ) °
or P, =0463 P,

From equilibrium equation, 2P, + P, = P
or 2x0463 P, +P, =120 or 1926P, =120
or P, =623kN and P, =28.84 kN

Example 1.4 Three equidistant vertical rods each of 20-mm diameter support
a load of 25 kN in the same plane as shown in Fig. 1.15. Initially, all the rods are
adjusted to share the load equally. Neglecting any chance of buckling, and taking
E = 205 GPa and E_= 100 GPa, determine the final stresses when a further load of

20 kN is added.
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Solution A = (m/4) 20* = 100 7 mm?

25 000
Initially, the stress i hrod = = 26.53 MPa
nitially, the stress in each r 1007 x 3 .
On adding a further load of 20 kN, let the l
increase of stress in the steel rod be o, and in
the copper rod o, = =gt
Then from equilibrium equation, the ol t =
additional load P is e o) W ooam
_ ‘” O L 3.6m
(20,+0,)A=P or (20,+0.) x 100x DG |
= 20 000 (i} P _"! :
From compatibility equation, A, = A, - : 11 Y
o.lL. _o,L, Fig. 1.15
E. E.
or O,= s Ef'—cr = 38 X H}D{}UUJI or 0. =0.6270,

‘" L,E, ° 28 205000
Inserting this value of ¢ in (1)

& (20, + 0.627 6,) x 1007 = 20 000

or 2.627 o, = 63.662

or o, = 24.23 MPa and o.= 15.19 MPa
Final stress in steel rod = 24.23 + 26.53 = 50.76 MPa
Final stress in copper rod = 15.19 + 26.53 = 41.72 MPa

Example 1.5 A steel rod of 16-mm diameter passes through a copper tube of
20 mm internal diameter and of 32-mm external diameter. The steel rod is fitted with
nuts and washers at each end. The nuts are tightened till a stress of 24 MPa is developed
in the steel rod. A cut is then made in the copper tube for half the length to remove
2 mm from its thickness. Assuming the Young's modulus of steel to be twice that of
copper, determine

(i) the stress existing in the steel rod.

(ii) the stress in the steel rod if a compressive load of 4 kN is applied to the ends

of the steel rod.

Solution Refer Fig. 1.16.

. COPPER a
T P77 777777777777 77
eTE : -
E|E I1Emm STEEL )
N[O l|_
[ T Y | > +
I L TP T T T ITIITFITIryy.

Fig. 1.16
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A = % % 162 = 647 mm?

&

and A, = %{322 _20%) = 1567 mm

On tightening the nut, the steel rod is elongated and the stress induced is tensile
whereas the tube is shortened and the stress is compressive.

Let O,, = stress in the steel rod = 24 MPa

0,; = stress in the copper tube
From equilibrium equation
Push on copper tube = Pull on steel rod
O XA . =0, XA, or O,xX1561r=24x64rn

or o, = 9.846 MPa (compressive)
(i) When the copper tube is reduced in diameter,

T
A = reduced area of cross-section of the tube = _ﬁ.l_ (28° - 20°) = 967

Let O,, = stress in the steel rod
g, = stress 1n the reduced section of tube
and 0., = stress in the remaining section of tube

From equilibrium equation,

Force in each section of copper tube as well as in the steel rod are to be equal

1.e. O, %x156n=0,%x%n=0,%x64r1 (1)

0., = 04103 0, and 0, = 0.6667 O,

From compatibility equation,

When the cross-section of the tube is reduced, the change in length of the rod as
well as of the tube is to of the same nature, i.¢. either the length of both is increased or
decreased. Let us assume that the length of each is reduced which means a reduction

of tensile stress in the rod and increase of compressive stress in the tube.
Thus reduction in length of steel rod = reduction in length of copper tube

2 o ﬂ-[.] L + JCE - J{.‘l L

L

0, — 0, ¥ ag

E, E 2 E. 2
or 0,—0,=0,+05-20,, ... (E, = 2E)) (ii)
or 24 - 0, = 04103 o, + 0.66670,, — 2 x 9.846
or 20770, = 43.692 or 0, = 21.036 MPa

As the stress in the steel rod i1s decreased from 24 MPa to 21.036 MPa, the
assumption of reduction of the length of the two is correct. In case, the lengths are
assumed to be increased, the stress in the steel rod is increased and in the copper tube

decreased. The equation formed would have been
O~ 5 . Gp— g & 0 -0, L
E, E, 2 E, 2
and the result would have been the same i.e. 0,, = 21.036 MPa which would have
indicated that the length actually would be reduced due to decrease in the stress of

steel rod.
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(i1) When a compressive load of 4 kN is applied to the ends of the steel rod, the
length of the rod is further reduced.

Equilibrium equation

O3 X 1567 = 03 X967 = 0,3 % 64w+ 6000 [as in (i)]
or O3 %X 156 = 03X 96 = 03 x 64 + 1909.9
or 0., =04103 0,+ 12.243
and o' ;= 0.6667 o+ 19.895
Compatibility equation
O, — O3 = O3+ 03— 20, [as in (i1)]
or 24 - 0, = 0.41030,; + 12.243 + 0.66670,5 + 19.895 ~ 2 x 9.846
or 2.0770,;=11.554 or ©O5=5.56 MPa
Example 1.6 A roundsteel rod Load
supported in a recess is surrounded 1

by a co-axial brass tube as shown
in Fig. 1.17. The level of the upper 0.08 mm
end of the rod is 0.08 mm below that T

of the tube. Determine:

(i) the magnitude and direction
of the maximum permissible
axial load which can be
applied to a rigid plate 7777777 7777777

resting on the top of the tube. *"'
ST7TTT77

The permissible values of %

the compressive stresses are ‘ “*m i m*_ |
105 MPa for steel and 75 80 mim
MPa for brass. )

(ii) the amount by which the Fig. 1.17

tube is shortened by a load if the compressive stresses in the steel and the
brass are the same.

Take E. = 210 GPa and E, = 105 GPa.

BRASS

BRASS
300 mm—»

100 mm

Solution A, = % x 362 = 3247 mm?
and A, = % X {Er{}1 — 5{}2) = 2757 mm~*

(i) Let W, be the load applied for the imtial compression of the tube before the
compression of the rod starts. Then
N [J'bL - ﬂb X 3[]{]'
A, = £ or 0.08 = 105 000

or o,=28MPaand W, =28 x275r=24 190N
But limiting value of stress in the brass =75 MPa
-, Maximum value of stress due to additional load can be = 75 — 28 = 47 MPa
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Let W be the additional load to compress both, the tube and the bar. Let o, be the
stress induced in the steel rod and o, the additional stress in the brass tube.
Equilibrium equation, 6. A, + 0, A, = W
Compatibility equation, A, = A,
ur% = Ouly or 0,= I—"’.Eﬁb = 3{][}. s
E, E;, L, E, 400 105
Therefore the stress induced in the steel rod = 1.5 x 47 = 70.5 MPa
It is less than the permissible value of stress for steel.
Thus W=p A +p, Ap=T03x324n+ 47 x275m8= 112365 N

Total maximum load = 112 365+ 24 190 = 136 555 N or 136.555 kN
(11) Let A be the shortening of the steel rod. This will also be the additional

o, or g,=1.50,

shortening of the brass tube. Then A, + A = Op-Ly

E,
or g, = 409 90y (0.08 + A) and o, = %.ﬂ
Equating the stresses in the steel and the brass,
= lﬂ;ﬂ[{;ﬂl} (0.08 +A) = £10 A or 008+A=15A
or 0.5A=008 or A=0.16 mm

Total shortening = 0.08 + (.16 = .24 mm

Example 1.7 Three wires of the same material and cross-section support a rigid
bar which further supports a weight of 5 kN. The length of the wires is S m, 8 m and
G m in order. The spacing between the wires is 2 m and the weight acts ar 1.6 m from
the first wire. Determine the load carried by each wire.

Solution As the wires are of different 3
lengths and the weight suspended is 2LL28
unsymmetrical, the bar will not remain k3
horizontal but will be deformed as shown el 8m

in Fig. 1.18. T 6m
Let P,, P, and P, be the loads taken by ° J,m

the first, second and the third wire <2 M2 m-

respectively. A B
Then P, +P,+P;=P=5000 (1) —
Taking moments about the first wire, Lh "; KN

2P + 4P, = 1.6 x 5000 = 8000 AL
or P,=4000-2P, (i1) R
Also, from symmetry,

A oMtds o (BL Y_RL | RL
’ AEJ AE  AE

or 2P L,=P\Li+ Pl or 2P, X8=P; x5+ P;x6

Fig. 1.18
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or 6P, = 5P, + 6P,
or 16 (4000 —2P;) = 5P, + 6P; or 64 000 — 32P; = 5P, + 6P,
or 5P, = 64 000 — 38P; or P, =12800-7.6P,

Inserting the values of P, and P, from (ii) and (iii) in (i),
lZBUﬁ—?.ﬁP3+4DDU—2P3+P3=SDUU
or 8.6P;=11800 or P;=1372N or 1.372kN

P,=4000-2P;=4000-2x1372=1256 N or 1.256 kN

P,=12800-76x1372=2373N or 2373kN

Example 1.8 A system of three bars
supports a vertical load P as shown in
Fig. 1.19. The outer bars are identical and
of the same material whereas the inner bar
is of different material. Determine the forces

in the bars of the system.

Solution Owing to symmetry, forces in
the outer bars 1 and 3 will be equal. Let it be
P, and the force in the inner bar P, The dotted
lines show the deformed shape of the system
under the load P.

From equilibrium equation,
2P, cos@+ P, =P ....(assuming negligible change in )
From compatibility equation,

4 _ 54 .o

Ay =A, cosf or

AE  AE,
or R _Aflals g A5 00) g hb 0
AE L A E, L AE,
Substituting this value of P, in (i),
P P
Z—A’ L cos’0 + P,=P or P,=
A | + 245 cos’@
AE,
E P
From (ii), P, = s L s 0s’6
ALy 14+ 245 0%
= Hoos:d A IE ' EAJ:E (A EPCGS :
22 | |14+ c0s% 22 4 2c0s°6
AL 2 b 1 £y



Solution A = %:;5::2 = 6.257 mm?

and A = %(3)z = 2.257 mm?

Let the load W be placed at a distance x from the
copper wire and P, and P, the forces in steel and

copper wires respectively.
Then taking moments about A, 240 P, = W.x

Example 1.9 Figure 1.20 shows a horizontal bar supported by two suspended
vertical wires fixed to a rigid support. A load W is attached to the bar. The left hand
side wire is of copper with a diameter of 5 mm and the right hand side wire is of steel
of 3 mm diameter. The length of both the wires is 4 m initially. Find the position of the
weight on the bar so that both the wires extend by the same amount.

Also, calculate the load, stresses and the elongation of each wire if W = 1000 N.
Neglect the weight of the bar and take E, = 210 GPa and E_. = 120 GPa.

LS

COPPER
STEEL

~t— 240 mm—=

or P,= Wx (1) X
240 Al B Y
Taking moments about B, 240 P = W( 240 - x)
- P = W.(240 - x) (i)
240 Y
P 240 — x W
Dividing (i1) by (1), = = iii
B x L Fig. 1.20
As both the wires extend by the same amount, A, = A,
or £=i rﬁ'=An'_Ec _____ (- Lr=L3}
AE  AE  p; A E
6.257 120 000
= = = 158? .
2257210 000 e
From (iii) and (iv), et =1.587 or x=92.77 mm
X
Numerical:
P Wi(240 — x) = 1000 x (240 -92.77) — 613.46 N
240 240
P Wx _ 1000x92.77 ~1386.54 N
240 240
o.= . = G190 =31.24 MPa
A, 6.25%
o, = h = 350 = 54.68 MPa
A, 22rm
A :
i g, =3124H4D{}U=L041m
E 120 000

i
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Example 1.10 Three identical pii-connected bars support a load P as shown in
Fig. 1.21. All the bars are of the sam.e area of cross-section and same length. Determine

(i) the force in each bar

(ii) the vertical displacerient of the point
where the load i< applied
Neglect the possibility of lateral
buckling ry the bars.

Solution
(i) The dotted lines show the deformed
shape of the structure. Assuming that
there is negligible change in the
angles after the deforming of the

bars. TR
Equilibrium equation Fig. 1.21
2P, cos 60+ P, =P
or Pr=P-P, (1)
Compatibility equation, A; = A, cos 60°
or E=El—’[iv;;:t:-s'EJII}“* or ﬂ=fg~ (1)
AE AE
From (i) and (i1), %=P—Pg or B =2TP and P,=P/3
(11) Vertical displacement of the joint, A, = 5k = Ll
AE 3AE
Example 1.11 A bar system is loaded as shown in Fig. 1.22. Determine
(i) the reaction of the lower support, and (ii) the stresses in the bars.
Take E = 205 GPa
Solution f
(i) When the load is ; .
applied and the sup- T e ~Fe
port touches it, the Ll Ll R
reactions of both the  80mm? —~ [« 11-2 m |
supports will be up- + 1 l,
ward since the load 1s 160 mm2<d 40| 24m 40kN - R»
downward. kN ¢
Let R, = reaction of the
upper support ¥ !
R, = reaction of the 0.8 mm k
lower support R
Then R, + R, = 40 000
or R, =40000 - R, Flg: 1.22

The free-body diagrams of the two portions of the bar system is shown in the
figure. It is clear that the upper portion is in tension whereas the lower portion in

compression.
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»

BL, (40 000 - R,) x 1200
AE  80x205 000
BL, R, x2400

AE 160 x 205 000

Elongation of the upper portion, A, =

Shortening of the lower portion, A, =

From compatibility equation,

Elongation of upper portion — shortening of lower portion = net elongation = (0.8 mm

(40 000~ R,) x1200 R, x2400 _

80 x 205 000 160 x 205 000
(40 000 - R,) x 15~ 15R, =0.8 x 205 000
or 40 000 - 2R, = 10933 or R, =14 533 N
and R, = 40 000 - 14 533 = 25 467 N
(i) 0, = 25 467/80 = 318.3 MPa (tensile)
o, =14 533/160 = 90.8 MPa (compressive)

or

Example 1.12 A rigid horizontal bar AB hinged at A is supported by a 1.2-m
long steel rod and a 2.4-m long bronze rod, both rigidly fixed at the upper ends (Fig.1.23).
A load of 48 kN is applied at a point 3.2 m from the hinge point A. The areas of cross-
section of the steel and bronze rods are 850 mm* and 650 mm? respectively. Find
(i) stress in each rod (ii) reaction at the pivot point.
E, = 205 GPa and E, = 82 GPa

V777774
Solution Refer Fig. 1.23.
(1) Let P, and P, be the forces in g
the steel and bronze wires Q
respectively as the load is T LLLsLLs o E
applied. Taking moments 0.8 m BB
about the pivot point, E |" ""': 1.6 m——re *l
P, % 800 + P, X 2400 — 48 000 X i
3200 =0 X, Z
P, + 3P, = 192 000 (i) 7 5
From compatibility equation, A f 1
A, _800 1 A _4 Fs o 48N
A, 2400 3 01 3 ! }
A
o PL _1 AL, A >
AE, 3 A,
P x1200 1 P x 2400
3 = - - Fig. 1.23
Of  §50x 205000 3 65082 000 g

P, =2119 P, (ii)
From (i) and (11), 2.179 P, + 3P, = 192 000
or P,=37073 N
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P.=192000-3x37073=80781 N

37973 _ 57,04 MPa and o,= 073!
(i) The reaction at the pivot can be found from force equation, let it be down-
wards,
P,+P,—R, =48 000
R, =80 781 + 37 073 — 48 000 = 69 854 N or 69.854 kN

Thus the assumed direction is correct,

= 95.04 MPa

ﬂ'b -

Example 1.13 A rigid bar AB is to be suspended from three steel rods as shown
in Fig. 1.24a. The lengths of the outer rods are 1.5 m each whereas the length of the
middle rod is shortened than these by an amount of 0.8 mm. The area of cross-section
of all the rods is the same and is equal to 1600 mm?®. Determine the stresses in the

rods after the assembly of the structure. E = 205 GPa.

PP LTS PRI R PSS S TP RETL TSP IT I

1 2 3

Solution The position of the rigid bar
after the assembly is shown in Fig. 1.24b.
It is raised upward by amounts A, A, and
A, at the rod positions 1, 2 and 3 respec-

|-—a—-+a-+-—-— g —»

l«—1.5 m—|

tively. Thus the rods 1 and 3 are shortened |, 0.8 mm_
by amounts A, and A, respectively whereas yRCN t 5
rod 2 is elongated by an amount (0.8 — A.). A (a)
We have, 2 u O | L‘
= BN A
or AL JAE, _ 4 (b)
hlid Fig. 1.24
As Ly=L,A;=A,and E; =E,
Also, 4 = 24 or D8 ~bply A Ak i
A, g RL, / AE,

The length of the rod 2 is shorter by 0.8 mm. However, to find the elongation of
the rod, this may be ignored as its effect will be negligible and the length of rod 2 can
be taken equal to that of rod 1.

Thus L,=1L,
Also, A,=A,and E, = E|
0.8-PBL/AE, =5 o 08X AE B _ 5
RL/AE, RL R
- 0.8 x1600 x 205 000 A, =2 or 174933-P,=2P,
A %1500 &
or 2P, + P, = 174 933 (ii)

Taking moments about A, Pi.a + P;.3a = P,.2a
or P, +3P,=2P, (m1)
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Solving (i), (ii) and (iii),
From (i) and (iii), P, + 3 x3P,=2P, or P,=5P, (iv)
From (ii) and (iv), 2P, + 5P, =174933 or P, =24990N

P,=24990x5=124952 N
P,=24990x3=74971 N

o, = 24 990/1600 = 15.62 MPa (compressive)
0, = 15.62 X 5 =78.1 MPa (tensile)

g; = 153.62 x 3 = 46,86 MPa (compressive)

1.12 TEMPERATURE STRESSES

The length of a material which undergoes a change in temperature also changes and
if the material is free to do so, no stresses are developed in the material. However, if
the material 1s constrained, stresses are developed in the material which are known as
temperature siresses.

Consider a bar of length L. If its temperature is increased through °, its length is
increased by an amount L. o.r, where « is the coefficient of thermal expansion. But if
the bar 1s constrained and is prevented from expansion, the temperature stress is induced
in the material which is given by

_ lemperature stress =~ O

B temperature strain  Lat/L
or og=atkE (1.14)
or o= 0!t O/E
or  lemperature strain, € = o.f (1.15)

Compound Sections

Consider a copper rod enclosed in a steel tube as shown in Fig. 1.25 rigidly joined at
each end. Now, if the temperature is

increased by t, the copper rod would PESIT‘:'%N—H H—FSIST#EN
tend to expand more as compared to steel B

tube. As the two are joined together, the VL P L L] |
copper is prevented its full expansion
and 1s put in compression. The final

pusitiur_x of the compound bar will be as =77
shown in the figure. '

COPPER

o re e res ey

Let o, = tensile stress in steel + +
; . STEEL POSITION IF FREE
ﬂ'{, = Cﬂ]’[lpl'EEEl"u’E sSiress in COppeEr
A, = cross-sectional area of Fig. 1.25
steel tube

A, = cross-sectional area of copper rod
From equilibrium equation
Tensile force in steel = compressive force in copper
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o.A, = 0.4, (1.16)
or £.E.A =¢.E A,
Comparibility equation:
Let o, = coefficient of thermal expansion in steel
o, = coefficient of thermal expansion in copper
Now Elongation of steel tube (due to temperature + due to tensile stress)
= Elongation of copper rod {due to temperature — due to compressive stress)
or Temperature strain of steel + tensile strain
= Temperature strain of copper — compressive strain
ot+olE =at-olE,
or o+ € = Ot - E,
or £+ E =(a — o)t (1.17)
Equations (1.16) and (1.17} are sufficient to solve the problems.

Example 1.14 Two parallel walls 8 m apart are to be stayed together by a
steel rod of 30-mm diameter with the help of washers and nuts at the ends. The

steel rod is passed through the metal plates and is heated. When its temperature
is raised to 90 C, the nuts are tightened. Determine the pull in the bar when it is

cooled to 24 C if
(1) the ends do not yield (ii) the total vielding at the ends is 2 mm.,
E = 205 GPa and coefficient of thermal expansion of steel, o, = 11 x 10~9°C.

Solution
A %(30;2 = 2257 mm?

(1)  Pull in the bar, P=0.A = atEA
=11 x107°x (90 — 24) x 205 000 x 225 7= 105202 N
(11)  When the vield at the ends i1s 2 mm,

A=(aLt-2)= er—
AE

of P=gtAE- 2—"? = 105202 — 2X228 X205 000 _ o005 36997

8000
=68075 N or 68.975kN

Example 1.15 A composite bar made up of copper, steel and brass is rigidly
attached to the end supports as shown in Fig. 1.26. Determine the stresses in the
three portions of the bar when the temperature of the composite system is raised by

70 C when
(i) the supports are rigid (ii) the supports vield by 0.6 mm.

E =100 GPa; E = 205 GPa; E, = 95 GPa
o =18 x 10-%2C: o =11 x 107%7C: o, =19 x 10-%°C
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Solution
A, = (m/4)50° = 625 7 mm?;
A, = (m/4)407 = 400 m mm?; A, = (7/4)60° = 900 & mm?

(1) When the temperature is BRASS
raised, each portion tends to GGTEH STEEL l )
elongate which is resisted by " 4
the rigid iauppurls and the £ 3 I‘m i C |E
compressive stresses are |Q J L 9
developed in each portion. N :
However, the forces so = e 600 mm —f=—n
developed in each portion are 300 mm 200 mm
cqual, Fig. 1.26

; A, 900
1€, 6.A=06.A =0,A, or O0.=-—0,=——X0, =1.440
i il fhe'th e A{_ b 6257 b b
ﬂIld E‘. = “‘ﬂb'_ﬂb == Q{Hi :":ﬂb = 2256&
A 4007z

Elongation in the absence of supports, A=A _+ A + A,
=o.L.t.+a Lt +oyl,1
= 18X 107°% 300 % 70 + 11 x 107° x 600 x 70 + 19 x 107° x 200 x 70
= 70 x 107° (5400 + 6600 + 3800) = 1.106 mm

o.L, A oL, 4 oL

Also from stress considerations, A =

E. E, E,
1446, x300 2.250, X600 6, x 200
Ahos, 100000 | 205000 95000 - 1106
or (0.004 32 + 0.006 59 + 0.002 11) o, = 1.106
0.01302 ¢, = 1.106
o, = 84.95 MPa

o, = 8495 x 1.44 = 122.33 MPa
O.=84.95x2.25=191.13 MPa
(i) When the supports yield by 0.6 mm,
0.0132 g, = 1.106 - 0.6 = 0.506
o, = 38.33 MPa
0, = 38.33 x 1.44 = 55.20 MPa
o, = 38.33 x 2.25 = 86.24 MPa

Example 1.16 A steel tube of 35-mm outer diameter and 30-mm inner diameter

encloses a gun metal rod of 25-mm diameter and is rigidly joined at each end. If at a

temperature of 40°C there is no longitudinal stress, determine the stresses developed

in the rod and the tube when the temperature of the assembly is raised to 240°C.
Coefficient of thermal expansion of steel = 11 x 107° /°C.
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Coefficient of thermal expansion of gun metal = 18 x 107°/°C.

Young s modulus for steel = 205 GPa

Young's modulus for gun metal = 91.5 GPa

Also find the increase in length if the original length of the assembly is I m.

Solution Refer Fig. 1.27,

- f V/ /// 7/
A= =35 -30°)=25525mm> g %g £
4 E |E GUN METAL ‘If
g A=Tx25 4008 mm? 10 N
— - = i mim
N8 %S Y \ 77777777
As the coefficient of expansion of STEEL
the gun metal 1s more as compared
to that of steel, the final expansion Fig. 1.27

will be less than the free expansion
of gun metal due to temperature rise and thus compressive stresses will be developed
in the gun metal rod. In a similar way, as the coefficient of expansion of the steel is
less, the final expansion will be more than the free expansion of steel due to temperature
rise and thus 1t will have tensile stresses.
Temperature strain of steel + tensile strain
= Temperature strain of copper — compressive strain

ie ar+ 25 = at L o g st
1 . ¥ - E R T i - H -
E, E, AE, AE,
P l — . =, — o)
or A‘EI AEEH — B 5
(o, — o) (240 - 40)(18 —11) x 10™°
or P= 1 —'+ = 1 . I
AE, AE,  25525x205000 490.87 x91 500
i
_ mulidot — =33841 N
19.11x107" +22.26 x10
O, = 00 132.6 MPaand g,= hind S 68.94 MPa
2352 490.87

Increase in length of assembly

= Elongation of steel tube (due to temperature + due to tensile stress)

= Elongation of copper rod (due to temperature — due to compressive stress)
Using the first equation, Increase in length

= u:rer+U’L =L(asr+EiJ
E

5

¥

1000} 11 %107 x 200 + 132.6
205

J = 2.847 mm
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Example 1.17 Rails are laid such that there is no stress in them at 24° C. If the

rails are 32-m long, determine
(i) the stress in the rails at 80°C, when there is no allowance for expansion.
(ii) the stress in the rails at 80°C, when there is an expansion allowance of 8 mm
per rail.
(iti) The expansion allowance for no stress in the rails at 80°C.
(iv) The maximum temperature for no stress in the rails when expansion allowance

is 8 mm.
Coefficient of linear expansion, & = 11 x 107%/°C and E = 205 GPa

Solution Change in temperature = 80° — 24° = 56°
(i) When there is no allowance for expansion,

o=atE=11x10"%x56x205 000 = 126.28 MPa

(1) When there is an expansion allowance of Ssmm. A=a L1-8= %
or llxlﬂ‘ﬁx32{}[ﬂ}xﬁﬁ—8=ﬁx32mﬂ
205 000
or 19.712 -8 =0.1561 ¢ or o=75.03 MPa
(111) If stresses are to be zero, the expansion allowance
A=aLlt=11x10"°x32000x 56 =19.71 mm
(iv) For no stress in the rails when expansion allowance is 8 mm.
8 =alt
or 8=11x10"°x32 000 x 1t or =22 13%C

Example 1.18 A sreel rod of 16-mm diameter and 3-m length passes through a
copper tube of 50-mm external and 40-mm internal diameter and of the same length.
The tube is closed at each end with the help of 30 mm thick steel plates which are
tightened by nuts till the length of the copper tube is reduced by 0.6 mm. The
temperature of the whole assembly is then raised by 56°C. Determine the stresses in
the steel and copper before and ofter the rise of temperature. Assume that the thickness
of the steel plates at the ends do not change during tightening of the nuts.

COPPER
T — (| EEZZZZZZZZ777777
e e /=
€ |E ¢1E mm STEEL
2 19 =
g r/f;’f;’fffffff;’fffff;
30 30
— mm|—4 3m - = lq—
Fig. 1.28

E. =210 GPa; E, = 100 GPa;
o, =12 x10°°°C; o, = 17 x 10°°/°C
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Solution Refer Fig. 1.28.
A, = (n/4)16* = 64 T mm?;
A, = (n/4) [50% - 40%] = 225 £ mm?

Stresses due to tightening of the nuts

As O L . 06=2= il or ©.=20MPa(compressive)
E 100 000 ¢

and as the force in the rod and the tube is the same, 0,.4, = 0. A,

or o x64dx=20%x225n or ¢, =70.3 MPa (tensile)

Stresses due 1o temperature rise
As the coefficient of expansion of copper is more than that of steel, it expands
more. Thus compressive stress is induced in the copper tube and tensile in the steel
rod.
As 0,.A, = 0..A,
o, =(A./A)) o.=(225/64) 6. =3.516 O,
Now, from compatibility equation,

Temperature strain of steel + tensile strain of steel
= Temperature strain of copper — compressive strain of copper
oL oL,
ie. olr+—=0alt——,
& A E -E'L‘( E 1

& £

12 % 10 X (3000 + 60) x 56 + 2200 T X 3000

210 000
_ 17 %107 % 3000 x 56 — Ze 33000
100 000
or 2056 +0.0510, = 2.856 - 0.03 o,
or 0081 0.=08 or o.=9.87 MPa

and o, =3516 X0 =3516x987 =347 MPa

Final stresses
g, = 20 + 9.87 = 29.87 MPa (compressive )

and o, = 70.3 + 34.6 = 104.9 MPa (tensile)

Example 1.19 A steel rod of 30-mm diameter is enclosed in a brass tube of
42-mm external diameter and 32-mm internal diameter. Each is 360 mm long and the
assembly is rigidly held between two stops 360 mm apart. The tempe rature of the
assembly is then raised by 5(0¥C. Determine
(i) stresses in the tube and the rod
(ii}) stresses in the tube and the rod if the stops vields by 0.15 mm
(iii} vield of the stops if the force at the stops iy limited to 60 kN
E = 205 GPa; E, =90 GPa; o, = 11 x10°%°C; oy, = 19 x10-%°C

Solution Refer Fig. 1.29.
A= (m/4) 307 = 225 1 mm*;



Simple Stress anid Strain

A, = (1t/4) [42° - 327 § BRASS i

VI IV IV VI I IS, T
= 185 7 mm? 5 cE
(i) When the temperature is 2 taﬂ mm STEEL EE
raised by 50°, ‘-” m;_

Stress in the steel rod = @, 1 E, fﬂfﬁfﬁfﬁfﬂfﬁfﬁﬂfﬁfﬁ_ %

= 11 x 107 x 50 x 205 000 < 360 mm - o

= 112.75 MPa (compressive) Fig. 1.29

Stress in the brass tube = @, t E, = 19 x 107% x 50 x 90 000
= 85.5 MPa (compressive )

(i) 1f the stops yields by 0.15 mm, A, = (a,Lt - 0.15) = Z2&
or o = ok, - O15Ee _ 1505 015205 000
360

= 112.75 - 85.42 = 27.33 MPa (compressive)

and Ay=(a,Lt-0.15) = E";’_{f
E,
1SE :

o ‘Ie.-.:ﬂbeb—D OF, =BS.5—DI5§:§W

= 85.5 — 37.5 = 48 MPa (compressive)
(iii) When the force at the stops is limited to 60 kN, let the yield of the stops be 6,

Then A, = (aLi- 8= "L
ES
or g =B O {75 - SX 205 S04 8
- L 360
and A, = (oLt - &) = %_—‘"‘-
or N ML W L L
L 360
- 85.5-250 8

Now, Force exerted by steel rod + Force exerted by brass tube = total force on the stops
oA +0,.A, =P
(112.75 — 569.44 d) x 225 m+ (85.5 — 250 ) x 185 m= 60 000
79 698 — 402 513 &+ 49 692 - 145 299 &= 60 000
547 812 6 =69 390
é=0.127 mm

Example 1.20 A rigid block AB weighing 180 kN is supported by three rods
symmetrically placed as shown in Fig. 1.30. Before attaching the weight, the lower
ends of the rods are set ar the same level, The areas of cross-section of the steel and
copper rods are 800 mm® and 1350 mm° respectively. Determine
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(i) the stresses in the rods, if the temperature s T g
is raised by 25° &
(ii) the stresses inthe rods, if the temperature — +cs4ee e
is raised by 50° d & - 1.8m
(iii) the temperature rise for no stress in the E © E 19m
copper rod.
e & —tt— & —
E = 95GPa; a.= 18 x 107°/°C; Y Y

A B

E, = 205 GPa; a, = 11 X 10-%/°C

Solution Considering the increase in tempe- \

rature alone (neglecting the weight of the block), R

the elongation of copper rod is more as compared Fig. 1.30

to steel rods. On the other hand, if the

temperature does not change, there is elongation of all rods and there is tensile stress
in all the rods.

Total elongation of each rod is the sum of elongations due to temperature and due
to weight. As the block is ngid, it will remain horizontal under all conditions. Thus
the total elongation of each rod is the same.

(1) Assume the stress in the copper rod to be compressive, i.e. the force acting

upwards.
Then oLt + i o Lt - fely
¥ 8 S
P
1 x 107 x 1200 x 25 + —+ <1290
800 x 205 000
= 18%107° X 1800 x 25 - —L o0
1350 x 95 000
330 000 + 7.317P, = 810 000 — 14.035P,
P.=65601-1918P, (1)
From equilibrium equation
2P, — P_= 180 000
or P.—0.5P, =90 000
65 601 — 1.918P,—-0.5P, = 90 000 [from (1}]
or 2418 P.=-24 399
or P.=-10090 N (compressive)
and P, =90 000 + 0.5 x (- 10 090) = 84 955 (tensile)
g.=— 19070 =—7.474 MPa
1350

This shows that the stress in the copper rod is opposite of what was assumed i.e.
tensile and not compressive.

= w = 106.19 MPa (tensile)

g,
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(i) If the temperature i1s raised by 50°,
11x107° x 1200 50 + 7.317 x107° P,

= 18x107° x1800% 50 -~ 14.035x10°°P.
660 000 + 7.317 P,=1 620 000 — 14.035 P.
P,=131201-1918 P,
From equilibrium equation
2P.—P.=180000 or P, -0.5P.=90000
or 131201-1.918 P, =90 000
or P.= 17 039 N (compressive)
o, = 17 039/1350 = 12.62 MPa (compressive)
P.=90000+05x17039=98520N

o, = 98 520/800 = 123.1 MPa (tensile)
(i) As there is to be no stress and hence no load on the copper rod, 6. =0
Hence load in each rod = 180 000/2 = 90 000 N

11x107° x1200x ¢t +7.317x10° P,

= 18%10° %1800+ -0

13200 ¢ + 7.317 P, = 32 400«
19 200 ¢ = 7.317 x 90 000
t = 34.3°

1.13 SHRINKING ON

A thin tyre of steel or of any other metal can be shrunk on !
to whecls of slightly larger diameter by heating the tyre to a
certain degree which increases its diameter. When the tyre
has been mounted and the temperature falls to the normal
temperature, the steel tyre tends to come to its onginal
diameter and thus tensile (hoop) stress is set up in the
tangential direction.

As shown in Fig. 1.31, let d and D be the diameters of
the steel tyre and of the wheel on which the steel tyre is to
be mounted (Fig. 1.31), then

nD-nd D-d
nd d

The strain, E=

Circumferential tensile stress or hoop stress = £.E = (-D—-;—d-— ] E (1.18)

Example 1.21 A rthin tyre of steel is to be mounted on 1o a rigid wheel of 1.2-m

diameter. Determine the internal diameter of the tyre if the hoop stress is limited to
120 MPa.
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Also determine the least temperature to which the tyre should be heated so that it
can be slipped on to the wheel,
E =210 GPaand a, = 11 x 107°°C

Solution
. ~ nD-nd D-d ¢]
Tensile strain, £ = = e 2
nd d E_
D o o+ E d E
or —_— =1l=14+1= or —
d E D o+E
DE 1200 x 210 000
or d= = =1199.31 mmor 1.19931 m

c+E  120+210 000
Increase in the circumferential length = 7w (D—-d)

Thus alt=n(D-d)
or 11 x 10°° x (mx 1199.31) x t = £ (1200 - 1199.31)
t=523°C

1.14 STRAIN ANALYSIS

So far, the effect of an axial force on the length of a bar or rod has been considered. In
case of a tensile force, the length increases, and in a compressive force, it decreases.
However, this axial increase or decrease takes place at the cost of a change in the
lateral dimensions of the bar or rod. If an axial tensile force is applied to a bar, its length
is increased and its lateral dimensions 1.e. the
width and breadth or the diameter are
decreased (Fig. 1.32). Therefore, any direct
stress produces a strain in its own direction
as well as an opposite kind of strain in all Fig.1.32
directions at right angles to its own direction.

U..‘...*_._............._.._.-._..._.._.._.-._._.._..._. __I_-_ﬂ"

Sl e i vk i i

Poisson’s Ratio

The ratio of the lateral strain to the longitudinal strain of a matenal, when it is subjected
to a longitudinal stress, 1s known as Poisson’s ratio and 1s denoted by v. It is found
that for elastic materials, the lateral strain is proportional to the longitudinal strain 1.e.
the ratio of the iateral strain to the longitudinal strain is constant. Thus

Lateral strain

— — — = constant = v (1.19)
Longitudinal strain

The value of v lies between (.25 and 0.34 for most of the metals.

Lateral strain = — v X Longitudinal strain = - v. o/E

(negative sign indicates that it 1s opposite to the longitudinal strain)
Two-Dimensional Stress System
Consider a system with two pure normal stresses g; and o, as shown in Fig. 1.33.




Simple Stress and Strain

Strain due to g, in its own direction
= 0,/E
Strain due to 0, in the direction of
g, =~ Vo,/E
Thus, net strain in the direction of g,
g =0/E-vo,/E (1.20)
In a similar way, {
Net strain in the direction of o, o2
& = G/E - vo,/lE (1.21) Fig. 1.33
Remember that a tensile stress is taken positive
whereas a compressive stress negative.

B

] —~— [ (Tq

Three-Dimensional Stress System o3
Let there be a system with three pure normal stresses 4
0,, 0, and 0, as shown in Fig. 1.34,
Strain due to o in its own direction = ¢,/E <
Strain due to o, in the direction of o, = — vo,/E
Strain due to 0y in the direction of 0, = — vo/E /
i

i A o
Thus, the net strain in the direction of o, G & |

£ = 0/E - vO,IE - vOu,/E
In a similar way, &= 6/E - voy/E - vo,/E Fig. 1.34
and & = 6/E - vo/E - vo,/E

VAY,

Volumetric Strain

Volumetric strain 1s defined as the ratio of increase in volume of a body to its original
volume when it is acted upon by three mutually perpendicular stresses 0|, 6, and o;.
For a rectangular solid body of sides a, b and ¢ (Fig. 1.34), let g, & and & be the
corresponding strains.

Initial volume = a.b.c
Final volume = (a + a&)) (b + b&)) (c + c&) =abc (1 + ) (1 + &) (1 + &)
Increase in volume
Original volume

Yolumetric strain =

abe (14 g )1+ &, )(1 4+ &3) — abe
abc
=(l+g)(1+&)(1+&)-1
=1+ &+ E+E+ 65+ EE+ EE + 58—
=& + 65+ & (1.22)
Thus 1 the products of very small quantities are neglected, the volumetric strain is
the algebraic «um of the three mutually perpendicular strains.

In terms O - resses the volumetric strain can be expressed by substituting the
values of g;, £, and £, from above,

Il
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(111) Let obe the longitudinal stress to have the same strain,
AL  (.042 39 B

= ===

3 e 205%,{!:86,9 MPa
Longitudinal load = 0x A = 86.9 x 35 x 35 = 106 452 N or 106.452 kN

Example 1.25 A square steel bar of dimensions 50 mm x 50 mm x 150 mm is
subjected to an axial load of 250 kN. Determine the decrease in length of the bar if
(i) the lateral strain is fully prevented by applying external uniform pressure on
the rectangular surfaces.
(ii) only one-third of the lateral strain is prevented by the external pressure.

Solution
(1) a, = 250 000/(50 x 50) = 100 MPa
Let the compressive stresses applied on the similar lateral 250 kN
sides be 0, (= oy) to prevent the lateral strain (Fig. 1.35). l
Then
E{ﬂz—vcr_;—vcr,}:ﬂ pp— —— 0y
or (0,-03xXx0,-03x100)=0 Oy =0y)
or 0.7 o, = 30
J2=42‘85TMP& S rrrs
. L Fig. 1.35
Decrease in length = = (0, - vo, - va;) =0
150
= Zﬂjm(lﬂ{}—ﬂjxixa’lz.ﬂﬁ?}:[} O =0y)
= (.054 36 mm

(i1) In the absence of compressive stresses on the sides to prevent the lateral strain,
The lateral strain = vg,/E (tensile)

Now, one-third of this 1s to be prevented i.e. vo,/3E and leaving 2va,/3E as such.
Let the compressive stresses applied on the sides be o,.

Then
1 _ vo,
E{crz - VO, - VO,) =~ ETa
The two strains are of opposite directions.
or (0,-03x0,-03x100)=-2x0.3x100/3 (0,=03)
or 0.7 0, =30-20

o, = 14.286 MPa
Decrease in length = %{J, - VO, — V3,) = ()

150
205 000

= 0.0669 mm

(100 - 0.3 X 2 x 14.286) = 0 (0,=03)
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From (1) and (11),
T
G B
or E=2G(1 +v)
As E=3K(1-2v) ..(Eq. 1.27)
. E=2G(1+v=3K(1-2v) | (1.28)
This equation relates the elastic constants.
Alsnﬁ'ﬂmahﬂve,l+v=—E—, 2+2'p‘=E (i)
2G G
and 1-2vs= 2 (1i)
3K
Adding (i) and (i1), 3 = l = £ (BK +G)
& ; G K 3KG
or E = 250 (1.29)
3K+G

Example 1.26 A bar, 24 mm in diameter and 400 mm in length, is acted upon by
an axial load of 38 kN. The elongation of the bar and the change in diameter are
measured as 0.165 mm and 0.0031 mm respectively. Determine

(i) Poisson’s ratio, and (ii) the values of the three moduli

Solution
A = (/4) 24% = 144 7 mm?
o= 38 000/144 7= 84 MPa
Lateral strain = v .Linear strain

8d __SL _ 0.0031__0.165

=V— or =V or v=10.313
d 3 24 400
E=Z=—% 203636 MPa
£ 0.165/400
Also. E=2G(l+v=3K({-2v)
E 203 636
- = = 77 546 MP

O= 0+ v 2(1+0313) H

and k= _E . 203636 _ ¢ 404 MPa

3(1-2v) 3(1-2x0.313)

Example 1.27 A bar, 12 mm in diameter, is acted upon by an axial load of 20 kN.
The change in diameter is measured as 0.003 mm. Determine

(i) Poisson’s ratio and (ii) the modulus of elasticity and the bulk modulus.

The value of the modulus of rigidity is 80 GPa.

Solution
= (1/4) 12% = 36 7 mm?
o= 20000/36 1= 176.84 MPa
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24,

26.

27.

28.

. A steel sleeve of 24-mm internal diameter and

In the framed structure of Fig. 1.43, the outer B

rods are of steel and of 260-mm? area of cross I,

section whereas the central rod 1s of brass and ]

of 420-mm? area of cross-section. The length 04 T

of the central rod is 1200 mm. Initially, all the

rods are of required length. However, while

assembling, the central rod is heated through

40°C. Determine the stresses developed in the

rods. E for steel = 205 GPa, E for brass =

85 GPa and o for brass = 19 x 10-%/°C.
(17.9kN in 2; 10.34 kN in 1 and 3)

400 mm

SOV

PN SRR RINNSN

J
B

h h W & N

36-mm external diameter encloses an aluminum

rod of 22-mm diameter. The length of the rod rig. 1.44
is 0.4 mm longer than that of the
sleeve which is 400 mm long as T
shown in Fig. 1.44. Determine
(i) the compressive load up to

which only the rod is 20mm ALUMINIUM Idmm

STEEL 8 mm

stressed :
(i1) the maximum load on the

assembly, if the per- RIEEL &

missible stresses in l

aluminum and steel are
130 MPa and 175 MPa res- ———20 mm——]

pectively Fig. 1.45
(i1i) the deformation of the assembly

under maximum load
E, =75 GPaand E_ =205 GPa

(17.42 kN; 138.7% kN; 0.3416 mm)
A composite bar of 2C mm X 20 mm cross section is made up of three flat bars
as shown in Fig. 1.45. All the three bars are rigidly connected at the ends
when the temperature 1s 20°C. Determine
(1) the stresses developed in each bar when the temperature of the composite
bar is raised tc 60°C
(i1) the final stres:es in each bar when a load of 17.6 kN is applied to the
composite bar
E,=80GPa, a,=11x10"%C
E, =200 GPa, a,=22x 107%°C
(o, =8 MPa: o©,=32 MPa,; g, =42 MPa; g, =52 MPa)
A load of 120 kN is applied to a bar of 20-mm diameter. The bar which is
400-mm long is elongated by 0.7 mm. Determine the modulus of elasticity of
the bar material. If Poisson’s ratio is 0.3, find the change in diameter.
(218 GPa; 0.0105 mm)
A metallic prismatic specimen 1s subjected to an axial stress of ¢, and on one
pair of sides no conatraint 1s exerted whereas on the other, the lateral strain 1s
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¢ When 6=90°, ogz=0 and 7,=0
e When 6=135° o0y=0/2 and 7y3= 0/2 (maximum, clockwise)

Og & (EW:I 6 {EE"H] Tg
H.I'-_ T aﬂ i UI' ﬁ!-—i— {rs tﬂ | o ﬂl
180°+6~1" 180°-@ 180°-@ 1+180°+8
(cw) (ccw) (cw) (ccw)
(8) . (D)
Fig. 2.2

Figures 2.2 (a) and (&) show the planes inclined at different angles to the vertical
alongwith the stresses acting on them. It can be noted from these figures alongwith
the above observations that

e a plane at angle @ with the vertical also is the plane with angle (180° + ).
Thus a plane at angle 45° clockwise with vertical can also be mentioned as the
plane at 225° clockwise or 135° counter-clockwise. Similarly, a plane at angle
—45° with the vertical would also mean a plane at angle 45° counter-clockwise
or angle 225° counter-clockwise or angle 135° clockwise.

e the normal stress on the inclined plane decreases with the increase in angle 6,
from maximum on the vertical plane to zero on the horizontal plane.

e the shear stress is negative (counter-clockwise) between 0° and 90 and positive
(clockwise) between 0° and — 90°. Remember that plane at 135° to the vertical
also means a plane at — 45° as described above.

e the maximum shear stress is equal to one half the applied stress.

The resultant stress on the plane AC,

o, = Jﬂaz + rﬂl = crI-qus4 8 +sin” Bcos” 6

= O, Cos OV cos? 8 -+sin’ 6
= o, cos 8 (2.3)
Inchnation with the normal stress,

o, sinfBcosb

tan @ = =tan @
¢ o, cos”

or p=20 (2.4)

That is, it is always in the direction of the tpds C o,.dy.sin @
applied stress. Og.d5s / 4
(i) Bi-axial Stress Condition o/ .
Let an element of a body be acted upon by two h““?!
tensile stresses acting on two perpendicular Oy.dy cos 6
planes of the body as shown in Fig. 2.3. Let A/ B
dx, dv and ds be the lengths of the sides AB, /0 o,.dx.sin 0
BC and AC respectively. WS 58 .

Considering unit thickness of the body and Oy (X8 Ef: .

Fig. 2.3

resolving the forces in the direction of &,
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The above equations show that
e the normal stress is positive (tensile) when 8is between 0° and 90° and negative
(compressive) between 90° and 180°. Maximum values being at 45° (= 1) and
135° (=-1)
o the shear stress is positive (clockwise) for 8<45° and negative (counter- clockwise)
for 8> 45° and < 135° and again positive between 8> 135° and < 180°.
e the shear stress is zero at 45° and 135° where the normal stress i1s maximum.
These conclusions indicate that when a body is acted upon by pure shear stresses
on two perpendicular planes, the planes inclined at 45° are subjected to a tensile
stress of magnitude equal to that of the shear stress while the planes inclined at 135°
are subjected to a compressive stress of the same magnitude with no shear stress on
these planes.
Compare this result with Eq. 2.12.

(iv) Bi-axial and Shear Stresses Condition

Let an element of a body be acted upon by two tensile stresses alongwith shear stresses
acting on two perpendicular planes of the body as shown in Fig. 2.5. Let dx, dy and ds
be the lengths of the sides AB, BC and AC respectively.

7905 - ay.dy.sin @ 1.dx.sin@
Og.dS / _'ﬁ‘ ,"
E Ux- dj‘r i l'_‘ E a, X dy # ;""' . E L& dx
:JH “'utﬂ';.d}".cﬂs g f,"ﬂ ”"nEEI.GGE 8
’ A , .
7 = Er,n}r r.dy.cos 6 T.dy r.dysin @ oy.dx.cos Eg}ﬁdx oy.dx.sin 8
&2 dx
Oy.dx
Fig. 2.5

Considering unit thickness of the body and resolving the forces in the direction of
Op»
Ogds — 0, .dy.cos 8- 0, .dx.sin 8- 1.dy.sin 6 - T.dx.cos 0
o, dycosf . O,dxsin@ , Tdysin®  T.dxcos6
ds ds ds ds

or ﬂﬂ =

0,dycosf | 0,dxsin6 , Tdysin®  Tdxcosf
dyl/cos@  dx/sin@ dy/cos@ dx/sin@

o, cos” 6 +0, sin® 0 + Tsin @cos @ + Tsin O cos B

o, cos’ 6+o0, sin® 6+ 7sin 20 (2.19)

o, (l +ms?9}+ﬂq (1 _CG529]+T.Ein 20
| 2 ! 2

] ;
%{gl +0,)+ E(crx “ )cos 2@ + 1.sin 260 (2.20)
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Maximum (Principal) Shear Stress

In any complex system of loading, the maximum and the minimum normal stresses
are the principal stresses and the shear stress is zero in their planes. To find the

maximum value of shear stress and its plane in such a system, consider the equation
for shear stress in a plane, i.e.

1 .
£y = -—Z-(crx —-0,)sin26+7cos 20 (Eq. 2.21)

For maximum value of Ty, differentiate it with respect to 6 and equate to zero,

% _ _(6,-0,)c0s20-27sin20=0
dé
c,—0C
2T
This indicates that there are two values of 28 differing
by 180° or two values 8 differing by 90°. Thus maximum
shear stress planes lie at right angles to each other.

¥

or tan 26 = — (2.33)

(6, -0,)
2T

Now, as tan26 = — can be represented as ~(ox— g))

shown in Fig. 2.7

c,-0,

sin 28= $—E—-"—;:
..}(crx-cry} +4T1

2T
J(©, -0, +47°

Right-hand sides of both the above equations should have the opposite signs, if
one is positive the other is negative while using them. Substituting these values of
sin 260 and cos 28 in Eq. 2.21, two values of the shear stress are obtained.

cos 26= %

Ty = -—%(ﬂx —0,)sin 20 + 7cos 20
1 g,—0, 2T
= —|F<(0,—0,) tT. =

2 2
1 (0,—-0,) +4r

i
2 J(o,~0,)" +41°

This provides maximum and minimum values of shear stress, both numerically
equal. In fact the negative or minimum value indicate that it is at right angle to the
positive value as discussed above and two are the complimentary shear stresses. Thus
magnitude of the maximum or principal shear stress 1s given by

1
- iEJ{t‘J‘I -ur::-'}_}2 +471°
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e Bisect LM at C and draw a circle with C as centre and radius equal to CR
(= CS). Let ZLCR = B.

e Rotate the radial line CR through angle 26 in the clockwise direction if 8 is
taken clockwise and let it take the position CP.

¢ Draw NP 1 on the x-axis. Join OP.

It can be proved that ON and NP represent the normal and the shear stress

components on the inclined plane AD.
From the geometry of the figure,

1
OC= E{ﬂ} +0,) as before.

CN = CP cos (20-f)
= CR cos (26— ) ...(CP = CR)
= CR (cos 20 cos B + sin 20 sin )
= (CR cos ) cos 26 + (CR sin B) sin 26
= CL cos 260+ LR sin 20

1 ;
= —Z—(Gx—ﬁy}cusiﬂ+f.51n29 ...(CL = OL - OM)

1
Thus ON = OC + CN = —Z«[w::i':IF +{TI}+%({TI - 0,)cos26 + 1.sin 20 = gy

.(Eq. 2.20)
and NP = CP sin (20— B) = CR sin (26 - )
= CR (sin 26 cos - cos 20 sin f§)
= (CR cos P) sin 20— (CR sin 8) cos 26
= CL sin 20— LR cos 26
= l[ﬂx—ﬂy}SiHZH’—TCDSZH= Ty ...(Eq. 2.21)

2
As NP i1s below the x-axis, therefore, the shear stress is negative or counter-

clockwise.
1 :
Mathematically, NP = — [E (0, —0,)sin 20— Tcos 29}

|
= — -2-{:11 = )sin 28 + Tcos 20|

Principal Stresses

As shear stress is zero on principal planes, OF represents the major principal plane with
maximum normal stress. In a similar way, OF represents the minor principal plane.

OF = OC + CF = 0C + CR= OC + \Jc[? + LR?

1 [1 F
> (O +U}.)+J{E[ﬂ'x —crj.}} +17°

1 I
= (0, +U’}.J+EJ{D'_K -0,) +41°

Major principal stress
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e Make angle FCR = 60°, 1.e. double the angle of the inclined plane with OF in
the clockwise direction.

Then CR represents the inclined plane.
0;,= 0L = 90 MPa (tensile)
Typ=LR = 17.32 MPa (counter-clockwise)
0,=0R =91.65 MPa
Inclination of the resultant with OL or oy,, ¢ = 10.9°
The results are shown in Fig. 2.11(b).

(b) Oy = 100 cos” 30° — 60sin” 30° = 100 X % - 60 xi = 60 MPa (tensile)

1
Ty = — 7 [100~ (-60))sin 60° = — 80 x 0.866 = —69.28 MPa (ccw)

0,= {0, +1,° = /607 + (- 69.28)> = 91.65MPa

inclination with 0y, tan @ = 2% = o O
O3
or @ = 49.11°

o can be found to be —19.11%
Solution by Mohr’s circle is shown in
Fig. 2.12 which is self-explanatory.
Oy = OL =60 MPa (tensile)
T,0 = LR =69.3 MPa (counter-
clockwise)
o, = OR=91.65MPa
Inclination of the resultant with OL or oy,
@=49.1°

(€) Gy = ~100 cos” 30° +60sin” 30°

=—llf]4[]:=-::E+n‘.‘iﬂ:~:l
4 4

= —60 MPa (comp.)

Ty = u%(—l{}ﬂ — 60)sin 60° = 80 x 0.866 = 69.28 MPa (cw)

Q
I

.= |02 +14° = (-60)* +(69.28)* = 91.65 MPa

Ty  69.28
2L

or p=49.11°
o can be found to be —-19.11°.

(d) Cyp = ~100cos” 30° — 60sin” 30°

= —Iﬂﬂx%—ﬁﬂx%= - 90 MPa (comp.)

Inclination with 03, tan @= =1.133




You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



0 Strength of Materials

Thus in a plane at 60°,
20 = %(—5{]+ﬂ:_,) +~;~(*50—n‘y}m512{]“ +30sin120°

40 = -50+0, +(-50—-0, X(—0.5) +60 % 0.866

40 = 50+0, +25+0.50, +51.96

1.5 O, = 13.04 or o, = 8.69 MPa
Ty = —(— 50 - 8.69) sin 120° + 30 cos 120° = 10.414 MPa

1 1
Principal stress = E(H'* +ﬂ'},}i5J(ﬂx -ﬂ'j,jz +47°

% (=50 +8.69) + % (=50 -8.69)" + 4(30)?

-20.66£41.97 = 21.31 and —62.63 MPa

2T 2x 30
tan28 = = =-1.0223
o,—-o, —50-8.69
or 20=-45.63or 6, =-22.82° or 157.18°
and 6, = -22.82° +90° = 67.18°

Example 2.7 Figure 2.15(a) shows the resultant stresses on two planes at a
certain point in a material. On a certain plane it is 800 MPa compressive at an angle
of 3P to its normal and on another plane it is 600 MPa tensile at an angle of 75° 10 its

normal. Determine the angle between the planes. Also find the principal stresses and
their directions to the given plane.

800 MPa
130

600 MPa o

%"

- (a)

Fig. 2.15

Solution On the plane p, the resultant stress is 800 MPa compressive, its normal
component will be compressive and the shear component counter-clockwise.
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2.6 'ELLIPSE OF STRESS

This 1s another graphical method to be used
when a material is subjected to direct stresses
0, and o,. The method is as follows:
® Draw two circles with O as centre and
radii equal to o, and o) taken to a suitable
scale (Fig. 2.19).
e Through O draw AB parallel to the
inclined plane.
o Draw OFE L AB through O intersecting the
inner circle at D and outer circle at E.
e Draw EG 1L OX.
e Draw DG L EF.

Now, OP =

i
—

and PG =
Also, OF =
and FG =
oG =
lan ¢ =
tan @ =

OD + DP = OD + DG cos 6 Fig. 2.19
o, + (DE cos 6) cos 8= 0, + (0, - ﬂ}}ms! 6

g, cos’ 6+ o, (1- cos” 6) = o, cos® 8+ 0, sin” B = 0,
(Refer Eq. 2.5)
DG sin 8= (DE cos 6) sin 8

1 a
(0,— 0, )cos Bsin 8= —zr(rr.'.!'Jr -0,)sin26 = g,

(Refer Eq. 2.24 with 7=0)
OE cos 8= 0, cos &

HD cos 8= o, sin &

Jﬂf cos” @ + a'f, sin’ =0, (Refer Eq. 2.8)

o,sin@ o, p Rk 54
= ——tan . s

o,cos8 O, (heleroa )

PG (6,-0,)sin OcosB

- Ref o 29
OP o ,cos *0+0,sin *0 (Refer Eq. 2.9)

For different values of &, point G can be located, the locus of which is
evidently an ellipse as shown in the figure. The diagram is thus known as ellipse

of stress.

Example 2.10 A piece of material is subjected to two perpendicular stresses as

follows:

(a) Tensile stresses of 100 MPa and 60 MPa

(b) Tensile stress of 100 MPa and compressive stress of 60 MPa

Determine normal and tangential stresses on a plane inclined at 30° to the plane
of 100 MPa stress. Also find the resultant and its inclination with the normal stress
using ellipse stress method.
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Example 2.11 Figure 2.24(a) shows the strains in three directions p, g and r in
a plane, the magnitudes being 600 x 10°°, 150 x 107° and 250 x 107°. Determine the
magnitude and direction of the principal strains in this plane,

q r g

= D 3t 2503 A ’
o 600 x 1070 15&'1-:—*-530—.- o' (€
(a) (b)
Fig. 2.24

Assuming no stress in a plane perpendicular to this plane, find the principal stresses
at the point. Take E = 205 GPa and v = 0.3.

Solution
1 1 ]
Eg = E{Ex+£y}+ E(Ex—sy}cns 20+ Etpsin 20 (Eq. 2.40)
i |
£y = E{Ex+sy}+ E{Ex—g)=ﬁt}l]x 10°°
or £ =600 x 10° (i)

1 1 - -
B = E{ﬁmxl{)‘f’+£}.}+ 5 (600 X 107 — g, )cos 90° + = ¢ sin 90°

. ] ]
-150 x 10°° = —{ﬁ{}[}xlﬁ+£y} +359

2
or e;,.+rp=-9[lﬂxl(ﬁ“ (ii)
i 1 1
E(sp = E{ﬁ{}[}x 10°+¢,)+ E{ﬁ{}[}x 10— g, )cos 24D“+qusin 240°
1 l Jj'
250 X 10°6 = ~(600X 106 + £, )~ - (600x 10~ ¢,) - 0

I 3 3

= Eﬁﬂﬂxl(}“wzsy—jm
Ey—D.S?? o= 1333x10° (111)
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17.

18.

19.

Strength of Materials

A piece of matenal is acted upon by tensile stresses of 50 MPa and 25 MPa at
right angle to each other. Determine by ellipse of stress, the magnitude and
direction of the resultant stress on a plane at 45° to the 50 MPa stress.

(39.5 MPa, 18° with normal stress, 27° with 1({) MPa stress)
The stresses at a point in three coplanar directions are measured as ¢, =
80 MPa (tensile), gy, = 400 MPa (tensile) and 0,5, = 200 MPa (compressive)
where subscripts indicates the relative angular position of the planes in degrees.
Determine the principal stresses and the planes.
[449 MPa (tensile) at 14° to 400 MPa and 251 MPa (compressive) at 16° to
200 MPa stress]
The readings of a strain gauge rosette inclined at 45° with each other are
4x 107 3 x 10%and 1.6 x 107°, the first gauge being along x-axis. Determine
the principal strains and the planes.

(4.04 x 10°°, 1.58 x 107 ; 5° and 95°)
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é , Strength of Materials

3.4 SHEAR STRAIN ENERGY

Consider a block with dimensions L, b and h as
shown in Fig. 3.5. Assume it to be rigidly fixed to
the ground. A shear force P is applied gradually
along the top surface.

Strain energy, U = Work done in straining = % X
Final couple x Angle turned
= % x Final force x h X ¢
= % X {Shear stress X Area) X i x @
= %J.{L.b},hé ....... (As G = t/@or ¢ = 1/G)
2
.
= —_.(L.b.h
2C ( )
2
= — x Volume (3.9)
2G ,
or Shear strain energy per unit volume = = (3.10)

It is similar to ¢*/2E for direct stress.

3.5 SHEAR STRAIN ENERGY
(THREE-DIMENSIONAL STRESS SYSTEM)

Consider a unit cube acted upon by three principal stresses ¢, ¢, and 0 as before.,
The total work done by the external forces cause
e change of volume due to application of direct stresses and
o distortion due to shearing stresses which do not affect the volumetric change.
Thus,
Total strain energy = Volumetric strain energy + Shear strain energy
Now total strain energy,

U= é(af +03 403 — V(0,05 + 0,03 +0,0,) per unit volume  (Eq.3.5)

Volumetric strain energy,
U

1 : .
, = > Average stress X Volumetric strain

1{o,+0,+0C + 0, + 1-2
—[‘ 2 3]:{(”’ %+ X=2V)  (Using Eq. 1.23)

2 3 E

"

é(ﬂ]+ﬂz+ﬂj)2 (1-2v) (3.11)
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Similarly,

Giii) U _ 0.6667/2 +0.3333 L0 6 U _ 0.5/2+0.5 - 05
U, 2x0.6667+0.3333 U, 2x05+05

) U _0/2+] 1
U, 2x0+1

Example 3.4 The cross-sections of two bars A and B made up of the same material

and each 320-mm long are as follows:
o Bar A: 24-mm diameter for a length of 80 mm and 48 mm for the remaining
240 mm
e Bar B: 24-mm diameter for a length of 240 mm and 48 mm for the remaining
80 mm
An axial blow to bar A produces a maximum instantaneous stress of 160 MPa.
Determine the
(i) maximum instantaneous stress produced by the same blow to bar B.
(ii) ratio of energies stored by the two bars when subjected to maximum permissible
stress.
(iii) ratio of energies per unit volume of the two bars when subjected to maximum
permissible stress.

Solution (Refer Fig. 3.7.)

For the same blow to bar B, the strain energy
produced by the blow should equal to that
produced by the blow to the first bar. . .

In bar A,

Maximum instantaneous stress in the smaller
cross-section = 160 MPa

80 mm

24 mm

24 mm

240 mm ——»

320 mm

Maximum mslantane:ous stress in the larger

24
cross-section = 160 x ( 48) =40 MPa

~——— 240 mm
il

e
80 mm
fef——

In bar B, |

Let maximum instantaneous stress 1n the 48 mm 48 mm
smaller cross-section = (Bar A) (Bar B)

Then maximum instantaneous stress in the Fig. 3.7
larger cross-section = /4

Strain energy of bar A = strain energy of bar B

40° & 160°
—— X — (48)° x24ﬂ+—x (24) x 80

2E " 4 2E
gy 48)° 31'_1+{FE ~ (24) x240
= X — X e, e X
T 3E <3

80
'ZE

T
Dividing throughout by EH 24* x
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Example 3.7 A lift is operated by three ropes each having 28 wires of 1.4 mm
diameter. The cage weighs 1.2 kN and the weight of the rope is 4.2 N/m length.
Determine the maximum load carried by the lift if each wire is of 36 m length and the
lift operates (i) without any drop (ii) with a drop of 96 mm during operations.

E (rope) = 72 GPa and allowable stress = 115 MPa

Tt
Solution Total area of cross section, A = I'“ 4)* x3x%28 = 129.3 mm?

The maximum stress occurs at the top of the wire rope where the weight of the
rope is maximum,
Thus maximum load = weight of cage + weight of rope
=1200+3x36x42=1653.6 N

1653.6

129.3

Equivalent static stress available for carrying the load = 115 - 12.8 = 102.2 MPa

Thus, equivalent static load that can be carried,
P,=1022x1293=13214N

102.2 % 36 000
The extension of the rope, A = 72 000 =51.1 mm

=12.8 MPa

Initial stress in the rope, O =

1
(1) With no drop, Let W be the weight which can be applied suddenly, W. A = 3 P.A

or W= 13214/2 = 6607 N or 6.607 kN
(11) With 96 mm drop, Let W be the weight,

1 1
Wh+A)= EP._& or W({96+5l1.1)= 3 x 13214 x 51.1
or W=2205N or 2.295 kN

Example 3.8 A vertical composite tie bar rigidly fixed at the upper end consists
of a steel rod of 16-mm diameter enclosed in a brass tube of 16-mm internal diameter
and 24-mm external diameter, each being 2 m long. Both are fixed together at the
ends. The tie bar is suddenly loaded by a weight of 8 kN falling through a distance of
4 mm. Determine the maximum stresses in the steel rod and the brass tube.

E. = 205 GPa and E;= 100 GPa

Solution Refer Fig. 3.9.

A, = (m/d)16* =64 A,,':{?rf-‘-t}(zﬁl:— 169 =80 r
Let x = Extension of bar in mm

E .x E x
o = *— and o, = el ,,

S AT b

- = AL+ AL
Strain energy of the bar 2B ¥ 2B b

E*x* E;x’
=t —AL+——AL
I’2E ° I’2E
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= 1007 + 50% + (-25)* - 2 x 0.3 x [100 x 50 + 50 x (=25) + (-25) x 100]
=13 125
o =114.6 MPa
Factor of safety = 220/114.6 = 1.92
(v) Maximum shear strain energy theory

26%= (0,-0,) +(0,-0,)" +(0,-0,)
= (100—-50)% + (50 + 25)* + (=25 -100)* =23 750
ol=11875 o = 108.97
Factor of safety = 220/108.97= 2.02

Example 3.10 A bolt is acted upon by an axial pull of 16 kN alongwith a
transverse shear force of 10 kN. Determine the diameter of the bolt required according

to different theories. Elastic limit of the bolt material is 250 MPa and a factor of
safety 2.5 is to be taken. Poisson’s ratio is 0.3.

Solution The permissible stress in simple tension = 250/2.5 = 100 MPa

Let the required area of cross-section and the diameter of the bolt be a and d
respectively under different theories.

The applied tensile stress = 16 000/a
The applied shear stress = 10 000/a

1 1
Maximum principal stress, 0, = 5@, +0,)+ = (0, -0,)° +41°

1 1
= 5-(16.000) +- /16 000” +4x10 000° ...(6,=0)

= (8000 + 12 806)/a = 20 806/a (tensile)
Minimum principal stress, o,= (8000 — 12 806)/a = 4806/a (compressive)
(i) Maximum principal stress theory:

Maximum principal stress, o, = 20 806/a
Thus 20 806/a = 100

b8
Idz = 208.06 or d =16.28 mm

(i1) Maximum shear stress theory
Maximum shear stress = [20 806 — (— 4806)]/2a = 12 806/a
Maximum shear stress in simple tension = 100/2 = 50 MPa
12 806/a = 50

I
Ea'z =256.12 or d = 18.05 mm
(i) Maximum principal strain theory
o, —vo, —vo, = [20 806 - 0.3 x (-4806))/a =22 247.8/a ...(0y=0)
22 247 .8/a = 222.48

T
7 d?=22248 or d=16.83 mm
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e he

10.
11.

12.

13.

14.

15,

16.

Derive expressions for the strain energy in a three-dimensional stress system.
What is shear strain energy? Find its value per unit volume of the material.
Derive the relation for shear strain energy for a three-dimensional stress system.
What is the value of maximum stress induced in a body when the load is
applied suddenly?
Deduce the relation for stress in case of impact and shock loading.
What are the main theories of failure for a material? Explain their relative use.
Give an account of graphical representation of various theories of failure.
A load of 22 kN is lowered by a steel rope at the rate of 750 mm/s. The diameter
of the rope is 28 mm. When the length of the rope unwound is 12 m, the rope
suddenly gets jammed. Find the instantaneous stress developed in the rope.
Also calculate the instantaneous elongation of the rope. E = 205 GPa.

(187.1 MPa, 10.95 mm)
A weight of 2 kN falls 24 mm on to a collar fixed to a steel bar that is 14 mm
in diameter and 5.5 m long. Determine the maximum stress induced in the bar.
E, =205 GPa. (166 MPa)
A weight of 800 N falls 30 mm on to a collar fixed to a steel bar of 1.2-m
length. The steel bar is of 24-mm diameter for half of its length and 12 mm for
the rest half. Determine the maximum stress and the extension in the bar.
E, =205 GPa. (347.7 MPa; 1.272 mm)
A lift is operated by two 20-m long ropes and consisting of 30 wires of
1.5-mm diameter. The weight of the cage is 1 kN and the rope weighs 3.6 N/m
length. Determine the maximum load that the lift can carry if it drops through
120 mm during operations. E (rope) = 78 GPa and allowable stress = 125 MPa.

(1.188 kN)

A vertical tie rod consists of a 3-m long and of 24-mm diameter steel rod
encased throughout in a brass tube of 24-mm internal diameter and 36-mm
external diameter. The rod is rigidly fixed at the top end. The composite tie
rod is suddenly loaded by a weight of 13.5 kN falling freely through 6 mm
before being stopped by the tie. Determine the maximum stresses in steel and
the brass. E, = 205 GPa and E, = 98 GPa. (143.8 MPa; 68.76 MPa)
An axial pull of 20 kN alongwith a shear force of 15 kN is applied to a circular
bar of 20 mm diameter. The elastic limit of the bar material is 230 MPa and the
Poisson’s ratio, v = 0.3. Determine the factor of safety against failure based on
(a) maximum shear stress theory
(b) maximum strain energy theory
(c) maximum principal strain energy theory
(d) maximum shear strain energy theory (22323022
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II‘I"'I:I Wg M WE W-ﬂ- &
ol ~.

Y H X *
A ] i

- SRR ¥ i
Hogging i ;’
T 2 Sagging =
A, =
Fig. 4.4

convexity upwards is taken as negative bending moment and is called hogging bending

moment,
A bending moment diagram (BMD) shows the vanation of bending moment along

the length of a beam.

4.5 RELATION BETWEEN W, FAND M

Consider a small length &x cut out from a loaded beam at a distance x from a fixed
origin O (Fig. 4.5). Let

-t -]

M+6M

Fig. 4.5

w = mean rate of loading on the length &«

F = shear force at the section x

F + OF = shear force at the section x + ax

M = bending moment at the section x

M + 8M = bending moment at the section x + &x

Total load on the length &x = w.0x acting approximately through the centre C (if
the load is uniformly distributed, it will be exactly acting through C).

For equilibrium of the element of length dx, equating vertical forces,

F=wdx+(F+6F) or w=-% (4.1)

that is, rate of change of shear force (or slope of the shear force curve) is equal to
intensity of loading.
Taking moments about C, M + F.%{ +(F + SF).S—; —(M+6M)=0

Neglecting the product and squares of small quantities,

dM

i.e. rate of change of bending moment is equal to the shear force.
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e Portion EG: F, = 4 kN
(constant);

e Portion DE: F. =4 + 2(x -

BKkN 4kN 6k

Strength of Materials

4 kN

| 2 kIN/m

|
e

4) (linear); F,=4kN; F,;=

3
10kN 3‘2

e Portion CD:. F_ =4 + 2(x - A
4) + 6; (linear); F,;= 16 kN;
F,=22kN

¢ Portion BC: F = 22 + 4,
(constant), F,. = F, =26 kN;

e Portion AB: F_ = 26 + 6:

m
B

Em

m 4m

Bm

|
-
D E G

c

(constant); F = F, =32 kN;
Shear force diagram has been
shown in Fig. 4.105.

Bending moment diagram

¢ Portion EG: M, = 4x
(linear); M, = 0; M, = 16
kN.m

e Portion DE: M, = 4x +

2x—4)?

e, Ty

210

...(parabolic);
M,=16 kN.m ; M, =37 kN.m

2(x—-4)°
« Portion CD: M, =dys 222

+ 6(x-T7)

(c)
Fig. 4.10

(parabolic)

My =7y = 37T kN.m; M, _ 10 =94 kN.m

e Portion BC: M, =4x+2x6(x-7)+6(x-T7) + 4(x - 10)
_ 12 = 146 kN;

M _ 10 = 94 kKN.m; M),

(linear)

e Portion AB: M, =4x+ 2 x 6{x - T} + 6(x—T7)+4(x—10) + 6(x — 12) (linear)
Mb{£= 12} = 146 kN.lIl; Mﬂ{:= 14) - 21“ kN
Bending moment diagram has been shown 1n Fig. 4.10c.

Example 4.4 A cantilever is loaded with
distributed load of varying intensity with zero load
at the free end as shown in Fig. 4.11a. Draw the shear

force and bending moment diagrams.

Solution
Intensity of loading at any cross-section C at a

W
distance x from free end = T_r

Shear force diagram
2

di fom B, F, = 7 mxw o

At a distance x from B, F, = 51 51
_ wi

(parabolic); Fp,=0; F, = S

Shear force diagram is shown in Fig. 4.115.
Bending moment diagram

P 5
;E
v

A
C X
- R e
o (a)
2
W
e SF
(b)
—5 BM
Bl
()

mﬁ&

Fig. 4.11
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Bending moment diagram
The bending moment at a section is found by treating the distributed load as acting

at its centre of gravity.
2

x wi WX WX
M =R x—wx.—= x— = {—x arabolic
== Ta TG Y g gt (Gl
Mﬂ{::ﬂ} =0;M.I!:{:=Ij =U;
For maximum value, F=ﬁ={] or ﬂ—wx:ﬂ or x=1I2
wi?

Thus maximum bending moment, M, _,,, = 'y
Bending moment diagram is shown in Fig. 4.15c¢.
{niformly Distributed Load with Equal Overhangs

Let w be the uniformly distributed load on the beam as shown in Fig. 4.16a.

As the overhangs are equal, R, =R, = il ; £4)
Shear force diagram
e Portion DA: F, =—wx (linear); F,;,=0; F,=-wa
w(l + 2a) wl wi

e Portion AB: FI = —wx+ ) (linear); Fﬂ(x=n} = E : Fb{:=1+ a) = 2

[+2
L > % + "’(‘CZZH}=— wx + w(l + 2a)

¢ PortionBE: F =— wx +
(linear)
F.'a{x=£+a] = wa, F:(r:.'+1a] = 0;

Shear force diagram is shown in Fig. 4.165.
Bending moment diagram

2 2
e Portion DA: M, = —% (parabolic) ; M, = 0; M, = -%
2
[ +
e Portion AB: M, = — w: + Wi+ 2a) (x—a) (parabolic)
2 2
wa wa
Mﬂ = _T » Mb{x=1+ﬂ:}= —_2—_

e Portion BE: Bending moment will be reducing to zero in a parabolic manner at
E. It is convenient to consider it from end E. Then M, = -wx%/2.
At midpoint C,

wla+112)° wl+2a) I
Mr{x=a+ﬂ"2‘:= = ) + ) E
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Sw(2+a) _

It 1s maximum when dM/Adx=0 or —wx+ 0

or 3x+52+a)=0 or x=52+a)3

; |
_w{{5!3);2+a}] +5w{23+ H}G[““}“‘]J

25w vap + Sw(2+a)

- Maximum bending moment

I

I
l
[

(10 + 2a)

51—:[{2 + a)(—10-5a + 20 + 4a)]

Il

Sw
E[{Z +a)10—-a)]

- Eﬁ{zmsa-a?)
18

The maximum bending moment will be as small as possible if the magnitudes of
the sagging and the hogging bending moments are equal. Thus equating the positive
and negative bending moments,

2
M (20+8a-a?) = XL
18 2
or 5(20+8a—-a*) =9* or 14¢°-40a-100=0
40+ J1600+4x14x100 40+84.85
or {a = —

28 28
As negative value of a is not practical, taking positive sign, a = 4.46 m

Thus distance of piers from the ends = 4.46 m and (8 — 4.46) =3.54 m
Sw(2Z+a) Sw(2+4.46)

R, 3 =10.77Tw
and R, = 20w - 10.77w = 9.23w
Bending moment diagram
. 2 2
M, = “"; =2 ;‘46 =9.45w at A

andat x= %(24—:1) =—§—{2+4.4ﬁ) =10.77m
wx’ .
e Portion AB: M, = ——" +10.77w(x — 4.46) (parabolic);

Mb{x =446+12) =~ 6.23w

H’Iz

o Portion BE: M, = ~——+10.77w(x - 4.46) +9.23w(x - 16.46) (parabolic)
M, - 20 = 0; My(x = 4.46 + 12) = — 6.23w

2
B OV _soew

M, can also be considered from end E, M), =—
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» Portion BC: x from end C.

2 3
M, = —%f = —‘% ...(cubic); F,=0; F, =288 kN.m
Bending moment diagram 1s shown in Fig. 4.21c.
Example 4.11 A simply supported beam has wx
distributed load of varying intensity with zero at one
end to w per unit run at the other. Draw the shear Af— cl—x—
force and bending moment diagrams. L i g
| . R (a) Ay
Solution The loading on the beam is shown in
Fig. 4.22a.
!
I wi
Taking moments about B, R, X[ = %% 3 I\l«t B
SF
or R’—"‘ll—}'gam.l,ﬁ'a‘—1r";1!—1w|"’[—rWI };}\‘-ﬁﬁ%
"3 T2 3 6
Intensity of loading at a distance x from end B
. wi
=TT 93
1 wx wl  wx’ el
F.=-R +——x=——+ abolic), @
* =TT 6 o (parabolic)
Fy=-wll6; F,=wl/3 Fig. 4.22
wl  wx? [
Shear force is zero at ——+ =0 or x=—f4
6 2 V3
wl wrl x owlkx  owx
M =—x———=—= - cubic); M, =0;M_ =0
T T3 6 e e M=t M,
I wi*  wl’ wi’

Maximum bending momentis at x=—f4 M__ = - -
& V3™ 63 6x3V3 943

Shear force and bending moment diagrams have been shown in Fig. 4.22b and ¢
respectively.

Example 4.12 A beam of 9-m span supports a 160-mm thick concrete wall.
The height of the wall is 1 m at the left end and increases to 2 m at the right end.
The beam has two supports, one at 2 m from the left end and the other at 1 m
from the right end. Find the maximum bending moment on the beam if
the concrete weighed 25 kN/m’. Draw the shear force and bending moment
diagrams.

Solution The loading on the beam is shown in Fig. 4.23a.
Intensity of load at C = Volume per m length x 25 = (1xX1x0.16) X25 =4 kN/m
Intensity of load at D= (1x2x0.16) x25 =8 N/m

The loading can be divided into
(1) uniformly distributed load of 4 kN/m and
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Solution Taking moments about B, 12 kN
R,x10=12x5+(2%x8)x0 c— o 2kum
or R, =6KkN A E
a B
and R,=12+16-6=22kN F‘—*'*—"lg 71— $ il
The effect of the bracket is to apply a @ (m)
load of 12 kN and a bending moment of 12 kN

(12 x 2) kN.m at the point C (Fig. 4.26b).

c h D 2 kN/m
Shear force diagram A 1.__,; FEE[HT‘;M E
e Portion AC: F, =6 kN (constant) T-'—SFHEbH b= 7
(b) (m)

e Portion CD: F,=6-12=—-6kN
(constant)
¢ Portion DB: F_=-6-2(x-6) (linear) 6 kN 8 kN
Fd:[:_]_’:ﬁ}=-ﬁk'N: Fb{l=1ﬂ']=__14kN

¢ Portion BE: F_ = —6-2(x-6)+22

: 6 kN
) | (linear) ” 14 kN
Fpe=100= 8 KN; Fou14)=0
Shear force diagram is shown in
42 kN.m

Fig. 4.26¢.

Bending moment diagram

e Portion AC: M, = 6x (linear)
M0y =00 M, .35 =18 kKN.m

(linear) o
MITEI=3}:42 kN: Md{x=ﬁ}=24km'm @
e Portion DA: Fig. 4.26
2(x—6)° :
M, = 6x—12(x—3)+24- 5 (parabolic)
Md{_rzmzzfi kN;. Mh{leﬂ}—_-—‘lﬁm
+ 2(x—6)°
Itiszeroat 6x—12(x =3)+24——— =0 or -6x+60-2-36+12x=0
+ +4 X
or x*—6x-24=00r x= S Jﬁﬁz i =3+5.74 =8.74m
(taking positive value)
ZI: 7

e Portion BE: fromend B, M, = i i (parabolic)
Fb{f—-—-d'] =—1ﬁ'k_N; FF{_I__.:m = [}

Bending moment diagram is shown in Fig. 4.264.

Example 4.16 Draw shear force and bending moment diagrams for the beam
shown in Fig. 4.27a.

Solution There is no bending moment at point C.
Taking moments about C for the left portion,

R,x6= [%KSHﬁJ(%HE) or R,=16kN
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e There 1s an upward force of (10.5 + 6 = 16.5 kN) at C which indicates the

reaction of the support.

e There is drop of 6 kN at D indicating a point load of 6 kN.
Load diagram is shown in Fig. 4.295.
Bending moment diagram

Portion AB: M, = 7.5x—

1% x°

(parabolic); M, = 0; My, _ 4 =22 kN.m
2

Portion BC:M, = 7.5x— % —9(x —4) (parabolic);

Mys = = 22 KN.M; M) = =18 kN.m

X

It 1s zero when ?.5_1.‘"—?-'9{1“4) =0 or x=7.12m

Portion CD:M, = 7.5x-9(x—4.5)-9(x—-4)+16.5(x-9) (linear)

M =9)=—18 KN.m; My, 15, =0

Bending moment diagram 1s shown in Fig. 4.29¢.

iqu\ > Summary
NS

A structural element which is subjected to loads transverse to its axis is known
as a beam.

A beam with both of its ends on simple supports 15 known as a simply supported
beam. Each support exerts a reaction on the beam.

A beam with one end fixed and the other end free is called a cantilever. There is
a vertical reaction and moment at the fixed end (known as fixing moment).
Generally, beams with more than two reaction components cannot be analysed
using the equations of static equilibrium alone and are known as statically
indeterminate beams.

Shear force is the unbalanced vertical force on one side (to the left or right) of a
section of a beam and is the sum of all the normal forces on one side of the section.
Shear force is considered positive when the resultant of the forces to the left of
a section is upwards or to the right downwards.

A shear force diagram shows the variation of shear force along the length of a
beam.

Bending moment at a section of a beam is the algebraic sum of the moments
about the section of all the forces on one side of the section.

The bending moment causing concavity upwards 1s referred as sagging bending
moment and is taken as positive. A bending moment causing convexity upwards
is taken as negative and is called hogging bending moment.

A bending moment diagram shows the variation of bending moment along the
length of a beam.

Rate of change of shear force (or slope of the shear force curve) is equal to
intensity of loading.
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5.2 THEORY OF-SIMPLE BENDING

The following theory is applicable to the beams subjected to simple or pure bending
when the cross-section is not subjected to a shear force since that will cause a distortion
of the transverse planes. The assumptions being made are as under:
(1) The material 1s homogeneous and 1sotropic, i.e. it has the same values of
Young’s modulus in tension and compression.

(i) Transverse planes remain plane and perpendicular to the neutral surface after
bending.

(1) Inmitially the beam is straight and all longitudinal filaments are bent into circular
arcs with a common centre of curvature which is large compared to the
dimensions of the cross-section.

(iv) The beam is symmetrical about a vertical longitudinal plane passing through
vertical axis of symmetry for horizontal beams.

(v) The stress is purely longitudinal and the stress concentration effects near the
concentrated loads are neglected.
Consider a length of beam under the action of a bending moment M as shown in
Fig. 5.2a. NN is considered as the original length of the beam. The neutral surface is
a plane through XX. In the side view NA indicates the neutral axis. O is the centre of

curvature on bending (Fig. 5.2b).
O
Compression ’K

x_. T e e 1 ,x N,.... ...... _-_A — -
Nl.-t."‘: ...... N gly Z
A

Tension

(a)

Fig. 5.2

Let R = radius of curvature of the neutral surface
@ = angle subtended by the beam length at centre O
o = longitudinal stress
A filament of original length NN at a distance y from the neutral axis will be
elongated to a length AB

_ AB - NN .. .
The strain in AB = NN (original length of filament AB is NN)
[ (R+y)8—-R6 _y
. E- RO R



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



‘ Strength of Materials

2
W 360 x 800
or :I.IS 6]5 = 1 or o =128 MPa

Now, in the cantilever let the loading be w N per m run to break it.

. : wi>  wx1.6°
Maximum bending moment = e 1.28w N.m

2
(In the above relation as w is in N/m, [ has to be in consistent units, 1.e. in m)

bd* 40X 75°
Moment of resistance = O0.Z = {E? = 128X

= 4800 x 10° N.mm or 4800 N.m
Equating the two, 1.28w=4800 or w=3750N/m

Example 5.2 A floor carries a load of 8 kN/m? and is supported by joists 120-

mm wide and 240-mm deep over a span of 6 m. Determine the spacing centre to
centre of the joists if the maximum allowable bending stress is 10 MPa.

Solution Let the spacing of the joists be s Floorboard
m (Fig. 5.8),

Loading on the joist per unit length B

w = Area supported by joist per unit i e 1m
length x Load/unit area 240mm|{ |/ ||/ | VJoist
= (Spacing of the joists X 1) x Load/ F e—s— | e
unit area 120 mm
= 5 X 8000
= 8000 s N/m Fig. 5.8
: : wi?
Maximum bending moment = 3
_ 80005 X6’
- 8
= 36 000s N.m
bd* 120%240°
. Moment of resistance = 0.— =10X

6
= 11 520 x 10° N.mm or 11 520 N.m

Equating the two, 36 000s = 11 520
or s=032m or 320 mm

Example 5.3 A simply supported beam of 6.75-m span is made up of
symmetrical I-section (Fig. 5.9a). Determine what concentrated load can be carried
at a distance of 2.25 m from one support if the maximum permissible stress is
80 MPa.

Solution Let W kN be the concentrated load so that the reaction at the supports are
W/3 and 2W/3 as shown in Fig. 5.9b.
Maximum bending moment
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Similarly for the inner hexagon, I, =0.5415"
B = 80 mm; h = 80 sin 60° = 80 x (.866 = 69.28 mm
b= B-—2(5tan30°) =80-5.77 = 74.23 mm

Thus for the hollow hexagonal tube

1. = 0.541(B* —b*)= 0.541(80° —=74.23%) = 5734%10° mm*

ix

I. 5734x10°
L, = =
w7 69.28

Figure 5.5¢ shows the loading on the beam. Let a m be the distance of each load
from the respective end support.

Each reaction = 24 kN

Maximum bending moment (at the centre)

=82 766 mm?

— 24K%—24K(2—:-—a)= 28.8—-28.8+24a
= 24a kN.m or 24a x 10° N.mm

Now, M=o0Z

or 24a x 10° = 120 x 82 766 or a=0414m

Least distance between the loads =24 -2 x0414=1.572 m

Example 5.7 Figure 5.13a shows
the section of a beam. Determine the ratio
of its moment of resistance to bending in
the y-plane to that in the x-plane if the
maximum bending stress remains same

ha
n
e ol ol _1.1:
%)
n

in the two cases. ) :
20 ;
Solution h i i
1 ; 25 x 253 I-"'i-“-'|gﬂ—H (mm)
IH = E}{lmxlﬂﬂ -4 % 2 [-ﬂ]‘ [b:l
= 27.995 x 10* mm* Fig. 5.13
| 995 x10°
7 = —= o 25300 X1) =0.373x10° mm?
* - . 75
2
1 . | 50%25° 5{]:::25[ 5{})
= —X150x100" -2 - 254+ — o, 5.
I - [ 36 5 3 (refer Fig. 5.13b)
= 12.5%10% —2.214x10° =10.286 %10° mm*
6
286X
Z, = 10.280X10 =0.2057x10° mm?
50
M Z. 6
w _ Zy ={},2{]5?xltl _ kR
M. AW 0.373x10
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g
x

5.4 BEAMS WITH UNIFORM BENDING STRENGTH

Usually, the beams are designed on the basis of maximum bending stress occurring at
any cross-section of the beam and a constant cross-section is provided throughout the
length of the beam. However, as the actual moment and thus the stress varies and is
less at all other cross-sections along the length of the beam, a beam with constant
cross-section or with uniform moment of resistance is uneconomical. In beams with
heavy loads, beams may be designed on the basis of vanation in the bending moment.
Such beams will have the same maximum bending stress all along the length and are
known as beams with uniform bending strength. This can be achieved by having
either a uniform width of the section or a uniform depth.

Beam with Constant Width and of Varying Depth

Let / be the length and b the constant width of a beam with uniform strength. Also let
the depth be 4| at a distance x from the support.

bd’

Then,moment of resistance of the section, M_ =0Z, =0

Moment of resistance of the section will depend upon the loading on the beam.

y W (DO, S w
]
E ﬂ'x 3
2 |_‘ |
Longitudinal section Longitudinal section
| | b | ] b
Plan ¥ Plan ¥
(a) ()
Fig. 5.18

(1) Concentrated load W at the midspan (Fig. 5.18a)

w

Bending moment at the section = EI

Equating the moment of resistance and the bending moment,

bd> W W jaw
ﬂ'ﬁ" =?I or df=5x or d,= a.x=k\'r;

where & 1s a constant. The expression indicates that the variation 1s parabolic.

At the centre d_ = k+1/2

(1) Uniformly distributed load throughout (Fig. 5.18b)
2
WX
= {—x
5 (I—x)

wi WX

Bending moment at the section = ?x- 5

Equating the moment of resistance and the bending moment,
]

de_,' _ E{f—x} or d.2 =3wx(I—J:} or d =‘f3wx(f—x}
2 X X

6 c.b ag.b
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If tensile stress reaches to maximum value -+ t=20 mm
of 18 MPa, £
Compressive stress ] | S
280 - 89.13 X fEE e L
=18x =38.6 MPa sdli] ey I
which is well within permissible limits. & 400 mm ——*
Thus moment of resistance Fig. 5.22
18%147.48x10°
e 29.784x10° N.mm or 29 784 N.m
Let w be the total weight (channel + water) N per m length of the channel.
wx11°

=20784 or w=1969.2 N/m

Then

Let x m be the level of water in the channel.
Weight of channel + weight of water = Total weight/m
(0.36 x 0.02 + 2 x 0.28 x 0.02) x 68 000 + 0.36x x 9810 =1969.2
1251.2 + 3531.6 x = 1969.2
or x=0203m or 203 mm

Example 5.16 The cross-section of a beam is shown in Fig. 5.23a. Determine
the moment of resistance of the section about the horizontal neutral axis for both
positive and negative bending moment. The permissible stresses in tension and
compression are 24 MPa and 85 MPa respectively.

|3UI 60 lﬂﬂl
90 Y.L _.:
180 20| i b JL5
e
i 85
60 i
: i 5 J_
e—120—>  (mm) k— 120—>
(a) {(b)
Fig. 5.23

Solution Refer Fig. 5.23b, |
Distance of the centroid of the net section from the bottom edge,

_ 120x180x90 - 60X 90x (60 + 45)
Y= 120x 180 — 6090

{IZG}:IB{]:‘

=85 mm

60%90°

+120x13ﬂx53]-[ +60x90x202J

= 58.86%10° —5.805x10° =53.055x10% mm*
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Example 5.20 Tiwo rectangular bars, one of brass and the other of steel, each
36 mm by 9 mm are placed together to form a beam of 36-mm width and 18-mm depth
on twe supports 800 mm apart, the steel bar being at the bottom. Find the maximum
central load if the bars are

(i) separate and can bend independently

(i) firmly secured to each other throughout the length.

Maximum permissible stress in steel is 102 MPa and in brass 72 MPa. Take
E, = 204 GPa and Ej, = 85 GPa.

Solution Refer Fig. 5.27,

Compression | Tension
= 42.5<-~
s | -{-- -—=-=-Arasg----=--=-=-=4- \ ETEES
o
E 102 ~z----- --> 42.5
5 “f=rmmmme Stee] -o-o--- = 2 x Steel
S fae | (MPa)----= 102
Fig. 5.27

(1) When the bars are separate and can bend independently, each will have its
own neutral axis.

o] E
We have : = 2

Assuming the same radius of curvature for the two bars,
}'.: }’b ﬂ..s Y 5 Es E.r 204
= —E :—'—E — - = =24 PerC i -
If the stress in steel reaches to maximum value, the stress induced in brass
= 102/2.4 = 42.5 MPa
36X9> 36X%9*

= 49572 +20655=70227 N.mm

For a central load, T = WT’S =70227 or W=3511N

(ii) When the bars are firmly secured to each other throughout the length, they
will bend about a common neutral axis XX. Fig. 5.284 shows the equivalent
section in terms of brass. The dimensions of the steel paraliel to the neutral
axis are increased in the modular ratio 2.4.

Distance of the centroid of the net section from the bottom edge,

(36x9)x13.5+(86.4x9)x 4.5

X = = 7.15> mm
369 +86.4x9
3 3 3
L 3&4:;7.15 +86+4>;1.85 ]+[361>;9 +f36x9)x(13—?.15—4.5)1]

For area (1) (2) (3)
= 25961 mm*
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Height of N.A. from the bottom axis,

2x80x180x90+200x130x65
y = = 78.14 mm
2x 80180 +200x 130
b 2x80x78.14°  2x80x101.86"  200x78.14° +2ﬂnx51.363
B 3 3 3 3
For area (1) (2) (3) (4)

= 122.93 x 10° mm?
Maximum tensile stress in timber (at bottom edge)

3
_ 10000x10° | ¢ 14— 6.356 MPa

122.93x10°
Maximum tensile stress in steel (at bottom edge) = 6.356X20=127.13 MPa

Maximum compressive stress in timber (at top edge)

= L DDDKIOz x101.86 = 8.286 MPa
122.93x10
101.86
6.356% —
or o~ 8.286 MPa
Maximum compressive siress in timber at the level of top fiber of steel
51.86

= B.2B6x—— =4.219
101.86 Gl
Maximum compressive stress 1n steel = 4.219X20 =84.37 MPa

Example 5.24 A straight bimetallic rectanguiar composite bar of width b and
thickness 2t is made up of a strip of steel of rectangular section of width b and thickness
t joined along its length by a strip of brass having the same dimensions. The bar is
uniformly heated and is freely allowed to bend. Show that it bends to a radius

o o TECHI4EE, 1

T I2E,E (0, -0,) T

where oy, and o, are the coefficients of linear expansions of brass and steel respectively
and T is the rise in temperature.

Solution Let ¢, is greater than .
A force at the interaction oi the two }

—

strips will tend to compress the brass and ;

elongate the steel. Let this internal force f}4---

be F This force induces a direct load F at

the centre of each section alongwith a

bending moment in each strip (Fig. 5.33).
Bending moment due to this force = Er
Assuming R to be the same for both strips and much larger as compared to ¢,

I,E, bt'E, _brE,

_ — g v =
M, R 2R s Similarly, M 2R
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In cases of unsymmetrical bending, if the load is applied in such a way that it
passes through the shear centre, the above theory can still be applied by resolving the
bending moment into components about the two principal axes. If a cross-section has
an axis of symmetry, then it can easily be shown that this satisfies the condition for a
principal axis. The other principal axis will be at right angle through the centroid.

The shear centre mentioned above is a point in or outside a section through which
the shear force applied produces no torsion or twist of the member. If the load is not
applied through the shear centre, there is twisting of the beam due to unbalanced
moment caused by the shear force acting on the section. For sections symmetrical
about an axis, shear centre lies on the axis of symmetry. For sections having two axes
of symmetry, the shear centre lies at the intersection of these axes and thus coincides
with the centroid. (Also refer section 6.5).

Example 5.27 A 4-m long simply supported beam of 80-mm width and
100-mm depth carries a load of 10 kN at the midspan. The load is inclined at 30°
ro the vertical longitudinal plane and the line of action of the load passes through the
centroid of the rectangular section of the beam. Determine the stresses at all the
corners of the section.

Solution The section being symmetrical, the centroid y 10 kN
is at the centre of the rectangle and the principal axes are N B f j’ A
x-x and y-y (Fig. 5.36). . ::SIJ“‘ J,H
80%100° LT =4
= 22 2 6.667%10° mm?® 2% i/ 1
s T e
x i L ; : (%]
and [ = 100x80 =4.26?}{|03 mm? i T
) i2 3 ! 4%
Maximum bending moment | Ry
C ' D
iDae 10 kN 10 x 10°N Y
= = .m or .mm
Fig. 5.36

Resolving into components,
M, = 10x] 0°c0s30°=8.66X10° N.mm  (due to vertical component of load)

= 10%10°sin30°=5%10° N.mm (due to horizontal component of load)

As it is a simply supported beam,
e the vertical load component induces compressive stress in the upper half and
tensile stress in the lower haif and
e the horizontal load component induces compressive stress in the right half and
tensile stress in the left half.
Thus the bending stress at any point (x, y) in the section consists of two parts, one
due 10 bending about the axis x-x and the other due to the bending about y-y, i.e.

M, M
R

¥ yi

As both the components are to give tensile stress in the 3rd gquadrant, x and v both
can be assumed positive in this quadrant. In the opposite quadrant, x and v both are

¥

o=
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or -80=-9749F or F=28.200KkN

g, = 0.0361x(-61.43)+0.1255x60

=-2216 F+7533 F
or 40 =5317F or F=7.523kN
In quadrant containing point C, x and y are both positive,

g, = 0.0361x(180-61.43)+0.1255x10

= 4.278F + 1.255F
or 40 =55333F or F=7.229kN
Thus the maximum load can be 7.229 kN

5.8 DETERMINATION OF PRINCIPAL AXES

Sometimes, in case of unsymmetrical sections, v
the directions of the principal axes are notknown. y
In such cases, the direction of these can be found “EA ’Kv
as follows: "1_“_#,«"‘ ¢ 'y y.cos 0 &(
Let OX and OY be any two perpendicular axes ) 4 Eq‘vc' U
through the centroid and OU and OV the principal y yﬂv\ denT
axes (Fig. 5.40). Also let the inclination of QU Al s
with OX be 6. o 19 ~ LR x
Let 84 be an elemental area and xsin@ ysin6
x and y = coordinate of the area relative to
OX, OY S

u and v = coordinate of the area relative to OU, OV
Then u = xcosf@+ysin@ And v= ycos8—xsin8
Product of inertia = [,

- .uvdd = J(J:cus@ + ysin0)(ycos @ — xsin 0)dA

'{.ry cos” 0 — x” sinBcos® + y* sin@cos @ — xysin” )dA

sinB@cos @

I

'yl.:m — [+*dA)+ :EDSZ 6 —sin’ Q)Jx}um

f
\
{
\

: . ( —
= sinBcos B yEdA— x“dA)+ Hmsa—l Eme}jnﬁd&
- - F, Ln. 2 2
i 20 ({1, -1 26.1
= Esm (I— F)+cns A, (5.19)
Applying the condition for principal axes, 1.e. /,, =0
k5
ot (Esm 29)(f; —IF)+c0329JD, =0

or sin26(1, -1, ) =-2cos 261, i)
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For C, u = OD =90.44 mm; v = CD = AD = 212.69 mm; v negative, u positive.
o, = —32.253+19.382 = -12.871 MPa (compressive)

0914
Inclination of the neutral axis, tan™' @ = — = — 0.091

u 0.3566

Neutral axis has been shown in the figure, on the upper side of which are
compressive stresses and on lower side are tensile stresses.

= —{.2563 or a¢=-14.38°

Example 5.32 A 60 mm x 40 mm x 6 mm angle is used as a cantilever with a
40-min leg horizontal and on the top. The length of the cantilever is 600 mm. Determine
the position of the neutral axis and the maximum stress developed if a load of 1 kN is
applied at the free end. Assume the centre line of load to pass through the shear centre.

Solution As the centre line of the load passes through the shear centre, no twisting
moment acts (Refer section 6.5). The load acts as shown in Fig. 5.43.
To locate the centroid, take moments about the left and upper edge,

P Y
e —iy
Tr——1 6
; rf ¥
60| | |
MLe
1L
b
Fig. 5.43
2 A0x6x20+54x6x3 103
*E 40% 6 +54%6 = Wemm
_ 40x6X3+54x6%(27 +0) 514
y = 40X 6 + 54X 6 o
3 3
X
I = o +6x54x12.32+40x6 +40x6%17.2* =203 537 mm®
3 3
b 4 X
;y: X0 +54>{ﬁx?’,21+6 al, +ﬁxdﬂx9.32=?2313 mm?
I, = 54x6x(—7.2)(-12.8) +40x6x9.8x17.2 = 70314 mm*...(Eq. 5.24)
21 2x70314
tan 20 = ——— = =—1.0758 or 20=—47°0r O =-23.5°

I,—1, 72818—203537
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0 Strength of Materials

_1 OFE 1 14.56
— =08
OA 96.544
ZAOV = 81.33°—(90° - 26.82°) = 18.15°
Thus v = 96.544 % cos 18.15°=91.74 mm
and u = 96.544 x sin 18.15° = 30.07 mm
o= 1.066x91.74 + 1.129 x 30.07 = 131.74 MPa

~ cos”' 0.1508 = 81.33°

ZAQFE = cos

5.9 ELLIPSE OF INERTIA OR MOMENTAL ELLIPSE <

This is a graphical method which can be used to find moments of inertia about two
mutually perpendicular axes through the centroid when moments of inertia about the
principal axes are known. The method is as follows:
From equations 5.19, 5.21 and 5.22,
1
I = [Esin 2&)[JI —~1,)+cos20.1,,

in

1 = cos*@.0_ +sin’ 0.1, —sin20.1,,

1, = cos’ 6.1, + sin® 6.1, +sin 20.1,,

If XX and YY are the principal axes, [, is zero, and
UU, VV are any other mutually perpendicular axes. The
above equations are changed to

L. = (%sin 29}(!1 - I}.]

I = cos® 8.1, +sin’ 6.1,

I, = cos’ 8.1, +sin” 0.1,

The first two equations are similar to equations for
shear stress and direct stress at an angle when a
material is subjected to two perpendicular stresses (refer
section 2.6).

Draw two circles with O as centre and radn equal to /, and [, taken to a suitable
scale (Fig. 5.47) and complete the diagram.

Now, OP = OD + DP=0D + DG cos @

= I, + (DE cos cos O = I, +(0,~- 0, )cos® 8

= I,cos* 8+ I, (1 —cos? 8) =1, cos® 8+ I, sin” 6

= I, (Refer Eq. 2.5)
and PG = DGsin® =(DEcos @)sinf

Fig. 5.47

1 :
= (I,—1,)cos @sin 6 = EU" —1,)sin20=1p
The diagram is known as ellipse of inertia.
I, can be found from the relation, I, =1, +1, =1,
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’ Strength of Materials

¢ The maximum bending moment which can be carried by a given section for a
given maximum value of stress is known as the moment of resistance.

e Moment of inertia of a rigid body is obtained by summing the products of its
various particles with the square of their distances from a given axis.

o Parallel axis theorem states that the moment of inertia about any axis parallel
to the centroidal axis 1s equal to the moment of inertia through the centroidal
axis plus the product of the area of the figure and the square of the distance
between the two axes.

¢ Moment of inertia and section modulus of different sections are:

Rectangle: I = bd¥12, I, = bd*/3 and Z, = bd*/6
Hollow rectangle: I, = (BD? - bd*)/12, Z_= (BD? - bd*)/6D
I-section: I, = (BD? - bd*/12, Z = (BD? - bd*)/6D
Triangular section: [, =bd*36; 1, =bd*/12

Circular section: 1, = md*64; Z_= md*/32

Hollow circular section: [, = m(D* - d*)/64; Z, = m(D* - d*)/32D

e Beams made up of two different materials such as wooden beams reinforced by
steel plates are known as flitched or composite beams.

e At any common surface in a flitched beam, strain = 6/E, = 6,/E,

e Moment of resistance of a flitched beam, M, = &,,(I, + ml,)/y, where
m = modular ratio E,/E, and I, + ml, is known as equivalent moment of inertia
of the cross-section

e To compensate for the weakness of concrete, steel reinforcement is done on the
tension side of concrete beams and to have the maximum advantage it is put at
the greatest distance from the neutral axis of the beam.

o The integral ny dA = 0 is known as product of inertia and the axes for which

it is zero for a section are known as principal axes of the cross-section.

¢ The limitation of the theory of bending moment is that it can be applied only to
the case of bending about a principal axis.

¢ The directions of the principal axes can be found from the relation tan 26= 21/
(I, = 1); where [ for a rectangle with sides parallel to the principal axes is
given by, 1, = A.hk

1
Then £, = {(I +1,)+sec20(/, ~ )]

and I, = lz[u_r +1,)-sec20(l, - 1,)]

o FEllipse of inertia or momental ellipse 1s a graphical method which can be used
to find moments of inertia about two mutually perpendicular axes through the
centroid when moments of inertia about the principal axes are known.

e Inmasonry columns, it is desirable that no tensile stresses are set up. It is ensured
if the line of action of the load lies within a central area of the section. In
rectangular sections, it should lie within the middle third and in circular sections
within middle quarter or within a circle of diameter d/4 with centre O.
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SHEAR
STRESS IN
BEAMS

6.1 INTRODUCTION -

While discussing the theory of simple bending in the previous chapter, it was
assumed that no shear force acts on the section. However, when a beam is loaded,
the shear force at a section is always present along with the bending moment. It
is, therefore, important to study the variation of shear stress in a beam and to
know its maximum value within safe limits. It is observed that in most cases,
the effect of shear stress is quite small as compared to the effect of bending stress
and it may be ignored. In some cases, however, it may be desirable to consider

_its effect also. Usually, beams are designed for bending stresses and checked
for shear stresses. This chapter discusses the shear stress and its variation across the
section,

A shear force in a beam at any cross-section sets up shear stress on transverse
sections the magnitude of which varies across the section. In the analysis, it is assumed
that the shear stress is uniform across the width and does not affect the distribution of
bending stress. The latter assumption 1s not strictly true as the shear stress causes a
distortion of transverse planes and they do not remain plane.

As every shear stress 1s accompanied by an equal complimentary shear stress,
shear stress on transverse planes has complimentary shear stress on longitudinal or
horizontal planes parallel to the neutral axis.

6.2 VARIATION OF SHEAR STRESS

Figure 6.1 shows two transverse sections of a beam at a distance dx apart. Considering
the complimentary shear stress 7 at a distance y, from the neutral axis, let F, F + oF
and M, M + oM be the shear forces and the bending moments at the two sections. z is
the width of the cross-section at this position.
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‘& Strength of Materizls

Thin Circular Tube

If the thickness of a circular tube is small, then the fact that the shear stress follows
the direction of boundary can be used to find the same.

Let the bending be about XX and A
and B two symmetrically placed
positions at angle @ from vertical
(Fig. 6.7). Let the shear stress at A and
B be 1. Now, the complimentary shear
stress 1s on longitudinal planes and 1s ba-
lanced by difference of normal stresses
on the area subtended by angle 2 6.

The force due to complimentary shear
stress on the area at A and B tends to Fig. 6.7
slide the block above which is resisted
by the difference of the longitudinal forces over the area above AB.

Thus,

For a length ox of the beam,

&
2r1bx = | do.dA= fﬂ do (Rdp)1

1 8 60
or T=—| — (R.d
27-8 6x taw)
But 00 = OM.y
I
I 0 6M y 1 y oM
P L .—=—f gikdo 2 . [F=22
2-33::( 'GF')! 2—5{ ‘F)I [ ﬁ.r)
I = é.ﬁ}lar moment of inertia
= %thax{m&an radius)® = —;—.M:.RE = Ttk
Hence
FR c# FR
T=— dp = R cos ¢.d
21 16747 21::‘R3J1 pag
F o F . @ Fsin@
= —— | cos@de = sinf )", =
2Rt -0 C P4 2::&‘:( )6 Rt
or 7= 2X mean shear stress (6.9)

Square with a Diagonal Horizontal
Refer Fig. 6.8,

3 4
| = o B(B/2) | B
12 48
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‘ | Strength of Materials

Example 6.2 A simply supported beam le—120—>
of 2-m span carries a uniformly distributed j ¥
load of 140 kN per m over the whole span. SRSV o7 %, T Y o ey

: A ] - = 20
The cross-section of the beam is a T-section 160

with a flange width of 120 mm, web and
flange thickness 20 mm and overall depth (mmj)
160 mm. Determine the maximum shear ~+
stress in the beam and draw the shear stress

distribution for the section. Fig. 6.12

Solution Refer Fig. 6.12, F,, =140 x 1 = 140 kN

Taking moments about the top edge,
— 120x20x10+140x20x90

y = =53.08 mm
i 120x20+140x20

yo 120(20)°

Cross-section Shear stress variation

3
+120%20% (53.08—10)* + 20(]];[}} + 20x140(90—-53.08)*

= 12.924 x 10° mm*
Shear stress in the flange at the junction

_ 3
_ F.ﬂ _ 140 x 107 x (120 x 20%(53.08 - 10) — 9333 MPa

7l 12.924 % 10° x 120

120 .
Shear stress in the web at the junction = 9.333E—2E =56 MPa

Maximum shear stress (at N.A.)

140x10° x[120x 20x 43.08 + (20X 70) % 35
" i (0x70)x35] _ g5 54 Mpa

12.924x10° x 20

Example 6.3 Figure 6.13 shows a cast § +—200—
iron bracket subjected to bending. If the 44:}1 i ] T
maximum tensile stress in the top flange is < 40 IE
not to exceed 15 MPa, determine the 3pg Sl
bending moment the section can take. If the
beam is subjected to a shear force of 150 40; : |
kN, sketch the stress distribution over the

depth of the section.

(mm)

Cross-section Shexr stress variation

Solution Taking moments about the top Fig. 6.13
edge,
_ 200x40x20+300x40x190+120x40x360
s =168.1 mm
200x40+300x40+120x40
3
I= 2{]{}1};403 +200% 40(168.1-20) +40sz +40x 300 (190 - 168.1)°

120 % 40°
+

——— +120x40(360 - 168.1)°
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’ Strength of Materials

(iv) At the neutral axis, o=0

- 25x 10° x (160X 150 75)
360x10° x 160
Principal stresses, o; = 0, =(0.781 MPa; &, = 6, =45°

At the neutral axis, there 1s a state of simple shear. Principal stresses are (.76 MPa
compressive along one diagonal plane and (.76 MPa tensile along another diagonal plane.

=(0.781 MPa

Example 6.7 A 320 mm x 160 mm I-section joist has 20-mm thick flanges and a
15-mm thick web. At a certain cross-section it is acted upon by a bending moment of
100 kN.m and a shear force of 200 kN. Determine the principal stresses
(i) at the top

(ii) in the flanges at 140 mm from neutral axis

(iii) in the web at 140 mm from neutral axis

(iv) at the neutral axis

Plot the variations along the section.

Solution Refer Fig. 6.17,

0.15
3'49?‘ 0 e321 _ \0 9321
EUmmT l 37.28 T 81 58 %14.55 96.11
2 5 c £
- _-_15 £ E = B g
I 0 DL =T A & &/ T
S 487 2 a7 48.7
(s — — o
7] = =
<160 mm— stresses  Bending € Principal stresses
stresses
Fig. 6.17
3
B 160x320°  145x 280 -
12 12
b
(1) At the top, ﬂ‘=1mxlﬂ EIS{]:%.ZI MPa; 7=0,
171.65x10

Principal stresses, 0; = 93.21 MPa; ¢, =0

(1) At 140 mm from neutral axis, o = 93.21 xﬂ = 81.56 MPa
160
| ST
t=—(D*-d ...(Eq. 6.3
T ( ) (Eq. 6.3)
gz 2OOKIO =(320% — 280°) = 3.495 MPa
§x171.65x10
2

SUT———_ J(Bl—fﬂ] +3.495% = 40,78 £ 40.93

=81.71 MPa and - 0.15 MPa
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" Strength of Materials

Horizontal shear stress at level 2,
= F.AY _ 5000x120x 40 x 80

I 80x10° x 120
Load carried by each bolt = 7X area = TX b X spacing

= 0.2 MPa

Txbxspacing 0.2x120x110

Shear stress in the bolt = = 8.402 MPa
Area of bolt 314.2
Horizontal shear stress at level 3, 7 = 5000 12{13{80}{ 60 =(.3 MPa
80x10" %120
0.3x120x110
Shear stress in the bolt = 3142 = 12.603 MPa

Example 6.10 A composite beam consists of a 180 mm x 140 mm timber section
bonded with 10 mm x 140 mm steel plates at top and bottom. Determine the stresses
in the beam when it is subjected to a shear force of 100 kN. Also find the spacing of
bolts of 12 mm diameter for the shear connection between the flitches and the timber
beam. Allowable shear stress in steel is 100 MPa. The Young's modulus of steel is

210 GPa and of timber 15 GPa.
Solution Refer Fig. 6.22,

%10 | | .\3.151 44,108 3.151
o — 10 57.54
sl mar e | e T L L LT A PN YT UTITY] 1 FL e o R PO [ PNETNTEY Heeny -
I 411
10 ' /3151 44.108 3.151
= 140—— T fe——140— - _
Shear stresses in Shear stresses in
Actual section Equivalent steel section equivalent steel section actual section
Fig. 6.22
) E 210
Modular ratio =— = =14
E 15

Transforming the composite beam into an equivalent steel section,

_ 1ox180° | 140x10°

[ 2 . +140%x10%95% | =30.153x10° mm*

! 12
Shear stress in the equivalent steel section,
At steel plate timber junction (in the flanges)

e 7Y 00 03 0 2HOXIOXTS 5 gzinPy

Iz 30.153x10° x 140
At steel plate timber junction (in the web) = 3.151 x 14 = 44.108 MPa
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& E——

luti dz
Solution ] - I--{-i
F= [rdA=[= Ay T Z
1 IT I” y.(t.dy) %idy
ty
= —J-(I}F}(——H-F ]Idy
R X-f=tmmmimim e X
= ;; (h}r 2ay + y )dy
s
2 2 374
=F’lh3" —zay—+3’—]ﬂ R i
21| 2 2 3 ke b o
2
_ Fia (3h — 4a) Fig. 6.26
121

- i
Fy= [rdA =j; Ay.(t.dz) = 5]’ a:[ﬂ-5J+ 2. E] 1dz

Ftb

Ft ha(h_ﬂ}+h3)d35% alh — a}z-i'-h—]ﬂ —[2a{h a) + hb]

271 Jo

Taking moments about point D,

F.e= 2Fb+2Fzg—2ﬂ.b Fr.h = 2%(3!1 4a)b + F—m[Zﬂ(h a)+ hblh
e = 2 (6ha® -~ 8a +6ah? - 6ha® + 3h°b)
121
= 2L (6ah® - 8a® +3h%)
121
3 2 2 3
) [ k 2 + 2 Ei'r——+.!a L +i
* 12 2 2 12 2 12
3 2 2 2
=t E——+-'f-:"~(.¥:2—2-.-:1|fz+¢;:1)+£]rr R
6 2 6 2 12

8a° + 6ah® —12a%h + 2bt* + 6bh? +h3]

b(6ah> —8a” + 3h°b)
(8a’ + 6ah® —12a°h + 2bt* + 6bh* + h°)
b(3h’b)

©(2b1® + 6bh* + K1)
And neglecting moment of inertia of flanges about their axes,

e =

Ifa=0,

.
3b . ;
= as obtained earlier.

6b + h
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DEFLECTION

78 - INTRODUGTION L4208 27 puliS i caw st il

As a load is applied on a beam, it deflects. The deflection can be observed and
measured directly whereas other parameters such as shear force, bending moment
and stresses can only be calculated. Though it is important that the cross-section of a
beam is strong enough to withstand the bending stresses and shear stresses, i.e. it is
based on strength criterion, the deflections must also be restricted. Excessive
deflections can cause visible or invisible cracks in beams. Also, excessive deflections
perceptible by naked eye give a feeling of unsafe structure to the occupants of the
building causing adverse effect on their health. Thus it is extremely important to have
the knowledge of maximum deflection in a beam under the given loading. The
maximum deflection of a beam must not exceed a given limit. The designing of a
beam from this aspect is known as stiffness criterion. In this chapter, the governing
differential equation of beams is formulated and various methods of solution are
discussed. The basic method involves integrating the differential equation whereas in
other methods the integral is obtained indirectly. The relation obtained provides the
elastic curve, i.e. the curve into which the axis of the beam is transformed under the
loading.

7.2 BEAM DIFFERENTIAL EQUATION

As mentioned above, the deflection profile of a beam 1s known as its elastic curve.
If a beam is subjected to pure bending, it is bent into a circular arc and the radius

M B El

of bending or the radius of curvature is given by kel or R= o’ However,

the radius of curvature may not be constant at all the points as the beam may not be
subjected to pure bending, which is generally the case.
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Y

and y = - = (* - ) (7.6)
6E! '
e At the free end, x = [, the slope and the deflection are maximum and are given by
Wi Wi’
Slope = - SET and Deflection = — 3E] (7.6a)

The slope and deflection are shown in Fig. 7.4b and c respectively.

(ii) Concentrated load not al freeend Between AC, at any section at a distance
x from A (g, 7.5a), M = - W(a — x)

The equation of slope and elastic curve can be obtained as in previous case in the
form

, W ) W
}'=_E_§.(2ux—x}and i‘ y -l
}’=-E“{3ﬂ+¥2—13] ie. b A | B

6E! » 1.6, DY Jf—»l C
replacing [ by a. , :
At C e 0
t "'}:_Hr}"—_m (a)
Wa’
EIld J-?r T ﬁ In
Between CB, at any section at a Deflection P ]
distance x from A, M =0, sz
d* d*y

“ El d_x_f =0 or dx—g =0 (b) Straight

s Fig. 7.5

or = C, . .. the slope is constant

between CB and is equal to slope at C or the portion of cantilever from C to B

, GF Wa®
remains straight with slope e =y = CE = 551 F GF = y'.GE (Fig. 7.5b).
Deflection at B = Deflection at C + GF = Deflection at C + y'.GE
Wa®  wa?
=~ 3 —ZE_,-(E—H) (1.7

T R T

(iii) Uniformly distributed load on whole span Let origin be at the free end
(Fig. 7.6a). At a section at a distance x from the free end,

. I * w2y ww2? 1| swe
If W is at the midpoint, deflection = —

d WX
EI f =M= -—
dx” 2
dy wx
e Integrating, £/ — =~ ——+C(,
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m

(a) For

whole span having

uniformly distributed load, y, =

wi? A
(Refer Eqg. 7.10)

 8EI ;
b) F loaded with ] 3
(b) For span loa w,,:;r" varying Fig. 7.11
intensity, ¥y, = — m
(Refer Eq. 7.14)
wi? wi? 1wl
Thus deflectionof B= — —— —| — s
e CEIECHion © REI [ 31}5;] 120E]
Simply Supported Beam
(i) Concentrated load at midspan W

Figure 7.12a shows a simply supported
beam AB of span / carrying a load W at the

midpoint C.

* R,=R, =W/

Consider a section of the cantilever from
A (origin at A),

(7.15)

ywi
w / 16El
M =?x (Positive, being sagging) L/
i’y W g
ET 3 =5 X
Integrating, EI dy - W i W
T de 4 ! wi3 Deflection
| d 4651 (@
ﬁlI—E. E=ﬂ, Fig. 7.12
wi? dy WwWx* wi?
WG=TTE EEERTT T
Wx' Witx
e Integrating again, Ely = TR +C,5
W' Witx
Atx=0,y=0, . C,=0 . Ely=—--—0
Therefore, slope and deflection are given by,
f—ﬂ}’:-m(ﬁ —4x%) and y ='E§E(3!2I“4I3}
wi?
e AtA,x=0, ..slope= ~16EI (7.16)
Deflection at C = —L[y? i--4.5]:. 0 (7.17)
48E] 2 8 48ET
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. | Strength of Materials

wix®  wx’
e Integrating again, Ely = 36 1200 +Cx+C,
Atx=0,y=0, . C,=0
wi*  wit Twi®
Atx=Ly=0, = 0=Z-pg+al o G=-35
wix®  wx®  Twl’
Thus Ely = 36 1300 360~ (7.25)

To find maximum deflection, equate the slope to zero, i.e.
dy wix>  wxt 7wl
de 12 24l 360

or 30I%x*=15x*=71* =0 or 15x*=300%2 +71* =0
Let x = kI

=)

30+ - 4x7x1
Then 15k* - 30k? +7=0; Solving, k* = Jgﬂ[;) b =(.2697

(considering the feasible value of &, it cannot be more than 1)

or x*/1*=02697 or x=0.5193
Thus for maximum deflection,

wl(0.51931)° w(0.51931)° 7w’

36 120/ 360
74

W

Ely (0.519310)

or Ely=-0.00652wl* or

Example 7.1 Two parallel steel cantilevers one above the other, each of length |

project horizontally from a vertical wall. Their free ends are connected together by a
vertical steel tie rod of length a. A load W is applied at the midpoint of the lower

5 wi’

32 P 4(6al)/(nd? )
the diameter of the rod and I the moment of inertia of the section of each beam about
its neutral axis.

If the length of each cantilever is 3 m and that of the tie rod 2.4 m, find the proportion
of the load W carried by the tie bar. The diameter of the rod is 20 mm and the moment
of inertia of each cantilever is 28 x 10° mm®.

beam. Show that the pull in the rod is given by, P =

where d is

Solution Figure 7.16 shows the cantilevers. - 13
3
For cantilever CD, Yy, = :—; (downwards) a w
...(Eq. 7.6a) | 1P
swi* PP AT . B
For cantilever AB, ¥, = om0~ 357 h2—rp—R—"
Fig. 7.16

(downwards) ...(Eq. 7.7a)
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’ Strength of Materials
Example 7.14 A beamofiengthlisloaded
as shown in Fig. 7.31a. Find the expressions A ¢ D B
Jor slope and deflection at any point. 44 >l 4>l 2 __1
Solution When the load does not reach the (a)
end support, it is treated in a way that first it
reaches the end and then an upward load is w D
superimposed for that portion where originally @ A___C 5
there is no load, i.e. the loading is considered P..y4..|.._p4...|.< i 3
downward from C to B and upwards from D to
B (Fig.7.31b). (D)
Taking moments about B, Fig. 7.31
f {1l 1 B Swi
R.. =W —2~+§ or K, =35
d* Swi — 14| w(x—1/2)?
At any point x from A, Ef—y=—-i,r +W(I ) -W{T )
d* 32 2 2
ecorating, g & W2 | ¥ ow(
ntegrating, E_—Hx +C| +E— X == e I—E
Integrati i, Eymen B b Ca s Gl i » A
ntegrating again, Ely =-—o> x X+ G+ 52 x| |=oz] =5
Atx=0,y=0;, . C=0 (considering first part only)
Swi® w8l w1 95
=lLy=0; - 0=- +Clt— =t =— [ =——wl’
Atx=hy=0; 92 "' 3355" Tt O G T s ™
Thus
- 3 .-‘-
Slose | dy 1] 5wl 2, 95 | ! W !
ope is — = — — —|lx=-=}|-=|x—=
PP LE| 6a” T M| 77|76 2
And deflection is
oo Ll 5wy 95 s v ow( 1Y
Ely = - +— +—|x=-=||-=—]| x-=
YRR 192 Terad™ T 24| Tq || T2l "2

Example 7.15 A simply supported beam has its supports 8 m apart at A and B.
It carries a uniformly distributed load of 4 kN/m between A and B starting from 1 m
and ending at 5 m from A. The end B of the beam has an overhang of 1 m and at
the free end a concentrated load of 8 kN is applied. Determine deflection of the free
end and the maximum deflection between A and B. Tale E = 210 GPa and | =

20 x 10° mm®,
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0 " Strength of Materials

of cantilevers (zero slope at fixed ends), symmetrically loaded simply supported beams
(zero slope at the centre) and built-in beams (zero slope at each end).

Examples:

(i) Cantilever with a concentrated load at the free end

Figure 7.34 shows the cantilever with the W
concentrated load W at the free end and its j l
bending moment diagram. A B

Area of the bending moment diagram, i

!
A ; [ .WI il -|
Wi
& 2 5 A Wfl B.M.
ope at freeend = ———=—
B Fig. 7.34
AX WI* 2 W
Deflection = = (7.30)

El 2EI'3 3EI
(i1) Cantilever with uniformly distributed load

Figure 7.35 shows the cantilever
with uniformly distributed load and its W
bending moment diagram.
Area of the bending moment i __I
L wi* wl’

diagram, A = < L. =

37 2 6
A wi’ _WE%/,
Slnmalﬁe&end:-E——m— 2

AX w3 wi Pl 549
Deflection = 5 GEI 4 SEI (7.31)
(i11) Simply supported beam with w
concentrated load at the midspan c
Y

half the bending moment diagram can be

As the loading is symmetrical, areaof A
[- o —r
considered (Fig. 7.36).

Area of the bending moment diagram, ' i

1@ W wr 3

s 224 ) 16 Bending moment dizigram
2
Slope at free end = —% = - lthf Fig. 7.36
X = distance of centroid of the bending moment diagram from A = ;% = g
Ax wi* 1 wr

Deflection = (7.32)

EI 16EI 3  48El
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? | FU 0 surength of Matarials

106 /3 Yoo
= 120.2x107 j 13 dx =1202x107% | —
; 5/3

= 72.1x107°(2374) = 0.171 mm

7.7 STRAIN ENERGY DUE TOBENDING .~ .

Consider two sections of a beam
a small distance dx apart (Fig.  _ 4 bl — _I_J_"_, i
7.41). As the distance 1s small, the

bending moment acting may be

taken to be same throughout the Be Lo
length dx. Let it be M. Let o be Fig. 7.41
the bending stress on an elemental

cylinder of area dA at a distance y from the neutral axis.

s

2 2
g (]
Strain energy in the elemental cylinder = 3E X volume = 3E X dA .dx

Strain energy of the length dx,

2 2 2
o | ( My Midx, ,

But [yi.dA=1

i M?.dx
- 2EI
M?*.dx
Strain energy stored in the whole beam, U = j SE] (7.34)

7.8 CASTIGLIANO’S FIRST THEOREM
(DEFLECTION FROM STRAIN ENERGY)

Castigliano’s first theorem is stated as below:

If a structure 1s subjected to a number of external loads (or couples), the partial
derivative of the total strain energy with respect to any load (or couple) provides the
deflection in the direction of that load (or couple).

Mathematically,

Let U/ = total strain energy of the structure

W,, W,, W, .....External loads at points O,, 0,, O5 .........

M, M, M, ....External couples at the same points .........
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Strength of Materials

Example 7.22 Compare the strain energy of a centrally loaded simply supported
beam with that of the same beam with a uniformly distributed load. Assume the value
of the maximum bending stress to be the same in the two cases.

Solution As maximum bending stress = M/Z, for the same beam in the two cases,
maximum M has to be the same, i.e.

Wi wi’
3 = 2 or W=wl/2
w2
* For central Joad W, U, = 9GE] (Refer Example 7.21)

e Figure 7.46 shows a simply

w
supported beam of length / and A B
carrying a uniformly distributed
load w per unit length. wm = _.l w
, 2 : 2
wi wx®  owx
M= ke (I'—I,‘l Fig. 7.46
| M*.dx ? dx , ,
= |55 j e =a) o SHJ (°x% + x* - 21 )dx
w? (Px® ¥ 2t w il
— -+ - o
8EI| 3 5 4 240E]

U, w:"/ us u.ffj/wfi 5

U,  96EI/ 240EI = 4x96El/ 240El ~ 8
Example 7.23 Determine the maximum deflection of a simply supported beam
of span [ carrying a load of w per unit length using strain energy meithod,

Solution Maximum deflection is at the W
midspan. Thus assume a concentrated load .‘ "
W at this point (Fig. 7.47). A 8
o W+ wl {
—_ ,b —_—
‘ 2 Fig. 7.47

Bending moment at a distance x from
2

2 W + wl wx~
T2 3

U/ = 2 x strain energy in the half beam

2 2
W + wi x® ) dx [ W+wl  wx’
=2rﬂ[ W J:—“ ] - -[;IE[ = ] A

0 2 2 2EI  2El 2 2
To find the deflection, differentiate the total strain energy with respect to W, i.e.

5= 10 112 [W+wf wx” ]x

X——

2 2 |2

—.dx
W  EI
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Strength of Materials

No. Simple (real) beam

Conjugate beam

k Actual loading is the loading diagram.

2. Bending moment diagram from
loading diagram provides the
bending moment at any section.

3. Shear force diagram provides the
shear stress at a section.

4. Shear force and bending moment at
the fixed end of a cantilever exist.

3. Shear force and bending moment at
the free end of a cantilever are zero.

6. Bending moment at the supports of
simply supported beam is zero.

7. Shear force moment at the supports
of simply supported beam exists.

8. An intermediate support has same slope
on both sides. Also, an intermediate
support has no deflection.

9. { A hinge support has same shear force
and zero bending moment.

Bending moment is the loading diagram.

Bending moment diagram from loading

diagram provides the deflection at any
section.

Shear force diagram provides the slope at
a section.

S.F. and B.M. at fixed end will provide
some values of slope and deflection which
are not feasible. Thus a fixed end 1s
transformed into a free end to obtain S.F.
as well as B.M. as zero.

S.F. and B.M. at the free end will provide
zero slope and deflection which are not
feasible. Thus a free end is transformed into
a fixed end.

Deflection at the supports is zero. So, end
conditions remain same.

Slope at the supports exists. So, end
conditions remain same.

To have same shear force (slope) on both
sides and zero bending moment
{(deflection), it is transformed into an
intermediate hinge.

It is transformed into an intermediate
support.

Example 7.28 Find

expressions for the central

deflection and the slope at the
ends of a beam simply
supported at the ends by
conjugate beam method.

Solution Figure 7.48a shows
the actual loading diagram. As
maximum bending moment at
the centre is Wi/4, in the M/EI

L W
1 4E]

(loading diag. for conjugate beam)

18E/
(b)

diagram the same 15 shown as
WI/AEL in Fig. 7.48b.

Now, in the conjugate beam
method, this diagram is to be
considered as loading diagram
and a new bending moment

B.M. diag. from conjugate loading diag.

(deflection diag. for actual beam)
(c)

Fig. 7.48
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@ | Strength of Materials

Slope at the free end = shearing force at B W
: . » wi* 1w a .-l .
or conjugate beam = 3T B T GEl A B
Deflection at the free end = bending moment 3" ! *I
wt® 31wl (a)
at B for conjugate beam = F1 1 " REl . t
Wa
Example 7.34 A beam is loaded as “gf F

shown in Fig. 7.54a. Determine the slopes Conjugate beam

at the load and the support points and the (0)
deflections at the load points using conjugate Fig. 7.52
beam method.
Solution To find reaction at the W
supports, take moments about B,
R .1 =2W : W i R i : —|
! SEVT O R T (a)
W 9w y
and R, =3W - oot :
W 1 3w WE E
Bending momentat C= T S 2 Conjugate beam
[ Wi b)
Bending moment at B = -—W.E 1] Fig. 7.53

Point of contraflexture in CB: Let this point be at a distance x from C,

W (! 3 3x 3l
—] -+ x |-2Wx=0 or —4+—-=-2x=0 or x=—

4|2 g 4 10
EI'-" w
Al‘ C B D
2 lf2 ii4
aw w Wl
4El (8) 4

Jwl
8El

‘/\ s

Conjugate beam 10 | ___'1 AE|

Fig. 7.54
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0 Strength of Materials

moment of this beam gives the deflection curve of the actual loading and the
new shear force diagram provides the slope.

o Maxwell’s theorem of reciprocal displacements states that the deflection of any
point P resulting from application of a load at any other point Q is the same as
the deflection of Q resulting from the application of the same load at P.

e Betti’s theorem of reciprocal deflections states that in an elastic system, the
external work done by a force acting at P during the deflections caused by
another force at @ is equal to the external work done by the force at Q during
the deflections caused by the force at P.

Review Questions

Establish the governing differential equation of beams. What are its limitations?
What is Macaulay’s method of beam deflection analysis? What are its
advantages over the direct integration method?

1.
2.

3. State and prove the moment—area theorem.

4. State and develop the analogies between the real beam and the conjugate beam.

5. State and prove Castigliano’s first theorem. =

6. Deduce the expressions for deflection by the energy method

7. State and prove Maxwell’s reciprocal deflection theorem.

8. What is Betti’s theorem of reciprocal deflection?

9. The rate of loading on a simply sup- p
ported beam of length [ 1s p sin mx/l A W=wl 3 l
where x 1s the distance from one end.

Show that the reactions at the ,JE 33, C
supports are pl/m and the maximum = ! la— /2 —»
bending moment is pl*/7°. Fig. 7.56

10. A simply supported beam with an
overhang is loaded as shown in Fig. 7.52. Find the ratio of W/P to make the
deflection at the free end equal to zero. (6)
11. Determine the maximum deflection of a simply supported beam of 5-m length
and carrying a uniformly distributed load from zero at the ends to 8 kN/m at
the centre. EI = 2 MN.m?. (20.8 mm)
12. A simply supported horizontal beam carries a load which varies from 20 kN
at one end to 50 kN at the other. Determine the central deflection if the span is
10 m and the width is 420 mm. The bending stress is limited to 84 MPa.
E =210 GPa. (25 mm)
13. A simply supported beam has a span of 15 m and carries two point loads of 4 kN
and 9 kN at 6 m and 10 m respectively from one end. Find the deflection under
each load and the maximum deflection. E = 200 GPa and 7 = 400 x 10° mm*,
(9.39 mm, 8.99 mm; 10.48 mm at 7.79 m)
14. A beam AB of 6-m span is simply supported at the ends. It carries a concentrated
load of 6 kN at a distance of 6 m from the left-hand end support and a uniformly
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Strength of Materials

Similarly, if the deflection of one end relative to other is zero, the moments of
areas of the bending moment diagram about an end are zero, i.e.
Moment of area of free moment diagram = Moment of area of fixed moment diagram

or Ax = AX, (8.2)
The area to be considered may be broken into parts to obtain convenient rectangles,

triangles and parabolas.
Total reactions at the ends,

RU=RI+R= R|+ 4]

Ma_‘”b

-ﬂ“d Rﬁ=R1'—R= Rz- f

Example 8.1 Determine the maximum bending moment and the deflection of a
beam of length | and flexural rigidity EI. The beam is fixed horizontally at both ends
and carries a concentrated load W at the midspan.

Solution The beam is shown in Fig. 8.2a. W
Due to symmetry, fixing moment M, = A a l C B
M, = M (say) a s
The free moment diagram is a triangle I
with maximum ordinate Wi/4 as shown in BsRie b{:) V2
Fig. 8.2b.
* As the slope at A is equal to slope at :
B = 0, net area of the moment :%’I
diagram must be zero, i.e. T
M : M
-I-E d =Ml or = i ®
2 4 8
The combined bending moment diagram /W\
s shown in Fig. 8.2¢. The maximum ¥
bending moment is WI/8 hogging (at the l/ \l?
ends) and sagging (wl/4 — wl/8, at the [c}
centre). Fig. 8.2

e To find the deflection of C relative
to A, Take moments of the areas of the bending moment diagram between A

and C about A,

Lo w20 (weiyir] o we
| I — —_— — | — — ] — —_— F F. +812b
? EI[(E 3 4)(3 2] [8 zJ 4} 1927 1O Fig- 8:20)

Example 8.2 Determine the maximum bending moment and the deflection of a
beam of length | and flexural rigidity EI. The beam is fixed horizontally at both ends
and carries a uniformly distributed load w over the whole span.

Solution The beam is shown in Fig. 8.3a.
Due to symmetry, fixing moment M, = M, = M (say)
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’ Strength of Materials

M,+M, w’ wi-
[=— or M +M, =
2 24 I

* AXx = AX

12 2 12 4
AT, =J' M, x+ Lwk 2 {l+l_“.)=.|' MIE_E dx+ﬂ
0 2 32 0

Thus

(1)

2 16 2 8 2 96
2
Il X _ wxt N wit _ Twi
8§ 3 8 A 06 384
| [ 1 21 Twl’

Thus ~ M J—+—-M,]l.=—=
Wy a3 Ty e T e
1 Twl? Twi?
or (M,+2M,)—= or M, +2M, =
(M, "6 384 . b 64

(ii)
Subtract (1) from (i1),
_Twl? wit 5wl wi® 5w’ _ 1wl

64 12 192 “T12 192 192
Bending moment diagram has been shown in Fig. 8.7c.

Reactions at the ends,

and

M,

M - -
R = R +—= Mh =1WI+ﬁszl3wf

C ! 8 192 32
and R,= R1_Mﬂ_Mb=Wi'_6H'f=3wI
; I 8 192 32

Shear force diagram nas been shown in Fig. 8.7d.

Example 8.6 A beam of 18-m span is fixed horizontally at the ends. A downward
point load of 18 kN acts on the beam at a distance of 6 m and an upward force of
12 kN at a distance of 9 m from the left-hand end. Find the end reactions and the
fixing moments. Also draw the bending moment and shear force diagrams.

Solution The beam is shown in Fig. 8.8a. Let the fixing moments be M, and M, at
the two ends.
e A=A,
Take moments about end B,
R x18-18x12+12x9=0orR=6kNand R, =18-12-6=0
Bending moment diagrams for the free and fixing moments are shown in
Fig. 8.2b.

Thus Myt ¥, x18 = 3629

18 M,+M, =18 (1)

* AXx = Ax,

18 6X36 3% 36
(M, +2M,) z = X 4 +

x7 or (M, +2M,)=15 (ii)
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é Strength of Materials

3 4
r  wlx owx

e [Integrating again, Ely =—-M . > + > o +0 ...(Constant B will be zero)
Also, Atx=10y =0andy=0
3 3 2 2
‘ I
ol . o B, =i gui W=l =T
4 6 12 12
wi> * owlt wi wit
Maximum deflection at midspan, Ely = ——.—+ — or y=-—
Pal, BV =128 T 96 384 O 0 384K

Example 8.10 A beam has its ends fixed horizontally at the same level. The
beam is of length | and carries a load W at a distance a from one end and b from the

other end. Determine the fixing moments at the ends.

Solution Let the load be at a distance a from

w
the left-hand fixed end (Fig. 8.12) a Ci E
£ A E
o EB"=-M,+R3|-W(x-a) ——a———b—
e Integrating, Elv'=-M_ x+R, % +0 e I &
W M W My
2 (x-af N o T
2 A 1%
LAALx=0,v =0, . A=0) A, R
e Integrating again, ?
1 ’ Fig. 8.12
X X W 3
Ey=-M,—+R,—+0|——|x~-a
}J ' 2 it ﬁ 6 { ]
.(B=0)
Also, Atx=1y =0and y=0
rw
Dz—MJJ+RuE—E{E—u}: or 2M_ I=RI*-Wb’ (i)
PP w .
and 0=—M,.—+R, = —~—(t -a) or 3M, I* =R -Wb (ii)
Multiplying (i) by / and subtracting from (i1),
Wab®
M2 = Wbi(I—b)=Wab* or M, = =3
2
From (i), 2 w;"’ I =R,1* -Wb*
Wh? Wb? Wb’
or R, = (2a+1) = ——(2a+a+b) = (3a +b)

.li|3 IJ 13

¢ Bending moment at right fixed end,
Wab® Wb’
M, = — :‘f + (3a+b)l-W(l-a)
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Solution The load diagram is shown in Fig. 8.16a.
3x 52 2%10°

ForAB, M_, = = =90.325 kN.m; ForBC,M__ = 5 = 25 kN.m;
2

For CD, M, = 4’;3 = 4.5kN.m

Also, M, = My;=0

14.52

10.04 10.84

10.49 9.96
(©)

Fig. 8.16

Apply the three-moment equation for uniformly distributed loads to the spans AB
and BC,

3x5'  2x10°

M, X5+2M,(5+10)+M_ x10 = — 2

or 30M, +10M, = -593.75

or M, +0333M, =-19.79 (i)

Apply the three-moment equation for uniformly distributed loads to the spans BC
and CD,

3 3
M, x10+2M (10 +3) + M, x3=_2><;ﬂ _4:13
or 10M, + 26M =-527
or M,+2.6M, =-52]7 (i)

Subtracting (i) from (ii),
2267M_. = -3291 or M.=-1452kN.m and M,=-14.95kN.m
To find R, take moments about B,
R, x5-3%x5%x25=-1495 or R, =451kN
To find R, consider bending moment at C,
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Fixed and Continuous Beams ’
4EI  2E]
e Ar D: Stiffness factor for CD, s4. = c = 3 (as the beam is fixed at A)
3EI EI i .
and for DE, Sy = p = > (as the beam 1s continuous at C)
2EI3 4

Distribution factor for CD,

d = SpI3+EN2 7

Elf2 3

Distribution factor for DE,

e = SEI3+ EN2 7

A B C D E
Distribution factors 112 1/2 1/2 1/2 417 377
Fixed end moments | -3 3 -6 6 —6 6 -3 3
Release E -3
Carry over -1.5
Net moments -3 3 -6 6 -6 6 —4.5 0
Distribute 1.5 1.5 0 0 .86 | -0.64
Carry over 0.75 0.75 | 043
Distribute —0.16 | -0.16
Carry over -0.08 -0.08
Distribute 0.04 | 0.04 0.046 | 0.034
Final moments -225 454 ] 454 6.59 |-659 5106 |-5.106 O
Bending moment diagram:
2 2
wi 1 X6
For span AB, M, = = =4.5
8 8
2 2
wi© W[ 1X6~ 4X6
For span BC, M . = +—= + =10.5 kN.m
8 = 8
Wi 8x6
For span CD, M .., i =12 kN.m
wl*  1X6°
For span DE, M., 2 ~ = 4.5 kN.m

Now, the bending moment diagram can be completed as shown in Fig. 8.295.
Shear Force diagram
To find reaction R,, taking moments about D,

R, x6—-6x3=-5.108 or R,=2.15kN
Taking moments about C,

215%x12-6X9+R; x6—-8x3=-6588 or
Taking moments about B,

2 15x18-6X15+7.6X12—-8X9+R. x6—-4x3-6x3=-4541]
or R.=959 kN
Taking moments about B,

R, x6-2229-6x3=-4541 or K, =261 kN

R,=12+4+8+6-2.15-7.6-9.59-2.61=8.05 kN

R,=7.6 kN
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’ ' G Strength of Materials

Consider an element at a distance y from the neutral axis.
Strain in the element

AC - AB _ (R"+ y)0 +80) —(R+ y)8

AB (R+y6
R(8 + 66) + y8 + yd0 — RO — y0
- (R+y)0
R'(8 + 68) — RO + yo0
B (R+y)6
As length of the neutral axis remains constant,
R'(6+ 66) = RO
and 08 = R _,Rf )
R

__y08  _ YR-R)
T (R+y)® (R+Y)O.K

Strain

If y 1s neglected compared to R, Strain = y (% — %)
Normal stress (neglecting the lateral stress),

o= Ey(i, = l) (i)

R R
As total normal stress is to be zero,
i 1
c-dA= E| — —— dA =0
J (R' R)fy

or _[y -dA =0
which indicates that the neutral axis passes through the centroid of the section.
Moment of resistance,

1 1 1 "
M = JovdA = E{F —E}[yz-dﬂ = E![E —E] (ii)

1
M =E=E(_;_l] 9.1)
I y R R

Strain energy of a small length s along the neutral axis under the action of bending
moment M,

From (1) and (i1),

5U=%M.§H=1Mvﬁ_‘_‘qﬂ
[ P I M M
=_—{MB}R[—,——)=—M53 M5 02
2 R R 2 El 2Kl

Example 9.1 A piston ring is required to keep its outer surface circular in the
stressed as well as in the unstressed condition when a uniform radial pressure exerted
is uniform. Express the variation of thickness of its surface along the angular direction
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Strength of Materials

,,0,

Y 1 y 1 2 :
dA = — — dA = —
mﬂnji-ﬁ-}r,ﬂ’ﬁ' Il+}u’ Rﬂp (1v)
Eq. 9.5 becomes
1 1 pz
F=EAle'-(1+&Y ———|— 9.7
[ ( }[R’ R) R] PR

As transverse plane sections before bending remain plane after bending, F =0

2
£ = {l+£’}( : _l)p_

R R/ R
Inserting this value of £” in Eq. 9.4,
2
Now, o= E|(l "’E;)('l_, = l)P_ +(1+&) Y [ l’ _l)
R" R/ R 1+ v/R\R" R
seq+ey| L -1 |12+ 22
R R/R 1+ y/R
But from Eq. 9.6, M = E(1 + £) (% - ?]i’-) Apz (using 111) (9.8)
an(1+£’)(—1;—l)=—M:—
R R} Ap?
2 2
oo M [ RN MILB ] g
Ap° R R+y AR p-R+y

At inside of the centroidal axis, y 1s negative and thus,

2
o= L% 2
AR p: R—y

The position of the neutral axis can be found from the fact that at the neutral axis,

=10,
2
o=2 1+ 2 |0
AR pP R+ y
_sz
R2=_R 1_ 2 1= — 9.1{]
or y p-—yp- or Rg_l_pg ( )

p* for different sections can be evaluated easily by the following simplified expression:

1 ¢ Ry’ I Ry
2= — dA = —[| Ry - dA
A'R+y AJ[J’ R+y]

[o-m (-5

—E[I}’dﬁ—deA+JRRjydA]

| =
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’ Strength of Materials

W R* y 8000 202° 88
A p® R+y 4000 1839.5 202 +88
=-443.64 x 0.3034 = -134.6 MPa (compressive)

Stress at inside face (Q); v=d =32 mm

s W _WRl R _y | WER y
'" A AR| p*R-y| A p® R-y

52
443,64 x = 1
03 — 52 153.8 MPa (tensile)

Example 9.5 Anopen ring has an I-section as shown in Fig. 9.13. It is subjected
to a load of 30 kN. Find the stresses at points P and Q.

50 kN

-
t20
_HEE}: 100 Hgﬂl*h
(Section at PQ)
Solution
A = 80 x 20 + 100 x 20 + 60 x 20 = 480" mm°.
,e 80x20x10+100x20x70+€0x 20x130 &5
" 4800 -
R =120+ 65 =185 mm
R, = 120mm; R, = 140 mm, R; = 120 + 20 + 100 = 240 mm
and R,y = 240 + 20 = 260 mr
3
, R
p= .38 bilnﬁ'-+11n—3+bzln£ - R’
A R K, 3
= Lt Eﬂlln@+2{]'I|'||&-i-fﬂjllnE — 185% = 2597 mm?
4800 120 140 240

Stress at out+ide face (P)

W R* y 50000 185" 75
A p> R+y 4800 2597 185+75
137.28 x (0.2885 = 39.6 MPa (tensile)
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Fig. 10.1

Let & be the angle of twist of a cross-section relative to another cross-section at
distance [ apart. Then

Arc AB = rf= ¢ = ;_% el G = T1)
5¢ T_ 6o ()
r {
Now, tangential force on the element = 7 (27ar. dr)
Moment of the tangential force on the element = T (2. dir)r
Sum of moments for the whole shaft,
I= .T[E:rrr.dr)r
GO _ G 2
= [=Fr@ardnr = TI{Zmr.dr)r
But I (27r.dr)r* 18 the polar moment of inertia of the shaft,
Thus F= 59 (ii)
[
F i) and (i1) = g 00 (10.1)
rom (1) an (”’J_r_ I _
This shows that for a given shaft, shear stress is proportional to radius.
:'T-dd
e Solid shaft For a solid shaft, J = T
. Maximum shear stress, T= r4/2 = lt’i_T at the outer surface (10.2)
' nd*132  nd’

e Hollow shaft If D and d are the outer and inner diameters respectively of
the hollow shaft, then

m(D*-da*)
32

J=
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Torsion .

-

has a ratio of 0.9 from the inner to outer diameter. Also determine the error in the

angle of twist.

Solution
¢ By Bredi—Batho theory,

2
- +
T=2711A or T=2r(ﬂzd).g(—q—d-j

2
ZT.E.D[I—E{).DE [1 +-‘i]
16 D D

16T
= 2t.2 D(1-09).D*(1+09)* or 7= 1
16 1.134D°
D D
By normal theory, 7' = l?l - = 416 et ]6T3
(D' -d*y  xD*(1-09%)  1.08D
Thus, raio  ~ = 108 0952
T 1,134

¢ By Bredt-Batho theory,

G Tz _IT n[ﬂ+d] | 1
4GA’t 4G\ 2 J((n/a)(D+d)I2)* P (D-d)/2
T nD | 1
WL T
4G 2 x* D*(1+0.9)* D (1-0.9)
= 29+?1}{—Tir
GD
f 32T
By shaﬂtheur}'. Q' = f 342T i ; 1 3 =29.62 x de
G. m(D"-d%) G. 7aD*(1-0.9%) GD
Thugwatio. o = 2292 _piog7
0 2971

10.9 THIN-WALLED SECTIONS

Consider a thin-walled twin-celled section
shown in Fig. 10.14. Let ADC be of uniform

thickness t, and stress 7,, CBA of uniform — y
thickness t, and stress 7,, and AC of uniform A2 B
thickness f; and stress 7;. Also let A, and A, ]+ 2
be the mean areas of the two cells. It may be -~— -
assumed that the direction of shear flow in k2

AC is downwards, Fig. 10.14
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SPRINGS

11.1 INTRODUCTION

Any elastic member which can deform under a force can act as a spring. The
main function of a spring is to deflect under a load and to recover the original
shape when the load is released. However, the term is normally used for those
members that deform considerably under the action of forces without exceeding
the safe limit of stresses, e.g. a steel helical spring may be expanded to twice
its length without loosing its elasticity. Springs can be made to act under tension,
compression, torsion, bending or combination of these loads. Usually, the springs
are made from conventional metals though sometimes they can be of non-metallic
materials.
In general, the springs are used to

— absorb energy and to release the same according to the desired function to be
performed such as a spring of a clock.

— absorb shocks as in case of automobiles.

— deflect under external forces to provide the desired motion to a machine
member such as springs used in weighing machines, safety valves, clutches,
governors, etc.

e Sriffness of a spring is defined as the force required for unit deflection.
o Solid length of a spring is the length of a spring in the fully compressed state when
the coils touch each other.

11.2 CLOSE-COILED HELICAL SPRINGS

Close-coiled helical springs are those in which the angle of helix is so small that if
the axis of the spring is vertical, the coils may be assumed to be in a horizontal
plane. Such a spring may be acted upon by an axial load or an axial torque.
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’ deednigiin U 0 i T | Stiengthiof Materiale

Solution

s = 600 N/m or 0.6 N/'mm; W=40 N: 7= 100 MPa
Solid length, nd = 60 mm or n = 60/d

Relation between 4 and D can be obtained from the relation, 7= Ei?
T
That is 160 2X% }‘ED or D =0.982 d>
nxd
3
Stiffness s of the spring can be obtained from the relation, 6 = B'f;'f:dﬂ
4 4

That is .sr=1“ifr=(}dr3 or 0.6 = 32{}[;[]::&

6 8D’n 8(0.982d") x60/d

d*=1173 or d =3.29 mm
o D =0.982 x3.29° =35 mm
Number of coils, n = 60/3.29 = 18.24

Example 11.5 A close-coiled helical spring made of 10-mm diameter steel bar
has 8 coils of 150-mm mean diameter. Calculate the elongation, torsional stress and

the strain energy per unit volume when the spring is subjected to an axial load of
130 N. Take G = 80 GPa.

If instead of the axial load, an axial torque of 9 N.m is applied, find the axial twist,
bending stress and the strain energy per unit volume. E = 205 GPa.

Solution
8WD’n _ 8x130x150° x8

Under axial load, &= - — =35.1mm
Gd 80 000x10
- SWL;J - 3:{13{]:::3150 — 49 66 MPa
nd T x10
72
Strain energy/unit volume = G ...(Eq. 10.5)
49.66° ) 5 .
= 0.007 71 N.mm/mm- or 7710 N.m/m” or 7.71 kN.m/m
4% 80 000
64TDn 64 x9000x 150 x 8
Und jal t ;A= = =0.3372 rad
nder axial torque, @ L 05 000 < 10° ra
Bending stress, —32-}; = o ]EE =9]1.7 MPa
wd %10
To/2

Strain energy/unit volume

Volume
9000 x0.3372/2

(erlﬂzr’-i):rxlﬁm{ﬂ

= [}1{1{15 124 N.mnv/mm? or 5.124 kN.m/m’
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aDn 32 5in2ﬂ+2{:051ﬂ
G E

T

cOSs O ;rd“

(11.10)

32TDn { sin‘a i 2 cos

d.cosa|l G E

5. U _ 2(Tsiner) Reosal . 2(T cosat)(-Rsina)l
B S 2GJ 2E]

= TRisinamsa[Lul]

GJ EI

D abn 32 . { l 2]
=T TSN COSO| — — —
2 cosct wd G E

2 5
_ 167D J:smcr[_l__EJ (11.11)
d G E

Example 11.11 An open-coiled helical spring has 12 turns wound to a mean
diameter of 100 mm. The angle of the coils with a plane perpendicular to the axis of
the coil is 30°. The wire diameter is 8 mm. Determine

(i) the axial extension with a load of 80 N.

(ii) the angle turned by the free end if free to rotate.
E = 205 MPa and G = 80 GPa.

Solution
5= 8WD'n (cos’ar  2sine | _ 8x80x100°x12( cos?30°  2sin’30°
d¥ cosa|l G E 84 cos 30° 80 000 205 000
= 2.165x10%°(9.375% 107 % + 2439 x 107 %) = 25.88 mm
_16TD*nsinaf 1 2 ) _16x80x100° x12sin30°( 1 2
P= d* G E g4 80 000 205 000
= 18 750% 2.744x10™° = 0.0515 rad or 0.0515:-:1181_—0=2.95“

Example 11.12 An open-coiled helical spring has 10 coils and is made out of
a 12-mm diameter steel rod. The mean diameter of the coils is 80 mm and the
helix angle 15°. Find the deflection under an axial load of 250 N. What are the
maximum intensities of direct and shear stresses induced in the section of the
wire?

If the above axial load is replaced by an axial torque of 60 N.m, determine the
axial deflection and the angle of rotation about the axis of the coil. G = 80 MPa and
E = 204 GPa.
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Springs . &

T’ |
U= |—.ds= F,x—F.y)yds i
2EI 2EI I ( 2 W
As O is the fixed end of the spiral strip, deflection in x-direction is zero. Applying
Castigliano’s theorem,

F.o.x—F_ yN -
ou o _f( v X = F . y) y)ﬂ5=ﬂ
oR, Eil
I(Fyix - F .y} —y)ds=0 or FJ yz.ds - ijxy.ds =0
F,,J'xj:.ds
or F.l' - - 3
jjﬁ (s
Due to symmetry of the spiral curve about the x-axis, F, j xy.ds =)
Fo=0
1 _ 1 9 _ {T+IIR)E . ——
Thus U= EI(F}..I} ds U= j SEl s (as T=F.R)

Equating the strain energy to work done,

TH—

T.x/R . : : :
j{ x/R)’ .ds where 6 is the rotation of the spiral

_ 2
8= EIRE jx s

The integral jf ds is found to be approximately equal to 1.25R%]

I.25R*IT _ 1.25T1
EIR®  El
Maximum bending moment = F,.2R = 2T at the left-hand edge of the spiral

If b is the width and ¢ the thickness of the spiral matenal,

Maximum stress O, = ad = £l = a2 (11.13)

Z b’s6  bi’

Therefore, 6= (11.12)

Example 11.16 A 5-mm wide and 0.3-mm thick flat spiral spring is 2-m long.
The maximum stress is 600 MPa at the point of greatest bending moment, Determine
the torque, the work stored and the number of turns to wind up the spring.

E = 208 GPa.
Solution
Maximum stress, O,,, = Sk or 600 = = > orT=225N
b 3x0.3
6= 1.25T1 _  1.25x22.5x2000 24 rad

El 208 000 x (5% 0.3°/12)



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



You have either reached a page that is unavailable for wviewing or reached your wiewing limit for this
book,



0 Strength of Materials

q
e 108

The actual deflection tor a proof load of 6 kN,
3 6000 x 650

d= —. . =37.1 mm
8 13x50x5" x205 000
At proof load, the spring 1s straight, therefore, the initial radius of curvature is
2 2
= : = 650 =]1424 mmor 1.424 m
80 8x37.1

Example 11.20 A quarter-elliptic type of laminated spring is 800-mm long. The
static deflection of the spring under an end load of 3 kN is 100 mm. Determine the
number of leaves required and the maximum stress if the leaf is 75-mm wide and
8-mm thick. Also find the height from which a load can be dropped on to the undeflected

spring to induce a maximum stress of 750 MPa. E = 208 GPa.

Solution

3 6 x 3000 x 800°
0 = ﬁw: or 100 = 3 :
nht" E nx75x8 x208 000

6Wl 63000 x 800
nbt>  12x75x8’
Equivalent gradually applied load to induce a maximum stress of 750 MPa

= 3000x 222 = 9000 N
250

n=11.54 say 12 leaves

= 250 N/mm?

O =

6 % 9000 x 800°

12x75x 8" x 208 000
Loss of potential energy = Gain of strain energy

The corresponding deflection, 6 = = 288.9 mm

3000(h + 288.5) = % X 9000 x 288.5
Height from which the load can be dropped, /& = 432.8 — 288.5 = 144.3 mm

I~ N Summary

e Springs are used to absorb energy and to release the same according to the
desired function to be performed, or to absorb shocks or to deflect under external
forces to provide the desired motion to a machine member.

e Any member which can deform under a force can act as a spring. However, the
term is normally used for those members that deform considerably under the
action of forces without exceeding the safe limit of stresses.
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Both Ends Hinged

Consider a strut initially straight acted upon by an axial load P
through the centroid. The deflected shape of the strut is shown in
Fig. 12.1. The X-axis is taken through the centroids of the end
sections and the origin 1s assumed at O. At a section at a distance
x from O, let y be the deflection from the central line.

2

From equation of bending of beams, E/ fﬁ—f =M =Py

To write the above equation with the proper sign is important.
As the left-hand side indicates the bending moment from a positive
value of deflection y, the Y-axis is to be taken in such a way that
the deflection is positive, i.e. towards left in this case. Then viewing
from the right side of the figure so that y-axis is upwards. Treating
it as a beam, consider the bending moment at the point. As P
provides counter-clockwise moment on the left of the section, it is
negative. Had we taken deflection of the strut towards right, Y-axis

would have been towards right and then viewing from left side of

; iy g L
H’ il c ‘z:-u g

u_'h"? g‘t“" .

Fig. 12.1

the figure P would provide clockwise moments on the right of section and thus negative.

y
y
< +a’y=0  where @’ =

The equation can be written as

The solution is y = Asina x -+ Bcosa x

ET

Atx=0,y=0,. . B=0andatx =1, y=0and thus Asinal=0
If A =10, y is zero for all values of load and there is no bending.

. sinal=0 or al=m (considering the least value)
or a=n/l

2.E.r
. Euler crippling load, P =a°El =

The higher solutions of sin o = 0 leads to higher harmonics of
the deflected column and practically are not important.

One End Fixed, Other Free (Fig. 12.2)

Take Y-axis towards right for positive value of y. Viewing from
the left end, P provides a clockwise bending moment P(a — y) on
the left side and thus positive.

2
Then Efd——M P(a — y) = Pa — Py
dx*
2
or f+ﬂ:z}' e S b e e 1
dx El El

The solutionis y = Asinax + Bcosax +
Ela”

= Asinax + Becosax + a
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Columns and Struts

| 4

ml AE |
T= 5—| 1+ — | where wis the coefficient of linear thermal expansion.
0.75al" A .
; 0.5t +1
Solution The average temp along the bar = ~ ™ 0.751

Thermal expansion of the bar = 0.75adr
Let P be the force exerted by the spring on the bar on heating of the bar.

Compression of the bar under force P = ff—

Net expansion of bar = Compression of spring

or 0.75alt - Ll = L8 or 0.75alt = P 2 +1
AE AE 5

5

- - 0.75alt
us = U/AE +1/3)
- i b 0.75cxlt
and stress in the bar, o= (/E+A/3)
The bar will buckle when the load reaches to Euler’s value 1.e.
2
okl 0.75clt 2 ! 1 3
= ‘El|—+-|=0 :
2 U/AE +1/3) or 7T [AE s] 0.75alt
TEl (1 1 n’l EA
or ! = 3 +—=|= 3 14+ —
0.75al’ \AE s/) 0.75c¢I°A sl

Example 12.6 A straight cylindrical bar of 15-mm diameter and 1.2-m long
is freely supported at its two ends in a horizontal position. It is loaded
with a concentrated load of 100 N at the centre when the centre deflection is
observed to be 5 mm. If placed in the vertical position and loaded vertically,
what load would cause it to buckle? Also find the ratio of the maximum stress in the

Iwo cases.

wi’ EI Wl
or

Solution Deflection due to centrmal load, 6 = ==
4 { 48 &
2
n El » Wi > 100 x 1200

. Euler load, P, = ="—==7 = 4935
TR te=" 485 48 % 5 %
As a strut maximum stress, G, = F = 49325 = 27.93 MPa

A mx15/4
Wi 100x1200

As a beam, maximum bending moment = e 2 = 30 000 N.mm
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6 Strength of Materials

n |P 1.2P _
Prof. Perry found that sec — = — and thus sec Lo = L2k
2\F, F-P 2 P-P
‘ o P ey. 1.2P )
Inserting this in the Secant formula of Eq. 12.14, 0, = —| 1+—5* |
P P _ | 4 & 120,
Let ﬂ"jzzand r.r_=,=I.Th¢n Opax =0 1+ 22 .ﬂ',_.-::r,?
.y : o o 1.2e.y.
T _ = @Ye. 120 1 Om o fy_To|_128de 4y 5
Jn k 3 Jt" i ﬂ‘” ﬂ” Ut" k

This is Perry’s approximate formula from which ¢, and hence P can easily be
calculated.

Example 12.9 An initially straight tube of 48-mm external diameter and
40-mm internal diameter in 2.4-m long and has hinged ends. It carries a com-
pressive load of 25 kN parallel to the axis at an eccentricity of 2 mm. Determine
the maximum and the minimum intensities of stresses in the tube. Also find the
maximum permissible eccentricity so that no tension exists anywhere in the section.
E =205 GPa.

Solution
[ = i(:m* - 40%) = 42 944 1 mm*; A =£(43E ~40%)=1767 mm?
64 4
p_1_4294 ..
A 176
secﬂ—fz seci,’i=sec24m Salan =secl. 14l =sechH54° =24
2 2\ EI 2 205 0x42 944 &

o :£[1+E'}!".5EE{I—{]=25%[14—2}{24}{2.4)&“}3

xR k* 2 176 & 244
= 4522(1 + 0.472) = 66.56 MPa (compressive)
o = ﬂ(] +E'(';F"J .secg{]
i A k- 2
= 45.22(1-0.472) = 23.88 MPa (compressive)

For maximum permissible eccentricity so that no tension exists anywhere in the
section

min 2 B0 1‘1‘3}{{_24}?{14 =0 or 1-0.236e =0 ore=4.24 mm
176 244
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Strength of Materials
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| 4nC BaC 24nC 1+v i

uE | P
= log R—log x +viog R —vlog x} +

3 | T s =lee g g x)

P [ I—-v l—v)
—=-2+]l+—+V+V.—
snC 1+ v 1+ v

ukE | 2P (. R Y P [ . 1-v [ I—v]
- log—.(1+v) |+ s=l+—+v| 1+ —
1-v*| 8xC\ ¥ /) 8rC | 1+v 1+ v

uk | 2P( R YO P [=2v 2y
= ; log—.(1+Vv) |+ +
1—v?|8rcl © x ) 8xC l1l+v 1+v
uk 2P R
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1—v* 8nC ) gx
ukE 2P R Er
= ; “+V}ID s
1—V* 87 gx/lZ{l—vl}
3 P R
- ——.(1+V).log—
> 21 (I1+v) & (15.24)
Similarly, 0. =§.iz[{l+v}.ing£+(] -v)] (15.25)
© 2 m X

At the centre, these stresses become infinite theoretically. However, as the load
cannot be a point load in the true sense, 1.e. it must extend over a finite area, the
maximum stresses will be finite in practice.

(ii) Edge clamped A plate firmly clamped at the edges
and having a central point load is shown in Fig. 15.11.

A 0;.. 0= £ lo x+£+c £+&
G anc 2T gme T2 te—R—
@ cannot be infinite at the centre, , Fig. 15.11
C,=0 or H:-E"—lﬂgli‘—x‘l'cl.i
drC snC 2
Px* x*
= - | -+ C,.—+C
Now ¥ EJTC(UEI )+ C 7 T
Atx=0,y=0, .. C=0
Px* X’
= —(log R—1H+C,.—
y & g ptei=htGog
PR PR R
Atx=R dvldx=0 =0, 0=~——logR+—+(,.—

4nC SnC .
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’ | ' Strength of Materials

P ik C.’ ¢
———Ja+vR2logr+1-v]+ =L (+v) - 2(1-v)==-L(1+v

EIC[( )2log ] 2 (1+¥) r2 (I-v) 5 (1+v) (111)
Alsoatx=R, M =0,

P - C/ Cy
-——|(+Vv)2logR+1-V|+—(1+V)- 1-v)=0 :

EEC[{ =08 ] 2{ ) RE{ ) (iv)

e Multiplying (1) by (1 + v)

——FE—{I +v)logr+ 4

{l+v)+C{.£[l+v)+ 5 (1+v)= C,.%{Hv} (v)

arnC 8nC 2 r
Multiplying (iii) by r,

Pr Cir C, Cr
———[(+v2logr+1-v]+ -1 +v)-—2(1-v)=——(+V i
Subtracting (vi1) from (v),

’ 2

_Pr G =0 or C/ =_F.r
8xC r 8nC
¢ Multiplying (1) by
2 2 2 ' 2
s log r + i +C'|’.r—+ £ - CI.L
8nC 16xC 4 2 4
Pl 2 2

and equation (ii) is, ——— (log 7 —1) + C;’ i’T +Cy logr+Cy = Cp%

8nC
Subtracting first from the second,
Pr: Pr* P.r? pPr?
C +——————logr+ =0 of G = logr—1
3 T 1l6xC 8xC °  16mC 3 = grc 1087

’ r

G G,
1+v)——=(I-v)=0
y 1+ =-—5(1-v)

F
1 iv)is ———|{(1+v)2logR+1—-v|+
e Equation (iv) is EJIC[{ )Zlog ]

P C Pr
——|(1+V)2logR+1-V|+ 1+v)+ I-v)=0
or ER‘C[( )2log ] ( SJECRE( )
== 1 =
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or [ 43.(:[ g [ J]

Thus deflection is given by,

Py? x°
= —(logx-D+C'.—+C, . logx+ C
y Em,:{ gx—-1)+C 2 7 10g 3
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In circular plates, freely supported at the edges and with uniformly distributed
load,

3wk

Deflection at the centre = ~(5+v)(1-v)
16Et
: : 3wk’ ‘
Radial and tangential stress at the centre = =) (3+Vv) (maximum)
| t
In circular plates having clamped edges, and with uniformly distributed load,
: 3wR* 2
Deflection at the centre = 7 {1=v")
16Et
_ . 3 wR?
Maximum radial stress = a IT at clamped edge
3wR?

Maximum tangential stress = ———(1+V) at centre

8t
In circular plates, freely supported at the edges and with a point load at the

centre,
3PR*

Deflection at the centre = : B3+v)(l—-v)
4 Et

In circular plates, freely supported at the edges and with a point load at the
centre, the radial and tangential stresses become infinite at the centre theoretically.
However, as the load cannot be a point load in the true sense, 1.e. it must extend
over a finite area, the maximum stresses will be finite in practice.

In circular plates having clamped edges and with central point load,

_ 3 PR’ 5
Deflection at the centre = —.—— (1-Vv7)
4 nEt
Maximum radial stress = -?1—2 (at the edges)
2 mt

P
Maximum tangential stress = %-——;‘— (at the edges)
it
In circular plates, freely supported at edges and with load round a circle of

radius r,

Central deflection, y =

onEr 20+v) 5

Maximum values of radial and tangential stresses

3P

R 2
— IEE-[(I -I-V)Z]{}g?'i'{l_“’][l_%]} atx=r

3PU'”;W}R3—rh{3+V}-rEm R}
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