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Preface

Audience

This book is written for engineering students of all majors who are taking a first or second

course in fluid mechanics. Students should have background knowledge in statics and calculus.

This text is designed to help students develop meaningful and connected knowledge of

main concepts and equations as well as develop the skills and approaches that work effectively

in professional practice.

Approach

Through innovative ideas and professional skills, engineers can make the world a better place.

In particular, fluid mechanics plays a very important role in the design, development, and anal-

ysis of systems from microscale applications to giant hydroelectric power generation. For this

reason, the study of fluid mechanics is essential to the background of an engineer. The approach

in this text is to emphasize both professional practice and technical knowledge.

This text is organized to support the acquisition of deep and connnected knowledge. Each

chapter begins by informing students what they should be learning (i.e., learning outcomes) and

why this learning is relevant. Topics are linked to previous topics so that students can see how

knowledge is building and connecting. Seminal equations, defined as those that are commonly

used, are carefully derived and explained. In addition, Table F.2 in the front of the book orga-

nizes the main equations.

This text is organized to support the development of skills for problem solving. Example

problems are presented with a structured approach that was developed by studying the research

literature that describes how experts solve technical problems. This structured approach, la-

beled as “Engineering Analysis,” is presented in Chapter 1. Homework problems are organized

by topic, and a variety of types of problems are included. 

Organization of Knowledge

Chapters 1 to 11 and 13 are devoted to foundational concepts of fluid mechanics. Relevant con-

tent includes fluid properties; forces and pressure variations in static fluids; qualitative descrip-

tions of flow and pressure variations; the Bernoulli equation; the control volume concept;

control volume equations for mass, momentum, and energy; dimensional analysis; head loss
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in conduits; measurements; drag force; and lift force. Nearly all professors cover the material

in Chapters 1 to 8 and 10. Chapters 9, 11, and 13 are covered based on instructor preference.

Chapters 12, 14, and 15 are devoted to special topics that are optional for a first course in fluid

mechanics.

In this 9th edition, there is some reorganization of sections and some additions of new

technical material. Chapter 1 provides new material on the nature of fluids, unit practices, and

problem solving. Sections in Chapter 4 were reordered to provide a more logical development

of the Bernoulli equation. Also, the material on the Eulerian and Lagrangian approaches was

moved from Chapter 4 to Chapter 5. Chapter 7 provides new material on energy and power and

a new section to describe calculation of power. In Chapter 10, new material on standard pipe

sizes was added and new sections were added to describe flow classification and to describe

how to solve turbulent flow problems. The open channels flow topics that were in Chapter 10

were moved to Chapter 15. Chapters 11 and 15 were modified by introducing new sections to

better organize the material. Also, a list of main equations and a detailed list of unit conversions

were added to the front of the book.

Features of this Book*

*Learning Outcomes. Each chapter begins with learn-

ing outcomes so students can identify what knowledge they

should be gaining by studying the chapter.

*Rationale. Each section describes what content is pre-

sented and why this content is relevant so students can con-

nect their learning to what is important to them. 

*Visual Approach. The text uses sketches and photo-

graphs to help students learn more effectively by connect-

ing images to words and equations. 

*Foundational Concepts. This text presents major con-

cepts in a clear and concise format. These concepts form

building blocks for higher levels of learning. Concepts are

identified by a blue tint. 

*Seminal Equations. This text emphasizes technical

derivations so that students can learn to do the derivations

on their own, increasing their levels of knowledge. Features

include

• Derivations of each main equation are presented in a

step-by-step fashion. 

• The assumptions associated with each main equation are

stated during the derivation and after the equation is

developed.

• The holistic meaning of main equations is explained

using words.

• Main equations are named and listed in Table F.2.

Chapter Summaries. Each chapter concludes with a

summary so that students can review the key knowledge in

the chapter.

*Engineering Analysis. Example problems and solu-

tions to homework problems are structured with a step-by-

step approach. As shown in Fig. 1 (next page), the solution

process begins with problem formulation, which involves

interpreting the problem before attempting to solve the

problem. The plan step involves creating a step-by-step

plan prior to jumping into a detailed solution. This struc-

tured approach provides students with an approach that can

generalize to many types of engineering problems.

*Grid Method. This text presents a systematic process,

called the grid method, for carrying and canceling units.

Unit practice is emphasized because it helps students spot

and fix mistakes and because it helps student put meaning

on concepts and equations. 

Traditonal and SI Units. Examples and homework

problems are presented using both SI and traditional unit

systems. This presentation helps students develop unit

practices and gain familiarity with units that are used on

professional practice. 

Example Problems. Each chapter has approximately

10 example problems, each worked out in detail. The pur-

pose of these examples is to show how the knowledge is

used in context and to present essential details needed for

application.

* Asterisk denotes a new or major modification to this edition.
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Homework Problems. The text includes several types

of end-of-chapter problems, including

• Preview (or prepare) questions ���. A preview (or pre-

pare) question is designed to be assigned prior to in-class

coverage of the topic. The purpose is so that students

come to class with some familiarity with the topics. 

• Analysis problems. These problems are traditional prob-

lems that require a systematic, or step-by-step, approach.

They may involve multiple concepts and generally can-

not be solved by using a memorization approach. These

problems help students learn engineering analysis.

• Computer problems. These problems involve use of a

computer program. Regarding the choice of software, we

have left this open so that instructors may select a pro-

gram or may allow their students to select a program.

• Design problems. These problems have multiple possi-

ble solutions and require assumptions and decision

making. These problems help students learn to manage

the messy, ill-structured problems that typify profes-

sional practice.

Solutions Manual. The formatting of the instructor’s so-

lutions manual parallels the engineering-analysis approach

presented in the text. Each solution includes a description of

the situation, statement of the problem goals, statements of

main assumptions, summary of the solution approach, a de-

tailed solution, and review comments. In addition, each

problem analysis is organized using text labels, such as

“momentum equation (x-direction),” so that the labels

themselves provide a summary of the solution approach. 

Image Gallery. The figures from the text are available

in PowerPoint format, for easy inclusion in lecture pre-

sentations. This resource is available only to instructors.

To request access to this password-protected resource,

visit the Instructor Companion Site portion of the web site

located at www.wiley.com/college/crowe, and register

for a password.

Interdisciplinary Approach. Historically, this text

was written for the civil engineer. We are retaining this

approach while adding material so that the text is also ap-

propriate for other engineering disciplines. For example,

the text presents the Bernoulli equation using both head

terms (civil engineering approach) and terms with units of

EXAMPLE 3.1   LOAD LIFTED BY A HYDRAULIC 

JACK

A hydraulic jack has the dimensions shown. If one exerts a 

force F of 100 N on the handle of the jack, what load, F2, can

the jack support? Neglect lifter weight.

Problem Definition
Situation: A force of is applied to the handle of a 

jack.

Find: Load F2 in kN that the jack can lift.

Assumptions: Weight of the lifter component (see sketch) is
negligible.

Sketch:

Plan
1. Calculate force F1 acting on the small piston by applying 

moment equilibrium. 

2. Calculate pressure p1in the hydraulic fluid by applying 
force equilibrium. 

3. Calculate the load F2 by applying force equilibrium. 

Solution
1. Moment equilibrium

2. Force equilibrium (small piston)

Thus

3. Force equilibrium (lifter)

• Note that because they are at the same eleva-
tion (this fact will be established in the next section).

• Apply force equilibrium:

Review
The jack in this example, which combines a lever and a 

hydraulic machine, provides an output force of 12,200 N 

from an input force of 100 N. Thus, this jack provides a 

mechanical advantage of 122 to 1!  

F 100 N�

30 cm

F

B C

3.0 cm

1.5 cm diameter

A1 A2

Check valve

5 cm diameter

Lifter

F2

MC� 0�

0.33 m( ) � 100 N( ) 0.03 m( )F1– 0�

F1
0.33  m � 100 N( )

0.03 m
---------------------------------------------- 1100 N� �

Fsmall piston� p1A1 F1– 0� �

p1A1 F1 1100 N� �

p1

F1

A1

-----
1100 N

�d
2

4⁄
------------------ 6.22 �10

6( ) N m⁄ 2
� � �

p1 p2�

Flifter� F2 p1A2– 0� �

F2 p1A2 6.22 �10
6 N

m
2

-------
�
4
---- � 0.05 m( )

2

12.2 kN� � �

The first steps model 

how engineers 

change a problem 

statement into a 

meaningful and clear 

problem definition. 

The next steps model 

how engineers find a 

solution path by 

using main concepts.

Figure 1 

Structured problem solving is used throughout the text. 

www.wiley.com/college/crowe
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pressure (the approach used by chemical and mechanical

engineers). We include problems that are relevant to prod-

uct development as practiced by mechanical and electrical

engineers. Some problems feature other disciplines, such

as exercise physiology. The reason for this interdiscipli-

nary approach is that the world of today’s engineer is be-

coming more and more interdisciplinary.

Also Available from the Publisher. Practice Prob-
lems with Solutions: A Guide for Learning Engineering

Fluid Mechanics, 9th Edition, by Crow, Elger, and Rober-

son. ISBN 978 0470 420867. This is a companion manual

to the textbook, and presents additional example prob-

lems with complete solutions for students seeking addi-

tional practice problems and solution guidance.

Visit www.wiley.com/college/crowe for ordering in-

formation. It is also available in a set with the textbook at

a discounted price.

Author Team

Most of the book was originally written by Profes-

sor John Roberson, with Clayton Crowe adding the

material on compressible flow. Professor Roberson

retired from active authorship after the 6th edition,

Professor Donald Elger joined on the 7th edition,

and Professor Barbara Williams joined on the 9th

Edition.
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C H A P T E R

Introduction

Prior to fluid mechanics, students take courses such as physics, statics, and dynamics, which

involve solid mechanics. Mechanics is the field of science focused on the motion of material

bodies. Mechanics involves force, energy, motion, deformation, and material properties.

When mechanics applies to material bodies in the solid phase, the discipline is called solid
mechanics. When the material body is in the gas or liquid phase, the discipline is called fluid
mechanics. In contrast to a solid, a fluid is a substance whose molecules move freely past

each other. More specifically, a fluid is a substance that will continuously deform—that is,

flow under the action of a shear stress. Alternatively, a solid will deform under the action of a

shear stress but will not flow like a fluid. Both liquids and gases are classified as fluids.

This chapter introduces fluid mechanics by describing gases, liquids, and the contin-

uum assumption. This chapter also presents (a) a description of resources available in the ap-

pendices of this text, (b) an approach for using units and primary dimensions in fluid

mechanics calculations, and (c) a systematic approach for problem solving.

Liquids and Gases

This section describes liquids and gases, emphasizing behavior of the molecules. This

knowledge is useful for understanding the observable characteristics of fluids.

Liquids and gases differ because of forces between the molecules. As shown in the first

row of Table 1.1, a liquid will take the shape of a container whereas a gas will expand to fill

a closed container. The behavior of the liquid is produced by strong attractive force between

the molecules. This strong attractive force also explains why the density of a liquid is much

Fluid mechanics applies concepts 

related to force and energy to 

practical problems such as the 

design of gliders. (Photo courtesy 

of DG Flugzeugbau GmbH.)

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Describe fluid mechanics.

• Contrast gases and liquids by describing similarities and differences.

• Explain the continuum assumption.

Procedural Knowledge

• Use primary dimensions to check equations for dimensional 

homogeneity. 

• Apply the grid method to carry and cancel units in calculations.

• Explain the steps in the “Structured Approach for Engineering 

Analysis” (see Table 1.4).

1.1



2 INTRODUCTION

higher than the density of gas (see the fourth row). The attributes in Table 1.1 can be gen-

eralized by defining a gas and liquid based on the differences in the attractive forces between

molecules. A gas is a phase of material in which molecules are widely spaced, molecules

move about freely, and forces between molecules are minuscule, except during collisions. Al-

ternatively, a liquid is a phase of material in which molecules are closely spaced, molecules

move about freely, and there are strong attractive forces between molecules.

The Continuum Assumption

This section describes how fluids are conceptualized as a continuous medium. This topic is

important for applying the derivative concept to characterize properties of fluids.  

Table 1.1 COMPARISON OF SOLIDS, LIQUIDS, AND GASES

Attribute Solid Liquid Gas

Typical Visualization 

Macroscopic 

Description

Solids hold their shape; no need 
for a container

Liquids take the shape of the 
container and will stay in open 
container

Gases expand to fill a closed 
container

Mobility of Molecules Molecules have low mobility 
because they are bound in a 
structure by strong 
intermolecular forces

Liquids typically flow easily even 
though there are strong intermolecular 
forces between molecules

Molecules move around freely 
with little interaction except 
during collisions; this is why 
gases expand to fill their container

Typical Density Often high; e.g., density of steel 
is 7700 kg m3

Medium; e.g., density of water is 
1000 kg m3

Small; e.g., density of air at sea 
level is 1.2 kg m3

Molecular Spacing Small—molecules are close 
together

Small—molecules are held close 
together by intermolecular forces

Large—on average, molecules are 
far apart

Effect of Shear Stress Produces deformation Produces flow Produces flow

Effect of Normal Stress Produces deformation that may 
associate with volume change; 
can cause failure

Produces deformation associated with 
volume change

Produces deformation associated 
with volume change

Viscosity NA High; decreases as temperature 
increases

Low; increases as temperature 
increases

Compressibility Difficult to compress; bulk 
modulus of steel is 160 109 Pa

Difficult to compress; bulk modulus 
of liquid water is 2.2 109 Pa

Easy to compress; bulk modulus 
of a gas at room conditions is 
about 1.0 105 Pa

⁄ ⁄ ⁄

× ×
×

1.2



1.2 THE CONTINUUM ASSUMPTION 3

While a body of fluid is comprised of molecules, most characteristics of fluids are due

to average molecular behavior. That is, a fluid often behaves as if it were comprised of con-

tinuous matter that is infinitely divisible into smaller and smaller parts. This idea is called the

continuum assumption. When the continuum assumption is valid, engineers can apply limit

concepts from differential calculus. Recall that a limit concept, for example, involves letting

a length, an area, or a volume approach zero. Because of the continuum assumption, fluid pa-

rameters such as density and velocity can be considered continuous functions of position

with a value at each point in space.

To gain insight into the validity of the continuum assumption, consider a hypothetical

experiment to find density. Fig. 1.1a shows a container of gas in which a volume  has

been identified. The idea is to find the mass of the molecules  inside the volume and then

to calculate density by

The calculated density is plotted in Fig. 1.1b. When the measuring volume  is very small

(approaching zero), the number of molecules in the volume will vary with time because of

the random nature of molecular motion. Thus, the density will vary as shown by the wiggles

in the blue line. As volume increases, the variations in calculated density will decrease until

the calculated density is independent of the measuring volume. This condition corresponds to

the vertical line at If the volume is too large, as shown by then the value of density

may change due to spatial variations. 

In most applications, the continuum assumption is valid. For example, consider the

volume needed to contain at least a million  molecules. Using Avogadro’s number of

 molecules mole, the limiting volume for water is  , which corresponds

to a cube less than  mm on a side. Since this dimension is much smaller than the flow di-

mensions of a typical problem, the continuum assumption is justified. For an ideal gas (1 atm

and 20oC) one mole occupies 24.7 liters. The size of a volume with more than  molecules

would be  , which corresponds to a cube with sides less than  mm (or one

micrometer). Once again this size is much smaller than typical flow dimensions. Thus, the

continuum assumption is usually valid in gas flows.

The continuum assumption is invalid for some specific applications. When air is in

motion at a very low density, such as when a spacecraft enters the earth’s atmosphere,

then the spacing between molecules is significant in comparison to the size of the

spacecraft. Similarly, when a fluid flows through the tiny passages in nanotechnology

devices, then the spacing between molecules is significant compared to the size of these

passageways.

Figure 1.1

When a measuring 

volume  is large 

enough for random 

molecular effects to 

average out, the 

continuum assumption is 

valid

ΔV 

Gas

(a) (b)

Selected
volume = ΔV

Continuum assumption
is valid. 

ΔV2

Δm
ΔV

Volume ΔV

ΔV1

Gas molecules

ΔV 
ΔM

�
ΔM
ΔV 
---------�

ΔV 

ΔV 1. ΔV 2,

106( )
6 1023× ⁄ 10 13– mm3

10 4–

106

10 10– mm3 10 3–



4 INTRODUCTION

Dimensions, Units, and Resources

This section describes the dimensions and units that are used in fluid mechanics. This

information is essential for understanding most aspects of fluid mechanics. In addition, this

section describes useful resources that are presented in the front and back of this text. 

Dimensions
A dimension is a category that represents a physical quantity such as mass, length, time, mo-

mentum, force, acceleration, and energy. To simplify matters, engineers express dimensions

using a limited set that are called primary dimensions. Table 1.2 lists one common set of pri-

mary dimensions.

Secondary dimensions such as momentum and energy can be related to primary dimen-

sions by using equations. For example, the secondary dimension “force” is expressed in pri-

mary dimensions by using Newton’s second law of motion, F ma. The primary

dimensions of acceleration are so

(1.1)

In Eq. (1.1), the square brackets mean “dimensions of.” This equation reads “the primary di-

mensions of force are mass times length divided by time squared.” Note that primary dimen-

sions are not enclosed in brackets.

Units
While a dimension expresses a specific type of physical quantity, a unit assigns a number so

that the dimension can be measured. For example, measurement of volume (a dimension) can

be expressed using units of liters. Similarly, measurement of energy (a dimension) can be ex-

pressed using units of joules. Most dimensions have multiple units that are used for measure-

ment. For example, the dimension of “force” can be expressed using units of newtons,

pounds-force, or dynes.

Unit Systems
In practice, there are several unit systems in use. The International System of Units (abbrevi-

ated SI from the French “Le Système International d'Unités”) is based on the meter,

Table 1.2 PRIMARY DIMENSIONS

Dimension Symbol Unit (SI)

Length L meter (m)

Mass M kilogram (kg)

Time T second (s)

Temperature � kelvin (K)

Electric current i ampere (A)

Amount of light C candela (cd)

Amount of matter N mole (mol)

1.3

�
L T

2⁄ ,

F[ ] ma[ ] M
L

T 2
------ ML

T 2
--------� � �



1.4 TOPICS IN DIMENSIONAL ANALYSIS 5

kilogram, and second. Although the SI system is intended to serve as an international stan-

dard, there are other systems in common use in the United States. The U.S. Customary Sys-

tem (USCS), sometimes called English Engineering System, uses the pound-mass (lbm) for

mass, the foot (ft) for length, the pound-force (lbf) for force, and the second (s) for time. The

British Gravitational (BG) System is similar to the USCS system that the unit of mass is the

slug. To convert between pounds-mass and kg or slugs, the relationships are

Thus, a gallon of milk, which has mass of approximately 8 lbm, will have a mass of about

0.25 slugs, which is about 3.6 kg. 

For simplicity, this text uses two categories for units. The first category is the familiar

SI unit system. The second category contains units from both the USCS and the BG systems

of units and is called the “Traditional Unit System.”

Resources Available in This Text
To support calculations and design tasks, formulas and data are presented in the front and

back of this text. 

Table F.1 (the notation “F.x” means a table in the front of the text) presents data for con-

verting units. For example, this table presents the factor for converting meters to feet (1 m

3.281 ft) and the factor for converting horsepower to kilowatts (1 hp 745.7 W). Notice that

a given parameter such as viscosity will have one set of primary dimensions (M LT) and

several possible units, including pascal-second ( ), poise, and Table F.1 lists

unit conversion formulas, where each formula is a relationship between units expressed using

the equal sign. Examples of unit conversion formulas are 1.0 m 3.281 ft and 3.281

ft km 1000. Notice that each row of Table F.1 provides multiple conversion formulas. For

example, the row for length conversions,

(1.2)

has the usual conversion formulas such as 1 m 39.37 in, and the less common formulas

such as 1.094 yd

Table F.2 presents equations that are commonly used in fluid mechanics. To make them

easier to remember, equations are given descriptive names such as the “hydrostatic equa-

tion.” Also, notice that each equation is given an equation number and page number corre-

sponding to where it is introduced in this text.

Tables F.3, F.4, and F.5 present commonly used constants and fluid properties. Other

fluid properties are presented in the appendix. For example, Table A.3 (the notation “A.x”

means a table in the appendix) gives properties of air.

Table A.6 lists the variables that are used in this text. Notice that this table gives the

symbol, the primary dimensions, and the name of the variable.

Topics in Dimensional Analysis

This section introduces dimensionless groups, the concept of dimensional homogeneity of an

equation, and a process for carrying and canceling units in a calculation. This knowledge is

1.0 lbm
1

2.2
------- kg

1

32.2
---------- slug� �

�
�

⁄
Pa s� lbf s� ft⁄ 2

.

�
� ⁄

1 m 3.281 ft 1.094 yd 39.37 in
km

1000
------------ 106 �m� � � � �

�
� 106 �m.
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useful in all aspects of engineering, especially for finding and correcting mistakes during cal-

culations and during derivations of equations.

All of topics in this section are part of dimensional analysis, which is the process for

applying knowledge and rules involving dimensions and units. Other aspects of dimensional

analysis are presented in Chapter 8 of this text. 

Dimensionless Groups 
Engineers often arrange variables so that primary dimensions cancel out. For example,

consider a pipe with an inside diameter D and length L. These variables can be grouped to

form a new variable which is an example of a dimensionless group. A dimensionless
group is any arrangement of variables in which the primary dimensions cancel. Another

example of a dimensionless group is the Mach number M, which relates fluid speed V to

the speed of sound c:

Another common dimensionless group is named the Reynolds number and given the symbol

Re. The Reynolds number involves density, velocity, length, and viscosity :

(1.3)

The convention in this text is to use the symbol [-] to indicate that the primary dimensions of

a dimensionless group cancel out. For example,

(1.4)

Dimensional Homogeneity
When the primary dimensions on each term of an equation are the same, the equation is

dimensionally homogeneous. For example, consider the equation for vertical position s of an

object moving in a gravitational field:

In the equation, g is the gravitational constant, t is time, vo is the magnitude of the vertical

component of the initial velocity, and so is the vertical component of the initial position. This

equation is dimensionally homogeneous because the primary dimension of each term is

length L. Example 1.1 shows how to find the primary dimension for a group of variables us-

ing a step-by-step approach. Example 1.2 shows how to check an equation for dimensional

homogeneity by comparing the dimensions on each term.

Since fluid mechanics involves many differential and integral equations, it is useful to

know how to find primary dimensions on integral and derivative terms.

To find primary dimensions on a derivative, recall from calculus that a derivative is de-

fined as a ratio: 

L D,⁄

M
V

c
---�

�

Re
�VL

�
----------�

Re[ ] �VL

�
---------- -[ ]� �

s
gt

2

2
------- vot so+ +�

yd
df Δf

Δy
------

Δy 0→
lim�
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Thus, the primary dimensions of a derivative can be found by using a ratio: 

EXAMPLE 1.1   PRIMARY DIMENSIONS OF THE 

REYNOLDS NUMBER

Show that the Reynolds number, given in Eq. 1.4, is a 

dimensionless group. 

Problem Definition

Situation: The Reynolds number is given by 

Find: Show that Re is a dimensionless group. 

Plan

1. Identify the variables by using Table A.6. 

2. Find the primary dimensions by using Table A.6.

3. Show that Re is dimensionless by canceling primary 
dimensions.

Solution

1. Variables

• mass density, 

• velocity, V

• Length, L

• viscosity,  

2. Primary dimensions

3. Cancel primary dimensions:

Since the primary dimensions cancel, the Reynolds number 

 is a dimensionless group. 

EXAMPLE 1.2   DIMENSIONAL HOMOGENEITY 

OF THE IDEAL GAS LAW

Show that the ideal gas law is dimensionally homogeneous.

Problem Definition

Situation: The ideal gas law is given by 

Find: Show that the ideal gas law is dimensionally 
homogeneous.

Plan

1. Find the primary dimensions of the first term.

2. Find the primary dimensions of the second term.

3. Show dimensional homogeneity by comparing the terms.

Solution

1. Primary dimensions (first term)

• From Table A.6, the primary dimensions are: 

2. Primary dimensions (second term).

• From Table A.6, the primary dimensions are

• Thus

3. Conclusion: The ideal gas law is dimensionally 
homogeneous because the primary dimensions of each 
term are the same. 

yd
df f

y
--

f[ ]
y[ ]

---------� �

Re �VL( ) �.⁄�

�

�

�[ ] M L
3⁄�

V[ ] L T⁄�

L[ ] L�

�[ ] M LT⁄�

�VL

�
----------

M

L3
-----

L

T
--- L[ ] LT

M
------- [-]� �

�VL( ) �⁄

p �RT.�

p[ ] M

LT
2

---------�

�[ ] M L
3⁄�

R[ ] L
2 �T

2⁄�

T[ ] ��

�RT[ ] M

L
3

-----
L

2

�T
2

---------- �( ) M

LT
2

----------� �
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The primary dimensions for a higher-order derivative can also be found by using the basic

definition of the derivative. The resulting formula for a second-order derivative is 

(1.5)

Applying Eq. (1.5) to acceleration shows that 

To find primary dimensions of an integral, recall from calculus that an integral is defined as a

sum:

Thus

 (1.6)

For example, position is given by the integral of velocity with respect to time. Checking pri-

mary dimensions for this integral gives

In summary, one can easily find primary dimensions on derivative and integral terms by

applying fundamental definitions from calculus. This process is illustrated by Example 1.3

EXAMPLE 1.3   PRIMARY DIMENSIONS OF

A DERIVATIVE AND INTEGRAL

Find the primary dimensions of where  is viscosity, 

u is fluid velocity, and y is distance. Repeat for  

where t is time,  is volume, and � is density. 

Problem Definition

Situation: A derivative and integral term are specified above.

Find: Primary dimensions on the derivative and the integral. 

Plan

1. Find the primary dimensions of the first term by applying 
Eq. (1.5). 

2. Find the primary dimensions of the second term by 
applying Eqs. (1.5) and (1.6). 

Solution

1. Primary dimensions of 

• From Table A.6:

• Apply Eq. (1.5):

• Combine the previous two steps:

d
2
f

dy2
--------

Δ df dy⁄( )
Δy

-----------------------
Δy 0→

lim
f

y2
----

f[ ]
y2[ ]

---------� � �

d
2
y

dt2
--------

y

t2
--- L

T
2

------� �

f yd� f Δyi

i 1�

N

�
N ∞→
lim�

f yd� f[ ] y[ ]�

V td� V[ ] t[ ] L

T
--- T� L� � �

�
d

2
u

dy
2

--------, �

td
d

� V d

V 
�

V 

�
d

2
u

dy2
--------

�[ ] M LT⁄�

u[ ] L T⁄�

x[ ] L�

d
2
u

dy2
--------

u

y2
---- L T⁄

L2
----------� �

�
d

2
u

dy2
-------- �[ ] d

2
u

dy2
--------

M

LT
-------

L T⁄
L2

---------- M

L2T 2
-----------� � �
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Sometimes constants have primary dimensions. For example, the hydrostatic equation

relates pressure p, density , the gravitational constant g, and elevation z:

For dimensional homogeneity, the constant C needs to have the same primary dimensions as

either  or Thus the dimensions of C are Another example involves ex-

pressing fluid velocity V as a function of distance y using two constants a and b:

For dimensional homogeneity both sides of this equation need to have primary dimensions of

Thus, [b] L and . 

The Grid Method
Because fluid mechanics involves complex equations and traditional units, this section pre-

sents the grid method, which is a systematic way to carry and cancel units. For example, Fig.

1.2 shows an estimate of the power P required to ride a bicycle at a speed of V 20 mph.

The engineer estimated that the required force to move against wind drag is F 4.0 lbf and

applied the equation As shown, the calculation reveals that the power is 159 watts. 

As shown in Fig. 1.2, the grid method involves writing an equation, drawing a grid, and

carrying and canceling units. Regarding unit cancellations, the key idea is the use of unity
conversion ratios, in which unity (1.0) appears on one side of the equation. Examples of

unity conversion ratios are

Figure 1.2 shows three conversion ratios. Each of these ratios is obtained by using informa-

tion given in Table F.1. For example, the row in Table F.1 for power shows that

Dividing both sides of this equation by  gives

Table 1.3 shows how to apply the grid method. Notice how the same process steps can apply

to different situations.

2. Primary dimensions of 

• Find primary dimensions from Table A.6:

• Apply Eqs. (1.5) and (1.6) together:

Figure 1.2

Grid method

td
d

� V d

V 
�

t[ ] T�

�[ ] M L
3⁄�

V [ ] L
3

�

td
d

� V d

V 
� �V 

t
-------

M

L
3

----- L
3

T
----- M

T
-----� � �

�

p �gz+ constant C� �

p �gz. C[ ] M LT
2⁄ .�

V y( ) ay b y–( )�

L T⁄[ ]. � a[ ] L 1– T 1–�

�
�

P FV.�

1.0
1 m/s

2.237 mph
--------------------------� 1.0

1.0 N

0.2249 lbf
-------------------------�

1 W N m� s⁄( ).� N m� s⁄

1.0
W s�
N m�
--------------�

4 lbf 20 mph 1.0 m/s
2.237 mph

1.0 N

0.2248 lbf
W*s
N*m

P = F V =

P = 159 W
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Since fluid mechanics problems often involve mass units of slugs or pounds-mass

(lbm), it is easy to make a mistake when converting units. Thus, it is useful to have a system-

atic approach. The idea is to relate mass units to force units through F ma. For example, a

force of 1.0 N is the magnitude of force that will accelerate a mass of 1.0 kg at a rate of 1.0 m s2.

Thus,

Rewriting this expression gives a conversion ratio

(1.7)

When mass is given using slugs, the corresponding conversion ratio is

(1.8)

A force of 1.0 lbf is defined as the magnitude of force that will accelerate a mass of 1.0 lbm

at a rate of 32.2 ft s2. Thus,

Thus, the conversion ratio relating force and mass units becomes

(1.9)

Example 1.4 shows how to apply the grid method. Notice that calculations involving

traditional units follow the same process as calculations involving SI units.

Table 1.3 APPLYING THE GRID METHOD (TWO EXAMPLES)

Process Step Example 1 Example 2

Situation: Convert a pressure of 2.00 
psi to pascals.

Situation: Find the force in newtons that is needed to 
accelerate a mass of 10 g at a rate of 15 ft s2.

Step 1. Problem: Write the term or 
equation. Include numbers and units. 

Step 2. Conversion Ratios: Look up 
unit conversion formula(s) in Table F.1 
and represent these as unity conversion 
ratios.

Step 3. Algebra: Multiply variables and 
cancel units. Fix any errors.

Step 4. Calculations: Perform the 
indicated calculations. Round the 
answer to the correct number of 
significant figures.

⁄

p 2.00 psi� F ma�

F (N) 0.01 kg( ) 15 ft/s2( )�

1.0
1 Pa

1.45 10
4–
 psi×

------------------------------------� 1.0
1.0 m

3.281 ft
-------------------� 1.0

N s2�
kg m�
---------------�

p 2.00 psi[ ] 1 Pa

1.45 10
4–
 psi×

------------------------------------� F 0.01 kg[ ] 15 ft

s2
-----------

1.0 m

3.281 ft
-------------------

N s2�
kg m�
---------------�

p 13.8 kPa� F 0.0457 N�

�
⁄

1.0 N( ) 1.0 kg( ) 1.0 m/s2( )�

1.0
kg m�

N s2�
---------------�

1.0
slug ft�

lbf s2�
------------------�

⁄

1.0 lbf( ) 1.0 lbm( ) 32.2 ft/s2( )�

1.0
32.2 lbm ft�

lbf s2�
------------------------------�
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Engineering Analysis

In fluid mechanics, many problems are messy and open-ended. Thus, this section presents a

structured approach to problem solving.

Engineering analysis is a process for idealizing or representing real-world situations using

mathematics and scientific principles and then using calculations to extract useful informa-

tion. For example, engineering analysis is used to find the power required by a pump, wind

force acting on a building, and pipe diameter for a given application. Engineering analysis

EXAMPLE 1.4   GRID METHOD APPLIED TO

A ROCKET

A water rocket is fabricated by attaching fins to a 1-liter plastic 

bottle. The rocket is partially filled with water and the air space 

above the water is pressurized, causing water to jet out of the 

rocket and propel the rocket upward. The thrust force T from 

the water jet is given by where  is the rate at which 

the water flows out of the rocket in units of mass per time and 

V is the speed of the water jet. (a) Estimate the thrust force in 

newtons for a jet velocity of  where the 

mass flow rate is  (b) Estimate the 

thrust force in units of pounds-force (lbf). Apply the grid 

method during your calculations. 

Problem Definition

Situation:

1. A rocket is propelled by a water jet.

2. The thrust force is given by 

Find: Thrust force supplied by the water jet. Present the 
answer in N and lbf. 

Sketch:

Plan

Find the thrust force by using the process given in

Table 1.3. When traditional units are used, apply Eq. (1.9). 

Solution

1. Thrust force (SI units)

• Insert numbers and units:

• Insert conversion ratios and cancel units:

2. Thrust force (traditional units)

• Insert numbers and units:

• Insert conversion ratios and cancel units:

Review

1. Validation. Since 1.0 lbf 4.45 N, answer (a) is the same 
as answer (b).

2. Tip! To validate calculations in traditional units, repeat the 
calculation in SI units. 

T m 
.

V,� m
.

V 30 m/s 98.4 ft/s( )�
m
.

9 kg/s 19.8 lbm/s( ).�

T m 
.

V.�

Pressure = p

Water jet
Velocity = V = 30 m/s = 98.4 ft/s
Mass flow rate = m = 9 kg/s = 19.8 lbm/s

Air

Water

T m 
.

V�

T N( ) m
.

V 9 kg/s( ) 30 m/s( )� �

T N( ) 9 kg

s
----------

30 m

s
------------

N s2�
kg m�
---------------�

T 270 N�

T m 
.

V�

T lbf( ) m
.

V 19.8 lbm/s( ) 98.4 ft/s( )� �

T lbf( ) 19.8 lbm

s
---------------------

98.4 ft

s
----------------

lbf s2�
32.2 lbm ft�
------------------------------�

T 60.5 lbf�

�
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involves subdividing or organizing a problem into logical parts as described in Table 1.4. No-

tice that the columns describe what to do, the rationale for this step, and typical actions taken

during this step. The approach shown in Table 1.4 is used in example problems throughout

this text.

Applications and Connections

Knowledge in this textbook generalizes to problem solving in many contexts. However, this

presents a challenge because it can be hard to understand how this fundamental knowledge

relates to everyday problems. Thus, this section describes how knowledge from fluid

mechanics connects to other disciplines.

Hydraulics is the study of the flow of water through pipes, rivers, and open-channels.

Hydraulics includes pumps and turbines and applications such as hydropower. Hydraulics is

important for ecology, policymaking, energy production, recreation, fish and game resources,

and water supply.

Hydrology is the study of the movement, distribution, and quality of water throughout

the earth. Hydrology involves the hydraulic cycle and water resource issues. Thus, hydrol-

ogy provides results that are useful for environmental engineering and for policymaking.

Hydrology is important nowadays because of global challenges in providing water for hu-

man societies.

Table 1.4 STRUCTURED APPROACH FOR ENGINEERING ANALYSIS

What To Do Why Do This? Typical Actions

Problem Definition: This involves 
figuring out what the problem is, what is 
involved, and what the end state (i.e., 
goal state) is. 
Problem definition is done before trying 
to solve the problem. 

• To visualize the situation (present 
state).

• To visualize the goal (end state). 

• Read and interpret the problem statement. 
• Look up and learn unfamiliar knowledge.
• Document your interpretation of the situation. 
• Interpret and document problem goals.
• Make an engineering sketch.
• Document main assumptions.
• Look up fluid properties; document sources.

Plan: This involves figuring out a 
solution path or “how to solve the 
problem.”
Planning is done prior to jumping into 
action.

• To find an easy way to solve the 
problem.

• Saves you time. 

• Generate multiple ideas for solving the problem
• Identify useful equations from Table F.2.
• Inventory past solutions.
• Analyze equations using a term-by-term approach.
• Balancing number of equations with number of 

unknowns.
• Make a step-by-step plan. 

Solution: This involves solving the 
problem by executing the plan. 

• To reach the problem goal state. • Use computer programs.
• Perform calculations.
• Double-check work.
• Carry and cancel units.

Review: This involves
validating the solution, exploring 
implications of the solution, and looking 
back to learn from the experience you 
just had.

• Gain confidence that your answer 
can be trusted. 

• Increases your understanding.
• Gain ideas for applications. 
• To learn.

• Check the units of answer. 
• Check that problem goals have been reached. 
• Validate the answer with a simpler estimate.
• Write down knowledge that you want to remember. 
• List “what worked” and “ideas for improvement.”

1.6
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Aerodynamics is the study of air flow. Topics include lift and drag on objects (e.g., air-

planes, automobiles, birds), shock waves associated with flow around a rocket, and the flow

through a supersonic or deLaval nozzle. Aerodynamics is important for the design of vehi-

cles, for energy conservation, and for understanding nature.

Bio-fluid mechanics is an emerging field that includes the study of the lungs and circu-

latory system, blood flow, micro-circulation, and lymph flow. Bio-fluids also includes

development of artificial heart valves, stents, vein and dialysis shunts, and artificial organs.

Bio-fluid mechanics is important for advancing health care.

Acoustics is the study of sound. Topics include production, control, transmission, reception

of sound, and physiological effects of sound. Since sound waves are pressure waves in fluids,

acoustics is related to fluid mechanics. In addition, water hammer in a piping system, which in-

volves pressure waves in liquids, involves some of the same knowledge that is used in acoustics.

Microchannel flow is an emerging area that involves the study of flow in tiny pas-

sages. The typical size of a microchannel is a diameter in the range of 10 to 200 micrometers.

Applications that involve microchannels include microelectronics, fuel cell systems, and ad-

vanced heat sink designs.

Computational fluid dynamics (CFD) is the application of numerical methods imple-

mented on computers to model and solve problems that involve fluid flows. Computers per-

form millions of calculations per second to simulate fluid flow. Examples of flows that are

modeled by CFD include water flow in a river, blood flow in the abdominal aorta, and air

flow around an automobile.

Petroleum engineering is the application of engineering to the exploration and pro-

duction of petroleum. Movement of oil in the ground involves flow through a porous me-

dium. Petroleum extraction involves flow of oil through passages in wells. Oil pipelines

involve pumps and conduit flow.

Atmospheric science is the study of the atmosphere, its processes, and the interaction

of the atmosphere with other systems. Fluid mechanics topics include flow of the atmosphere

and applications of CFD to atmospheric modeling. Atmospheric science is important for pre-

dicting weather and is relevant to current issues including acid rain, photochemical smog,

and global warming.

Electrical engineering problems can involve knowledge from fluid mechanics. For ex-

ample, fluid mechanics is involved in the flow of solder during a manufacturing process, the

cooling of a microprocessor by a fan, sizing of motors to operate pumps, and the production

of electrical power by wind turbines.

Environmental engineering involves the application of science to protect or improve

the environment (air, water, and or land resources) or to remediate polluted sites. Environ-

mental engineers design water supply and wastewater treatment systems for communities.

Environmental engineers are concerned with local and worldwide environmental issues such

as acid rain, ozone depletion, water pollution, and air pollution.

Summary

Fluid mechanics involves the application of scientific concepts such as position, force, velocity,

acceleration, and energy to materials that are in the liquid or gas states. Liquids differ from sol-

ids because they can be poured and they flow under the action of shear stress. Similar to liquids,

gases also flow when shear stress is nonzero. A significant difference between gases and liquids

is that the molecules in liquids experience strong intermolecular forces whereas the molecules

⁄
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in gases move about freely with little or no interactions except during collisions. Thus, gases

expand to fill their container while liquids will occupy a fixed volume. In addition, liquids have

much larger values of density and liquids exhibit effects such as surface tension.

In fluid mechanics, practices that involve using units and dimensions are known collec-

tively as “dimensional analysis.” A dimension is a category associated with a physical quan-

tity such as mass, length, time, or energy. Units are the divisions by which a dimension is

measured. For example, the dimension called “mass” may be measured using units of kilo-

grams, slugs, pounds-mass, or ounces.

All dimensions can be expressed using a limited set of primary dimensions. This text

mainly uses three primary dimensions: mass (M ), length (L), and time (T ).

A systematic way to carry and cancel units is called the grid method. The main idea of the grid

method is to multiply terms in equations by a ratio (called a unity conversion ratio) that equals 1.0.

Examples of unity conversion ratios are 1.0 (1.0 kg) (2.2 lbm) and 1.0 (1.0 lbf) (4.45 N).

Engineering analysis is the process of applying scientific knowledge and mathematical

procedures to solve practical problems such as calculating forces on an airplane or estimating

the energy requirements of a pump. Engineering analysis involves actions that can be orga-

nized into four categories: problem definition, plan, solution, and review.

Problems

*A Preview Question (��) can be assigned prior to in-class

coverage of a topic.

Units, Dimensions, Dimensional Homogeneity

*1.1 ��� For each variable below, list three common units.

a. Volume flow rate (Q), mass flow rate and pressure ( p).

b. Force, energy, power.

c. Viscosity.

*1.2 ��� In Table F.2, find the hydrostatic equation. For each

form of the equation that appears, list the name, symbol, and

primary dimensions of each variable.

*1.3 ��� For each of the following units, list the primary

dimensions: kWh, poise, slug, cfm, cSt.

1.4 The hydrostatic equation is where p is pressure,

 is specific weight, z is elevation, and C is a constant. Prove that

the hydrostatic equation is dimensionally homogeneous.

1.5 Find the primary dimensions of each of the following terms.

a.  (kinetic pressure), where  is fluid density and V

is velocity.

b. T (torque).

c. P (power).

d.  (Weber number), where  is fluid density, V is

velocity, L is length, and  is surface tension.

1.6 The power provided by a centrifugal pump is given by

where  is mass flow rate, g is the gravitational con-

stant, and h is pump head. Prove that this equation is dimension-

ally homogeneous.

1.7 Find the primary dimensions of each of the following terms.

a. where  is fluid density, V is velocity, and A is area.

b. where  is the derivative with respect to time,  is

density, and  is volume.

The Grid Method

*1.8 ��� In your own words, what actions need to be taken in

each step of the grid method?

1.9 Apply the grid method to calculate the density of an ideal gas us-

ing the formula Express your answer in lbm/ft3. Use the

following data: absolute pressure is the gas constant is

and the temperature is 

1.10 The pressure rise  associated with wind hitting a win-

dow of a building can be estimated using the formula

where  is density of air and V is the speed of

the wind. Apply the grid method to calculate pressure rise for

 and 

a. Express your answer in pascals.

b. Express your answer in pounds-force per square inch (psi).

c. Express your answer in inches of water column (in-H2O).

1.11 Apply the grid method to calculate force using 

a. Find force in newtons for m 10 kg and a 10 m s2.

b. Find force in pounds-force for m 10 lbm and a 10 ft s2.

c. Find force in newtons for m 10 slug and a 10 ft s2.

1.12 When a bicycle rider is traveling at a speed of V 24

mph, the power P she needs to supply is given by 

where F 5 lbf is the force necessary to overcome aerody-

namic drag. Apply the grid method to calculate:

a. power in watts.

b. energy in food calories to ride for 1 hour.

1.13 Apply the grid method to calculate the cost in U.S. dollars to

operate a pump for one year. The pump power is 20 hp. The pump

operates for 20 hr day, and electricity costs $0.10 per kWh. 
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C H A P T E R

Fluid Properties

A fluid has certain characteristics by which its physical condition may be described. These

characteristics are called properties of the fluid. This chapter introduces material properties

of fluids and presents key equations, tables, and figures.

Properties Involving Mass and Weight

Mass and weight properties are needed for most problems in fluid mechanics, including the

flow of ground water in aquifers and the pressure acting on a scuba diver or an underwater

structure.

Mass Density, �
Mass density is defined as the ratio of mass to volume at a point, given by

(2.1)

Review the continuum assumption developed in Section 1.2 for the meaning of �V approach-

ing zero. Mass density has units of kilograms per cubic meter (kg m3) or pounds-mass per

cubic foot (lbm ft3). The mass density of water at 4°C is 1000 kg m3 (62.4 lbm ft3), and it

decreases slightly with increasing temperature, as shown in Table A.5. The mass den-

sity of air at 20°C and standard atmospheric pressure is 1.2 kg m3 (0.075 lbm ft3), and

it changes significantly with temperature and pressure. Mass density, often simply called

density, is represented by the Greek symbol � (rho). The densities of common fluids are

given in Tables A.2 to A.5.

SIGNIFICANT LEARNING OUTCOMES 

Conceptual Knowledge

• Define density, specific gravity, viscosity, surface tension, vapor pressure, and bulk modulus of elasticity.

• Describe the differences between absolute viscosity and kinematic viscosity.

• Describe how shear stress, viscosity, and the velocity distribution are related.

• Describe how viscosity, density, and vapor pressure vary with temperature and or pressure.

Procedural Knowledge

• Look up fluid property values from figures, tables; know when and how to interpolate.

• Calculate gas density using the ideal gas law.

⁄
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Δm
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ΔV 0→
lim�
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Specific Weight, 	
The gravitational force per unit volume of fluid, or simply the weight per unit volume, is de-

fined as specific weight. It is given the Greek symbol 	 (gamma). Water at 20°C has a specific

weight of 9790 N m3 (or 62.4 lbf ft3 at 50°F). In contrast, the specific weight of air at 20°C

and standard atmospheric pressure is 11.8 N m3. Specific weight and density are related by

(2.2)

Specific weights of common liquids are given in Table A.4.

Variation in Liquid Density
In practice, engineers need to decide whether or not to model a fluid as constant density or

variable density. Usually, a liquid such as water requires a large change in pressure in order to

change the density. Thus, for most applications, liquids can be considered incompressible

and can be assumed to have constant density. An exception to this occurs when different so-

lutions, such as saline and fresh water, are mixed. A mixture of salt in water changes the den-

sity of the water without changing its volume. Therefore in some flows, such as in estuaries,

density variations may occur within the flow field even though the fluid is essentially incom-

pressible. A fluid wherein density varies spatially is described as nonhomogeneous. This text

emphasizes the flow of homogeneous fluids, so the term incompressible, used throughout the

text, implies constant density. 

Specific Gravity, S
The ratio of the specific weight of a given fluid to the specific weight of water at the standard

reference temperature 4°C is defined as specific gravity, S:

(2.3)

The specific weight of water at atmospheric pressure is 9790 N m3. The specific gravity of

mercury at 20°C is

Because specific gravity is a ratio of specific weights, it is dimensionless and therefore inde-

pendent of the system of units used.

Ideal Gas Law 

The ideal gas law relates important thermodynamic properties, and is often used to calculate

density. 

One form of the law is

(2.4)

where p is the absolute pressure, V is the volume, n is the number of moles, Ru is the univer-

sal gas constant (the same for all gases), and T is absolute temperature. Absolute pressure,

⁄ ⁄
⁄
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SHg
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2.3 PROPERTIES INVOLVING THERMAL ENERGY 17

introduced in Chapter 3, is referred to absolute zero. The universal gas constant is 8.314

kJ kmol-K in the SI system and 1545 ft-lbf lbmol-°R in the traditional system. Eq. (2.4)

can be rewritten as 

where � is the molecular weight of the gas. The product of the number of moles and the mo-

lecular weight is the mass of the gas. Thus  is the mass per unit volume, or density.

The quotient  is the gas constant, R. Thus a second form of the ideal gas law is

(2.5)

Although no gas is ideal, Eq. (2.5) is a valid approximation for most gas flow problems.

Values of R for a number of gases are given in Table A.2. To determine the mass density

of a gas, solve Eq. (2.5) for �:

Properties Involving Thermal Energy

Specific Heat, c
The property that describes the capacity of a substance to store thermal energy is called

specific heat. By definition, it is the amount of thermal energy that must be transferred to a

unit mass of substance to raise its temperature by one degree. The specific heat of a gas de-

pends on the process accompanying the change in temperature. If the specific volume v of the

gas ( ) remains constant while the temperature changes, then the specific heat is iden-

tified as cv . However, if the pressure is held constant during the change in state, then the spe-

cific heat is identified as cp. The ratio is given the symbol k. Values for cp and k for

various gases are given in Table A.2.

EXAMPLE 2.1   DENSITY OF AIR

Air at standard sea-level pressure (p 101 kN m2) has a 

temperature of 4°C. What is the density of the air? 

Problem Definition

Situation: Air with a known temperature and pressure.

Find: Density (kg m3).

Properties: Air, 4°C, p at 101 kN m2; Table A.2,
R 287 J kg K. 

Plan

Apply the ideal gas law, Eq. (2.5), to solve for density, �.

Solution

Review

1. Remember: Use absolute temperatures and pressures with 
the ideal gas law.

2. Remember: In Eq. (2.5), use R from Table A.2. Do not use 
Ru.
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Internal Energy
The energy that a substance possesses because of the state of the molecular activity in the sub-

stance is termed internal energy. Internal energy is usually expressed as a specific quantity—

that is, internal energy per unit mass. In the SI system, the specific internal energy, u, is given

in joules per kilogram; in Traditional Units it is given in Btu lbm. The internal energy is gener-

ally a function of temperature and pressure. However, for an ideal gas, it is a function of tem-

perature alone.

Enthalpy
The combination is encountered frequently in equations for thermodynamics and

compressible flow; it has been given the name specific enthalpy. For an ideal gas, u and

are functions of temperature alone. Consequently their sum, specific enthalpy, is also a func-

tion solely of temperature.

Viscosity

The property of viscosity is important to engineering practice because it leads to significant

energy loss when moving fluids contact a solid boundary, or when different zones of fluid are

flowing at different velocities.

Viscosity, �
Viscosity (also called dynamic viscosity, or absolute viscosity) is a measure of a fluid’s resis-

tance to deformation under shear stress. For example, crude oil has a higher resistance to

shear than does water. Crude oil will pour more slowly than water from an identical beaker

held at the same angle. This relative slowness of the oil implies a low “speed” or rate of strain.

The symbol used to represent viscosity is � (mu). To understand the physics of viscosity, it

is useful to refer back to solid mechanics and the concepts of shear stress and shear strain.

Shear stress, �, tau, is the ratio of force/area on a surface when the force is aligned parallel

to the area. Shear strain is a change in an interior angle of a cubical element, , that was

originally a right angle. The shear stress on a material element in solid mechanics is propor-

tional to the strain, and the constant of proportionality is the shear modulus:

In fluid flow, however, the shear stress on a fluid element is proportional to the rate (speed)

of strain, and the constant of proportionality is the viscosity:

Figure 2.1 depicts an initially rectangular element in a parallel flow field. As the element

moves downstream, a shear force on the top of the element (and a corresponding shear stress

in the opposite direction on the bottom of the element) causes the top surface to move faster

(with velocity ) than the bottom (at velocity V). The forward and rearward edges be-

come inclined at an angle  with respect to the vertical. The rate at which  changes with

time, given by , is the rate of strain, and can be related to the velocity difference between

⁄

u p �⁄+
p �⁄

2.4

φΔ

 shear stress{ } shear modulus{ } strain{ }×�

 shear stress{ } viscosity{ } rate of strain{ }×�
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the two surfaces. In time  the upper surface moves  while the bottom sur-

face moves so the net difference is The strain  is

where  is the distance between the two surfaces. The rate of strain is

In the limit as  and , the rate of strain is related to the velocity gradient by

, so the shear stress (shear force per unit area) is

(2.6)

For strain in flow near a wall, as shown in Fig. 2.2, the term  represents the ve-

locity gradient (or change of velocity with distance from the wall), where V is the fluid veloc-

ity and y is the distance measured from the wall. The velocity distribution shown is

characteristic of flow next to a stationary solid boundary, such as fluid flowing through a

pipe. Several observations relating to this figure will help one to appreciate the interaction

between viscosity and velocity distribution. First, the velocity gradient at the boundary is fi-

nite. The curve of velocity variation cannot be tangent to the boundary because this would

imply an infinite velocity gradient and, in turn, an infinite shear stress, which is impossible.

Second, a velocity gradient that becomes less steep ( becomes smaller) with distance

from the boundary has a maximum shear stress at the boundary, and the shear stress de-

creases with distance from the boundary. Also note that the velocity of the fluid is zero at the

stationary boundary. That is, at the boundary surface the fluid has the velocity of the boundary—

Figure 2.1
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no slip occurs between the fluid and the boundary. This is referred to as the no-slip condition.
The no-slip condition is characteristic of all flows used in this text.

From Eq. (2.6) it can be seen that the viscosity � is related to the shear stress and veloc-

ity gradient.

(2.7)

A common unit of viscosity is the poise, which is 1 dyne-s cm2 or 0.1 The vis-

cosity of water at 20°C is one centipoise (10–2 poise) or 10–3 The unit of viscosity

in the traditional system is  

Kinematic Viscosity, 
Many equations of fluid mechanics include the ratio Because it occurs so frequently,

this ratio has been given the special name kinematic viscosity. The symbol used to identify ki-

nematic viscosity is  (nu). Units of kinematic viscosity  are m2 s, as shown.

 (2.8)

The units for kinematic viscosity in the traditional system are 

Temperature Dependency
The effect of temperature on viscosity is different for liquids and gases. The viscosity of liq-

uids decreases as the temperature increases, whereas the viscosity of gases increases with in-

creasing temperature; this trend is also true for kinematic viscosity (see Fig. 2.3 and Figs. A.2

and A.3).

To understand the mechanisms responsible for an increase in temperature that causes a

decrease in viscosity in a liquid, it is helpful to rely on an approximate theory that has been

developed to explained the observed trends (1). The molecules in a liquid form a lattice-like

structure with “holes” where there are no molecules, as shown in Fig. 2.4. Even when the liq-

uid is at rest, the molecules are in constant motion, but confined to cells, or “cages.” The cage

or lattice structure is caused by attractive forces between the molecules. The cages may be

thought of as energy barriers. When the liquid is subjected to a rate of strain and thus caused

to move, as shown in Fig. 2.4, there is a shear stress, �, imposed by one layer on another in

the fluid. This force/area assists a molecule in overcoming the energy barrier, and it can move

into the next hole. The magnitude of these energy barriers is related to viscosity, or resistance

Figure 2.2
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to shear deformation. At a higher temperature the size of the energy barrier is smaller, and it

is easier for molecules to make the jump, so that the net effect is less resistance to deforma-

tion under shear. Thus, an increase in temperature causes a decrease in viscosity for

liquids.

An equation for the variation of liquid viscosity with temperature is

(2.9)

where C and b are empirical constants that require viscosity data at two temperatures for

evaluation. This equation should be used primarily for data interpolation. The variation of

viscosity (dynamic and kinematic) for other fluids is given in Figs. A.2 and A.3.

As compared to liquids, gases do not have zones or cages to which molecules are

confined by intermolecular bonding. Gas molecules are always undergoing random motion.

If this random motion of molecules is superimposed upon two layers of gas, where the top

layer is moving faster than the bottom layer, periodically a gas molecule will randomly move

from one layer to the other. This behavior of a molecule in a low-density gas is analogous to

people jumping back and forth between two conveyor belts moving at different speeds as

shown in Fig. 2.5. When people jump from the high-speed belt to the low-speed belt, a re-

Figure 2.3

Kinematic viscosity for 

air and crude oil. 

Figure 2.4

Visualization of 

molecules in a liquid. 

0 100

v,
 m

2
/s

50
Temperature, °C

2 × 10–6

1 × 10–5

6 × 10–5

3

4

6

8

2

4

3

Air (atmospheric pressure)

Crude oil (S = 0.86)

y

τ

τ Hole

Molecule
Cage

� Ce
b T⁄

�



22 FLUID PROPERTIES

straining (or braking) force has to be applied to slow the person down (analagous to viscos-

ity). If the people are heavier, or are moving faster, a greater braking force must be applied.

This analogy also applies for gas molecules translating between fluid layers where a shear

force is needed to maintain the layer speeds. As the gas temperature increases, more of the

molecules will be making random jumps. Just as the jumping person causes a braking action

on the belt, highly mobile gas molecules have momentum, which must be resisted by the

layer to which the molecules jump. Therefore, as the temperature increases, the viscosity, or

resistance to shear, also increases. 

EXAMPLE 2.2    CALCULATING VISCOSITY OF 

LIQUID AS A FUNCTION OF TEMPERATURE

The dynamic viscosity of water at 20°C is 

and the viscosity at 40°C is 

Using Eq. (2.9), estimate the viscosity at 30°C.

Problem Definition

Situation: Viscosity of water is specified at two 
temperatures.

Find: The viscosity at 30°C by interpolation.

Properties: 

a) Water at 20°C, 

b) Water at 40°C, 

Plan

1. Linearize Eq. (2.9) by taking the logarithm.

2. Interpolate between the two known values of viscosity.

3. Solve for  and b in this linear set of equations.

4. Change back to exponential equation, and solve for  at 
30°C.

Solution

1. Logarithm of Eq. (2.9)

2. Interpolation

3. Solution for  and b

4. Substitution back in exponential equation

At 30°C 

Review

Note: This value differs by 1% from the reported value in 

Table A.5, but provides a much better estimate than would be 

obtained by arithmetically averaging two values on the table.

Figure 2.5
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An estimate for the variation of gas viscosity with temperature is Sutherland’s equation,

(2.10)

where �0 is the viscosity at temperature T0, and S is Sutherland’s constant. All temperatures

are absolute. Sutherland’s constant for air is 111 K; values for other gases are given in Table

A.2. Using Sutherland’s equation for air yields viscosities with an accuracy of 2% for tem-

peratures between 170 K and 1900 K. In general, the effect of pressure on the viscosity of

common gases is minimal for pressures less than 10 atmospheres.

Newtonian versus Non-Newtonian Fluids
Fluids for which the shear stress is directly proportional to the rate of strain are called Newtonian
fluids. Because shear stress is directly proportional to the shear strain, a plot relat-

ing these variables (see Fig. 2.6) results in a straight line passing through the origin. The

slope of this line is the value of the dynamic (absolute) viscosity. For some fluids the shear

EXAMPLE 2.3    MODELING A BOARD SLIDING ON 

A LIQUID LAYER

A board 1 m by 1 m that weighs 25 N slides down an inclined 

ramp (slope 20°) with a velocity of 2.0 The board is 

separated from the ramp by a thin film of oil with a viscosity 

of 0.05 Neglecting edge effects, calculate the 

space between the board and the ramp.

Problem Definition

Situation: A board is sliding down a ramp, on a thin film of 
oil.

Find: Space (in m) between the board and the ramp.

Assumptions: A linear velocity distribution in the oil.

Properties: Oil,

Sketch:

Plan

1. Draw a free body diagram of the board, as shown in 
“sketch.”

• For a constant sliding velocity, the resisting shear force 
is equal to the component of weight parallel to the in-
clined ramp.

• Relate shear force to viscosity and velocity distribution. 

2. With a linear velocity distribution,  can 
everywhere be expressed as where �V is the 
velocity of the board, and �y is the space between the 
board and the ramp.

3. Solve for �y.

Solution

1. Freebody analysis

2. Substitution of as  

3. Solution for �y
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stress may not be directly proportional to the rate of strain; these are called non-Newtonian
fluids. One class of non-Newtonian fluids, shear-thinning fluids, has the interesting property

that the ratio of shear stress to shear strain decreases as the shear strain increases (see Fig.

2.6). Some common shear-thinning fluids are toothpaste, catsup, paints, and printer’s ink.

Fluids for which the viscosity increases with shear rate are shear-thickening fluids. Some ex-

amples of these fluids are mixtures of glass particles in water and gypsum-water mixtures.

Another type of non-Newtonian fluid, called a Bingham plastic, acts like a solid for small

values of shear stress and then behaves as a fluid at higher shear stress. The shear stress ver-

sus shear strain rate for a Bingham plastic is also shown in Fig. 2.6. This book will focus on

the theory and applications involving Newtonian fluids. For more information on the theory

of flow of non-Newtonian fluids, see references (2) and (3). 

Bulk Modulus of Elasticity

The bulk modulus of elasticity, Ev, is a property that relates changes in pressure to changes in

volume (e.g., expansion or contraction)

 (2.11)

where dp is the differential pressure change, dV is the differential volume change, and V is

the volume of fluid. Because is negative for a positive dp, a negative sign is used in

the definition to yield a positive Ev. The elasticity is often called the compressibility of the

fluid.

The fractional change in volume can be related to the change in material density using

(2.12)

Since the mass is constant

Figure 2.6
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so

and the definition of the bulk modulus of elasticity becomes

(2.13)

The bulk modulus of elasticity of water is approximately 2.2 which corre-

sponds to a 0.05% change in volume for a change of 1 in pressure. Obviously, the

term incompressible is justifiably applied to water because it has such a small change in vol-

ume for a very large change in pressure.

The elasticity of an ideal gas is proportional to the pressure, according to the ideal gas

law. For an isothermal (constant-temperature) process,

so

For an adiabatic process, where k is the ratio of specific heats, 

The elasticity or compressibility of a gas is important in high-speed gas flows where pres-

sure variations can cause significant density changes. As will be shown in Chapter 12, the elas-

ticity of a gas is related to the speed of sound in that gas. The ratio of the flow velocity to the

speed of sound is the Mach number, which relates to the importance of elasticity effects.

Surface Tension

Surface tension, 
 (sigma), is a material property whereby a liquid at a material interface, usu-

ally liquid-gas, exerts a force per unit length along the surface. According to the theory of mo-

lecular attraction, molecules of liquid considerably below the surface act on each other by forces

that are equal in all directions. However, molecules near the surface have a greater attraction for

each other than they do for molecules below the surface because of the presence of a different

substance above the surface. This produces a layer of surface molecules on the liquid that acts

like a stretched membrane. Because of this membrane effect, each portion of the liquid surface

exerts “tension” on adjacent portions of the surface or on objects that are in contact with the liq-

uid surface. This tension acts in the plane of the surface, and is given by:

(2.14)

where L is the length over which the surface tension acts. 

Surface tension for a water–air surface is 0.073  at room temperature. The magni-

tude of surface tension decreases with increasing temperature; tabulated values for different

liquids as a function of temperature are available in the literature and online. The effect of

surface tension is illustrated for the case of capillary action (rise above a static water level

at atmospheric pressure) in a small tube (Fig. 2.7). Here the end of a small-diameter tube is
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inserted into a reservoir of water, and the characteristic curved water surface profile occurs

within the tube. The relatively greater attraction of the water molecules for the glass rather

than the air causes the water surface to curve upward in the region of the glass wall. Then the

surface tension force acts around the circumference of the tube, in the direction indicated. It

may be assumed that the contact angle � (theta) is equal to 0° for water against glass. The

surface tension force produces a net upward force on the water that causes the water in the

tube to rise above the water surface in the reservoir. A calculation of the surface tension force

acting to raise the water in a small-diameter tube is demonstrated in Example 2.4.

Other manifestations of surface tension include the excess pressure (over and above at-

mospheric pressure) created inside droplets and bubbles because there is necessarily a pres-

sure difference across a curved interface; the breakup of a liquid jet into droplets; the shape

and motion of bubbles, the structure of foams, and the binding together of wetted granular

material, such as soil.

Surface tension forces for several different cases are shown in Fig. 2.8. Case (a) is a

spherical droplet of radius r. The surface tension force is balanced by the internal pressure.

Case (b) is a bubble of radius r that has internal and external surfaces and the surface-

tension force acts on both surfaces, so

Case (c) is a cylinder supported by surface-tension forces. The liquid does not wet the

cylinder surface. The maximum weight the surface tension can support is

where L is the length of the cylinder.  

EXAMPLE 2.4    CAPILLARY RISE IN A TUBE

To what height above the reservoir level will water (at 20°C) 

rise in a glass tube, such as that shown in Fig. 2.7, if the inside 

diameter of the tube is 1.6 mm?

Problem Definition

Situation: A glass tube of small diameter placed in an open 
reservoir of water induces capillary rise.

Find: The height the water will rise above the reservoir level.

Sketch: See Figure 2.7.

Properties: Water (20 oC), Table A.5, 

	 9790 N m3.

Plan

1. Perform a force balance on water that has risen in the tube.

2. Solve for 

Solution

1. Force balance: Weight of water (down) is balanced by 

surface tension force (up).

Because the contact angle � for water against glass is so 

small, it can be assumed to be 0°; therefore 

Therefore:

2. Solve for :

F
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Case (d) is a ring being pulled out of a liquid. This is a technique to measure surface

tension. The force due to surface tension on the ring is

Vapor Pressure

The pressure at which a liquid will vaporize, or boil, at a given temperature, is called its

vapor pressure. This means that boiling occurs whenever the local pressure equals the vapor

pressure. Vapor pressure increases with temperature. Note that there are two ways to boil a

liquid. One way is to raise the temperature, assuming that the pressure is fixed. For water at

14.7 psia, this can be accomplished by increasing the temperature of water at sea level to

212°F, thus reaching the temperature where the vapor pressure is equal to the same value.

However, boiling can also occur in water at temperatures much below 212°F if the pressure

in the water is reduced to the vapor pressure of water corresponding to that lower

temperature. For example, the vapor pressure of water at 50°F (10°C) is 0.178 psia

(approximately 1% of standard atmospheric pressure). Therefore, if the pressure in water at

50°F is reduced to 0.178 psia, the water boils.* 

Such boiling often occurs in localized low-pressure zones of flowing liquids, such as

on the suction side of a pump. When localized low-pressure boiling does occur in flowing

liquids, vapor bubbles start growing in local regions of very low pressure and then collapse in

regions of higher pressure downstream. This phenomenon, which is called cavitation, can

cause extensive damage to fluids systems, and is discussed in Chapter 5.

Table A.5 gives values of vapor pressure for water. 

Figure 2.8

Surface-tension forces

for several different 

cases.

* Actually, boiling can occur at this vapor pressure only if there is a gas–liquid surface present to allow the

process to start. Boiling at the bottom of a pot of water is usually initiated in crevices in the material of the

pot, in which minute bubbles of air are entrapped even when the pot is filled with water.
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Summary

The commonly used fluid properties are

Mass density (�): mass per unit volume.

Specific weight (	): weight per unit volume.

Specific gravity (S): ratio of specific weight to specific weight of water at reference conditions.

The relationship between pressure, density, and temperature for an ideal gas is

where R is the gas constant, and pressure and temperature must be expressed in absolute

values.

In a fluid the shear stress is proportional to the rate of strain, and the constant of propor-

tionality is the viscosity. The shear stress at a wall is given by

where  is the velocity gradient of the fluid evaluated at the wall. In a Newtonian fluid,

the viscosity is independent of the rate of strain. A fluid for which the effective viscosity de-

creases with increasing strain rate is a shear-thinning fluid.

Surface tension is the result of molecular attraction near a free surface, causing the sur-

face to act like a stretched membrane.

The bulk modulus of elasticity relates to the pressure required to change the density of

a fluid.

When the local pressure is equal to the vapor pressure at a given temperature, liquid

boils.
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Problems 

*A Preview Question (��) can be assigned prior to in-class

coverage of a topic.

Properties Related to Mass and Weight

*2.1 ��� Describe how density differs from specific weight.

*2.2 ��� For what fluids can we (usually) assume density to

be nearly constant? For what fluids must we be careful to calcu-

late density as a function of temperature and pressure?

*2.3 ��� Where in this text can you find density data for such

fluids as oil and mercury?

2.4 An engineer living at an elevation of 2500 ft is conducting

experiments to verify predictions of glider performance. To pro-

cess data, density of ambient air is needed. The engineer mea-

sures temperature (74.3°F) and atmospheric pressure (27.3

inches of mercury). Calculate density in units of Com-

pare the calculated value with data from Table A.3 and make a

recommendation about the effects of elevation on density; that

is, are the effects of elevation significant?

2.5 Calculate the density and specific weight of carbon dioxide

at a pressure of 300  absolute and 60°C.

2.8

p �RT�
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yd
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kg m
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2.6 Determine the density and specific weight of methane gas

at at a pressure of 300  absolute and 60°C.

2.7 Natural gas is stored in a spherical tank at a temperature of

10°C. At a given initial time, the pressure in the tank is 100 kPa

gage, and the atmospheric pressure is 100 kPa absolute. Some time

later, after considerably more gas is pumped into the tank, the pres-

sure in the tank is 200 kPa gage, and the temperature is still 10°C.

What will be the ratio of the mass of natural gas in the tank when

p 200 kPa gage to that when the pressure was 100 kPa gage?

2.8 At a temperature of 100°C and an absolute pressure of 5 at-

mospheres, what is the ratio of the density of water to the den-

sity of air, 

2.9 Find the total weight of a 10 ft3 tank of oxygen if the oxy-

gen is pressurized to 500 psia, the tank itself weighs 150 lbf, and

the temperature is 70°F?

2.10 A 10 m3 oxygen tank is at 15°C and 800 kPa. The valve is

opened, and some oxygen is released until the pressure in the

tank drops to 600 kPa. Calculate the mass of oxygen that has

been released from the tank if the temperature in the tank does

not change during the process.

2.11 What are the specific weight and density of air at an abso-

lute pressure of 600 kPa and a temperature of 50°C?

2.12 Meteorologists often refer to air masses in forecasting the

weather. Estimate the mass of 1 mi3 of air in slugs and kilo-

grams. Make your own reasonable assumptions with respect to

the conditions of the atmosphere.

2.13 A bicycle rider has several reasons to be interested in the

effects of temperature on air density. The aerodynamic drag

force decreases linearly with density. Also, a change in tempera-

ture will affect the tire pressure. 

a. To visualize the effects of temperature on air density, write a

computer program that calculates the air density at atmospheric

pressure for temperatures from –10°C to 50°C. 

b. Also assume that a bicycle tire was inflated to an absolute

pressure of 450 kPa at 20°C. Assume the volume of the tire does

not change with temperature. Write a program to show how the

tire pressure changes with temperature in the same temperature

range, –10°C to 50°C. 

Prepare a table or graph of your results for both problems.

What engineering insights do you gain from these calculations?

2.14 A design team is developing a prototype CO2 cartridge for

a manufacturer of rubber rafts.This cartridge will allow a user to

quickly inflate a raft. A typical raft is shown in the sketch. As-

sume a raft inflation pressure of 3 psi (this means that the abso-

lute pressure is 3 psi greater than local atmospheric pressure).

Estimate the volume of the raft and the mass of CO2 in grams in

the prototype cartridge.

2.15 A team is designing a helium-filled balloon that will fly to an

altitude of 80,000 ft. As the balloon ascends, the upward force

(buoyant force) will need to exceed the total weight. Thus, weight

is critical. Estimate the weight (in newtons) of the helium inside

the balloon. The balloon is inflated at a site where the atmospheric

pressure is 0.89 bar and the temperature is 22°C. When inflated

prior to launch, the balloon is spherical (radius 1.3 m) and the in-

flation pressure equals the local atmospheric pressure.

2.16 Hydrometers are used in the wine and beer industries to

measure the alcohol content of the product. This is accom-

plished by measuring the specific gravity of the liquid before

fermentation, during fermentation, or after fermentation is com-

plete. During fermentation, glucose (C6H12O6) is converted to

ethyl alcohol (CH3CH2OH) and carbon dioxide gas, which es-

capes from the vat.

C6H12O6 2(CH3CH2OH) 2(CO2)

Brewer’s yeast tolerates alcohol contents to approximately 5%

before fermentation stops, whereas wine yeast tolerates alcohol

contents up to 21% depending on the yeast strain. The specific

gravity of alcohol is 0.80, and the maximum specific gravity of

sugar in solution is 1.59. If a wine has a specific gravity of 1.08

before fermentation, and all the sugar is converted to alcohol,

what will be the final specific gravity of the wine and the percent

alcohol content by volume? Assume that the initial liquid (the un-

fermented wine is called must) contains only sugar and water.

Viscosity

*2.17 ��� The following questions relate to viscosity.

a. What are the primary dimensions of viscosity? What are five

common units?

b. What is the viscosity of SAE 10W-30 motor oil at 115oF (in

traditional units)?

c. How does viscosity of water vary with temperature? Why?

d. How does viscosity of air vary with temperature? Why? 

2.18 What is the change in the viscosity and density of water be-

tween 10°C and 70°C? What is the change in the viscosity and

density of air between 10°C and 70°C? Assume standard atmo-

spheric pressure (p 101 kN m2 absolute).

2.19 Determine the change in the kinematic viscosity of air that is

heated from 10°C to 70°C. Assume standard atmospheric pressure.

2.20 Find the dynamic and kinematic viscosities of kerosene, SAE

10W-30 motor oil, and water at a temperature of 38°C (100°F).

2.21 What is the ratio of the dynamic viscosity of air to that of

water at standard pressure and a temperature of 20°C? What is

the ratio of the kinematic viscosity of air to that of water for the

same conditions?

kN m
2⁄

�
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2.22 Using Sutherland’s equation and the ideal gas law, develop

an expression for the kinematic viscosity ratio  in terms of

pressures p and p0 and temperatures T and T0, where the sub-

script 0 refers to a reference condition.

2.23The dynamic viscosity of air at 15°C is 1.78 10–5

Using Sutherland’s equation, find the viscosity at 100°C.

2.24 The kinematic viscosity of methane at 15°C and atmo-

spheric pressure is Using Sutherland’s equa-

tion and the ideal gas law, find the kinematic viscosity at 200°C

and 2 atmospheres. 

2.25 The dynamic viscosity of nitrogen at 59°F is 3.59 10–7

Using Sutherland’s equation, find the dynamic vis-

cosity at 200°F. 

2.26 The kinematic viscosity of helium at 59°F and 1 atmo-

sphere is Using Sutherland’s equation and

the ideal gas law, find the kinematic viscosity at 30°F and a

pressure of 1.5 atmospheres.

2.27 The absolute viscosity of propane at 100°C is 1.00 10–5

 and at 400°C is 1.72 10–5 Find Suther-

land’s constant for propane.

2.28 Ammonia is very volatile, so it may be either a gas or a liq-

uid at room temperature. When it is a gas, its absolute viscosity

at 68°F is 2.07 10–7  and at 392°F is 3.46 10–7

Using these two data points, find Sutherland’s con-

stant for ammonia. 

2.29 The viscosity of SAE 10W-30 motor oil at 38°C is 0.067

 and at 99°C is 0.011 Using Eq. (2.8) for

interpolation, find the viscosity at 60°C. Compare this value

with that obtained by linear interpolation.

2.30 The viscosity of grade 100 aviation oil at 100°F is

4.43 10–3  and at 210°F is 3.9 10–4

Using Eq. (2.8), find the viscosity at 150°F. 

2.31 Two plates are separated by a 1 8-in. space. The lower

plate is stationary; the upper plate moves at a velocity of 25

ft s. Oil (SAE 10W-30, 150°F), which fills the space between

the plates, has the same velocity as the plates at the surface of

contact. The variation in velocity of the oil is linear. What is the

shear stress in the oil?

2.32 Find the kinematic and dynamic viscosities of air and water

at a temperature of 40°C (104°F) and an absolute pressure of

170 kPa (25 psia).

2.33 The sliding plate viscometer shown below is used to mea-

sure the viscosity of a fluid. The top plate is moving to the right

with a constant velocity of 10 m s in response to a force of 3 N.

The bottom plate is stationary. What is the viscosity of the fluid?

Assume a linear velocity distribution.

2.34 The velocity distribution for water (20°C) near a wall is

given by u a(y b)1/6, where a 10 m s, b 2 mm, and y

is the distance from the wall in mm. Determine the shear stress

in the water at y 1 mm.

2.35 The velocity distribution for the flow of crude oil at 100°F

( 8 10–5 ) between two walls is shown, and is

given by where y is measured in feet

and the space between the walls is 0.1 ft. Plot the velocity distri-

bution and determine the shear stress at the walls. 

2.36 A liquid flows between parallel boundaries as shown

above. The velocity distribution near the lower wall is given in

the following table: 

a. If the viscosity of the liquid is 10–3 what is the

maximum shear stress in the liquid?

b. Where will the minimum shear stress occur?

2.37 Suppose that glycerin is flowing (T 20°C) and that the

pressure gradient  is –1.6 What are the velocity

and shear stress at a distance of 12 mm from the wall if the

space B between the walls is 5.0 cm? What are the shear stress

and velocity at the wall? The velocity distribution for viscous

flow between stationary plates is 

2.38 A laminar flow occurs between two horizontal parallel

plates under a pressure gradient ( p decreases in the pos-

itive s direction). The upper plate moves left (negative) at veloc-

ity ut . The expression for local velocity u is given as 

a. Is the magnitude of the shear stress greater at the moving

plate ( ) or at the stationary plate ( )?

b. Derive an expression for the y position of zero shear stress. 

c. Derive an expression for the plate speed ut required to make

the shear stress zero at 

2.39 Consider the ratio where � is the viscosity of

oxygen and the subscripts 100 and 50 are the temperatures of

the oxygen in degrees Fahrenheit. Does this ratio have a value

(a) less than 1, (b) equal to 1, or (c) greater than 1? 
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2.40 This problem involves a cylinder falling inside a pipe that

is filled with oil, as depicted in the figure. The small space be-

tween the cylinder and the pipe is lubricated with an oil film that

has viscosity �. Derive a formula for the steady rate of descent

of a cylinder with weight W, diameter d, and length � sliding in-

side a vertical smooth pipe that has inside diameter D. Assume

that the cylinder is concentric with the pipe as it falls. Use the

general formula to find the rate of descent of a cylinder 100

mm in diameter that slides inside a 100.5 mm pipe. The cyl-

inder is 200 mm long and weighs 15 N. The lubricant is SAE

20W oil at 10°C.

2.41 The device shown consists of a disk that is rotated by a

shaft. The disk is positioned very close to a solid boundary. Be-

tween the disk and the boundary is viscous oil.

a. If the disk is rotated at a rate of 1 what will be the ra-

tio of the shear stress in the oil at  cm to the shear stress at

cm?

b. If the rate of rotation is 2 what is the speed of the oil

in contact with the disk at cm?

c. If the oil viscosity is 0.01  and the spacing y is 2 mm,

what is the shear stress for the conditions noted in part (b)?  

2.42 Some instruments having angular motion are damped by

means of a disk connected to the shaft. The disk, in turn, is im-

mersed in a container of oil, as shown. Derive a formula for the

damping torque as a function of the disk diameter D, spacing S,

rate of rotation �, and oil viscosity �.

2.43 One type of viscometer involves the use of a rotating cylin-

der inside a fixed cylinder The gap between the cylinders must

be very small to achieve a linear velocity distribution in the liq-

uid. (Assume the maximum spacing for proper operation is 0.05

in.). Design a viscometer that will be used to measure the vis-

cosity of motor oil from 50°F to 200°F.

Elasticity and Volume Changes

*2.44 ��� The bulk modulus of elasticity of ethyl alcohol is

Pa. For water, it is Pa. Which of these liq-

uids is easier to compress? Why? 

2.45 A pressure of  is applied to a mass of water

that initially filled a 2000 cm3 volume. Estimate its volume after

the pressure is applied. 

2.46 Calculate the pressure increase that must be applied to wa-

ter to reduce its volume by 2%.

2.47 An open vat in a food processing plant contains 400 L of

water at 20°C and atmospheric pressure. If the water is heated

to 80°C, what will be the percentage change in its volume? If

the vat has a diameter of 3 m, how much will the water level

rise due to this temperature increase? Hint: In this case the

volume change is due to change in temperature.

Surface Tension

*2.48 ��� Advanced texts define the surface tension 
 as an

energy area. Use primary dimensions to show that energ-

y area equals force length. 

2.49 Which of the following is the formula for the gage pressure

within a very small spherical droplet of water:
(a) (b)  or (c) 

2.50 A spherical soap bubble has an inside radius R, a film

thickness t, and a surface tension 
. Derive a formula for the

pressure within the bubble relative to the outside atmospheric
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pressure. What is the pressure difference for a bubble with a

4 mm radius? Assume 
 is the same as for pure water.

2.51 A water bug is suspended on the surface of a pond by sur-

face tension (water does not wet the legs). The bug has six legs,

and each leg is in contact with the water over a length of 5 mm.

What is the maximum mass (in grams) of the bug if it is to avoid

sinking?

2.52 A water column in a glass tube is used to measure the pres-

sure in a pipe. The tube is 1 4 in. (6.35 mm) in diameter. How

much of the water column is due to surface-tension effects?

What would be the surface-tension effects if the tube were 1 8 in.

(3.2 mm) or 1 32 in. (0.8 mm) in diameter?

2.53 Calculate the maximum capillary rise of water between two

vertical glass plates spaced 1 mm apart.

2.54 What is the pressure within a 1 mm spherical droplet of

water relative to the atmospheric pressure outside? 

2.55 By measuring the capillary rise in a tube, one can calculate

the surface tension. The surface tension of water varies linearly

with temperature from 0.0756  at 0°C to 0.0589  at

100°C. Size a tube (specify diameter and length) that uses capil-

lary rise of water to measure temperature in the range from 0°C

to 100°C. Is this design for a thermometer a good idea? 

2.56 Consider a soap bubble 2 mm in diameter and a droplet of

water, also 2 mm in diameter, that are falling in air. If the value

of the surface tension for the film of the soap bubble is assumed

to be the same as that for water, which has the greater pressure

inside it? (a) the bubble, (b) the droplet, (c) neither—the pres-

sure is the same for both.

2.57 A drop of water at 20°C is forming under a solid surface.

The configuration just before separating and falling as a drop is

shown in the figure. Assume the forming drop has the volume

of a hemisphere. What is the diameter of the hemisphere just be-

fore separating?  

2.58 The surface tension of a liquid is being measured with a

ring as shown in Fig. 2.6d. The ring has an outside diameter of

10 cm and an inside diameter of 9.5 cm. The mass of the ring is

10 g. The force required to pull the ring from the liquid is the

weight corresponding to a mass of 16 g. What is the surface ten-

sion of the liquid (in N m)? 

Vapor Pressure

*2.59 ��� If a liquid reaches the vapor pressure, what happens

in the liquid? 

*2.60 ��� How does vapor pressure change with increasing

temperature?

2.61 At a temperature of 60°F, what pressure must be imposed

in order for water to boil. 

2.62 Water is at 20°C, and the pressure is lowered until bubbles

are noticed to be forming. What must the magnitude of the pres-

sure be? 

2.63 A student in the laboratory plans to exert a vacuum in the

head space above a surface of water in a closed tank. She plans

for the the absolute pressure in the tank to be 10,400 Pa. The

temperature in the lab is 20°C. Will water bubble into the vapor

phase under these circumstances? 

2.64 The vapor pressure of water at 100°C is 101 be-

cause water boils under these conditions. The vapor pressure of

water decreases approximately linearly with decreasing temper-

ature at a rate of 3.1 Calculate the boiling temper-

ature of water at an altitude of 3000 m, where the atmospheric

pressure is 69  absolute. 
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C H A P T E R

Fluid Statics

Chapters 1 and 2 set the stage by describing fluids and their properties. This chapter begins

mechanics of fluids in depth by introducing many concepts related to pressure and by de-

scribing how to calculate forces associated with distributions of pressure. This chapter is re-

stricted to fluids that are in hydrostatic equilibrium. 

As shown in Fig. 3.1, the hydrostatic condition involves equilibrium of a fluid particle.

A fluid particle, is defined as a body of fluid having finite mass and internal structure but neg-

ligible dimensions. Thus, a fluid particle is very small, but large enough so that the continuum

assumption (p. 2) applies. The hydrostatic condition means that each fluid particle is in force

equilibrium with the net force due to pressure balancing the weight of the fluid particle. 

Pressure

This section describes pressure, pressure distribution, and related concepts. This knowledge

is foundational for all aspects of fluid mechanics. This section also presents an interesting

application, the hydraulic machine. 

The first man made structure to exceed 

the masonry mass of the Great Pyramid 

of Giza was the Hoover Dam. Design of 

dams involves calculations of hydrostatic 

forces.(Photo courtesy of U.S. Bureau of 

Reclamation, Lower Colorado Region)

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Describe pressure and pressure distribution. 

• Describe gage, absolute, and vacuum pressure.

• List the steps used to derive the hydrostatic differential equation. 

Procedural Knowledge

• Apply the hydrostatic equation and the manometer equations to predict 

pressure.

• Apply the panel equations to predict forces and moments.

• Apply the buoyancy equation to predict forces.

Applications (Typical)

• For applications involving the atmosphere, the ocean, manometers, 

and hydraulic machines, find pressure values and distributions. 

• For structures and components subjected to hydrostatic loading, find 

forces and moments.

3.1
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Definition of Pressure
Pressure is defined as the ratio of normal force to area at a point. For example, Fig. 3.2 shows

fluid inside an object such as air inside a soccer ball. The molecules of the fluid interact with

the walls to produces a pressure distribution. At each point on the walls, this pressure

distribution creates a resultant force that acts on an infinitesimal unit of area �A as

shown. Pressure is the ratio of normal force magnitude to unit area at a point:

(3.1)

The reason that pressure is defined using a derivative is that pressure often varies from

point to point. For example, pressure acting on the windshield of a moving car will vary at

different locations on the windshield.

Pressure is a scalar quantity; that is, it has magnitude only. Pressure is not a force;

rather it is a scalar that produces a resultant force by its action on an area. The resultant force

is normal to the area and acts in a direction toward the surface (compressive).

Some units for pressure give a ratio of force to area. Newtons per square meter of area,

or pascals (Pa), is the SI unit. The traditional units include psi, which is pounds-force per

square inch, and psf, which is pounds-force per square foot. Other units for pressure give the

height of a column of liquid. For example, pressure in a balloon will push on a water column

upward about 8 inches as shown in Fig. 3.3. Engineers state that the pressure in the balloon is

8 inches of water: When pressure is given in units of “height of a fluid col-

umn,” the pressure value can be directly converted to other units using Table F.1. For exam-

ple, the pressure in the balloon is

Figure 3.1

The hydrostatic 

condition.

(a) A fluid particle in a 

body of fluid. 

(b) Forces acting on the 

fluid paricle.

Weight Pressure
distribution

Weight

Fluid particle

Net force
of pressure 

(a) (b)

Figure 3.2

Pressure acting on the 

walls of a sphere.

ΔFnormal

ΔFnormal ΔA

p
ΔFnormal

ΔA
----------------------

ΔA 0→
lim

dFnormal

dA
-------------------� �

p 8 in-H2O.�

p 8 in-H2O( ) 248.8 Pa/in-H2O( ) 1.99 kPa� �

Pressure
distribution

Resultant
force (ΔFnormal)

Infinitesimal area (ΔA)
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Standard atmospheric pressure, which is the air pressure at sea level, can be written us-

ing multiple units:

Absolute Pressure, Gage Pressure, and Vacuum Pressure
Engineers use several different scales for pressure. Absolute pressure is referenced to regions

such as outer space, where the pressure is essentially zero because the region is devoid of gas.

The pressure in a perfect vacuum is called absolute zero, and pressure measured relative to

this zero pressure is termed absolute pressure.
When pressure is measured relative to prevailing local atmospheric pressure, the pres-

sure value is called gage pressure. For example, when a tire pressure gage gives a value of

300 kPa (44 psi), this means that the absolute pressure in the tire is 300 kPa greater than local

atmospheric pressure. To convert gage pressure to absolute pressure, add the local atmo-

spheric pressure. For example, a gage pressure of 50 kPa recorded in a location where the at-

mospheric pressure is 100 kPa is expressed as either

(3.2)

Gage and absolute pressures are often identified after the unit as shown in Eq. (3.2). However,

engineers sometimes modify the pressure unit. For example, a gage pressure of 10 pounds per

square foot is designated as psfg. Other combinations are psfa, psig, psia. The latter two des-

ignations are for pounds per square inch gage and pounds per square inch absolute.

When pressure is less than atmospheric, the pressure can be described using vacuum

pressure. Vacuum pressure is defined as the difference between atmospheric pressure and ac-

tual pressure. Vacuum pressure is a positive number and equals the absolute value of gage

pressure (which will be negative). For example, if a gage connected to a tank indicates a vac-

uum pressure of 31.0 kPa, this can also be stated as 70.0 kPa absolute, or –31.0 kPa gage.

Figure 3.4 provides a visual description of the three pressure scales. Notice that

pB 7.45 psia is equivalent to –7.25 psig and +7.25 psi vacuum. Notice that pA of 301

kPa abs is equivalent to 200 kPa gage. Gage, absolute, and vacuum pressure can be related

using equations labeled as the “pressure equations.”

(3.3a)

(3.3b)

(3.3c)

Figure 3.3

Pressure in a balloon 

causing a column of 

water to rise 8 inches.

Δh = 8 inches

1.0 atm 101.3 kPa 14.70 psi 33.9 ft-H2O 760 mm-Hg 29.92 in-Hg 2116 psf� � � � � �

p 50 kPa gage or p 150 kPa abs� �

� �

pabs patm pgage+�

pabs patm pvacuum–�

pvacuum p– gage�
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Hydraulic Machines
A hydraulic machine uses components such as pistons, pumps, and hoses to transmit forces

and energy using fluids. Hydraulic machines are applied, for example, to braking systems,

forklift trucks, power steering systems, and airplane control systems (3). Hydraulic machines

provide an example of Pascal’s law. This law states that pressure applied to an enclosed and

continuous body of fluid is transmitted undiminished to every portion of that fluid and to the

walls of the containing vessel.

Hydraulic machines provide mechanical advantage. For example, a person using a hy-

draulic jack can lift a much larger load, as shown in Example 3.1.

Figure 3.4

Example of pressure

relations.

EXAMPLE 3.1   LOAD LIFTED BY A HYDRAULIC JACK

A hydraulic jack has the dimensions shown. If one exerts a 

force F of 100 N on the handle of the jack, what load, F2, can

the jack support? Neglect lifter weight.

Problem Definition

Situation: A force of is applied to the handle of a 

jack.

Find: Load F2 in kN that the jack can lift.

Assumptions: Weight of the lifter component (see sketch) is
negligible.

Plan

1. Calculate force acting on the small piston by applying 
moment equilibrium. 

2. Calculate pressure p1 in the hydraulic fluid by applying 
force equilibrium. 

3. Calculate the load F2 by applying force equilibrium.

Sketch:

p = 0 Pa abs
(p = 0 psia)

p = pB

p = pA

p = 0 Pa gage = 101 kPa abs
(p = 0 psig = 14.7 psia)

Absolute zero (          ) absolute
ref.

Local atmospheric pressure (gage ref.) 

pA = 301 kPa abs
(pA = 43.6 psia)

pA = 200 kPa gage
(pA = 28.9 psig)

pB = –50 kPa gage
(pB = –7.25 psig or 7.25 psi vacuum)

patm = 101 kPa abs
(patm = 14.7 psia)

pB = 51.0 kPa abs
(pB = 7.45 psia)

F 100 N�

30 cm

F

B C

3.0 cm

1.5 cm diameter

A1 A2

Check valve

5 cm diameter

Lifter

F2
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Pressure Variation with Elevation

This section shows how equations for pressure variation are derived and applied. The results

are used throughout fluid mechanics. 

Hydrostatic Differential Equation
The hydrostatic differential equation is derived by applying force equilibrium to a static body

of fluid. To begin the derivation, visualize any region of static fluid (e.g., water behind a

dam), isolate a cylindrical body, and then sketch a free-body diagram (FBD) as shown in Fig.

3.5. Notice that the cylindrical body is oriented so that its longitudinal axis is parallel to an

arbitrary � direction. The body is �� long, � A in cross-sectional area, and inclined at an

angle � with the horizontal. Apply force equilibrium in the � direction:

Solution

1. Moment equilibrium

2. Force equilibrium (small piston)

Thus

3. Force equilibrium (lifter)

• Note that because they are at the same eleva-
tion (this fact will be established in the next section).

• Apply force equilibrium:

Review

The jack in this example, which combines a lever and a 

hydraulic machine, provides an output force of 12,200 N 

from an input force of 100 N. Thus, this jack provides a 

mechanical advantage of 122 to 1!

Figure 3.5

Variation in pressure

with elevation.

MC� 0�

0.33 m( ) 100 N( )× 0.03 m( )F1– 0�

F1
0.33 m 100 N×
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---------------------------------------- 1100 N� �
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p1A1 F1 1100 N� �

p1

F1

A1
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�d
2

4⁄
------------------ 6.22 10

6×  N m⁄ 2
� � �

p1 p2�

Flifter� F2 p1A2– 0� �

F2 p1A2
6.22 10

6 N

m
2

-------× �
4
---- 0.05 m( )×

2

12.2 kN� � �

3.2

F�� 0�

FPressure FWeight– 0�

pΔA p Δp+( )ΔA– 	ΔAΔ� �sin– 0�

Weight = ΔAΔ�

Δ�

α

α

α γ

pΔA

(p + Δp)ΔA Δz

z
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Simplify and divide by the volume of the body ��� A to give

From Fig. 3.5, the sine of the angle is given by

Combining the previous two equations and letting  approach zero gives

The final result is

(3.4)

Equation (3.4) is valid in a body of fluid when the force balance shown in Fig. 3.1 is satisfied. 

Equation (3.4) means that changes in pressure correspond to changes in elevation. If

one travels upward in the fluid (positive z direction), the pressure decreases; if one goes

downward (negative z), the pressure increases; if one moves along a horizontal plane, the

pressure remains constant. Of course, these pressure variations are exactly what a diver expe-

riences when ascending or descending in a lake or pool.

Hydrostatic Equation
The hydrostatic equation is used to predict pressure variation in a fluid with constant density.

This equation is derived by assuming that specific weight is constant and then integrating

Eq. (3.4) to give

(3.5)

where the term z is elevation, which is the height (vertical distance) above a fixed reference

point called a datum, and  is piezometric pressure. Dividing Eq. (3.5) by 	 gives

(3.6)

where h is the piezometric head. Since h is constant in Eq. (3.6),

(3.7a)

where the subscripts 1 and 2 identify any two points in a static fluid of constant density. Mul-

tiplying Eq. (3.7a) by 	 gives

(3.7b)

In Eq. (3.7b), letting  and letting  gives

(3.7c)

The hydrostatic equation is given by either Eq. (3.7a), (3.7b), or (3.7c). These three

equations are equivalent because any one of the equations can be used to derive the

other two. The hydrostatic equation is valid for any constant density fluid in hydrostatic

equilibrium.

Δp

�Δ
------- 	 �sin–�

�sin
Δz

Δ�
-------�

Δz

Δp

Δz
-------

Δz 0→
lim 	–�

dp

dz
------ 	       (hydrostatic differential equation)–�

	

p 	z+ pz constant� �

pz

pz

	
----

p

	
--- z+ h constant� � �

p1

	
----- z1+

p2

	
----- z2+�

p1 	z1+ p2 	z2+�

Δp p2 p1–� Δz z2 z1–�
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Notice that the hydrostatic equation involves

(3.8)

(3.9)

To calculate piezometric head or piezometric pressure, an engineer identifies a specific loca-

tion in a body of fluid and then uses the value of pressure and elevation at that location. Pie-

zometric pressure and head are related by

(3.10)

Piezometric head, h, a property that is widely used in fluid mechanics, characterizes hydro-

static equilibrium. When hydrostatic equilibrium prevails in a body of fluid of constant den-

sity, then h will be constant at all locations. For example, Fig. 3.6 shows a container with oil

floating on water. Since piezometric head is constant in the water, Similarly

the piezometric head is constant in the oil: Notice that piezometric head is not

constant when density changes. For example, because points c and d are in different

fluids with different values of density. Example 3.2 shows how to find pressure in liquid by

applying the idea of constant piezometric head.

Example 3.3 shows how to find pressure by applying the idea of “constant piezometric

head” to a problem involving several fluids. Notice the continuity of pressure across a planar

interface.  

EXAMPLE 3.2   WATER PRESSURE IN A TANK

What is the water pressure at a depth of 35 ft in the tank 

shown?

Problem Definition

Situation: Water is contained in a tank that is 50 ft deep.

Find: Water pressure (psig) at a depth of 35 ft.

Properties: Water (50°F), Table A.5: 

Sketch:

Plan

Use the idea that piezometric head is constant. The 

steps are

1. Equate piezometric head at elevation 1 with piezometric 
head at elevation 2 (i.e., apply Eq. 3.7a). 

2. Analyze each term in Eq. (3.7a).

3. Solve for the pressure at elevation 2.

Solution

1. Eq. (3.7a):

2. Term-by-term analysis of Eq. (3.7a) yields:

•

•

•

3. Combine steps 1 and 2:

Review

Remember! Gage pressure at the free surface of a liquid 

exposed to the atmosphere is zero.

Figure 3.6

Oil floating on water.

b

c

d

e

f

a

Oil

Water

piezometric head h
p

	
--- z+��

piezometric pressure pz p 	z+( )��

pz h	�

ha hb hc.� �
hd he hf.� �

hc hd�

	 62.4 lbf/ft
3
.�

2

1

Water
T = 50°F

Elevation = 200 ft

Elevation = 250 ft

35 ft

p1

	
----- z1+

p2

	
----- z2+�

p1 patm 0 psig� �

z1 250 ft�

z2 215 ft�

p1

	
----- z1+

p2

	
----- z2+�

0 250 ft+
p2

62.4 lbf/ft
3

-------------------------- 215 ft+�

p2 2180 psfg 15.2 psig� �
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Pressure Variation in the Atmosphere
This section describes how to calculate pressure, density and temperature in the atmosphere

for applications such as modeling of atmospheric dynamics and the design of gliders, air-

planes, balloons, and rockets.

Equations for pressure variation in the earth’s atmosphere are derived by integrating the

hydrostatic differential equation (3.4). To begin the derivation, write the ideal gas law (2.5):

(3.11)

Multiply by g:

(3.12)

EXAMPLE 3.3   PRESSURE IN TANK WITH 

TWO FLUIDS

Oil with a specific gravity of 0.80 forms a layer 0.90 m deep 

in an open tank that is otherwise filled with water. The total 

depth of water and oil is 3 m. What is the gage pressure at the 

bottom of the tank?

Problem Definition

Situation: Oil and water are contained in a tank.

Find: Pressure (kPa gage) at the bottom of the tank.

Properties: 

1. Oil (10°C), 

2. Water (10°C), Table A.5: 

Sketch:

Plan

Use the idea that piezometric head is constant in a body of 

fluid with constant density. Recognize that pressure across 

the interface at elevation 2 is constant. The steps are

1. Find p2 by applying the hydrostatic equation given in 
Eq. (3.7a). 

2. Equate pressures across the oil-water interface.

3. Find p3 by applying the hydrostatic equation given in
Eq. (3.7a). 

Solution

1. Hydrostatic equation (oil)

2. Oil-water interface

3. Hydrostatic equation (water)

Review

Validation: Since oil is less dense than water, the 
answer should be slightly smaller than the pressure 
corresponding to a water column of 3 m. From Table 
F.1, a water column of Thus, a 3 m water 
column should produce a pressure of about 0.3 
atm 30 kPa. The calculated value appears correct.
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Equation (3.12) requires temperature-versus-elevation data for the atmosphere. It is com-

mon practice to use the U.S. Standard Atmosphere (1). The U.S. Standard Atmosphere defines

values for atmospheric temperature, density, and pressure over a wide range of altitudes. The

first model was published in 1958; this was updated in 1962, 1966, and 1976. The U.S. Stan-

dard Atmosphere gives average conditions over the United States at 45° N latitude in July.

The U.S. Standard Atmosphere also gives average conditions at sea level. The sea level

temperature is 15°C (59°F), the pressure is 101.33 kPa abs (14.696 psia), and the density is

1.225 kg m3 (0.002377 slugs ft3).

Temperature data for the U.S. Standard Atmosphere are given in Fig. 3.7 for the lower 30

km of the atmosphere. The atmosphere is about 1000 km thick and is divided into five layers,

so Fig. 3.7 only gives data near the earth’s surface. In the troposphere, defined as the layer be-

tween sea level and 13.7 km (45,000 ft), the temperature decreases nearly linearly with increas-

ing elevation at a lapse rate of 5.87 K km. The stratosphere is the layer that begins at the

top of the troposphere and extends up to about 50 km. In the lower regions of the

stratosphere, the temperature is constant at –57.5°C, to an altitude of 16.8 km (55,000 ft),

and then the temperature increases monotonically to –38.5°C at 30.5 km (100,000 ft).

Pressure Variation in the Troposphere

Let the temperature T be given by

(3.13)

In this equation T0 is the temperature at a reference level where the pressure is known, and �
is the lapse rate. Combine Eq. (3.12) with the hydrostatic differential equation (3.4) to give

(3.14)

Substituting Eq. (3.13) into Eq. (3.14) gives

Figure 3.7

Temperature variation

with altitude for the U.S.

standard atmosphere

in July (1).
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Separate the variables and integrate to obtain

Thus, the atmospheric pressure variation in the troposphere is 

(3.15)

Example 3.4 shows how to apply Eq. (3.15) to find pressure at a specified elevation in

the troposphere.

Pressure Variation in the Lower Stratosphere

In the lower part of the stratosphere (13.7 to 16.8 km above the earth’s surface as shown in Fig.

3.7), the temperature is approximately constant. In this region, integration of Eq. (3.14) gives

At z z0, p p0, so the preceding equation reduces to

so the atmospheric pressure variation in the stratosphere takes the form

(3.16)

where is pressure at the interface between the troposphere and stratosphere, is the ele-

vation of the interface, and T is the temperature of the stratosphere. Example 3.5 shows how

to apply Eq. (3.16) to find pressure at a specified elevation in the troposphere.

EXAMPLE 3.4   PRESSURE IN THE 

TROPOSPHERE

If at sea level the absolute pressure and temperature are 101.3 

kPa and 23°C, what is the pressure at an elevation of 2000 m, 

assuming that standard atmospheric conditions prevail?

Problem Definition

Situation: Standard atmospheric conditions prevail at an 
elevation of 2000 m.

Find: Atmospheric pressure (kPa absolute) at an elevation of 
2000 m. 

Plan

Calculate pressure using Eq. (3.15).

Solution

where p0 101,300 N m2, T0 273 23 296 K, 

� 5.87 l0–3 K m, z z0  2000 m, and 

Then
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Pressure Measurements

This section describes five scientific instruments for measuring pressure: the barometer,

Bourdon-tube gage, piezometer, manometer, and transducer. This information is used for

experimental work, for equipment testing and process monitoring. 

Barometer
An instrument that is used to measure atmospheric pressure is called a barometer. The most

common types are the mercury barometer and the aneroid barometer. A mercury barometer is

made by inverting a mercury-filled tube in a container of mercury as shown in Fig. 3.8. The

pressure at the top of the mercury barometer will be the vapor pressure of mercury, which is

very small: at 20oC. Thus, atmospheric pressure will push the mercury

up the tube to a height h. The mercury barometer is analyzed by applying the hydrostatic

equation:

(3.17)

Thus, by measuring h, local atmospheric pressure can be determined using Eq. (3.17).

An aneroid barometer works mechanically. An aneroid is an elastic bellows that has

been tightly sealed after some air was removed. When atmospheric pressure changes, this

causes the aneroid to change size, and this mechanical change can be used to deflect a needle

to indicate local atmospheric pressure on a scale. An aneroid barometer has some advantages

over a mercury barometer because it is smaller and allows data recording over time.

Bourdon-Tube Gage
A Bourdon-tube gage, Fig. 3.9, measures pressure by sensing the deflection of a coiled tube.

The tube has an elliptical cross section and is bent into a circular arc, as shown in Fig. 3.9b.
When atmospheric pressure (zero gage pressure) prevails, the tube is undeflected, and for this

EXAMPLE 3.5   PRESSURE IN THE LOWER 

STRATOSPHERE

If the pressure and temperature are 2.31 psia (p 15.9 kPa 

absolute) and –71.5°F (–57.5°C) at an elevation of 45,000 ft 

(13.72 km), what is the pressure at 55,000 ft (16.77 km), 

assuming isothermal conditions over this range of elevation?

Problem Definition

Situation: Standard atmospheric conditions prevail at an 
elevation of 55,000 ft (16.77 km).

Find: Atmospheric pressure (psia and kPa absolute) at 
55,000 ft (16.77 km).  

Plan

Calculate pressure using Eq. (3.16). 

Solution

For isothermal conditions,

Therefore the pressure at 55,000 ft is

SI units

� T 71.5– 460+ 388.5°R� �

p p0e
z z0–( )– g/RT

2.31e
  10,000( )– 32.2( )/ 1716 388.5×( )

� �

2.31e
0.483–

�

p 1.43 psia�

p 9.83 kPa absolute�

3.3

Figure 3.8

A mercury barometer.
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condition the gage pointer is calibrated to read zero pressure. When pressure is applied to the

gage, the curved tube tends to straighten (much like blowing into a party favor to straighten it

out), thereby actuating the pointer to read a positive gage pressure. The Bourdon-tube gage is

common because it is low cost, reliable, easy to install, and available in many different

pressure ranges. There are disadvantages: dynamic pressures are difficult to read accurately;

accuracy of the gage can be lower than other instruments; and the gage can be damaged by

excessive pressure pulsations. 

Piezometer
A piezometer is a vertical tube, usually transparent, in which a liquid rises in response to a

positive gage pressure. For example, Fig. 3.10 shows a piezometer attached to a pipe.

Pressure in the pipe pushes the water column to a height h, and the gage pressure at the center

of the pipe is which follows directly from the hydrostatic equation (3.7c). The

piezometer has several advantages: simplicity, direct measurement (no need for calibration),

and accuracy. However, a piezometer cannot easily be used for measuring pressure in a gas,

and a piezometer is limited to low pressures because the column height becomes too large

at high pressures. 

Manometer
A manometer, often shaped like the letter “U,” is a device for measuring pressure by

raising or lowering a column of liquid. For example, Fig. 3.11 shows a U-tube manometer

that is being used to measure pressure in a flowing fluid. In the case shown, positive gage

pressure in the pipe pushes the manometer liquid up a height To use a manometer,

engineers relate the height of the liquid in the manometer to pressure as illustrated in

Example 3.6. 

Figure 3.9

Bourdon-tube gage.

(a) View of typical gage.

(b) Internal mechanism

(schematic).

Figure 3.11

U-tube manometer.
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Once one is familiar with the basic principle of manometry, it is straightforward to

write a single equation rather than separate equations as was done in Example 3.6. The single

equation for evaluation of the pressure in the pipe of Fig 3.11 is

One can read the equation in this way: Zero pressure at the open end, plus the change in pres-

sure from point 1 to 2, minus the change in pressure from point 3 to 4, equals the pressure in

the pipe. The main concept to remember is that pressure increases as depth increases and de-

creases as depth decreases.

The general equation for the pressure difference measured by the manometer is:

(3.18)

where 	i and hi are the specific weight and deflection in each leg of the manometer. It does

not matter where one starts; that is, where one defines the initial point 1 and final point 2.

When liquids and gases are both involved in a manometer problem, it is well within engi-

neering accuracy to neglect the pressure changes due to the columns of gas. This is because

Example 3.7 shows how to apply Eq. (3.18) to perform an analysis of a mano-

meter that uses multiple fluids.

EXAMPLE 3.6   PRESSURE MEASUREMENT 

(U-TUBE MANOMETER)

Water at 10°C is the fluid in the pipe of Fig. 3.11, and 

mercury is the manometer fluid. If the deflection �h is 60 cm

and � is 180 cm, what is the gage pressure at the center of the 

pipe?

Problem Definition

Situation: Pressure in a pipe is being measured using a 
U-tube manometer.

Find: Gage pressure (kPa) in the center of the pipe.

Properties: 

1. Water (10°C), Table A.5, 

2. Mercury, Table A.4: 

Plan

Start at point 1 and work to point 4 using ideas from Eq. 
(3.7c). When fluid depth increases, add a pressure 
change. When fluid depth decreases, subtract a pressure 
change.

Solution

1. Calculate the pressure at point 2 using the hydrostatic 
equation (3.7c). 

2. Find the pressure at point 3.

• The hydrostatic equation with gives

• When a fluid-fluid interface is flat, pressure is constant 
across the interface. Thus, at the oil-water interface

3. Find the pressure at point 4 using the hydrostatic equation 
given in Eq. (3.7c). 
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3
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3
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Because the manometer configuration shown in Fig. 3.12 is common, it is useful to de-

rive an equation specific to this application. To begin, apply the manometer equation (3.18)

between points 1 and 2:

Simplifying gives

Dividing through by gives

Recognize that the terms on the left side of the equation are piezometric head and rewrite to

give the final result:

(3.19)

Equation (3.19) is valid when a manometer is used as shown in Fig. 3.12. Example 3.8 shows

how this equation is used.  

EXAMPLE 3.7   MANOMETER ANALYSIS

Sketch: What is the pressure of the air in the tank if

�1 40 cm, �2 100 cm, and �3 80 cm?

Problem Definition

Situation: A tank is pressurized with air.

Find: Pressure (kPa gage) in the air.

Assumptions: Neglect the pressure change in the air column. 

Properties: 

1. Oil:

2. Mercury, Table A.4: 

Plan

Apply the manometer equation (3.18) from elevation 1 to 
elevation 2.

Solution

Manometer equation

� � �

Air

Air

�1

Oil

(S = 0.8)

Mercury
�2 �3

12

	oil S	water 0.8 9810 N/m
3× 7850 N/m

3
.� � �
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3
.,�
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p1
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down
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up

�–+ p2�

p1 	A Δy Δh+( ) 	BΔh 	A Δy z2 z1–+( )––+ p2�

p1 	Az1+( ) p2 	Az2+( )– Δh 	B 	A–( )�

	A

p1

	A

------ z1+
p2

	A

------ z2+– Δh
	B

	A
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h1 h2– Δh
	B

	A
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Pressure Transducers
A pressure transducer is a device that converts pressure to an electrical signal. Modern factories

and systems that involve flow processes are controlled automatically, and much of their oper-

ation involves sensing of pressure at critical points of the system. Therefore, pressure-sensing

devices, such as pressure transducers, are designed to produce electronic signals that can be

transmitted to oscillographs or digital devices for record-keeping or to control other devices for

process operation. Basically, most transducers are tapped into the system with one side of a

small diaphragm exposed to the active pressure of the system. When the pressure changes, the

diaphragm flexes, and a sensing element connected to the other side of the diaphragm produces

a signal that is usually linear with the change in pressure in the system. There are many types

of sensing elements; one common type is the resistance-wire strain gage attached to a flexible

diaphragm as shown in Fig. 3.13. As the diaphragm flexes, the wires of the strain gage change

length, thereby changing the resistance of the wire. This change in resistance is converted into

a voltage change that can then be used in various ways.

Another type of pressure transducer used for measuring rapidly changing high pres-

sures, such as the pressure in the cylinder head of an internal combustion engine, is the piezo-

electric transducer (2). These transducers operate with a quartz crystal that generates a charge

when subjected to a pressure. Sensitive electronic circuitry is required to convert the charge

to a measurable voltage signal. 

Figure 3.12

Apparatus for 

determining change in 

piezometric head 

corresponding to flow in 

a pipe.

EXAMPLE 3.8   CHANGE IN PIEZOMETRIC HEAD 

FOR PIPE FLOW

A differential mercury manometer is connected to two pressure 

taps in an inclined pipe as shown in Fig. 3.12. Water at 50°F is 

flowing through the pipe. The deflection of mercury in the 

manometer is 1 inch. Find the change in piezometric pressure 

and piezometric head between points 1 and 2.

Problem Definition

Situation: Water is flowing in a pipe. 

Find:

1. Change in piezometric head (ft) between points 1 and 2.

2. Change in piezometric pressure (psfg) between 1 and 2.

Properties: 

1. Water (50 °F), Table A.5, 

2. Mercury, Table A.4, 

Plan

1. Find difference in the piezometric head using Eq. (3.19).

2. Relate piezometric head to piezometric pressure using
Eq. (3.10).

Solution

Difference in piezeometric head

Piezometric pressure

g

1

Flow

Fluid A 

Fluid B 

Δh

z2 – z1

Δy

2

	water 62.4 lbf/ft
3
.�

	Hg 847 lbf/ft
3
.�

h1 h2– Δh
	Hg

	water

------------ 1–
1

12
------ ft

847 lbf/ft
3

62.4 lbf/ft
3

-------------------------- 1–� �

1.05 ft�

pz h	water�

1.05 ft( ) 62.4 lbf/ft
3( ) 65.5 psf� �
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Computer data acquisition systems are used widely with pressure transducers. The ana-

log signal from the transducer is converted (through an A D converter) to a digital signal that

can be processed by a computer. This expedites the data acquisition process and facilitates

storing data.

Forces on Plane Surfaces (Panels)

This section explains how to represent hydrostatic pressure distributions on one face of a

panel with a resultant force that passes through a point called the center of pressure. This

information is relevant to applications such as dams and water towers. 

Uniform Pressure Distribution
A plane surface or panel is a flat surface of arbitrary shape. A description of the pressure at all

points along a surface is called a pressure distribution. When pressure is the same at every point,

as shown in Fig. 3.14a, the pressure distribution is called a uniform pressure distribution. The

pressure distribution in Fig. 3.14a can be represented by a resultant force as shown in Fig. 3.14b.

For a uniform pressure distribution, the magnitude of the resultant force is F where

and is the average pressure. The resultant force F passes through a point called the center of
pressure (CP). Notice that the CP is represented using a circle with a “plus” inside. For a uni-

form pressure distribution, the CP is located at the centroid of area of the panel. 

Hydrostatic Pressure Distribution
When a pressure distribution is produced by a fluid in hydrostatic equilibrium, as shown in

Fig. 3.15a, then the pressure distribution is called a hydrostatic pressure distribution. Notice

Figure 3.13

Schematic diagram of 

strain-gage pressure 

transducer.

Figure 3.14

(a) Uniform pressure 

distribution, and (b) 

equivalent force.

Pressure
pipe
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Digital voltage
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that a hydrostatic pressure distribution is linear and that the arrows representing pressure act

normal to the surface. In Fig. 3.15b, the pressure distribution is represented by a resultant

force that acts at the CP. Notice that the CP is located below the centroid of area. 

Magnitude of Resultant Hydrostatic Force
To derive an equation for the resultant force on a panel under hydrostatic loading, sum forces

using an integral. The situation is shown in Fig. 3.16. Line AB is the edge view of a panel

submerged in a liquid. The plane of this panel intersects the horizontal liquid surface at axis

0-0 with an angle �. The distance from the axis 0-0 to the horizontal axis through the centroid

of the area is given by The distance from 0-0 to the differential area dA is y. The pressure

on the differential area is

The differential force is

The total force on the area is

(3.20)

In Eq. (3.20), 	 and sin� are constants. Thus

(3.21)

Now the integral in Eq. (3.21) is the first moment of the area. Consequently, this is replaced

by its equivalent, Therefore

which can be rewritten as

(3.22)

The product of the variables within the parentheses of Eq. (3.22) is the pressure at the cen-

troid of the area. Thus

(3.23)

Figure 3.15

(a) Hydrostatic pressure 

distribution, and 

(b) resultant force F 

acting at the center of 

pressure.
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Equation (3.23), called the panel equation, shows that the hydrostatic force on a panel of arbitrary

shape (e.g., rectangular, round, elliptical) is given by the product of panel area and pressure at the

centroid of area. Example 3.9 shows how to apply the panel force equation.

Line of Action of the Resultant Force
A general equation for the vertical location of the CP is derived next. The initial situation is

shown in Fig. 3.16. The torque due to the resultant force F will balance the torque due to the

pressure distribution. 

The differential force dF is given by dF p dA; therefore,

Figure 3.16

Distribution of 

hydrostatic pressure 

on a plane surface.

EXAMPLE 3.9   HYDROSTATIC FORCE DUE TO 

CONCRETE

Determine the force acting on one side of a concrete form 

2.44 m high and 1.22 m wide (8 ft by 4 ft) that is used for 

pouring a basement wall. The specific weight of concrete is 

23.6 kN m3 (150 lbf ft3).

Problem Definition

Situation:

1. Concrete in a liquid state acts on a vertical surface.

2. Vertical wall is 2.44 m high and 1.22 m wide

Find: The resultant force (kN) acting on the wall. 

Assumptions: Freshly poured concrete can be represented as

a liquid.

Properties: Concrete:

Plan

Apply the panel equation given in Eq. (3.23).

Solution

1. Panel equation

2. Term-by-term analysis

•

• A area of panel

3. Resultant force

A

Centroid

Center of pressure

View C-C

BC

C

dA

F

p =   y sin

x

y

y
ycp

0

0

αγ
α

ycpF y Fd��

�

ycpF yp Ad
A
��

⁄ ⁄

	 23.6 kN/m3.�

F pA�

p pressure at depth of the centroid�

p 	concrete( ) zcentroid( ) 23.6 kN/m
3( ) 2.44 2⁄  m( )� �

28.79 kPa�

�

A 2.44 m( ) 1.22 m( ) 2.977 m2� �

F pA 28.79 kPa( ) 2.977 m2( ) 85.7 kN� � �
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Also, so

(3.24)

Since 	 and sin� are constants,

(3.25)

The integral on the right-hand side of Eq. (3.25) is the second moment of the area (often

called the area moment of inertia). This shall be identified as I0. However, for engineering ap-

plications it is convenient to express the second moment with respect to the horizontal cent-

roidal axis of the area. Hence by the parallel-axis theorem,

(3.26)

Substitute Eq. (3.26) into Eq. (3.25) to give

However, from Eq. (3.22), Therefore,

(3.27)

(3.28)

In Eq. (3.28), the area moment of inertia is taken about a horizontal axis that passes

through the centroid of area. Formulas for are presented in Fig. A.1. The slant distance 

measures the length from the surface of the liquid to the centroid of the panel along an axis

that is aligned with the “slant of the panel” as shown in Fig. 3.16. 

Equation (3.28) shows that the Center of Pressure (CP) will be situated below the cen-

troid. The distance between the CP and the centroid depends on the depth of submersion,

which is characterized by , and on the panel geometry, which is characterized by 

Due to assumptions in the derivations, Eqs. (3.23) and (3.28) have several limitations.

First, they only apply to a single fluid of constant density. Second, the pressure at the liquid

surface needs to be p 0 gage to correctly locate the CP. Third, Eq. (3.28) gives only the

vertical location of the CP, not the lateral location.

Example 3.10 shows how to apply the panel equations. Notice that drawing an FBD

makes the analysis easier.

EXAMPLE 3.10   FORCE TO OPEN AN

ELLIPTICAL GATE

An elliptical gate covers the end of a pipe 4 m in diameter. If 

the gate is hinged at the top, what normal force F is required 

to open the gate when water is 8 m deep above the top of the 

pipe and the pipe is open to the atmosphere on the other side? 

Neglect the weight of the gate.

Problem Definition

Situation: Water pressure is acting on an elliptical gate.

Find: Normal force (in newtons) required to open gate. 

Sketch:
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pressure
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Forces on Curved Surfaces

This section describes how to calculate forces on surfaces that have curvature. These results

are important for the design of components such as tanks, pipes, and curved gates.

Consider the curved surface AB in Fig. 3.17a. The goal is to represent the pressure dis-

tribution with a resultant force that passes through the center of pressure. One approach is to

integrate the pressure force along the curved surface and find the equivalent force. How-

ever, it is easier to sum forces for the free body shown in the upper part of Fig. 3.17b. The

lower sketch in Fig. 3.17b shows how the force acting on the curved surface relates to the

force F acting on the free body. Using the FBD and summing forces in the horizontal direc-

tion shows that

(3.29)

The line of action for the force FAC is through the center of pressure for side AC, as discussed

in the previous section, and designated as ycp.

Properties: Water (10°C), Table A.5: 

Assumptions:

1. Neglect the weight of the gate.

2. Neglect friction between the bottom on the gate and the 
pipe wall. 

Plan

1. Calculate resultant hydrostatic force using 

2. Find the location of the center of pressure using Eq. (3.28).

3. Draw an FBD of the gate. 

4. Apply moment equilibrium about the hinge.

Solution

1. Hydrostatic (resultant) force

•

• A area of elliptical panel (using Fig. A.1 to find formula)

• Calculate resultant force

2. Center of pressure

• where is the slant distance from the 
water surface to the centroid.

• Area moment of inertia of an elliptical panel using a 
formula from Fig. A.1 

• Finding center of pressure

3. FBD of the gate:

4. Moment equilibrium
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The vertical component of the equivalent force is

(3.30)

where W is the weight of the fluid in the free body and FCB is the force on the side CB.

The force FCB acts through the centroid of surface CB, and the weight acts through the

center of gravity of the free body. The line of action for the vertical force may be found by

summing the moments about any convenient axis.

Example 3.11 illustrates how curved surface problems can be solved by applying equi-

librium concepts together with the panel force equations.  

Figure 3.17

(a) Pressure distribution 

and equivalent force.

(b) Free-body diagram 

and action-reaction force 

pair.

EXAMPLE 3.11   HYDROSTATIC FORCE ON A 

CURVED SURFACE

Sketch:

Surface AB is a circular arc with a radius of 2 m and a width 

of 1 m into the paper. The distance EB is 4 m. The fluid above 

surface AB is water, and atmospheric pressure prevails on the 

free surface of the water and on the bottom side of surface 

AB. Find the magnitude and line of action of the hydrostatic 

force acting on surface AB.

Problem Definition

Situation: A body of water is contained by a curved surface.

Find:

1. Hydrostatic force (in newtons) on the curved surface AB.

2. Line of action of the hydrostatic force. 

Properties: Water (10°C), Table A.5: 

Plan

Apply equilibrium concepts to the body of fluid ABC.

1. Find the horizontal component of F by applying Eq. 
(3.29).

2. Find the vertical component of F by applying Eq. (3.30).

3. Find the line of action of F by finding the lines of action of 
components and then using a graphical solution. 

Solution

1. Equilibrium in the horizontal direction

2. Equilibrium in the horizontal direction

• Vertical force on side CB

• Weight of the water in volume ABC

• Summing forces

3. Line of action (horizontal force)

B
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The central idea of this section is that forces on curved surfaces may be found by apply-

ing equilibrium concepts to systems comprised of the fluid in contact with the curved sur-

face. Notice how equilibrium concepts are used in each of the following situations.

Consider a sphere holding a gas pressurized to a gage pressure pi as shown in Fig.

3.18. The indicated forces act on the fluid in volume ABC. Applying equilibrium in the ver-

tical direction gives

Because the specific weight for a gas is quite small, engineers usually neglect the weight of the gas:

(3.31)

Another example is finding the force on a curved surface submerged in a reservoir of liquid

as shown in Fig. 3.19a. If atmospheric pressure prevails above the free surface and on the outside

of surface AB, then force caused by atmospheric pressure cancels out and equilibrium gives

(3.32)

Hence the force on surface AB equals the weight of liquid above the surface, and the arrow

indicates that the force acts downward.

4. The line of action (xcp) for the vertical force is found by 
summing moments about point C:

The horizontal distance from point C to the centroid of the area 

ABC is found using Fig. A.1: Thus,

5. The resultant force that acts on the curved surface is 
shown in the following figure.

Figure 3.19

Curved surface with

(a) liquid above and

(b) liquid below. In (a), 

arrows represent forces 

acting on the liquid. In 

(b), arrows represent the 

pressure distribution on 

surface ab.
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Now consider the situation where the pressure distribution on a thin curved surface comes

from the liquid underneath, as shown in Fig. 3.19b. If the region above the surface, volume

abcd, were filled with the same liquid, the pressure acting at each point on the upper surface

of ab would equal the pressure acting at each point on the lower surface. In other words, there

would be no net force on the surface. Thus, the equivalent force on surface ab is given by

(3.33)

where W is the weight of liquid needed to fill a volume that extends from the curved surface

to the free surface of the liquid.

Buoyancy

This section describes how to calculate the buoyant force on an object. A buoyant force is

defined as the upward force that is produced on a body that is totally or partially submerged in a

fluid when the fluid is in a gravity field. Buoyant forces are significant for most problems that

involve liquids. Examples include surface ships, sediment transport in rivers, and fish

migration. Buoyant forces are sometimes significant in problems involving gases, for example,

a weather balloon.

The Buoyant Force Equation
The initial situation for the derivation is shown in Fig. 3.20. Consider a body ABCD sub-

merged in a liquid of specific weight 	. The sketch on the left shows the pressure distribution

acting on the body. As shown by Eq. (3.33), pressures acting on the lower portion of the body

create an upward force equal to the weight of liquid needed to fill the volume above surface

ADC. The upward force is

where Vb is the volume of the body (i.e., volume ABCD) and Va is the volume of liquid above

the body (i.e., volume ABCFE). As shown by Eq. (3.32), pressures acting on the top surface

of the body create a downward force equal to the weight of the liquid above the body:

Subtracting the downward force from the upward force gives the net or buoyant force FB act-

ing on the body:

(3.34)

Hence, the net force or buoyant force (FB) equals the weight of liquid that would be needed

to occupy the volume of the body.

Consider a body that is floating as shown in Fig. 3.21. The marked portion of the object

has a volume VD. Pressure acts on curved surface ADC causing an upward force equal to the

weight of liquid that would be needed to fill volume VD. The buoyant force is given by

(3.35)

F 	 V abcd W ↑� �

3.6

Fup 	 V b V a+( )�

Fdown 	 V a�

FB Fup Fdown– 	 V b� �

FB Fup 	 V D� �
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Hence, the buoyant force equals the weight of liquid that would be needed to occupy the vol-

ume VD. This volume is called the displaced volume. Comparison of Eqs. (3.34) and (3.35)

shows that one can write a single equation for the buoyant force: 

(3.36)

Although Eq. (3.36) was derived for a liquid, it is equally valid for a gas. If the body is totally

submerged, the displaced volume is the volume of the body. If a body is partially submerged,

the displaced volume is the portion of the volume that is submerged. For a fluid of uniform den-

sity, the line of action of the buoyant force passes through the centroid of the displaced volume.

The general principle of buoyancy embodied in Eq. (3.36) is called Archimedes’ principle:
For an object partially or completely submerged in a fluid, there is a net upward force (buoyant

force) equal to the weight of the displaced fluid.

The Hydrometer
A hydrometer (Fig. 3.22) is an instrument for measuring the specific gravity of liquids. It is

typically made of a glass bulb that is weighted on one end so the hydrometer floats in an

upright position. A stem of constant diameter is marked with a scale, and the specific weight

of the liquid is determined by the depth at which the hydrometer floats. The operating

principle of the hydrometer is buoyancy. In a heavy liquid (i.e., high ), the hydrometer will

float shallower because a lesser volume of the liquid must be displaced to balance the weight

of the hydrometer. In a light liquid, the hydrometer will float deeper.

Stability of Immersed and Floating Bodies

This section describes how to determine whether an object will tip over or remain in an upright

position when placed in a liquid. This topic is important for the design of objects such as ships

and buoys.

Immersed Bodies
When a body is completely immersed in a liquid, its stability depends on the relative posi-

tions of the center of gravity of the body and the centroid of the displaced volume of fluid,

Figure 3.20

Two views of a body

immersed in a liquid.

Figure 3.21
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which is called the center of buoyancy. If the center of buoyancy is above the center of grav-

ity, such as in Fig. 3.23a, any tipping of the body produces a righting couple, and conse-

quently, the body is stable. However, if the center of gravity is above the center of buoyancy,

any tipping produces an increasing overturning moment, thus causing the body to turn

through 180°. This is the condition shown in Fig. 3.23c. Finally, if the center of buoyancy

and center of gravity are coincident, the body is neutrally stable—that is, it lacks a tendency

for righting or for overturning, as shown in Fig. 3.23b.

Floating Bodies
The question of stability is more involved for floating bodies than for immersed bodies be-

cause the center of buoyancy may take different positions with respect to the center of grav-

ity, depending on the shape of the body and the position in which it is floating. For example,

consider the cross section of a ship shown in Fig. 3.24a. Here the center of gravity G is above

the center of buoyancy C. Therefore, at first glance it would appear that the ship is unstable

and could flip over. However, notice the position of C and G after the ship has taken a small

angle of heel. As shown in Fig. 3.24b, the center of gravity is in the same position, but the

center of buoyancy has moved outward of the center of gravity, thus producing a righting

moment. A ship having such characteristics is stable.

The reason for the change in the center of buoyancy for the ship is that part of the orig-

inal buoyant volume, as shown by the wedge shape AOB, is transferred to a new buoyant vol-

ume EOD. Because the buoyant center is at the centroid of the displaced volume, it follows

that for this case the buoyant center must move laterally to the right. The point of intersection

of the lines of action of the buoyant force before and after heel is called the metacenter M,
and the distance GM is called the metacentric height. If GM is positive—that is, if M is above

G—the ship is stable; however, if GM is negative, the ship is unstable. Quantitative relations

involving these basic principles of stability are presented in the next paragraph.

Figure 3.23
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Consider the ship shown in Fig. 3.25, which has taken a small angle of heel �. First

evaluate the lateral displacement of the center of buoyancy, then it will be easy by sim-

ple trigonometry to solve for the metacentric height GM or to evaluate the righting moment.

Recall that the center of buoyancy is at the centroid of the displaced volume. Therefore, re-

sort to the fundamentals of centroids to evaluate the displacement From the definition

of the centroid of a volume, 

(3.37)

where which is the distance from the plane about which moments are taken to the

centroid of V; V is the total volume displaced; �Vi is the volume increment; and xi is the mo-

ment arm of the increment of volume.

Take moments about the plane of symmetry of the ship. Recall from mechanics that vol-

umes to the left produce negative moments and volumes to the right produce positive moments.

For the right side of Eq. (3.37) write terms for the moment of the submerged volume about the

plane of symmetry. A convenient way to do this is to consider the moment of the volume before

heel, subtract the moment of the volume represented by the wedge AOB, and add the moment

represented by the wedge EOD. In a general way this is given by the following equation:

(3.38)

Because the original buoyant volume is symmetrical with y-y, the moment for the first term

on the right is zero. Also, the sign of the moment of VAOB is negative; therefore, when this

negative moment is subtracted from the right-hand side of Eq. (3.38), the result is

(3.39)

Figure 3.25
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EXAMPLE 3.12   BUOYANT FORCE ON A

METAL PART

A metal part (object 2) is hanging by a thin cord from a 

floating wood block (object 1). The wood block has a specific 

gravity S1 0.3 and dimensions of 50 50 10 mm. The 

metal part has a volume of 6600 mm3. Find the mass m2 of the 

metal part and the tension T in the cord.

Problem Definition

Situation: A metal part is suspended from a floating block of 
wood.

Find:

1. Mass (in grams) of the metal part.

2. Tension (in newtons) in the cord.

Properties: 

1. Water (15°C), Table A.5: 

2. Wood:  

Sketch:

Plan

1. Draw FBDs of the block and the part.

2. Apply equilibrium to the block to find the tension.

3. Apply equilibrium to the part to find the weight of the part.

4. Calculate the mass of the metal part using  

Solution

1. FBDs

2. Force equilibrium (vertical direction) applied to block

• Buoyant force where is the sub-
merged volume

• Weight of the block

• Tension in the cord

3. Force equilibrium (vertical direction) applied to metal part

• Buoyant force

• Equilibrium equation

4. Mass of metal part

Review

Notice that tension in the cord (0.11 N) is less than the weight 

of the metal part (0.18 N). This result is consistent with the 

common observation that an object will “weigh less in water 

than in air.” 

� × ×
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Now, express Eq. (3.39) in integral form:

(3.40)

But it may be seen from Fig. 3.25b that dV can be given as the product of the length of the dif-

ferential volume, x tan�, and the differential area, dA. Consequently, Eq. (3.40) can be written as

Here tan� is a constant with respect to the integration. Also, since the two terms on the right-

hand side are identical except for the area over which integration is to be performed, combine

them as follows:

(3.41)

The second moment, or moment of inertia of the area defined by the waterline, is given the

symbol I00, and the following is obtained:

Next, replace by and solve for :

From Fig. 3.25b,

Thus eliminating and tan� yields

However,

Therefore the metacentric height is

(3.42)

Equation (3.42) is used to determine the stability of floating bodies. As already noted, if

GM is positive, the body is stable; if GM is negative, it is unstable.

Note that for small angles of heel �, the righting moment or overturning moment is

given as follows:

(3.43)

However, for large angles of heel, direct methods of calculation based on these same princi-

ples would have to be employed to evaluate the righting or overturning moment.

x V x V x dV 
EOD
�+d

AOB
��

x V x
2

�tan A x
2

�tan dA
EOD
�+d

AOB
��

x V �tan  x
2
dA

Awaterline

��

x V I00 �tan�

x CC′ CC′

CC′
I00 �tan

V 
------------------�

CC′ CM �tan�

CC′

CM
I00

V 
------�

GM CM CG–�

GM
I00

V 
------ CG–�

RM 	 V GM��



3.8 SUMMARY 61

Summary

Hydrostatics, or fluid statics, is a situation in which the weight of each fluid particle is

balanced by a net force associated with pressure. 

Pressure p expresses the magnitude of normal force per unit area at a point. Pressure is a

scalar quantity, meaning it has no directional dependence. Absolute pressure pabs is measured

EXAMPLE 3.13   STABILITY OF A FLOATING BLOCK

A block of wood 30 cm square in cross section and 60 cm 

long weighs 318 N. Will the block float with sides vertical as 

shown?

Problem Definition

Situation: A block of wood is floating in water.

Find: Is the block of wood stable? 

Sketch:

Plan

1. Apply force equilibrium to find the depth of submergence.

2. Determine if block is stable about the long axis by 
applying Eq. (3.42).

3. If block is not stable, repeat steps 1 and 2. 

Solution

1. Equilibrium (vertical direction)

2. Stability (longitudinal axis)

Because the metacentric height is negative, the block is not 

stable about the longitudinal axis. Thus a slight disturbance 

will make it tip to the orientation shown below.

3. Equilibrium (vertical direction—see above figure)

4. Find the dimension w.

(Displaced volume) (Block volume) (Volume above

the waterline).

5. Moment of inertia at the waterline

6. Metacentric height

Since the metacentric height is positive, the block will be stable 

in this position.
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relative to absolute zero while gage pressure pgage is measured relative to atmospheric pressure

patm. Gage and absolute pressure are related by

The weight of a fluid causes pressure to increase with increasing depth, giving the hy-

drostatic differential equation

where z is the elevation, 	 is fluid weight per volume, � is fluid density, and g is gravitational ac-

celeration. The pressure variation for a uniform-density fluid is given by the hydrostatic equation

Hence, a fluid with uniform density has a constant value of piezometric head ( ) or

piezometric pressure ( ) throughout.

A fluid in contact with a surface produces a pressure distribution on the surface. This

pressure distribution can be represented as a statically equivalent force F acting at the center

of pressure. For a plane surface, the equivalent force is

where is pressure at the centroid of the area A. For a horizontal surface, the center of pres-

sure is at the centroid. Otherwise, the slant distance between the centroid and the center of

pressure ycp is given by

where  is the moment of area with respect to a horizontal axis through the centroid.

When a surface is curved, one can find the equivalent force by applying force equilib-

rium to a free body comprised of the fluid in contact with the surface.

When an object is either partially or totally submerged in a fluid, a buoyant force FB

acts. The magnitude is equal to the weight of the displaced volume of fluid:

where is the volume of displaced fluid. For a fluid with a uniform density, the center of

buoyancy is the centroid of the displaced volume of fluid.

When an object is floating, it may be unstable or stable. Stable means that if the object

is tipped, the buoyant force causes a moment that rotates the object back to its equilibrium po-

sition. An object is stable if the metacentric height is positive. In this case tipping the object

causes the center of buoyancy to move such that the buoyant force produces a righting moment.
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Problems

*A Preview Question (��) can be assigned prior to in-class

coverage of a topic.

Pressure and Related Concepts

*3.1 ��� Apply the grid method (p. 9) to each situation.

a. If pressure is 8 inches of water (vacuum), what is gage pres-

sure in kPa?

b. If the pressure is 120 kPa abs, what is the gage pressure in

psi?

c. If gage pressure is 0.5 bar, what is absolute pressure in psi?

d. If a person’s blood pressure is 120 mm Hg, what is their

blood pressure in kPa abs?

*3.2 ��� A 100 mm diameter sphere contains an ideal gas at

20°C. Apply the grid method (p. 9) to calculate the density in

units of kg m3.

a. Gas is helium. Gage pressure is 20 in H2O.

b. Gas is methane. Vacuum pressure is 3 psi. 

*3.3 ��� Using Section 3.1 and other resources, answer the

following questions. Strive for depth, clarity, and accuracy

while also combining sketches, words, and equations in ways

that enhance the effectiveness of your communication. 

a. What are five important facts that engineers need to know

about pressure?

b. What are five common instances in which people use gage

pressure?

c. What are the most common units for pressure?

d. Why is pressure defined using a derivative?

e. How is pressure similar to shear stress? How does pressure

differ from shear stress? 

3.4 The Crosby gage tester shown in the figure is used to cali-

brate or to test pressure gages. When the weights and the piston

together weigh 140 N, the gage being tested indicates 200 kPa.

If the piston diameter is 30 mm, what percentage of error exists

in the gage? 

3.5 As shown, a mouse can use the mechanical advantage pro-

vided by a hydraulic machine to lift up an elephant. 

a. Derive an algebraic equation that gives the mechanical ad-

vantge of the hydraulic machine shown. Assume the pistons

are frictionless and massless.

b. A mouse can have a mass of 25 g and an elephant a mass of

7500 kg. Determine a value of D1 and D2 so that the mouse

can support the elephant. 

3.6 Find a parked automobile for which you have information on

tire pressure and weight. Measure the area of tire contact with the

pavement. Next, using the weight information and tire pressure,

use engineering principles to calculate the contact area. Compare

your measurement with your calculation and discuss.

Hydrostatic Equation

*3.7 ��� Apply the grid method (p. 9) with the hydrostatic

equation to each of the following cases.

a. Predict the pressure change in kPa for an elevation

change of 10 ft in a fluid with a density of 90 lbm ft3.

b. Predict the pressure change in psf for a fluid with S 0.8

and an elevation change of 22 m.

c. Predict pressure change in inches of water for a fluid with a

density of 1.2 kg m3 and an elevation change of 1000 ft. 

d. Predict the elevation change in millimeters for a fluid with

S 13 that corresponds to a change in pressure of 1 6 atm.

*3.8 ��� Using Section 3.2 and other resources, answer the

following questions. Strive for depth, clarity, and accuracy

while also combining sketches, words, and equations in ways

that enhance the effectiveness of your communication.

a. What does hydrostatic mean? How do engineers identify

whether a fluid is hydrostatic?

b. What are the common forms on the hydrostatic equation?

Are the forms equivalent or are they different?

c. What is a datum? How do engineers establish a datum?

d. What are the main ideas of Eq. (3.5)? That is, what is the

meaning of this equation?

e. What assumptions need to be satisfied to apply the hydro-

static equation?

3.9 Apply the grid method (p. 11) to each situation.

a. What is the change in air pressure in pascals between the

floor and the ceiling of a room with walls that are 8 ft tall.

b. A diver in the ocean (S 1.03) records a pressure of 2 atm

on her depth gage. How deep is she?
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c. A hiker starts a hike at an elevation where the air pressure is

940 mbar, and he ascends 1200 ft to a mountain summit. As-

suming the density of air is constant, what is the pressure in

mbar at the summit? 

d. Lake Pend Oreille, in northern Idaho, is one of the deepest lakes

in the world, with a depth of 350 m in some locations. This lake

is used as a test facility for submarines. What is the maximum

pressure that a submarine could experience in this lake?

e. A 60 m tall standpipe (a standpipe is vertical pipe that is filled with

water and open to the atmosphere) is used to supply water for fire

fighting. What is the maximum pressure in the standpipe?

3.10 As shown, an air space above a long tube is pressurized to

50 kPa vacuum. Water (15oC) from a reservoir fills the tube to a

height h. If the pressure in the air space is changed to 25 kPa

vacuum, will h increase or descrease and by how much? As-

sume atmospheric pressure is 100 kPa.  

3.11 For the closed tank with Bourdon-tube gages tapped into it,

what is the specific gravity of the oil and the pressure reading on

gage C?

3.12 This manometer contains water at room temperature. The

glass tube on the left has an inside diameter of 1 mm (d 1.0

mm). The glass tube on the right is three times as large. For these

conditions, the water surface level in the left tube will be (a)

higher than the water surface level in the right tube, (b) equal to

the water surface level in the right tube, or (c) less than the

water surface level in the right tube. State your main reason or

assumption for making your choice.

3.13 If a 200 N force F1 is applied to the piston with the 4 cm di-

ameter, what is the magnitude of the force F2 that can be re-

sisted by the piston with the 10 cm diameter? Neglect the

weights of the pistons.

3.14 Some skin divers go as deep as 50 m. What is the gage

pressure at this depth in fresh water, and what is the ratio of the

absolute pressure at this depth to normal atmospheric pressure?

Assume T 20°C.

3.15 Water occupies the bottom 1.0 m of a cylindrical tank. On

top of the water is 0.75 m of kerosene, which is open to the at-

mosphere. If the temperature is 20°C, what is the gage pressure

at the bottom of the tank? 

3.16An engineer is designing a hydraulic lift with a capacity of 10

tons. The moving parts of this lift weigh 1000 lbf. The lift should raise

the load to a height of 6 ft in 20 seconds. This will be accomplished

with a hydraulic pump that delivers fluid to a cylinder. Hydraulic cyl-

inders with a stroke of 72 inches are available with bore sizes from

2 to 8 inches. Hydraulic piston pumps with an operating pressure

range from 200 to 3000 psig are available with pumping capacities

of 5, 10, and 15 gallons per minute. Select a hydraulic pump size and

a hydraulic cylinder size that can be used for this application.

3.17 A tank with an attached manometer contains water at 20°C.

The atmospheric pressure is 100 kPa. There is a stopcock lo-

cated 1 m from the surface of the water in the manometer. The

stopcock is closed, trapping the air in the manometer, and water

is added to the tank to the level of the stopcock. Find the in-

crease in elevation of the water in the manometer assuming the

air in the manometer is compressed isothermally.
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3.18 A tank is fitted with a manometer on the side, as shown.

The liquid in the bottom of the tank and in the manometer has a

specific gravity (S) of 3.0. The depth of this bottom liquid is 20

cm. A 15 cm layer of water lies on top of the bottom liquid. Find

the position of the liquid surface in the manometer.

3.19 As shown, a load acts on a piston of diameter D1. The pis-

ton rides on a reservoir of oil of depth h1 and specific gravity S.

The reservoir is connected to a round tube of diameter D2 and

oil rises in the tube to height h2. The oil in the tube is open to at-

mosphere. Derive an equation for the height h2 in terms of the

mass m of the load and other relevant variables. Neglect the

mass of the piston.

3.20 As shown, a load of mass 10 kg is situated on a piston of

diameter D1 140 mm. The piston rides on a reservoir of oil of

depth h1 42 mm and specific gravity S 0.8. The reservoir

is connected to a round tube of diameter D2 5 mm and oil

rises in the tube to height h2. Find h2. Assume the oil in the tube

is open to atmosphere and neglect the mass of the piston.

3.21 What is the maximum gage pressure in the odd tank

shown in the figure? Where will the maximum pressure occur?

What is the hydrostatic force acting on the top (CD) of the last

chamber on the right-hand side of the tank? Assume

T 10°C.

3.22 The steel pipe and steel chamber shown in the figure to-

gether weigh 600 lbf. What force will have to be exerted on the

chamber by all the bolts to hold it in place? The dimension � is

equal to 2.5 ft. Note: There is no bottom on the chamber—only

a flange bolted to the floor.

3.23 What force must be exerted through the bolts to hold the

dome in place? The metal dome and pipe weigh 6 kN. The

dome has no bottom. Here � 80 cm.
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3.24 Find the vertical component of force in the metal at the

base of the spherical dome shown when gage A reads 5 psig. In-

dicate whether the metal is in compression or tension. The spe-

cific gravity of the enclosed fluid is 1.5. The dimension L is 2 ft.

Assume the dome weighs 1000 lbf. 

3.25 The piston shown weighs 10 lbf. In its initial position, the

piston is restrained from moving to the bottom of the cylinder

by means of the metal stop. Assuming there is neither friction

nor leakage between piston and cylinder, what volume of oil

(S 0.85) would have to be added to the 1 in. tube to cause the

piston to rise 1 in. from its initial position?

3.26 Consider an air bubble rising from the bottom of a lake.

Neglecting surface tension, determine approximately what the

ratio of the density of the air in the bubble will be at a depth of

34 ft to its density at a depth of 8 ft.

3.27 One means of determining the surface level of liquid in a

tank is by discharging a small amount of air through a small

tube, the end of which is submerged in the tank, and reading

the pressure on the gage that is tapped into the tube. Then the

level of the liquid surface in the tank can be calculated. If the

pressure on the gage is 15 kPa, what is the depth d of liquid in

the tank?

Manometers

*3.28 ��� Using the Internet and other resources, answer the

following questions:

a. What are three common types of manometers? For each

type, make a sketch and give a brief description. 

b. How would you build a manometer from materials that are

commonly available? Sketch your design concept.

*3.29 ��� As shown, gas at pressure pg raises a column of liquid

to a height h. The gage pressure in the gas is given by 

Apply the grid method (p. 9) to each situation that follows.

a. The manometer uses a liquid with S 1.5. Calculate pres-

sure in psia for h 1 ft.

b. The manometer uses mercury. Calculate the column rise in

mm for a gage pressure of 1 6 atm. 
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c. The liquid has a density of 50 lbm ft3. Calculate pressure in

psfg for h 6 inches. 

d. The liquid has a density of 800 kg m3. Calculate the gage

pressure in bar for h 3 m.

3.30 Is the gage pressure at the center of the pipe (a) negative,

(b) zero, or (c) positive? Neglect surface tension effects and

state your rationale. 

3.31 Determine the gage pressure at the center of the pipe (point

A) in pounds per square inch when the temperature is 70°F with

 and  

3.32 Considering the effects of surface tension, estimate the gage

pressure at the center of pipe A for and T 20°C.

3.33 What is the pressure at the center of pipe B?

3.34 The ratio of container diameter to tube diameter is 8. When

air in the container is at atmospheric pressure, the free surface in

the tube is at position 1. When the container is pressurized, the

liquid in the tube moves 40 cm up the tube from position 1 to

position 2. What is the container pressure that causes this de-

flection? The liquid density is 1200 kg m3.

3.35 The ratio of container diameter to tube diameter is 10.

When air in the container is at atmospheric pressure, the free

surface in the tube is at position 1. When the container is

pressurized, the liquid in the tube moves 3 ft up the tube

from position 1 to position 2. What is the container pressure

that causes this deflection? The specific weight of the liquid

is 50 lbf ft3.

3.36 Determine the gage pressure at the center of pipe A in

pounds per square inch and in kilopascals.
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3.37 A device for measuring the specific weight of a liquid con-

sists of a U-tube manometer as shown. The manometer tube has

an internal diameter of 0.5 cm and originally has water in it. Ex-

actly 2 cm3 of unknown liquid is then poured into one leg of the

manometer, and a displacement of 5 cm is measured between

the surfaces as shown. What is the specific weight of the un-

known liquid?

3.38 Mercury is poured into the tube in the figure until the mercury

occupies 375 mm of the tube’s length. An equal volume of water is

then poured into the left leg. Locate the water and mercury surfaces.

Also determine the maximum pressure in the tube.

3.39 Find the pressure at the center of pipe A. T 10°C.

3.40 Determine (a) the difference in pressure and (b) the differ-

ence in piezometric head between points A and B. The elevations

zA and zB are 10 m and 11 m, respectively, �1 1 m, and the ma-

nometer deflection �2 is 50 cm.

3.41 The deflection on the manometer is h meters when the

pressure in the tank is 150 kPa absolute. If the absolute pressure

in the tank is doubled, what will the deflection on the manome-

ter be?  
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3.42 A vertical conduit is carrying oil (S 0.95). A differential

mercury manometer is tapped into the conduit at points A and B.

Determine the difference in pressure between A and B when h 3

in. What is the difference in piezometric head between A and B?

3.43 Two water manometers are connected to a tank of air. One

leg of the manometer is open to 100 kPa pressure (absolute)

while the other leg is subjected to 90 kPa. Find the difference in

deflection between both manometers, 

3.44 A manometer is used to measure the pressure difference be-

tween points A and B in a pipe as shown. Water flows in the pipe,

and the specific gravity of the manometer fluid is 3.0. The dis-

tances and manometer deflection are indicated on the figure. Find

(a) the pressure differences and (b) the difference in

piezometric pressure, Express both answers in kPa.

3.45 A novelty scale for measuring a person’s weight by having the

person stand on a piston connected to a water reservoir and stand

pipe is shown in the diagram. The level of the water in the stand pipe

is to be calibrated to yield the person’s weight in pounds force.

When the person stands on the scale, the height of the water in the

stand pipe should be near eye level so the person can read it. There

is a seal around the piston that prevents leaks but does not cause a

significant frictional force. The scale should function for people

who weigh between 60 and 250 lbf and are between 4 and 6 feet tall.

Choose the piston size and standpipe diameter. Clearly state the de-

sign features you considered. Indicate how you would calibrate the

scale on the standpipe. Would the scale be linear?

Atmospheric Pressure Variation

3.46 The boiling point of water decreases with elevation be-

cause of the pressure change. What is the boiling point of water

at an elevation of 2000 m and at an elevation of 4000 m for stan-

dard atmospheric conditions?

3.47 From a depth of 10 m in a lake to an elevation of 4000 m in

the atmosphere, plot the variation of absolute pressure. Assume

that the lake water surface elevation is at mean sea level and as-

sume standard atmospheric conditions.

3.48 Assume that a woman must breathe a constant mass rate of

air to maintain her metabolic processes. If she inhales and

exhales 16 times per minute at sea level, where the tempera-

ture is 59°F (15°C) and the pressure is 14.7 psia (101 kPa),

what would you expect her rate of breathing at 18,000 ft (5486

m) to be? Use standard atmospheric conditions.

3.49 A pressure gage in an airplane indicates a pressure of 95

kPa at takeoff, where the airport elevation is 1 km and the tem-

perature is 10°C. If the standard lapse rate of 5.87°C km is as-

sumed, at what elevation is the plane when a pressure of 75 kPa

is read? What is the temperature for that condition?

3.50 Denver, Colorado, is called the “mile-high” city. What are

the pressure, temperature, and density of the air when standard

atmospheric conditions prevail? Give your answer in traditional

and SI units.
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3.51 An airplane is flying at 10 km altitude in a U.S. standard at-

mosphere. If the internal pressure of the aircraft interior is 100

kPa, what is the outward force on a window? The window is flat

and has an elliptical shape with lengths of 300 mm along the

major axis and 200 mm along the minor axis. 

3.52 The mean atmospheric pressure on the surface of Mars is 7

mbar, and the mean surface temperature is –63°C. The atmosphere

consists primarily of CO2 (95.3%) with small amounts of nitrogen

and argon. The acceleration due to gravity on the surface is 3.72 m/

s2. Data from probes entering the Martian atmosphere show that

the temperature variation with altitude can be approximated as

constant at –63°C from the Martian surface to 14 km, and then a

linear decrease with a lapse rate of 1.5°C/km up to 34 km. Find

the pressure at 8 km and 30 km altitude. Assume the atmosphere

is pure carbon dioxide. Note that the temperature distribution in

the atmosphere of Mars differs from that of Earth because the re-

gion of constant temperature is adjacent to the surface and the re-

gion of decreasing temperature starts at an altitude of 14 km.

3.53 Design a computer program that calculates the pressure and

density for the U.S. standard atmosphere from 0 to 30 km altitude.

Assume the temperature profiles are linear and are approximated

by the following ranges, where z is the altitude in kilometers:

Panel Force Equations

*3.54 ��� Using Section 3.4 and other resources, answer the

questions below. Strive for depth, clarity, and accuracy while

also combining sketches, words, and equations in ways that en-

hance the effectiveness of your communication.

a. For hydrostatic conditions, what do typical pressure distribu-

tions on a panel look like? Sketch three examples that corre-

spond to different situations.

b. What is a center of pressure? What is a centroid of area?

c. In Eq. (3.23), what does mean? What factors influence the

value of 

d. What is the relationship between the pressure distribution on

a panel and the resultant force?

e. How far is the center of pressure from the centroid of area?

What factors influence this distance?

3.55 Consider the two rectangular gates shown in the figure.

They are both the same size, but gate A is held in place by a hor-

izontal shaft through its midpoint and gate B is cantilevered to a

shaft at its top. Now consider the torque T required to hold the

gates in place as H is increased. Choose the valid statement(s):

(a) TA increases with H. (b) TB increases with H. (c) TA does not

change with H. (d) TB does not change with H.

3.56 For gate A, choose the statements that are valid: (a) The hy-

drostatic force acting on the gate increases as H increases. (b)

The distance between the CP on the gate and the centroid of the

gate decreases as H increases. (c) The distance between the CP

on the gate and the centroid of the gate remains constant as H

increases. (d) The torque applied to the shaft to prevent the gate

from turning must be increased as H increases. (e) The torque

applied to the shaft to prevent the gate from turning remains

constant as H increases.

3.57 As shown, water (15°C) is in contact with a square panel; d 1

m and h 2 m. 

a. Calculate the depth of the centroid

b. Calculate the resultant force on the panel

c. Calculate the distance from the centroid to the CP.

3.58 As shown, a round viewing window of diameter D 0.8 m

is situated in a large tank of seawater The top of the

window is 1.2 m below the water surface, and the window is an-

gled at 60o with respect to the horizontal. Find the hydrostatic

force acting on the window and locate the corresponding CP. 

3.59 Find the force of the gate on the block. See sketch.

3.60 Assume that wet concrete (	 150 lbf ft3) behaves as a

liquid. Determine the force per unit foot of length exerted on the

forms. If the forms are held in place as shown, with ties between

vertical braces spaced every 2 ft, what force is exerted on the

bottom tie?

0–13.72 km T 23.1 5.87z (°C)

13.7–16.8 km T –57.5°C

16.8–30 km T –57.5 1.387(z 16.8)°C

� –

�

� + –

p

p?
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3.61 A rectangular gate is hinged at the water line, as shown.

The gate is 4 ft high and 10 ft wide. The specific weight of wa-

ter is 62.4 lbf ft3. Find the necessary force (in lbf) applied at the

bottom of the gate to keep it closed.  

3.62 The gate shown is rectangular and has dimensions 6 m by

4 m. What is the reaction at point A? Neglect the weight of the gate.

3.63 Determine P necessary to just start opening the 2 m–wide

gate.

3.64 The square gate shown is eccentrically pivoted so that it

automatically opens at a certain value of h. What is that value in

terms of �?

3.65 This 10 ft–diameter butterfly valve is used to control the

flow in a 10 ft–diameter outlet pipe in a dam. In the position

shown, it is closed. The valve is supported by a horizontal shaft

through its center. What torque would have to be applied to the

shaft to hold the valve in the position shown? 
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PROBLEM 3.60

PROBLEM 3.61
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3.66 For the gate shown, � 45°, y1 1 m, and y2 4 m. Will

the gate fall or stay in position under the action of the hydrostatic

and gravity forces if the gate itself weighs 150 kN and is 1.0 m

wide? Assume T 10°C. Use calculations to justify your answer.

3.67 For this gate, � 45°, y1 3 ft, and y2 6 ft. Will the gate

fall or stay in position under the action of the hydrostatic and grav-

ity forces if the gate itself weighs 18,000 lb and is 3 ft wide? As-

sume T 50°F. Use calculations to justify your answer.

3.68 Determine the hydrostatic force F on the triangular gate,

which is hinged at the bottom edge and held by the reaction RT

at the upper corner. Express F in terms of 	, h, and W. Also de-

termine the ratio . Neglect the weight of the gate.  

3.69 In constructing dams, the concrete is poured in lifts of ap-

proximately 1.5 m (y1 1.5 m). The forms for the face of the dam

are reused from one lift to the next. The figure shows one such

form, which is bolted to the already cured concrete. For the new

pour, what moment will occur at the base of the form per meter

of length (normal to the page)? Assume that concrete acts as a liq-

uid when it is first poured and has a specific weight of 24 kN m3.

3.70 The plane rectangular gate can pivot about the support at B.

For the conditions given, is it stable or unstable? Neglect the

weight of the gate. Justify your answer with calculations.

Forces on Curved Surfaces

3.71 Two hemispheric shells are perfectly sealed together, and

the internal pressure is reduced to 25% of atmospheric pressure.

The inner radius is 10.5 cm, and the outer radius is 10.75 cm.

The seal is located halfway between the inner and outer radius.

If the atmospheric pressure is 101.3 kPa, what force is required

to pull the shells apart?

3.72 If exactly 20 bolts of 2.5 cm diameter are needed to hold

the air chamber together at A-A as a result of the high pressure

within, how many bolts will be needed at B-B? Here D 40 cm

and d 20 cm.

3.73 For the plane rectangular gate (� w in size), figure (a),

what is the magnitude of the reaction at A in terms of 	w and

the dimensions � and w? For the cylindrical gate, figure (b), will

the magnitude of the reaction at A be greater than, less than, or the

same as that for the plane gate? Neglect the weight of the

gates.

3.74 Water is held back by this radial gate. Does the resultant of

the pressure forces acting on the gate pass above the pin,

through the pin, or below the pin?

3.75 For the curved surface AB:

a. Determine the magnitude, direction, and line of action of the

vertical component of hydrostatic force acting on the sur-

face. Here � 1 m.

b. Determine the magnitude, direction, and line of action of the

horizontal component of hydrostatic force acting on the surface.

c. Determine the resultant hydrostatic force acting on the surface.
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3.76 Determine the hydrostatic force acting on the radial gate if

the gate is 40 ft long (normal to the page). Show the line of ac-

tion of the hydrostatic force acting on the gate.  

3.77 A plug in the shape of a hemisphere is inserted in a hole in

the side of a tank as shown in the figure. The plug is sealed by

an O-ring with a radius of 0.2 m. The radius of the hemispheri-

cal plug is 0.25 m. The depth of the center of the plug is 2 m in

fresh water. Find the horizontal and vertical forces on the plug

due to hydrostatic pressure.

3.78 This dome (hemisphere) is located below the water surface

as shown. Determine the magnitude and sign of the force compo-

nents needed to hold the dome in place and the line of action of

the horizontal component of force. Here y1 1 m and y2 2 m.

Assume T 10°C.

3.79 Consider the dome of Prob. 3.78. This dome is 10 ft in di-

ameter, but now the dome is not submerged. The water surface

is at the level of the center of curvature of the dome. For these

conditions, determine the magnitude and direction of the result-

ant hydrostatic force acting on the dome.
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Buoyancy

*3.80 ��� Apply the grid method (p. 11) to each situation be-

low.

a. Determine the buoyant force in newtons on a basketball that

is floating in a lake (10oC).

b. Determine the buoyant force in newtons on a 1 mm copper

sphere that is immersed in kerosene.

c. Determine the buoyant force in newtons on a 12 inch–diameter

balloon. The balloon is filled with helium and situated in ambi-

ent air (20°C).

*3.81 ��� Using Section 3.6 and other resources, answer the

following questions. Strive for depth, clarity, and accuracy

while also combining sketches, words, and equations in ways

that enhance the effectiveness of your communication.

a. Why learn about buoyancy? That is, what are important tech-

nical problems that involve buoyant forces?

b. For a buoyant force, where is the CP? Where is the line of

action?

c. What is displaced volume? Why is it important?

d. What is the relationship between pressure distribution and

buoyant force?

3.82 As shown, a uniform-diameter rod is weighted at one end

and is floating in a liquid. The liquid (a) is lighter than water, (b)

must be water, or (c) is heavier than water. Show your work.

3.83 An 800 ft ship has a displacement of 35,000 tons, and the

area defined by the waterline is 38,000 ft2. Will the ship take

more or less draft when steaming from salt water to fresh water?

How much will it settle or rise? 

3.84 A submerged spherical steel buoy that is 1.2 m in diameter

and weighs 1200 N is to be anchored in salt water 20 m below

the surface. Find the weight of scrap iron that should be sealed

inside the buoy in order that the force on its anchor chain will

not exceed 4.5 kN.

3.85 A buoy is designed with a hemispherical bottom and coni-

cal top as shown in the figure. The diameter of the hemisphere

is 1 m, and the half angle of the cone is 30°. The buoy has a

mass of 460 kg. Find the location of the water line on the buoy

floating in sea water (� 1010 kg m3).

3.86 A rock weighs 1000 N in air and 609 N in water. Find its

volume.

3.87 As shown, a cube ( ) suspended in carbon tetra-

cloride is exactly balanced by an object of mass 

Find the mass of the cube. 

3.88 A block of material of unknown volume is submerged in water

and found to weigh 300 N (in water). The same block weighs 700

N in air. Determine the specific weight and volume of the material.

3.89 A 1 ft–diameter cylindrical tank is filled with water to a

depth of 2 ft. A cylinder of wood 6 in. in diameter and 3 in. long

is set afloat on the water. The weight of the wood cylinder is 2 lbf.

Determine the change (if any) in the depth of the water in the tank.

3.90 A 90° inverted cone contains water as shown. The volume

of the water in the cone is given by The original

depth of the water is 10 cm. A block with a volume of 200 cm3

and a specific gravity of 0.6 is floated in the water. What will be

the change (in cm) in water surface height in the cone?
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3.91 The floating platform shown is supported at each corner by

a hollow sealed cylinder 1 m in diameter. The platform itself

weighs 30 kN in air, and each cylinder weighs 1.0 kN per meter

of length. What total cylinder length L is required for the plat-

form to float 1 m above the water surface? Assume that the spe-

cific weight of the water (brackish) is 10,000 N m3. The

platform is square in plan view.

3.92 To what depth d will this rectangular block (with density

0.8 times that of water) float in the two-liquid reservoir?

3.93 Determine the minimum volume of concrete (	 23.6

kN m3) needed to keep the gate (1 m wide) in a closed position,

with � 2 m. Note the hinge at the bottom of the gate.

3.94 A cylindrical container 4 ft high and 2 ft in diameter holds

water to a depth of 2 ft. How much does the level of the water in

the tank change when a 5 lb block of ice is placed in the con-

tainer? Is there any change in the water level in the tank when

the block of ice melts? Does it depend on the specific gravity of

the ice? Explain all the processes.

3.95 The partially submerged wood pole is attached to the wall

by a hinge as shown. The pole is in equilibrium under the action

of the weight and buoyant forces. Determine the density of the

wood.

3.96 A gate with a circular cross section is held closed by a lever

1 m long attached to a buoyant cylinder. The cylinder is 25 cm

in diameter and weighs 200 N. The gate is attached to a horizon-

tal shaft so it can pivot about its center. The liquid is water. The

chain and lever attached to the gate have negligible weight. Find

the length of the chain such that the gate is just on the verge of

opening when the water depth above the gate hinge is 10 m. 

3.97 A balloon is to be used to carry meteorological instruments

to an elevation of 15,000 ft where the air pressure is 8.3 psia. The

balloon is to be filled with helium, and the material from which

it is to be fabricated weighs 0.01 lbf ft2. If the instruments weigh

10 lbf, what diameter should the spherical balloon have?

3.98 A weather balloon is constructed of a flexible material such

that the internal pressure of the balloon is always 10 kPa higher

than the local atmospheric pressure. At sea level the diameter of

the balloon is 1 m, and it is filled with helium. The balloon ma-

terial, structure, and instruments have a mass of 100 g. This

does not include the mass of the helium. As the balloon rises, it

will expand. The temperature of the helium is always equal to

the local atmospheric temperature, so it decreases as the balloon

gains altitude. Calculate the maximum altitude of the balloon in

a standard atmosphere.
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Hydrometers

3.99 The hydrometer shown sinks 5.3 cm in water (15°C). The

bulb displaces 1.0 cm3, and the stem area is 0.1 cm2. Find the

weight of the hydrometer.

3.100The hydrometer of Prob. 3.99 weighs 0.015 N. If the stem sinks

6.3 cm in oil (z 6.3 cm), what is the specific gravity of the oil?

3.101 A common commercial hydrometer for measuring the

amount of antifreeze in the coolant system of an automobile

engine consists of a chamber with differently colored balls.

The system is calibrated to give the range of specific gravity

by distinguishing between the balls that sink and those that

float. The specific gravity of an ethylene glycol-water mixture

varies from 1.012 to 1.065 for 10% to 50% by weight of ethyl-

ene glycol. Assume there are six balls, 1 cm in diameter each,

in the chamber. What should the weight of each ball be to pro-

vide a range of specific gravities between 1.01 and 1.06 with

0.01 intervals?

3.102 A hydrometer with the configuration shown has a bulb di-

ameter of 2 cm, a bulb length of 8 cm, a stem diameter of 1 cm,

a length of 8 cm, and a mass of 35 g. What is the range of spe-

cific gravities that can be measured with this hydrometer? 

(Hint: Liquid levels range between bottom and top of stem.)

Stability

3.103 A barge 20 ft wide and 50 ft long is loaded with rocks as

shown. Assume that the center of gravity of the rocks and barge

is located along the centerline at the top surface of the barge. If

the rocks and the barge weigh 400,000 lbf, will the barge float

upright or tip over?

3.104 A floating body has a square cross section with side w as

shown in the figure. The center of gravity is at the centroid of the

cross section. Find the location of the water line, where the

body would be neutrally stable (GM 0). If the body is floating in

water, what would be the specific gravity of the body material?

3.105 A cylindrical block of wood 1 m in diameter and 1 m long

has a specific weight of 7500 N m3. Will it float in water with

its axis vertical?

3.106 A cylindrical block of wood 1 m in diameter and 1 m long

has a specific weight of 5000 N m3. Will it float in water with

the ends horizontal?

3.107 Is the block in this figure stable floating in the position

shown? Show your calculations.

PROBLEMS 3.99, 3.100

PROBLEM 3.102

A = 0.1 cm2

z = 5.3 cm

V = 1.0 cm3

�
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2 cm
diameter
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PROBLEM 3.103

 PROBLEM 3.104

PROBLEM 3.107
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20 ft
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C H A P T E R

Flowing Fluids and

Pressure Variation 

Many phenomena that affect us in our daily lives are related to pressure in flowing fluids. For ex-

ample, one indicator of our health, blood pressure, is related to the flow of blood through veins

and arteries. The atmospheric pressure readings reported in weather forecasts control atmospheric

flow patterns related to local weather conditions. Even the rotary motion generated when we stir

a cup of coffee gives rise to pressure variations and flow patterns that enhance mixing.

The relationship between pressure and flow velocity is also important in many engi-

neering applications. In the design of tall structures, the pressure forces from the wind may

dictate the design of individual elements, such as windows, as well as the basic structure to

withstand wind loads. In aircraft design, the pressure distribution is primarily responsible for

lift and contributes to the drag of the aircraft. In the design of flow systems, such as heating

and air conditioning, the pressure distribution is responsible for flow in the ducts.

The force balance between pressure and weight in a static fluid was presented in Chap-

ter 3, which lead to an equation for pressure variation with depth. In this chapter the pressure

variation in flowing fluids will be addressed. The concepts of pathlines and streamlines help

visualize and understand fluid motion. The definition of fluid velocity and acceleration leads

This photograph shows the eye of 

a hurricane. The motion is the 

result of pressure variations.

SCIENTIFIC LEARNING OUTCOMES

Conceptual Knowledge

• Distinguish between steady, unsteady, uniform, and nonuniform 

flows.

• Distinguish between convective and local acceleration.

• Describe the steps to derive the Bernoulli equation from Euler’s 

equation.

• Explain what is meant by rotation and vorticity of a fluid element.

• Describe flow separation.

Procedural Knowledge

• Apply Euler’s equation to predict pressure.

• Predict pressure distributions in rotating flows.

• Apply the Bernoulli equation to pressure and velocity variations.

• Evaluate the rotation and vorticity of a fluid element.

Applications (Typical)

• In variable area ducts, relate pressure and velocity distributions.

• Measurement of velocity with stagnation tube or a Pitot-static tube.

• Cyclonic storm pressure distribution.
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to an application of Newton’s second law relating forces on a fluid element to the product of

mass and acceleration. These relationships lead to the Bernoulli equation, which relates local

pressure and elevation to fluid velocity and is fundamental to many fluid mechanic applica-

tions. This chapter also introduces the idea of fluid rotation and the concept of irrotationality.

Descriptions of Fluid Motion

Engineers have developed ways to describe fluid flow patterns and to identify important

characteristics of the flow field. This terminology allows engineers to communicate ideas es-

sential to the design of systems such as bridge piers, air-conditioning ducts, airfoils, and

structures subjected to wind loads. 

Streamlines and Flow Patterns
To visualize the flow field it is desirable to construct lines that show the flow direction. Such

a construction is called a flow pattern, and the lines are called streamlines. The streamline is

defined as a line drawn through the flow field in such a manner that the local velocity vector

is tangent to the streamline at every point along the line at that instant. Thus the tangent of the

streamline at a given time gives the direction of the velocity vector. A streamline, however,

does not indicate the magnitude of the velocity. The flow pattern provided by the streamlines

is an instantaneous visualization of the flow field.

An example of streamlines and a flow pattern is shown in Fig. 4.1a for water flowing

through a slot in the side of a tank. The velocity vectors have been sketched at three different

locations: a, b, and c. The streamlines, according to their definition, are tangent to the veloc-

ity vectors at these points. Also, the velocities are parallel to the wall in the wall region, so

the streamlines adjacent to the wall follow the contour of the wall. The generation of a flow

pattern is a very effective way of illustrating the geometric features of the flow field.

Whenever flow occurs around a body, part of it will go to one side and part to the other

as shown in Fig. 4.1b for flow over an airfoil section. The streamline that follows the flow di-

vision (that divides on the upstream side and joins again on the downstream side) is called

the dividing streamline. At the location where the dividing streamline intersects the body, the

velocity will be zero with respect to the body. This is the stagnation point.

Figure 4.1

Flow through an 

opening in a tank and 

over an airfoil section.

4.1

(b)(a)

Dividing streamline

Stagnation point

a
b

c
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Another example of streamlines is shown in Fig. 4.2. These are the streamlines pre-

dicted for the flow over an Volvo ECC prototype. Flow patterns of this nature allow the engi-

neer to assess various aerodynamic features of the flow and possibly change the shape to

achieve better performance, such as reduced drag.

Having introduced the general concepts of flow patterns, it is convenient to make distinc-

tions between different types of flows. These concepts can be best introduced by expressing the

velocity of the fluid in the form

where s is the distance traveled by a fluid particle along a path, and t is the time, as shown in

Fig. 4.3. Flows can be either uniform or nonuniform. In a uniform flow, the velocity does not

change along a fluid path; that is, 

It follows that in uniform flow the fluid paths are straight and parallel as shown in Fig. 4.4 for

flow in a pipe. In nonuniform flow, the velocity changes along a fluid path, so

For the converging duct in Fig. 4.5a, the magnitude of the velocity increases as the duct

converges, so the flow is nonuniform. For the vortex flow shown in Fig. 4.5b, the magnitude

of the velocity does not change along the fluid path, but the direction does, so the flow is

nonuniform.

Figure 4.2

Predicted streamline 

pattern over the Volvo 

ECC prototype. 

(Courtesy J. Michael 

Summa, Analytic 

Methods, Inc.)

Figure 4.3

Fluid particle moving along 

a pathline.

Figure 4.4

Uniform flow in a pipe.
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Flows can be either steady or unsteady. In a steady flow the velocity at a given point on

a fluid path does not change with time:

The flow in a pipe, shown in Fig. 4.4, would be an example of steady flow if there

was no change in velocity with time. An unsteady flow exists if

If the flow in the pipe changed with time due to a valve opening or closing, the flow would be

unsteady; that is, the velocity at any point selected on a fluid path would be increasing or de-

creasing with time. Although unsteady, the flow would still be uniform.

By studying the flow pattern, one can generally decide whether the flow is uniform or

nonuniform. The flow pattern, as represented by streamlines, gives no indication of the steadi-

ness or unsteadiness of the flow because the streamlines are only an instantaneous represen-

tation of the flow field.

Pathlines and Streaklines
Besides the streamline described earlier, there are two other approaches commonly used to vi-

sualize flow fields; namely, the pathline and streakline.

The pathline simply is the path of a fluid particle as it moves through the flow field. In other

words, if a light were attached to a fluid particle, a time exposure photograph taken of the moving

light would be the pathline. For an example of a pathline, consider a two-dimensional flow that

initially has horizontal streamlines as shown in Fig. 4.6. At a given time, t0, the flow instantly

changes direction, and the flow moves upward to the right at 45° with no further change. The flow

is unsteady because the velocity at a point changes with time. A fluid particle is tracked from the

starting point, and up to time t0, the pathline is the horizontal line segment shown on Fig. 4.6a.

After time t0, the particle continues to follow the streamline and moves up the right as shown in

Fig. 4.6b. Both line segments constitute the pathline.

The streakline is the line generated by a tracer fluid, such as a dye, continuously injected

into the flow field at the starting point. Up to time t0, the dye will form a line segment as shown

in Fig. 4.6c. Up to this time, there is no difference between the pathline and the streakline.

Now the flow changes directions, and the initial horizontal dye line is transported, in whole,

in the upward 45° direction. After t0 the dye continues to be injected and forms a new line segment

along the new streamline, resulting in the streakline shown in Fig. 4.6d. Obviously, the pathline

and streakline are very different. In general, neither pathlines nor streaklines represent streamlines

Figure 4.5

Flow patterns for 

nonuniform flow.

(a) Converging flow.

(b) Vortex flow.

(a) (b)
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in an unsteady flow. Both the pathline and streakline provide a history of the flow field, and the

streamlines indicate the current flow pattern.

In steady flow the pathline, streakline, and streamline are coincident if they pass

through the same point.

Laminar and Turbulent Flow
Laminar flow is a well-ordered state of flow in which adjacent fluid layers move smoothly

with respect to each other. A typical laminar flow would be the flow of honey or thick syrup

from a pitcher. Laminar flow in a pipe has a smooth, parabolic velocity distribution as shown

in Fig. 4.7a.

Turbulent flow is an unsteady flow characterized by intense cross-stream mixing. For

example, the flow in the wake of a ship is turbulent. The eddies observed in the wake cause

intense mixing. The transport of smoke from a smoke stack on a windy day also exemplifies

a turbulent flow. The mixing is apparent as the plume widens and disperses.

An instantaneous velocity profile for turbulent flow in a pipe is shown in Fig. 4.7b. A

near uniform velocity distribution occurs across the pipe because the high-velocity fluid at

Figure 4.6

Streamlines, pathlines, 

and streakline for an 

unsteady flow field.

Figure 4.7

Laminar and turbulent 

flow in a straight pipe.

(a) Laminar flow.

(b) Turbulent flow.

(a)

Streamlines for t < t0

Streamlines for t > t0

Starting point

Pathline of t = t0
(b)

Pathline of t > t0

(c)

Streamlines for t < t0

Streamlines for t > t0

Starting point

Streakline of t = t0
(d)

Streakline of t > t0

(a) (b)

u

u

u
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the pipe center is transported by turbulent eddies across the pipe to the low-velocity region

near the wall. Because the flow is unsteady, the velocity at any point in the pipe fluctuates

with time. The standard approach to treating turbulent flow is to represent the velocity as a

time-averaged average value plus a fluctuating quantity, The time-averaged value

is designated by  in Fig. 4.7b. The fluctuation velocity is the difference between the local

velocity and the averaged velocity. A turbulent flow is often designated as “steady” if the

time-averaged velocity is unchanging with time.

In general, laminar pipe flows are associated with low velocities and turbulent flows

with high velocities. Laminar flows can occur in small tubes, highly viscous flows, or flows

with low velocities, but turbulent flows are, by far, the most common.

One-Dimensional and Multi-Dimensional Flows
The dimensionality of a flow field is characterized by the number of spatial dimensions

needed to describe the velocity field. The definition is best illustrated by example. Fig. 4.8a
shows the velocity distribution for an axisymmetric flow in a circular duct. The flow is uni-

form, or fully developed, so the velocity does not change in the flow direction (z). The veloc-

ity depends on only one dimension, namely the radius r, so the flow is one-dimensional. Fig.

4.8b shows the velocity distribution for uniform flow in a square duct. In this case the veloc-

ity depends on two dimensions, namely x and y, so the flow is two-dimensional. Figure 4.8c
also shows the velocity distribution for the flow in a square duct but the duct cross-sectional

area is expanding in the flow direction so the velocity will be dependent on z as well as x and

y. This flow is three-dimensional.

Another good example of three-dimensional flow is turbulence, because the velocity

components at any one time depend on the three coordinate directions. For example, the ve-

locity component u at a given time depends on x, y, and z; that is, u(x,y,z). Turbulent flow is

unsteady, so the velocity components also depend on time.

Another definition frequently used in fluid mechanics is quasi–one–dimensional flow.

By this definition it is assumed that there is only one component of velocity in the flow direc-

tion and that the velocity profiles are uniformly distributed; that is, constant velocity across

the duct cross section.

Acceleration

Acceleration of a fluid particle as it moves along a pathline, as shown in Fig. 4.9, is the rate

of change of the particle’s velocity with time. The local velocity of the fluid particle depends

on the distance traveled, s, and time, t. The local radius of curvature of the pathline is r. The

components of the acceleration vector are shown in Fig. 4.9b. The normal component of

acceleration an will be present anytime a fluid particle is moving on a curved path (i.e.,

centripetal acceleration). The tangential component of acceleration at will be present if the

particle is changing speed.

Using normal and tangential components, the velocity of a fluid particle on a pathline

(Fig. 4.9a) may be written as

u u u'.+�
u

4.2

V V s t,( )et�
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where V(s, t) is the speed of the particle, which can vary with distance along the pathline, s,

and time, t. The direction of the velocity vector is given by a unit vector et.

Using the definition of acceleration,

(4.1)

To evaluate the derivative of speed in Eq. (4.1), the chain rule for a function of two variables

can be used.

(4.2)

In a time dt, the fluid particle moves a distance ds, so the derivative ds dt corresponds to the

speed V of the particle, and Eq. (4.2) becomes

(4.3)

Figure 4.8

Flow dimensionality, 

(a) one-dimensional flow, 

(b) two-dimensional flow, 

and (c) three-dimensional 

flow.

Figure 4.9
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(b) Acceleration.
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In Eq. (4.1), the derivative of the unit vector det dt is nonzero because the direction of the unit

vector changes with time as the particle moves along the pathline. The derivative is

(4.4)

where en is the unit vector perpendicular to the pathline and pointing inward toward the cen-

ter of curvature (1).

Substituting Eqs. (4.3) and (4.4) into Eq. (4.1) gives the acceleration of the fluid

particle:

(4.5)

The interpretation of this equation is as follows. The acceleration on the left side is the value

recorded at a point in the flow field if one were moving with the fluid particle past that point.

The terms on the right side represent another way to evaluate the fluid particle acceleration at

the same point by measuring the velocity, the velocity gradient, and the velocity change with

time at that point and reducing the acceleration according the terms in Eq. (4.5). 

Convective, Local, and Centripetal Acceleration
Inspection of Eq. (4.5) reveals that the acceleration component along a pathline depends on

two terms. The variation of velocity with time at a point on the pathline, namely is

called the local acceleration. In steady flow the local acceleration is zero. The other term,

depends on the variation of velocity along the pathline and is called the convective
acceleration. In a uniform flow, the convective acceleration is zero. The acceleration with

magnitude r, which is normal to the pathline and directed toward the center of rotation,

is the centripetal acceleration.*
The concept of convective acceleration can be illustrated by use of the cartoon in Fig.

4.10. The carriage represents the fluid particle, and the track, the pathline. It is assumed that

the track is stationary. One way to measure the acceleration is to ride on the carriage and read

* The centripetal acceleration is also a convective acceleration because the acceleration is due to a change in

velocity direction as the fluid particle moves along the pathline. Here it will be identified simply as the cen-

tripetal acceleration.

Figure 4.10
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the acceleration off an accelerometer. This gives a direct measurement of The other

way is to measure the carriage velocity at two locations separated by a distance and calcu-

late the convective acceleration using

Both methods will give the same answer. The centripetal acceleration could also be

measured with an accelerometer attached to the carriage or by calculating V 2 r if the local

radius of curvature of the track is known.

Example 4.1 illustrates how to find the fluid acceleration by evaluating the local and

convective acceleration.

EXAMPLE 4.1   EVALUATING ACCELERATION IN

A NOZZLE

A nozzle is designed such that the velocity in the nozzle 

varies as

where the velocity u0 is the entrance velocity and L is the nozzle 

length. The entrance velocity is 10 m s, and the length is 0.5 m. 

The velocity is uniform across each section. Find the acceleration 

at the station halfway through the nozzle 

Problem Definition

Situation: Given velocity distribution in a nozzle.

Find: Acceleration at nozzle midpoint.

Sketch:

Assumptions: Flow field is quasi–one-dimensional 
(negligible velocity normal to nozzle centerline).

Plan

1. Select the pathline along the centerline of the nozzle. 

2. Evaluate the convective, local, and centripetal 
accelerations in Eq. (4.5).

3. Calculate the acceleration. 

Solution

The distance along the pathline is x, so s in Eq. 4.5 becomes x

and V becomes u. The pathline is straight, so  

1. Evaluation of terms:

• Convective acceleration

Evaluation at x L 0.5:

• Local acceleration

• Centripetal acceleration

2. Acceleration

Review

Since ax is positive, the direction of the acceleration is 

positive; that is, the velocity increases in the x-direction, as 

expected. Even though the flow is steady, the fluid particles 

still accelerate.
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Euler’s Equation

In Chapter 3 the hydrostatic equations were derived by equating the sum of the forces on a

fluid element equal to zero. The same ideas are applied in this section to a moving fluid by

equating the sum of the forces acting on a fluid element to the element’s acceleration,

according to Newton’s second law. The resulting equation is Euler’s equation, which can be

used to predict pressure variation in moving fluids.

Consider the cylindrical element in Fig. 4.11a oriented in an arbitrary direction � with cross-

sectional area in a flowing fluid. The element is oriented at an angle � with respect to the hor-

izontal plane (the x-y plane) as shown in Fig. 4.11b. The element has been isolated from the flow

field and can be treated as a “free body” where the presence of the surrounding fluid is replaced

by pressure forces acting on the element. Assume that the viscous forces are zero.

Here the element is being accelerated in the �-direction. Note that the coordinate axis z
is vertically upward and that the pressure varies along the length of the element. Applying

Newton’s second law in the �-direction results in

(4.6)

The mass of the fluid element is

The net force due to pressure in the �-direction is

Any pressure forces acting on the side of the cylindrical element will not contribute to a force in

the �-direction. The force due to gravity is the component of weight in the �-direction

Figure 4.11
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where the minus sign occurs because the component of weight is in the negative �-direc-

tion. From the diagram in Fig. 4.11b showing the relationship for angle � with respect to

 and one notes that so the force due to gravity can be expressed

as

The weight of the element is Substituting the mass of the element and the

forces on the element into Eq. (4.6) yields 

Dividing through by results in

Taking the limit as approaches zero (element shrinks to a point) leads to the differential

equation for acceleration in the �-direction,

(4.7)

For an incompressible flow, is constant and Eq. (4.7) reduces to

(4.8)

Equation (4.8) is Euler’s equation for motion of a fluid. It shows that the acceleration

is equal to the change in piezometric pressure with distance, and the minus sign means that

the acceleration is in the direction of decreasing piezometric pressure. 

In a static body of fluid, Euler’s equation reduces to the hydrostatic differential equa-

tion, Eq. (3.5). In a static fluid, there are no viscous stresses, which is a condition required

in the derivation of Euler’s equation. Also there is no motion, so the acceleration is zero

in all directions. Thus, Euler’s equation reduces to which yields Eq.

(3.4).

Euler’s equation can be applied to find the pressure distribution across streamlines in

rectilinear flow. Consider the flow with parallel streamlines adjacent a wall shown in Fig.

4.12. In the direction normal to the wall, the n direction, the acceleration is zero. Applying

Euler’s equation in the n direction gives so the piezometric pressure is

constant in the normal direction.* 

The application of Euler’s equation to find the pressure required to accelerate a column

of liquid is illustrated in Example 4.2.

* Euler’s equation in this case is applicable in the normal direction because the component of shear stress in

this direction is zero for Newtonian fluids.
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Example 4.3 shows how to apply Euler’s equation for predicting pressures in a deceler-

ating tank of liquid.

EXAMPLE 4.2   APPLICATION OF EULER’S 

EQUATION TO ACCELERATION OF A FLUID

A column water in a vertical tube is being accelerated by a 

piston in the vertical direction at 100 m s2. The depth of the 

water column is 10 cm. Find the gage pressure on the piston. 

The water density is 103 kg m3.

Problem Definition

Situation: A column of water is being accelerated by a piston.

Find: The gage pressure on the piston.

Sketch:

Assumptions:

1. Acceleration is constant.

2. Viscous effects are unimportant.

3. Water is incompressible.

Properties: 

Plan

1. Apply Euler’s equation, Eq. (4.8), in the z-direction.

2. Integrate equation and apply limits at sections 1 and 2.

3. Set pressure equal to zero (gage pressure) at cross-section 
2 (atmosphere).

4. Calculate the pressure on piston (cross-section 1).

Solution

1. Because the acceleration is constant there is no 
dependence on time so the partial derivative in Euler’s 
equation can be replaced by an ordinary derivative. 
Euler’s equation in z-direction:

2. Integration between sections 1 and 2:

3. Substitution of limits:

4. Evaluation of pressure:

EXAMPLE 4.3    PRESSURE IN A DECELERATING 

TANK OF LIQUID

The tank on a trailer truck is filled completely with gasoline, 

which has a specific weight of 42 lbf ft3 (6.60 kN m3). The 

truck is decelerating at a rate of 10 ft s2 (3.05 m s2).

a. If the tank on the trailer is 20 ft (6.1 m) long and if the 

pressure at the top rear end of the tank is atmospheric, what is 

the pressure at the top front?

b. If the tank is 6 ft (1.83 m) high, what is the maximum 

pressure in the tank? 

Sketch:
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Pressure Distribution in Rotating Flows

Situations in which a fluid rotates as a solid body are found in many engineering

applications. One common application is the centrifugal separator. The centripetal

accelerations resulting from rotating a fluid separate the heavier elements from the lighter

elements as the heavier elements move toward the outside and the lighter elements are

displaced toward the center. A milk separator operates in this fashion, as does a cyclone

separator for removing particulates from an air stream. 

To learn how pressure varies in a rotating, incompressible flow, apply Euler’s equation

in the direction normal to the streamlines and outward from the center of rotation. In this case

the fluid elements rotate as the spokes of a wheel, so the direction � in Euler’s equation, Eq.

(4.8), is replaced by r giving

(4.9)

Problem Definition

Situation: Decelerating tank of gasoline with pressure equal to 
zero gage at top rear end. 

Find:

1. Pressure (psfg and kPa, gage) at top front of tank.

2. Maximum pressure (psfg and kPa, gage) in tank.

Assumptions:

1. Deceleration is constant.

2. Gasoline is incompressible.

Properties: 	 42 lbf ft3 (6.60 kN m3)

Plan

1. Apply Euler’s equation, Eq. (4.8), along top of tank. 
Elevation, z, is constant.

2. Evaluate pressure at top front.

3. Maximum pressure will be at front bottom. Apply Euler’s 
equation from top to bottom at front of tank.

4. Using result from step 2, evaluate pressure at front bottom.

Solution

1. Euler’s equation along the top of the tank

Integration from back (1) to front (2)

2. Evaluation of p2 with p1 0

In SI units

3. Euler’s equation in vertical direction

4. For vertical direction, az 0. Integration from top of tank 

(2) to bottom (3):

In SI units

� ⁄ ⁄

dp

d�
------ �a�–�

p2 p1– �a�Δ�–
	
g
--- a�Δ�–� �

�

p2
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3
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2

---------------------- 10 ft/s
2–( )× 20 ft×–�
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p2
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3
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2

---------------------------- 3.05 m/s
2–( )× 6.1 m×–�

12.5 kPa, gage�

zd
d
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�
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p3 p2 	 z2 z3–( )+�
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2
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3

6 ft×+ 513 psfg� �
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2
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3

1.83 m×+�
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where the partial derivative has been replaced by an ordinary derivative since the flow is

steady and a function only of the radius r. From Eq. (4.5), the acceleration in the radial direc-

tion (away from the center of curvature) is

and Euler’s equation becomes

(4.10)

For a liquid rotating as a rigid body,

Substituting this velocity distribution into Euler’s equation results in,

(4.11)

Integrating Eq. (4.11) with respect to r gives 

(4.12)

or

(4.13a)

This equation can also be written as

(4.13b)

These equivalent equations describe the pressure variation in rotating flow.
The equation for pressure variation in a rotating flow is used in Example 4.4 to predict

the surface profile of a liquid in a rotating tank.

EXAMPLE 4.4   SURFACE PROFILE OF 

ROTATING LIQUID 

A cylindrical tank of liquid shown in the figure is rotating as a 

solid body at a rate of 4 rad s. The tank diameter is 0.5 m. 

The line AA depicts the liquid surface before rotation, and the 

line  shows the surface profile after rotation has been 

established. Find the elevation difference between the liquid 

at the center and the wall during rotation.

Sketch:
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Example 4.5 illustrates the application of the equation for pressure variation in rotating

flows to a rotating manometer.  

Problem Definition

Situation: Liquid rotating in a cylindrical tank.

Find: Elevation difference (in meters) between liquid at 
center and at the wall.

Assumptions: Fluid is incompressible.

Plan

Pressure at liquid surface is constant (atmospheric).

1. Apply equation for pressure variation in rotating flow, Eq. 
(4.13a), between points 1 and 2.

2. Evaluate elevation difference. 

Solution

1. Equation (4.13a) applied between points 1 and 2.

The pressure at both points is atmospheric, so and the 

pressure terms cancel out. At point 1, and at point 2, 

The equation reduces to

2. Evaluation of elevation difference:

Review

Notice that the surface profile is parabolic.

EXAMPLE 4.5   ROTATING MANOMETER TUBE

When the U-tube is not rotated, the water stands in the tube as 

shown. If the tube is rotated about the eccentric axis at a rate 

of 8 rad s, what are the new levels of water in the tube?

Problem Definition

Situation: Manometer tube is rotated around an eccentric axis.

Find: Levels of water in each leg.

Assumptions: Liquid is incompressible.

Sketch:

Plan

The total length of the liquid in the manometer must be the 

same before and after rotation, namely 90 cm. Assume, to 

start with, that liquid remains in the bottom leg. The pressure 

at the top of the liquid in each leg is atmospheric. 

1. Apply the equation for pressure variation in rotating flows, 
Eq. (4.13a), to evaluate difference in elevation in each leg.

2. Using constraint of total liquid length, find the level in 
each leg.

Solution

1. Application of Eq. (4.13a) between top of leg on left (1) 
and on right (2):

2. The sum of the heights in each leg is 36 cm.

Solution for the leg heights:

Review

If the result was a negative height in one leg, it would mean 

that one end of the liquid column would be in the horizontal 

leg, and the problem would have to be reworked to reflect this 

configuration.
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The Bernoulli Equation Along a Streamline

Derivation

From the dynamics of particles in solid-body mechanics, one knows that integrating Newton’s

second law for particle motion along a path provides a relationship between the change in

kinetic energy and the work done on the particle. Integrating Euler’s equation along a pathline

in the steady flow of an incompressible fluid yields an equivalent relationship called the

Bernoulli equation.

The Bernoulli equation is developed by applying Euler’s equation along a pathline with

the direction � replaced by s, the distance along the pathline, and the acceleration a� replaced

by at, the direction tangent to the pathline. Euler’s equation becomes

(4.14)

The tangential component of acceleration is given by Eq. (4.15), namely

(4.15)

For a steady flow, the local acceleration is zero and the pathline becomes a streamline. Also,

the properties along a streamline depend only on the distance s, so the partial derivatives be-

come ordinary derivatives. Euler’s equation now becomes

(4.16)

Moving all the terms to one side yields

(4.17)

or

(4.18a)

where C is a constant. This is known as the Bernoulli equation, which states that the sum of

the piezometric pressure and kinetic pressure * is constant along a stream-

line for the steady flow of an incompressible, inviscid fluid. Dividing Eq. (4.18a) by the spe-

cific weight yields the equivalent form of the Bernoulli equation along a streamline, namely

(4.18b)

* Another term, dynamic pressure, which is closely associated with kinetic pressure, is equal to the differ-

ence between the total pressure (pressure at a point of stagnation) and the static pressure. Under conditions

where the Bernoulli equation applies, kinetic and dynamic pressure are equal. However, in high-speed gas

flow, where compressibility effects are important, the two may have significantly different values.
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where h is the piezometric head and is the velocity head. In words,

The concept underlying the Bernoulli equation can be illustrated by considering the

flow through the inclined venturi (contraction-expansion) section as shown in Fig. 4.13. This

configuration is often used as a flow metering device. The reduced area of the throat section

leads to an increased velocity and attendant pressure change. The streamline is the centerline

of the venturi. Piezometers are tapped into the wall at three locations, and the height of the

liquid in the tube above the centerline is The elevation of the centerline (streamline)

above a datum is z. The location of the datum line is arbitrary. The constant in the Bernoulli

equation is the same at all three locations, so

Even though the elevation, pressure head, and velocity head vary through the venturi section,

the sum of the three heads is the same. The higher velocity at the throat leads to a higher ve-

locity head at this location and a corresponding decrease in pressure head. The elevations of

the liquid in the piezometers above the datum are the piezometric heads. So as the velocity

increases, the piezometric head decreases as the velocity head increases, maintaining a con-

stant sum through the venturi.

The fact that the Bernoulli equation has been derived for an inviscid fluid does not limit

its application here. Even though the real fluid is viscous, the effects of viscosity are small for

short distances. Also, the effects of viscosity on pressure change are negligible compared to

the pressure change due to velocity variation.

Application of the Bernoulli Equation
The Bernoulli equation is often used to calculate the velocity in venturi configurations given

the pressure difference between the upstream section and the throat section, as shown in

Example 4.6.

Example 4.7 shows the application of the Bernoulli equation to the efflux of a liquid

from a tank. This analysis is important to the engineer in calculating the draining time.

Figure 4.13
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section.
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EXAMPLE 4.6   VELOCITY IN A VENTURI SECTION

Piezometric tubes are tapped into a venturi section as shown 

in the figure. The liquid is incompressible. The upstream 

piezometric head is 1 m, and the piezometric head at the 

throat is 0.5 m. The velocity in the throat section is twice 

large as in the approach section. Find the velocity in the throat 

section.

Sketch:

Problem Definition

Situation: Incompressible flow in venturi section. Piezometric 
heads and velocity ratio given. 

Find: Velocity (in m s) in venturi section.

Assumptions: Viscosity effects are negligible, and the 
Bernoulli equation is applicable.

Plan

1. Write out the Bernoulli equation, Eq. (4.18b), 
incorporating velocity ratio and solve for throat velocity.

2. Substitute in piezometric heads to calculate throat 
velocity.

Solution

1. The Bernoulli equation with gives

2. Substitution of values and velocity calculation:

Review

A piezometric tube could not be used to measure the 

piezometric head if the pressure anywhere in the line were 

subatmospheric. In this case, pressure gages or manometers 

would have to be used.

EXAMPLE 4.7    OUTLET VELOCITY FROM 

DRAINING TANK

A open tank filled with water and drains through a port at the 

bottom of the tank. The elevation of the water in the tank is 

10 m above the drain. The drain port is at atmospheric 

pressure. Find the velocity of the liquid in the drain port.

Problem Definition

Situation: Tank draining through port at bottom.

Find: Velocity (in m s) in drain port.

Sketch:
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Application of the Bernoulli Equation to Velocity 

Measurement Devices

The Bernoulli equation can be used to reduce data for flow velocity measurements from a

stagnation tube and a Pitot-static tube.

Stagnation Tube
A stagnation tube (sometimes call a total head tube) is an open-ended tube directed upstream

in a flow and connected to a pressure sensor. Because the velocity is zero at the tube opening,

the pressure measured corresponds to stagnation conditions.

Consider the stagnation tube shown in Fig. 4.14. In this case the pressure sensor is a pi-

ezometer. The rise of the liquid in the vertical leg is a measure of the pressure. When the Ber-

noulli equation is written between points 0 and 1 on the streamline, one notes that

Therefore, the Bernoulli equation reduces to

Assumptions:

1. Flow is steady.

2. Viscous effects are unimportant.

3. Velocity at liquid surface is much less than velocity in 
drain port.

Plan

Since the flow is steady and viscous effects are unimportant, 

the Bernoulli equation is applicable along a streamline. The 

streamline chosen is shown in the sketch with point 1 at the 

liquid surface and point 2 at the drain port.

1. Apply the Bernoulli equation, Eq. (4.18b), between points 
1 and 2.

2. Reduce the equation to yield velocity in drain port.

3. Calculate velocity.

Solution

1. The Bernoulli equation between points 1 and 2 on 

streamline:

2. The pressure at the outlet and the tank surface are the same 

(atmospheric), so The velocity at the tank surface is 

much less than in the drain port so Solution for  

3. Velocity calculation:

Review

1. Notice that the answer is independent of liquid properties. 
This would be true for all liquids so long as viscous effects 
are unimportant. Also note that the same velocity would 
be calculated for an object dropped from the same 
elevation as the liquid in the tank.

2. Selection of point 1 is not critical; it can be taken at any 
point on liquid surface.

3. The assumption of the small velocity at the liquid surface 
is generally valid. It will be shown in Chapter 5 that the 
ratio of the velocity at the liquid surface to the drain port 
velocity is

where is the cross-sectional area of the drain port and
is the cross-sectional area of the tank. For example

with
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(4.19)

The velocity at point 1 is zero (stagnation point). Hence, Eq. (4.19) simplifies to

(4.20)

By the equations of hydrostatics (there is no acceleration normal to the streamlines where the

streamlines are straight and parallel), and Therefore, Eq. (4.20) can

be written as

which reduces to

(4.21)

This equation will be referred to as the stagnation tube equation. Thus it is seen that a very

simple device such as this curved tube can be used to measure the velocity of flow.

Pitot-Static Tube
The Pitot-static tube, named after the eighteenth-century French hydraulic engineer who

invented it, is based on the same principle as the stagnation tube, but it is much more

versatile than the stagnation tube. The Pitot-static tube, shown in Fig. 4.15, has a pressure tap

at the upstream end of the tube for sensing the stagnation pressure. There are also ports

located several tube diameters downstream of the front end of the tube for sensing the static

Figure 4.14
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pressure in the fluid where the velocity is essentially the same as the approach velocity.

When the Bernoulli equation, Eq. (4.18a), is applied between points 1 and 2 along the

streamline shown in Fig. 4.15, the result is

But so solving that equation for V2 gives the Pitot-static tube equation

(4.22)

Here where V is the velocity of the stream and and are the piezometric pres-

sures at points 1 and 2, respectively.

By connecting a pressure gage or manometer between the pressure taps shown in Fig.

4.15 that lead to points 1 and 2, one can easily measure the flow velocity with the Pitot-

static tube. A major advantage of the Pitot-static tube is that it can be used to measure ve-

locity in a pressurized pipe; a simple stagnation tube is not convenient to use in such a

situation.

If a differential pressure gage is connected across the taps, the gage measures the differ-

ence in piezometric pressure directly. Therefore Eq. (4.22) simplifies to

where �p is the pressure difference measured by the gage.

More information on Pitot-static tubes and flow measurement is available in the Flow
Measurement Engineering Handbook (2).

Example 4.8 illustrates the application of the Pitot-static tube to measuring liquid ve-

locity in a pipe using a manometer.

Example 4.9 shows the Pitot-static tube application with a pressure gage.

Figure 4.15
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EXAMPLE 4.8   APPLICATION OF PITOT EQUATION 

WITH MANOMETER

A mercury manometer is connected to the Pitot-static tube in 

a pipe transporting kerosene as shown. If the deflection on the 

manometer is 7 in., what is the kerosene velocity in the pipe? 

Assume that the specific gravity of the kerosene is 0.81.

Sketch:

Problem Definition

Situation: Pitot-static tube is mounted in a pipe and connected 
to a manometer.

Find: Flow velocity (in m s).

Assumptions: Pitot-static tube equation is applicable.

Properties: from Table A.4, 

Plan

1. Find difference in piezometric pressure using the 
manometer equation, Eq. (3.18). 

2. Substitute in Pitot-static tube equation. 

3. Evaluate velocity.

Solution

1. Manometer equation between points 1 and 2 on Pitot-static 

tube:

or

2. Substitution into the Pitot-static tube equation:

3. Velocity evaluation:

Review

The –1 in the quantity reflects the effect of the 

column of kerosene in the right leg of the manometer, which 

tends to counterbalance the mercury in the left leg. Thus with 

a gas–liquid manometer, the counterbalancing effect is 

negligible.

EXAMPLE 4.9   PITOT TUBE APPLICATION WITH 

PRESSURE GAGE

A differential pressure gage is connected across the taps of a 

Pitot-static tube. When this Pitot-static tube is used in a wind 

tunnel test, the gage indicates a �p of 730 Pa. What is the air 

velocity in the tunnel? The pressure and temperature in the 

tunnel are 98 kPa absolute and 20°C, respectively.

Problem Definition

Situation: Differential pressure gage attached to Pitot-static 
tube for velocity measurement in wind tunnel.

Find: Air velocity (in m s). 
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Application of the Bernoulli Equation to Flow of Gases
In the flow of gases, the contribution of pressure change due to elevation difference is

generally very small compared with the change in kinetic pressure. Thus it is reasonable

when applying the Bernoulli equation to gas flow (such as air) to use the simpler formulation

(4.23)

This is the form used by aerodynamicists in studying the flow over airfoils and aircraft

components.

Applicability of the Bernoulli Equation to Rotating Flows
The Bernoulli equation (4.18a) relates pressure, elevation, and kinetic pressure along

streamlines in steady, incompressible flows where viscous effects are negligible. The

question arises as to whether it can be used across streamlines; that is, could it be applied

between two points on adjacent streamlines? The answer is provided by the form of the

equation for pressure variation in a rotating flow, Eq. (4.13b), which can be written as

where  has been replaced by the velocity, V. Obviously the sign on the kinetic pressure

term is different than the Bernoulli equation, so the Bernoulli equation does not apply across

streamlines in a rotating flow.

In the next section the concept of flow rotation is introduced. There is a situation in

which flows have concentric, circular streamlines and yet the fluid elements do not rotate. In

this “irrotational” flow, the Bernoulli equation is applicable across streamlines as well a

along streamlines.

Sketch:

Assumptions:

1. Airflow is steady.

2. Pitot-tube equation applicable.

Properties: Table A.2, 

Plan

1. Using the ideal gas law, calculate air density.

2. Using the Pitot-static tube equation, calculate the velocity.

Solution

1. Density calculation:

2. Pitot-static tube equation with differential pressure gage:

P = 98 kPa

T = 20°C
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Rotation and Vorticity

Concept of Rotation

In many applications of fluid mechanics it is important to establish the rotationality of a

flow field. There are many closed-form solutions for fluid flow fields based on

irrotational flow. To make use of these solutions, the engineer must be able to determine

the degree of flow rotation in his or her application. The purpose of this section is to

introduce the concept of rotation.

The idea of fluid rotation is clear when a fluid rotates as a solid body. However, in other

flow configurations it may not be so obvious. Consider fluid flow between two horizontal

plates, Fig. 4.16, where the bottom plate is stationary and the top is moving to the right with a

velocity V. The velocity distribution is linear; therefore, an element of fluid will deform as

shown. Here it is seen that the element face that was initially vertical rotates clockwise,

whereas the horizontal face does not. It is not clear whether this is a case of rotational motion

or not.

Rotation is defined as the average rotation of two initially mutually perpendicular faces

of a fluid element. The test is to look at the rotation of the line that bisects both faces (a-a and

b-b in Fig. 4.16). The angle between this line and the horizontal axis is the rotation, �.

The general relationship between � and the angles defining the sides is shown in Fig.

4.17, where �A is the angle of one side with the x-axis and the angle �B is the angle of the

Figure 4.16
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other side with the y-axis. The angle between the sides is so the orientation

of the element with respect to the x-axis is

The rotational rate of the element is

(4.24)

If the flow is irrotational.
An expression will now be derived that will give the rate of rotation of the bisector in

terms of the velocity gradients in the flow. Consider the element shown in Fig. 4.18. The

sides of the element are initially perpendicular with lengths and Then the element

moves with time and deforms as shown with point 0 going to 0', point 1 to 1', and point 2 to 2'.

The lengths of the sides are unchanged. After time �t the horizontal side has rotated counter-

clockwise by ��A and the vertical side clockwise (negative direction) by – ��B.

The y velocity component of point 1 is and the x component of point 2

is The net displacements of points 1 and 2 are*

(4.25)

Referring to Fig. 4.18, the angles ��A and ��B are given by

(4.26)

* The symbol ~ means that the quantities are approximately equal but become exactly equal as the quantities

approach zero.

Figure 4.18
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Dividing the angles by �t and taking the limit as 

(4.27)

Substituting these results into Eq. (4.24) gives the rotational rate of the element about the z-axis

(normal to the page),

This component of rotational velocity is defined as so

(4.28a)

Likewise, the rotation rates about the other axes are

(4.28b)

(4.28c)

The rate-of-rotation vector is

(4.29)

An irrotational flow requires that

(4.30a)

(4.30b)

(4.30c)

The most extensive application of these equations is in ideal flow theory. An ideal flow

is the flow of an irrotational, incompressible fluid. Flow fields in which viscous effects are

small can often be regarded as irrotational. In fact, if a flow of an incompressible, inviscid

fluid is initially irrotational, it will remain irrotational.

Vorticity
Another property used frequently in fluid mechanics is vorticity, which is a vector equal to

twice the rate-of-rotation vector. The magnitude of the vorticity indicates the rotationality of

a flow and is very important in flows where viscous effects dominate, such as boundary layer,

separated, and wake flows. The vorticity equation is
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(4.31)

where from vector calculus means the curl of the vector V.
An irrotational flow signifies that the vorticity vector is everywhere zero.

Example 4.10 illustrates how to evaluate the rotationality of a flowfield.

The calculation to determine the amount of rotation of a fluid element in a given time is

shown in Example 4.11.

EXAMPLE 4.10   EVALUATION OF ROTATION OF 

VELOCITY FIELD

The vector represents a two-dimensional 

velocity field. Is the flow irrotational?

Problem Definition

Situation: Velocity field given.

Find: If flow is irrotational.

Plan

Flow is two-dimensional, so and Use 

Eq. (4.30a) to evaluate rotationality.

Solution

Velocity components and derivatives

Thus flow is irrotational. 

EXAMPLE 4.11   ROTATION OF A FLUID ELEMENT

A fluid exists between stationary and moving parallel flat plates, 

and the velocity is linear as shown. The distance between the 

plates is 1 cm, and the upper plate moves at 2 cm s. Find the 

amount of rotation that the fluid element located at 0.5 cm will 

undergo after it has traveled a distance of 1 cm.

Sketch:

Problem Definition

Situation: Flow between moving, parallel, flat plates.

Find: Rotation of fluid element at midpoint after traveling 1 cm.

Assumptions: Planar flow and 

Plan

1. Use Eq. (4.28a) to evaluate rotational rate with  

2. Find time for element to travel 1 cm. 

3. Calculate amount of rotation. 

Solution

1. Velocity distribution

Rotational rate

2. Time to travel 1 cm:

3. Amount of rotation

Review

Note that the rotation is negative (in clockwise direction).
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Rotation in Flows with Concentric Streamlines
It is interesting to realize that a flow field rotating with circular streamlines can be irrota-

tional; that is, the fluid elements do not rotate. Consider the two-dimensional flow field

shown in Fig. 4.19. The circumferential velocity on the circular streamline is V, and its radius

is r. The z-axis is perpendicular to the page. As before, the rotation of the element is quanti-

fied by the rotation of the bisector, Eq. (4.24), which is

From geometry, the angle ��B is equal to the angle ��. The rotational rate of angle � is V r, so

Using the same analysis as for Eq. (4.27), with x replaced by r yields

Since V is a function of r only, the partial derivative can be replaced by the ordinary deriva-

tive. Therefore, the rotational rate about the z-axis is

(4.32)

As a check on this equation, apply it to a flow rotating as a solid body. The velocity dis-

tribution is so the rate of rotation is

as expected. This type of circular motion is called a “forced” vortex.

If the flow is irrotational, then

(4.33)

Figure 4.19
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or

Integrating this equation leads to

(4.34)

where C is a constant. In this case, the circumferential velocity varies inversely with r, so the

velocity decreases with increasing radius. This flow field is known as a “free” vortex. The

fluid elements go around in circles, but do not rotate.

Although the condition for irrotationality given by Eq. (4.33) was derived using con-

centric circular streamlines, it is valid for any point along any streamline in an irrotational

flow where r is the local radius of curvature of the streamline (or stream surface generated by

the streamlines).

The difference between element rotation and deformation for flows with circular

streamlines is shown in Fig. 4.20. For the rotational flow shown in Fig. 4.20a the fluid ele-

ments rotate but they do not deform. In the irrotational flow shown in Fig. 4.20b, the ele-

ments continuously deform but do not rotate. In other words, the elements deform to

maintain a constant orientation (no rotation). 

In a general flow there is both deformation and rotation. An ideal fluid is one that has

no viscosity and is incompressible. If the flow of an ideal fluid is initially irrotational. it will

remain irrotational. This is the foundation for many classical studies of flow fields in fluid

mechanics.

The Bernoulli Equation in Irrotational Flow

In Section 4.5 the Bernoulli equation was developed for pressure variation between any two

points along a streamline in steady flow with no viscous effects. In an irrotational flow, the

Bernoulli equation is not limited to flow along streamlines but can be applied between any two

points in the flow field. This feature of the Bernoulli equation is used extensively in classical

hydrodynamics, the aerodynamics of lifting surfaces (wings), and atmospheric winds.

Figure 4.20

Element deformation 
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circular streamlines. 
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The Euler equation, Eq. (4.8), applied in the n direction (normal to the streamline) is

(4.35)

where the partial derivative of n is replaced by the ordinary derivative because the flow is as-

sumed steady (no time dependence). Two adjacent streamlines and the direction n is shown

in Fig. 4.21. The local fluid speed is V, and the local radius of curvature of the streamline is r.
The acceleration normal to the streamline is the centripetal acceleration, so

(4.36)

where the negative sign occurs because the direction n is outward from the center of curva-

ture and the centripetal acceleration is toward the center of curvature. Using the irrotational-

ity condition, the acceleration can be written as

(4.37)

Also the derivative with respect to r can be expressed as a derivative with respect to n by

because the direction of n is the same as r so dn dr 1. Equation (4.37) can be rewritten as

(4.38)

Substituting the expression for acceleration into Euler’s equation, Eq. (4.35), and assuming

constant density results in

(4.39)

or

(4.40)

which is the Bernoulli equation, and C is constant in the n direction (across streamlines).

Thus for an irrotational flow, the constant C in the Bernoulli equation is the same across

streamlines as well as along streamlines, so it is the same everywhere in the flow field.

Equivalently, the sum of the piezometric head and velocity head

(4.41)

is constant everywhere in the flow field if the flow is steady, incompressible, inviscid, and ir-

rotational. Thus for any two points 1 and 2 in the flow field,

 (4.42)

nd
d

p 	z+( )– �an�

Figure 4.21

Two adjacent stream-
lines showing direction n
between lines.

n

v

Streamlines

r

an
V

2

r
-----–�

an
V

2

r
-----– V

V

r
---– V

dV

dr
-------

rd
d V

2

2
-----� � � �

rd
d V

2

2
-----

nd
d V

2

2
-----

dn

dr
------

nd
d V

2

2
-----� �

⁄ �

an
nd

d V
2

2
-----�

nd
d

p 	z �
V

2

2
-----+ + 0�

p 	z �
V

2

2
-----+ + C�

p

	
--- z

V
2

2g
------+ + C�

p1

	
----- z1

V1

2

2g
------+ +

p2

	
-----� z2

V2

2

2g
------+ +



4.7 THE BERNOULLI EQUATION IN IRROTATIONAL FLOW 107

Note that the V in the Bernoulli equation is the speed of the fluid and not a velocity

component.

The calculation of pressure and velocity in a free vortex is illustrated in Example 4.12.

Pressure Variation in a Cyclonic Storm
A cyclonic storm is characterized by rotating winds with a low-pressure region in the center.

Tornadoes and hurricanes are examples of cyclonic storms. A simple model for the flow field

in a cyclonic storm is a forced vortex at the center surrounded by a free vortex, as shown in

Fig. 4.22. This model is used in several applications of vortex flows. In practice, however,

there will be no discontinuity in the slope of the velocity distribution as shown in Fig. 4.22,

but rather a smooth transition between the inner forced vortex and the outer free vortex. Still,

the model can be used to make reasonable predictions of the pressure field. 

The model for the cyclonic storm is an illustration of where the Bernoulli equation can

and cannot be used across streamlines. The Bernoulli equation cannot be used across stream-

lines in the vortex at the center because the flow is rotational. The pressure distribution in the

forced vortex is given by Eq. (4.13b). The Bernoulli equation can be used across streamlines

in the free vortex since the flow is irrotational.

Take point 1 as the center of the forced vortex and point 2 at the junction of the forced and

free vortices, where the velocity is maximum. Let point 3 be at the extremity of the free vortex,

where the velocity is essentially zero and the pressure is atmospheric pressure p0. Applying the Ber-

noulli equation, Eq. (4.42), between any arbitrary point in the free vortex and point 3, one can write

 (4.43)

EXAMPLE 4.12   VELOCITY AND PRESSURE 

DISTRIBUTION IN A FREE VORTEX

A free vortex in air rotates in a horizontal plane and has a 

velocity of 40 m s at a radius of 4 km from the vortex center. 

Find the velocity at 10 km from the center and the pressure 

difference between the two locations. The air density is 1.2 kg m3.

Problem Definition

Situation: Free vortex in horizontal plane.

Find:

1. Velocity (in m s) 10 km from center.

2. Pressure difference (Pa) between two radii.

Assumptions: Flow is incompressible and steady.

Properties: 

Plan

1. Apply Eq. (4.34) to calculate velocity.

2. Since flow is irrotational, use the Bernoulli equation, Eq. 
(4.40), for pressure difference. 

Solution

1. Velocity distribution

2. The Bernoulli equation for a horizontal plane
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Neglecting any elevation change, setting and taking V3 as zero gives

(4.44)

which shows that the pressure decreases toward the center of the vortex. This decreasing

pressure provides the centripetal force to keep the flow moving along circular streamlines.

The pressure at point 2 is

(4.45)

Applying the equation for pressure variation in rotating flow, Eq. (4.13b), across the

center, forced vortex region yields

(4.46)

Figure 4.22
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Once again there is no elevation change, so At point 2, �r2 is the maximum speed

Vmax, and �r is the speed of the fluid in the forced vortex. Solving for the pressure, one finds

(4.47)

Substituting in the expression for p2 from Eq. (4.45) gives

(4.48)

The pressure difference between the center of the cyclonic storm where the speed is zero and

the outer edge of the storm is

(4.49)

The minimum pressure at the vortex center can give rise to a “secondary” flow as

shown in Fig. 4.23. In this case the secondary flow is produced by the pressure gradient in the

primary (vortex) flow. In the region near the ground, the wind velocity is decreased due to the

friction provided by the ground. However, the pressure difference in the radial direction

causes a radially inward flow adjacent to the ground and an upward flow at the vortex center.

More information on cyclonic storms is available in Moran and Morgan. (3).

The pressure change across a tornado is shown in Example (4.13).

The Pressure Coefficient
Describing the pressure distribution is important because pressure gradients influence flow

patterns and pressure distributions acting on bodies create resultant forces. A common

dimensionless group for describing the pressure distribution is called the pressure coefficient:

(4.50)

EXAMPLE 4.13   PRESSURE DIFFERENCE

IN TORNADO

Assume that a tornado is modeled as the combination of a 

forced and a free vortex. The maximum wind speed in the 

tornado is 150 mph. What is the pressure difference, in inches 

of mercury, between the center and the outer edge of the 

tornado? The density of the air is 0.075 lbm ft3.

Problem Definition

Situation: Tornado with 150 mph winds.

Find: Pressure difference (inches Hg) between center and 
edge.

Assumptions: Tornado modeled as forced and free vortex.

Properties: 

Plan

1. Use Eq. (4.49) to calculate pressure difference.

2. Convert result to inches Hg.

Solution

1. Convert velocity to ft s:

Convert density to slug/ft3:

Pressure difference

2. Convert to inches Hg:
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In the next section, the pressure coefficient is used to describe the pressure distribution

around a circular cylinder. 

Pressure Distribution Around a Circular Cylinder—Ideal Fluid
If a fluid is nonviscous and incompressible (an ideal fluid ) and if the flow is initially irrota-

tional, then the flow will be irrotational throughout the entire flow field.* Then, if the flow is

also steady, the Bernoulli equation will apply everywhere because all the restrictions for the

Bernoulli equation will have been satisfied. The flow pattern about a circular cylinder with

such restrictions is shown in Fig. 4.24a.

Because the flow pattern is symmetrical with either the vertical or the horizontal axis

through the center of the cylinder, the pressure distribution on the surface of the cylinder, ob-

tained by application of the Bernoulli equation, is also symmetrical as shown in Fig. 4.24b. The

pressure coefficient reduces to

(4.51)

where p is the local pressure and p0 and V0 are the free-stream pressure and velocity. The pressure

coefficient is plotted outward (negative) or inward (positive) from the surface of the cylinder,

depending on the sign of the relative pressure and on a line normal to the surface of the cylin-

der. The points at the front and rear of the cylinder, points B and D, are points of stagnation

and the minimum pressure occurs at the midsection, point C,

where the velocity is highest.

A useful concept in understanding the flow around a cylinder is the definition of the fa-

vorable and adverse pressure gradient. From Euler’s equation for pressure gradient and accel-

eration along a pathline, Eq. (4.14), neglecting gravitational effects, one has

* This can be seen in a qualitative sense if one visualizes a small spherical element of fluid within a nonvis-

cous flow field. Since pressure forces act normal to the surface of the spherical element, the element deforms

if the pressure is not of equal intensity over the entire surface. However, the element cannot rotate (irrota-

tional situation) because there is no shear stress (viscosity is zero) on the surface of the sphere to possibly

cause rotation.

Figure 4.24
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(b) Pressure distribution.
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One notes that if that is, the fluid particle accelerates if the pressure

decreases with distance along a pathline. This is a favorable pressure gradient. On the other

hand, if so the fluid particle decelerates if the pressure increases along a

pathline. This is an adverse pressure gradient. The definitions of pressure gradient are

summarized in the table.

Visualize the motion of a fluid particle in Fig. 4.24a as it travels around the cylinder

from A to B to C to D and finally to E. Notice that it first decelerates from the free-stream ve-

locity to zero velocity at the forward stagnation point as it travels in an adverse pressure gra-

dient. Then as it passes from B to C, it is in a favorable pressure gradient, and it accelerated to

its highest speed. From C to D the pressure increases again toward the rearward stagnation

point, and the particle decelerates but has enough momentum to reach D. Finally, the pressure

decreases from D to E, and this favorable pressure gradient accelerates the particle back to

the free-stream velocity. Understanding this qualitative description of how the fluid particle

travels from one point to another will be helpful when the phenomenon of separation is ex-

plained in the next section.

Separation

Flow separation occurs when the fluid pathlines adjacent to body deviate from the contour of

the body and produce a wake. This flow condition is very common. It tends to increase drag,

reduce lift, and produce unsteady forces that can lead to structural failure. 

Consider the flow of a real (viscous) fluid past a cylinder as shown in Fig. 4.25. The

flow pattern upstream of the midsection is very similar to the pattern for an ideal fluid.

However, in a viscous fluid the velocity at the surface is zero (no-slip condition), whereas

Favorable pressure gradient  (acceleration)

Adverse pressure gradient  (deceleration)

Figure 4.25
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with the flow of an inviscid fluid the surface velocity need not be zero. Because of viscous

effects, a thin layer, called a boundary layer, forms next to the surface. The velocity

changes from zero at the surface to the free-stream velocity across the boundary layer.

Over the forward section of the cylinder, where the pressure gradient is favorable, the

boundary layer is quite thin.

Downstream of the midsection, the pressure gradient is adverse and the fluid parti-

cles in the boundary layer, slowed by viscous effects, can only go so far and then are

forced to detour away from the surface. This is called the separation point. A recirculatory

flow called a wake develops behind the cylinder. The flow in the wake region is called

separated flow. The pressure distribution on the cylinder surface in the wake region is

nearly constant, as shown in Fig. 4.25b. The reduced pressure in the wake leads to in-

creased drag.

A photograph of an airfoil section with flow separation near the leading edge is shown

in Fig. 4.26. This flow is visualized by introducing smoke upstream of the airfoil section.

Separation on an airfoil surface leads to stall and loss of lift.

Separation and the development of a wake region also occurs on blunt objects and

cross sections with sharp edges, as shown in Fig. 4.27. In these situations, the flow cannot

negotiate the turn at the sharp edges and separates from the body, generating eddies, a

separated region, and wake flow. The vortices shed from the body can produce lateral os-

cillatory forces than can induce vibrations and ultimately lead to structural failure, as evi-

denced by the collapse of the Tacoma Narrows Bridge in 1940. The prediction and control

of separation is a continuing challenge for engineers involved with the design of fluid

systems.

Figure 4.26

Smoke traces showing 

separation on an airfoil 

section at a large angle 

of attack. (Courtesy of 

Education Development 

Center, Inc. Newton, MA)

Figure 4.27

Flow pattern past a 

square rod illustrating 

separation at the edges.



4.9 SUMMARY 113

Summary

The streamline is a curve everywhere tangent to the local velocity vector. The configuration

of streamlines in a flow field is called the flow pattern. The pathline is the line traced out by a

particle. A streakline is the line produced by a dye introduced at a point in the field.

Pathlines, streaklines, and streamlines are coincident in steady flow if they share a common

point but differ in unsteady flows.

In a uniform flow, the velocity does not change along a streamline. In a steady flow, the

velocity does not change with time at any location.

The tangential acceleration of a fluid element along a pathline is

where the first term is the local acceleration and the second term is the convective accelera-

tion. The acceleration normal to the pathline and toward the center of rotation is

where r is the local radius of curvature of the pathline.

Applying Newton’s second law to a fluid element in the flow of an incompressible,

inviscid fluid results in Euler’s equation,

where � is an arbitrary direction. Integrating Euler’s equation in the radial direction for a ro-

tating flow results in

Integrating Euler’s equation along a streamline in steady flow results in the Bernoulli equation,

in terms of pressure or

in terms of head where V is the speed of the fluid and C is a constant along a streamline. The

value of C may vary from streamline to streamline.

The rotation of a fluid element is defined as the average rotation of two initially perpen-

dicular lines defining the sides of the element. If every fluid element in a flow does not ro-

tate, the flow is irrotational and the value for C in the Bernoulli equation is the same for every

streamline.
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The vorticity vector is defined as

and is equal to twice the fluid rotation vector. In an irrotational flow, the vorticity is zero.

Separation occurs when streamlines move away from the surface of the body and create

a local recirculation zone or wake. Typically the pressure in the recirculation zone assumes

the value at the point of separation.
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Problems

Flow Descriptions

4.1 ��� Identify five examples of an unsteady flow and ex-

plain what features classify them as an unsteady flow?

4.2 ��� You are pouring a heavy syrup on your pancakes. As

the syrup spreads over the pancake, would the thin film of syrup

be a laminar or turbulent flow? Explain.

4.3 ��� Breathe in and out of your mouth. Try to sense the air

flow patterns near your face while doing this. Discuss the type

of flow associated with these flow processes. If you were to

blow out a candle, you would do it while exhaling (at least

most people do). Why is it easier to do this by exhaling than by

inhaling?

4.4 In the system in the figure, the valve at C is gradually opened

in such a way that a constant rate of increase in discharge is pro-

duced. How would you classify the flow at B while the valve is be-

ing opened? How would you classify the flow at A?

4.5 Water flows in the passage shown. If the flow rate is de-

creasing with time, the flow is classified as (a) steady, (b) un-

steady, (c) uniform, or (d) nonuniform.

4.6 If a flow pattern has converging streamlines, how would

you classify the flow?

4.7 Consider flow in a straight conduit. The conduit is circular

in cross section. Part of the conduit has a constant diameter, and

part has a diameter that changes with distance. Then, relative to

flow in that conduit, correctly match the items in column A with

those in column B.

4.8 Classify each of the following as a one-dimensional, two-

dimensional, or three-dimensional flow.

a. Water flow over the crest of a long spillway of a dam.

b. Flow in a straight horizontal pipe.

c. Flow in a constant-diameter pipeline that follows the contour

of the ground in hilly country.

d. Airflow from a slit in a plate at the end of a large rectangular duct.

e. Airflow past an automobile.

f. Air flow past a house.

g. Water flow past a pipe that is laid normal to the flow across

the bottom of a wide rectangular channel.
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Pathlines, Streamlines and Streaklines

4.9 ��� If somehow you could attach a light to a fluid particle

and take a time exposure, would the image you photographed be

a pathline or streakline? Explain from definition of each.

4.10 ��� The pattern produced by smoke rising from a chim-

ney on a windy day is analogous to a pathline or streakline? Ex-

plain from the definition of each.

4.11 At time dye was injected at point A in a flow field of

a liquid. When the dye had been injected for 4 s, a pathline for a

particle of dye that was emitted at the 4 s instant was started.

The streakline at the end of 10 s is shown below. Assume that

the speed (but not the velocity) of flow is the same throughout

the 10 s period. Draw the pathline of the particle that was emit-

ted at Make your own assumptions for any missing

information.

4.12 For a given hypothetical flow, the velocity from time 

to  was , Then, from time  to

the velocity was A dye

streak was started at a point in the flow field at time and

the path of a particle in the fluid was also traced from that same

point starting at the same time. Draw to scale the streakline, path-

line of the particle, and streamlines at time 

4.13 At time a dye streak was started at point A in a flow

field of liquid. The speed of the flow is constant over a 10 s pe-

riod, but the flow direction is not necessarily constant. At any

particular instant the velocity in the entire field of flow is the

same. The streakline produced by the dye is shown above. Draw

(and label) a streamline for the flow field at 
Draw (and label) a pathline that one would see at for a

particle of dye that was emitted from point A at

Acceleration

4.14 ��� Acceleration is the rate of change of velocity with

time. Is the acceleration vector always aligned with the velocity

vector? Explain.

4.15 ��� For a rotating body, is the acceleration toward the

center of rotation a centripetal or centrifugal acceleration? Look

up word meanings and word roots.

4.16 Figure 4.24 on p. 110 shows the flow pattern for flow past a

circular cylinder. Assume that the approach velocity at A is con-

stant (does not vary with time).

a. Is the flow past the cylinder steady or unsteady?

b. Is this a case of one-dimensional, two-dimensional, or three-

dimensional flow?

c. Are there any regions of the flow where local acceleration is

present? If so, show where they are and show vectors repre-

senting the local acceleration in the regions where it occurs.

d. Are there any regions of flow where convective acceleration

is present? If so, show vectors representing the convective

acceleration in the regions where it occurs.

4.17 The velocity along a pathline is given by V (m/s) s2t1/2

where s is in meters and t is in seconds. The radius of curvature

is 0.5 m. Evaluate the acceleration along and normal to the path

at s 2 m and t 0.5 seconds.

4.18 Tests on a sphere are conducted in a wind tunnel at an air

speed of U0. The velocity of flow toward the sphere along the

longitudinal axis is found to be u –U0 (1 – ), where r0

is the radius of the sphere and x the distance from its center. De-

termine the acceleration of an air particle on the x-axis upstream

of the sphere in terms of x, r0, and U0.

4.19 In this flow passage the velocity is varying with time. The

velocity varies with time at section A-A as

At time it is known that at section A-A the velocity

gradient in the s direction is 2 m s per meter. Given that t0 is

0.5s and assuming quasi–one-dimensional flow, answer the fol-

lowing questions for time 

a. What is the local acceleration at A-A?

b. What is the convective acceleration at A-A?

4.20 The nozzle in the figure is shaped such that the velocity of

flow varies linearly from the base of the nozzle to its tip. As-

suming quasi–one-dimensional flow, what is the convective ac-

celeration midway between the base and the tip if the velocity is

1 ft s at the base and 4 ft s at the tip? Nozzle length is 18

inches.
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4.21 In Prob. 4.20 the velocity varies linearly with time through-

out the nozzle. The velocity at the base is 1t (ft s) and at the tip

is 4t (ft s). What is the local acceleration midway along the

nozzle when 

4.22 Liquid flows through this two-dimensional slot with a ve-

locity of where q0 and t0 are reference val-

ues. What will be the local acceleration at and in

terms of B, t, t0, and q0?

4.23 What will be the convective acceleration for the conditions

of Prob. 4.22?

4.24 The velocity of water flow in the nozzle shown is given by

the following expression: 

whereV velocity in feet per second, t time in seconds, x dis-

tance along the nozzle, and L length of nozzle 4 ft. When

x 0.5L and t 3 s, what is the local acceleration along the cen-

terline? What is the convective acceleration? Assume quasi–

one-dimensional flow prevails.

Euler’s Equation

4.25 ��� State Newton’s second law of motion as used in dy-

namics. Are there any limitations on the use of Newton’s second

law? Explain.

4.26 ��� What is the difference between a force due to weight

and a force due to pressure? Explain.

4.27 A pipe slopes upward in the direction of liquid flow at an

angle of 30° with the horizontal. What is the pressure gradient

in the flow direction along the pipe in terms of the specific

weight of the liquid if the liquid is decelerating (accelerating op-

posite to flow direction) at a rate of 0.3g?

4.28 What pressure gradient is required to accelerate kerosene

vertically upward in a vertical pipe at a rate of 0.3 g?

4.29 The hypothetical liquid in the tube shown in the figure has

zero viscosity and a specific weight of 10 kN m3. If is

equal to 12 kPa, one can conclude that the liquid in the tube

is being accelerated (a) upward, (b) downward, or (c) neither:

acceleration 0.

4.30 If the piston and water are accelerated

upward at a rate of 0.5g, what will be the pressure at a depth of

2 ft in the water column?

4.31 Water stands at a depth of 10 ft in a ver-

tical pipe that is open at the top and closed at the bottom by a

piston. What upward acceleration of the piston is necessary to

create a pressure of 8 psig immediately above the piston?

4.32 What pressure gradient is required to accelerate water

in a horizontal pipe at a rate of 6 m s2?

4.33 Water  is accelerated from rest in a

horizontal pipe that is 100 m long and 30 cm in diameter. If the

acceleration rate (toward the downstream end) is 5 m s2, what

is the pressure at the upstream end if the pressure at the down-

stream end is 90 kPa gage?

4.34 Water stands at a depth of 10 ft in a ver-

tical pipe that is closed at the bottom by a piston. Assuming that
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the vapor pressure is zero (abs), determine the maximum down-

ward acceleration that can be given to the piston without causing

the water immediately above it to vaporize.

4.35 A liquid with a specific weight of 100 lbf ft3 is in the con-

duit. This is a special kind of liquid that has zero viscosity. The

pressures at points A and B are 170 psf and 100 psf, respec-

tively. Which one (or more) of the following conclusions can

one draw with certainty? (a) The velocity is in the positive � di-

rection. (b) The velocity is in the negative � direction. (c) The

acceleration is in the positive � direction. (d) The acceleration is

in the negative � direction.

4.36 If the velocity varies linearly with distance through this wa-

ter nozzle, what is the pressure gradient, dp dx, halfway through

the nozzle? 

4.37 The closed tank shown, which is full of liquid, is acceler-

ated downward at 1.5g and to the right at 0.9g. Here 

and the specific gravity of the liquid is 1.2. Determine

and

4.38 The closed tank shown, which is full of liquid, is acceler-

ated downward at g and to the right at 1g. Here 

and the liquid has a specific gravity of 1.3. Determine

and

Pressure Distribution in Rotating Flows

4.39 ��� Take a spoon and stir a cup of liquid. Report on the

contour of the surface. Provide an explanation for the observed

shape.

4.40 ��� A cyclonic separator is a device for separating solid

particles from a gas stream by inducing a spin in the gas stream.

Explain the mechanism by which the particles are separated

from the gas.

4.41 This closed tank, which is 4 ft in diameter, is filled with

water and is spun around its vertical cent-

roidal axis at a rate of 10 rad s. An open piezometer is con-

nected to the tank as shown so that it is also rotating with the

tank. For these conditions, what is the pressure at the center of

the bottom of the tank?

4.42 A tank of liquid (S 0.80) that is 1 ft in diameter and 1.0 ft

high (h 1.0 ft) is rigidly fixed (as shown) to a rotating arm hav-

ing a 2 ft radius. The arm rotates such that the speed at point A is

20 ft s. If the pressure at A is 25 psf, what is the pressure at B?

4.43 Separators are used to separate liquids of different densi-

ties, such as cream from skim milk, by rotating the mixture at

high speeds. In a cream separator the skim milk goes to the out-

side while the cream migrates toward the middle. A factor of

merit for the centrifuge is the centrifugal acceleration force

(RCF), which is the radial acceleration divided by the accelera-

tion due to gravity. A cream separator can operate at 9000 rpm

(rev min). If the bowl of the separator is 20 cm in diameter,

what is the centripetal acceleration if the liquid rotates as a solid

body and what is the RCF?
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4.44 A closed tank of liquid (S 1.2) is rotated about a vertical

axis (see the figure), and at the same time the entire tank is ac-

celerated upward at 4 m s2. If the rate of rotation is 10 rad s,

what is the difference in pressure between points A and B

(pB pA)? Point B is at the bottom of the tank at a radius of 0.5 m

from the axis of rotation, and point A is at the top on the axis of

rotation.

4.45 A U-tube is rotated about one leg, as shown. Before being

rotated the liquid in the tube fills 0.25 m of each leg. The length

of the base of the U-tube is 0.5 m, and each leg is 0.5 m long.

What would be the maximum rotation rate (in rad s) to ensure

that no liquid is expelled from the outer leg?

4.46 An arm with a stagnation tube on the end is rotated at 100

rad/s in a horizontal plane 10 cm below a liquid surface as

shown. The arm is 20 cm long, and the tube at the center of rota-

tion extends above the liquid surface. The liquid in the tube is

the same as that in the tank and has a specific weight of 10,000

N m3. Find the location of the liquid surface in the central

tube.

4.47 A U-tube is rotated at 50 rev min about one leg. The fluid at

the bottom of the U-tube has a specific gravity of 3.0. The distance

between the two legs of the U-tube is 1 ft. A 6 in. height of another

fluid is in the outer leg of the U-tube. Both legs are open to the at-

mosphere. Calculate the specific gravity of the other fluid.

4.48 A manometer is rotated around one leg, as shown. The differ-

ence in elevation between the liquid surfaces in the legs is 20 cm.

The radius of the rotating arm is 10 cm. The liquid in the ma-

nometer is oil with a specific gravity of 0.8. Find the number of

g’s of acceleration in the leg with greatest amount of oil.

4.49 A fuel tank for a rocket in space under a zero-g environ-

ment is rotated to keep the fuel in one end of the tank. The sys-

tem is rotated at 3 rev min. The end of the tank (point A) is 1.5 m

from the axis of rotation, and the fuel level is 1 m from the rota-

tion axis. The pressure in the nonliquid end of the tank is 0.1 kPa,

and the density of the fuel is 800 kg m3. What is the pressure at

the exit (point A)?
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4.50 Water stands in these tubes as shown when no rotation oc-

curs. Derive a formula for the angular speed at which water will

just begin to spill out of the small tube when the entire system is

rotated about axis A-A.

4.51 Water fills a slender tube 1 cm in di-

ameter, 40 cm long, and closed at one end. When the tube is ro-

tated in the horizontal plane about its open end at a constant

speed of 50 rad s, what force is exerted on the closed end?

4.52 Water stands in the closed-end U-tube

as shown when there is no rotation. If and if the en-

tire system is rotated about axis A-A, at what angular speed will

water just begin to spill out of the open tube? Assume that the

temperature for the system is the same before and after rotation

and that the pressure in the closed end is initially atmospheric.

4.53 A simple centrifugal pump consists of a 10 cm disk with

radial ports as shown. Water is pumped from a reservoir through

a central tube on the axis. The wheel spins at 3000 rev min,

and the liquid discharges to atmospheric pressure. To establish

the maximum height for operation of the pump, assume that the

flow rate is zero and the pressure at the pump intake is atmo-

spheric pressure. Calculate the maximum operational height z

for the pump.

4.54 A closed cylindrical tank of water is

rotated about its horizontal axis as shown. The water inside the

tank rotates with the tank Derive an equation for

dp dz along a vertical-radial line through the center of rotation.

What is dp dz along this line for and 

when Here  at the axis.

4.55 For the conditions of Prob. 4.54, derive an equation for the

maximum pressure difference in the tank as a function of the

significant variables.

4.56 The tank shown is 4 ft in diameter and 12 ft long and is closed

and filled with water It is rotated about its

horizontal-centroidal axis, and the water in the tank rotates with

the tank The maximum velocity is 25 ft s. What is the

maximum difference in pressure in the tank? Where is the point

of minimum pressure?

The Bernoulli Equation Along a Streamline

4.57 ��� Often, in high winds, a roof will be lifted from a house.

Applying the Bernoulli equation, explain how this might happen.

4.58 ��� Describe in your own words how an aspirator works.

4.59 A water jet issues vertically from a nozzle, as shown. The

water velocity as it exits the nozzle is 20 ft s. Calculate how

high h the jet will rise. (Hint: Apply the Bernoulli equation

along the centerline.)
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4.60 A pressure of 10 kPa, gage, is applied to the surface of wa-

ter in an enclosed tank. The distance from the water surface to

the outlet is 0.5 m. The temperature of the water is 20oC. Find

the velocity (m s) of water at the outlet. The speed of the water

surface is much less than the water speed at the outlet.

4.61 Water flows through a vertical contraction (venturi) sec-

tion. Piezometers are attached to the upstream pipe and mini-

mum area section as shown. The velocity in the pipe is 10 ft s.

The difference in elevation between the two water levels in the

piezometers is 6 inches. The water temperature is 68oF. What is

the velocity (ft s) at the minimum area?

4.62 Kerosene at 20oC flows through a contraction section as

shown. A pressure gage connected between the upstream pipe

and throat section shows a pressure difference of 20 kPa. The

gasoline velocity in the throat section is 10 m s. What is the ve-

locity (m s) in the upstream pipe?

4.63 A Pitot-static tube is mounted on an airplane to measure

airspeed. At an altitude of 10,000 ft, where the temperature is

23°F and the pressure is 10 psia, a pressure difference corre-

sponding to 10 in of water is measured. What is the airspeed?

4.64 A glass tube is inserted into a flowing stream of water with

one opening directed upstream and the other end vertical. If the

water velocity is 4 m s, how high will the water rise in the ver-

tical leg relative to the level of the water surface of the stream?

4.65 A Bourdon-tube gage is tapped into the center of a disk as

shown. Then for a disk that is about 1 ft in diameter and for an

approach velocity of air (V0) of 40 ft s, the gage would read a

pressure intensity that is (a) less than (b) equal to

or (c) greater than 

4.66 An air-water manometer is connected to a Pitot-static tube

used to measure air velocity. If the manometer deflects 2 in.,

what is the velocity? Assume T 60°F and p 15 psia.

4.67 The flow-metering device shown consists of a stagnation

probe at station 2 and a static pressure tap at station 1. The velocity

at station 2 is twice that at station 1. Air with a density of 1.2

kg m3 flows through the duct. A water manometer is connected be-

tween the stagnation probe and the pressure tap, and a deflection of

10 cm is measured. What is the velocity at station 2?

4.68 The “spherical” Pitot probe shown is used to measure the

flow velocity in water Pressure taps are lo-

cated at the forward stagnation point and at 90° from the for-

ward stagnation point. The speed of fluid next to the surface of the

sphere varies as 1.5V0 sin�, where V0 is the free-stream velocity

and � is measured from the forward stagnation point. The pres-

sure taps are at the same level; that is, they are in the same hori-
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zontal plane. The piezometric pressure difference between the

two taps is 2 kPa. What is the free-stream velocity V0?

4.69 A device used to measure the velocity of fluid in a pipe con-

sists of a cylinder, with a diameter much smaller than the pipe di-

ameter, mounted in the pipe with pressure taps at the forward

stagnation point and at the rearward side of the cylinder. Data

show that the pressure coefficient at the rearward pressure tap is

–0.3. Water with a density of 1000 kg m3 flows in the pipe. A

pressure gage connected by lines to the pressure taps shows a

pressure difference of 500 Pa. What is the velocity in the pipe?  

4.70 Explain how you might design a spherical Pitot-static

probe to provide the direction and velocity of a flowing stream.

The Pitot-static probe will be mounted on a sting that can be ori-

ented in any direction.

4.71 Two Pitot-static tubes are shown. The one on the top is used

to measure the velocity of air, and it is connected to an air-water

manometer as shown. The one on the bottom is used to measure

the velocity of water, and it too is connected to an air-water ma-

nometer as shown. If the deflection h is the same for both ma-

nometers, then one can conclude that (a) VA Vw, (b) VA Vw,

or (c) VA Vw.

4.72 A Pitot-static tube is used to measure the velocity at the

center of a 12 in. pipe. If kerosene at 68°F is flowing and the de-

flection on a mercury-kerosene manometer connected to the Pitot

tube is 4 in., what is the velocity?

4.73 A Pitot-static tube used to measure air velocity is con-

nected to a differential pressure gage. If the air temperature is

20°C at standard atmospheric pressure at sea level, and if the dif-

ferential gage reads a pressure difference of 3 kPa, what is the

air velocity?

4.74 A Pitot-static tube used to measure air velocity is con-

nected to a differential pressure gage. If the air temperature is

60°F at standard atmospheric pressure at sea level, and if the

differential gage reads a pressure difference of 11 psf, what is

the air velocity?

4.75 A Pitot-static tube is used to measure the gas velocity in a

duct. A pressure transducer connected to the Pitot tube registers

a pressure difference of 1.0 psi. The density of the gas in the

duct is 0.12 lbm ft3. What is the gas velocity in the duct?

4.76 A sphere moves horizontally through still water at a speed

of 11 ft s. A short distance directly ahead of the sphere (call it

point A), the velocity, with respect to the earth, induced by the

sphere is 1 ft s in the same direction as the motion of the

sphere. If p0 is the pressure in the undisturbed water at the same

depth as the center of the sphere, then the value of the ratio

 will be (a) less than unity, (b) equal to unity, or (c)

greater than unity.

4.77 Body A travels through water at a constant speed of 13 m s

as shown. Velocities at points B and C are induced by the

moving body and are observed to have magnitudes of 5 m s

and 3 m s, respectively. What is 

4.78 Water in a flume is shown for two conditions. If the depth d

is the same for each case, will gage A read greater or less than

gage B? Explain.
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4.79 The apparatus shown in the figure is used to measure the

velocity of air at the center of a duct having a 10 cm diameter. A

tube mounted at the center of the duct has a 2 mm diameter and

is attached to one leg of a slant-tube manometer. A pressure tap

in the wall of the duct is connected to the other end of the slant-

tube manometer. The well of the slant-tube manometer is suffi-

ciently large that the elevation of the fluid in it does not change

significantly when fluid moves up the leg of the manometer.

The air in the duct is at a temperature of 20°C, and the pressure

is 150 kPa. The manometer liquid has a specific gravity of 0.7, and

the slope of the leg is 30°. When there is no flow in the duct, the liq-

uid surface in the manometer lies at 2.3 cm on the slanted scale.

When there is flow in the duct, the liquid moves up to 6.7 cm on

the slanted scale. Find the velocity of the air in the duct. Assum-

ing a uniform velocity profile in the duct, calculate the rate of

flow of the air.

4.80 A rugged instrument used frequently for monitoring gas

velocity in smoke stacks consists of two open tubes oriented to

the flow direction as shown and connected to a manometer. The

pressure coefficient is 1.0 at A and –0.3 at B. Assume that water,

at 20°C, is used in the manometer and that a 5 mm deflection

is noted. The pressure and temperature of the stack gases are

101 kPa and 250°C. The gas constant of the stack gases is

200 J kg K. Determine the velocity of the stack gases.

4.81 The pressure in the wake of a bluff body is approximately

equal to the pressure at the point of separation. The velocity dis-

tribution for flow over a sphere is V 1.5 V0 sin �, where V0 is

the free-stream velocity and � is the angle measured from the

forward stagnation point. The flow separates at � 120°. If the

free-stream velocity is 100 m s and the fluid is air (� 1.2

kg m3 ), find the pressure coefficient in the separated region

next to the sphere. Also, what is the gage pressure in this region

if the free-stream pressure is atmospheric?

4.82 A Pitot-static tube is used to measure the airspeed of an air-

plane. The Pitot tube is connected to a pressure-sensing device

calibrated to indicate the correct airspeed when the temperature

is 17°C and the pressure is 101 kPa. The airplane flies at an alti-

tude of 3000 m, where the pressure and temperature are 70 kPa

and – 6.3°C. The indicated airspeed is 70 m s. What is the true

airspeed?

4.83 An aircraft flying at 10,000 feet uses a Pitot-static tube to

measure speed. The instrumentation on the aircraft provides the

differential pressure as well as the local static pressure and the lo-

cal temperature. The local static pressure is 9.8 psig, and the air

temperature is 25°F. The differential pressure is 0.5 psid. Find the

speed of the aircraft in mph.

4.84 You need to measure air flow velocity. You order a com-

mercially available Pitot-static tube, and the accompanying in-

structions state that the airflow velocity is given by

where hv is the “velocity pressure” in inches of water and d is

the density in pounds per cubic foot. The velocity pressure is the
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deflection measured on a water manometer attached to the static

and total pressure ports. The instructions also state the density d

can be calculated using

where Pa is the barometric pressure in inches of mercury and T

is the absolute temperature in degrees Rankine. Before you use

the Pitot tube you want to confirm that the equations are correct.

Determine if they are correct.

4.85 Consider the flow of water over the surfaces shown. For

each case the depth of water at section D-D is the same (1 ft),

and the mean velocity is the same and equal to 10 ft s. Which

of the following statements are valid?

a.

b.

c.

d.

e.

Rotation of Fluid Elements

4.86 ��� What is meant by rotation of a fluid element? Use a

sketch to explain.

4.87 ��� Consider a spherical fluid element in an inviscid

fluid (no shear stresses). If pressure and gravitational forces are

the only forces acting on the element, can they cause the ele-

ment to rotate? Explain.

4.88 The vector represents a two-dimensional

velocity field. Is the flow irrotational?

4.89 The u and v velocity components of a flow field are given

by and Determine the vorticity and the rate of

rotation of flow field.

4.90 The velocity components for a two-dimensional flow are

where C is a constant. Is the flow irrotational?

4.91 A two-dimensional flow field is defined by u x2 y2 and

v –2xy. Is the flow rotational or irrotational?

4.92 Fluid flows between two parallel stationary plates. The dis-

tance between the plates is 1 cm. The velocity profile between

the two plates is a parabola with a maximum velocity at the cen-

terline of 2 cm s. The velocity is given by

where y is measured from the centerline. The cross-flow compo-

nent of velocity, v, is zero. There is a reference line located 1 cm

downstream. Find an expression, as a function of y, for the

amount of rotation (in radian) a fluid element will undergo

when it travels a distance of 1 cm downstream.

4.93 A combination of a forced and a free vortex is represented

by the velocity distribution

For the velocity approaches a rigid body rotation, and

as r becomes large, a free-vortex velocity distribution is ap-

proached. Find the amount of rotation (in radians) that a fluid

element will experience in completing one circuit around the

center as a function of r. Hint: The rotation rate in a flow with

concentric streamlines is given by

Evaluate the rotation for 1.0, and 1.5.

The Bernoulli Equation in Irrotational Flow

4.94 Liquid flows with a free surface around a bend. The liquid

is inviscid and incompressible, and the flow is steady and irrota-

tional. The velocity varies with the radius across the flow as

where r is in meters. Find the difference in depth

of the liquid from the inside to the outside radius. The inside ra-

dius of the bend is 1 m and the outside radius is 3 m.

4.95 The velocity in the outlet pipe from this reservoir is 16 ft s

and Because of the rounded entrance to the pipe, the

flow is assumed to be irrotational. Under these conditions, what

is the pressure at A?

4.96 The velocity in the outlet pipe from this reservoir is 6 m s

and Because of the rounded entrance to the pipe, the

flow is assumed to be irrotational. Under these conditions, what

is the pressure at A?

PROBLEM 4.85

d lbm ft
3⁄( ) 1.325

Pa

T
-----�

⁄

pC pB pA� �

pB pC pA� �

pA pB pC� �

pB pC pA� �

pA pB pC� �

DD

D

D

D D

B

A

C

V 10xi� 10yj–

u �– y� v �x.�

u
Cx

y
2

x
2+( )

---------------------� v
Cy

x
2

y
2+( )

---------------------�

� –
�

PROBLEMS 4.95. 4.96

⁄

u 2 1 4y
2–( )�

v�
1

r
--- 1 exp r

2–( )–[ ]�

r 0→

2�
· dv�

dr
--------�

v�

r
----+

1

r
---

d

dr
----- v�r( )�

r 0.5,�

V 1 r⁄  m s⁄ ,�

⁄
h 15 ft.�

Water

V

A

h

⁄
h 15 m.�



124 FLOWING FLUIDS AND PRESSURE VARIATION

4.97 The maximum velocity of the flow past a circular cylinder,

as shown, is twice the approach velocity. What is �p between

the point of highest pressure and the point of lowest pressure in

a 40 m s wind? Assume irrotational flow and standard atmo-

spheric conditions.

4.98 The velocity and pressure are given at two points in the

flow field. Assume that the two points lie in a horizontal plane

and that the fluid density is uniform in the flow field and is

equal to 1000 kg m3. Assume steady flow. Then, given these

data, determine which of the following statements is true. (a) The

flow in the contraction is nonuniform and irrotational. (b) The

flow in the contraction is uniform and irrotational. (c) The flow

in the contraction is nonuniform and rotational. (d) The flow in

the contraction is uniform and rotational.

4.99Water flows from the large orifice at the

bottom of the tank as shown. Assume that the flow is irrotational.

Point B is at zero elevation, and point A is at 1 ft elevation. If

VA 8  at an angle of 45° with the horizontal and if VB

20 vertically downward, what is the value of 

4.100 Ideal flow theory will yield a flow pattern past an airfoil

similar to that shown. If the approach air velocity V0 is 80 m s,

what is the pressure difference between the bottom and the top

of this airfoil at points where the velocities are V1 85 and

V2 75 Assume �air is uniform at 1.2 kg m3.

4.101 Consider the flow of water between two parallel plates in

which one plate is fixed as shown. The distance between the

plates is h, and the speed of the moving plate is V. A person

wishes to calculate the pressure difference between the plates

and applies the Bernoulli equation between points 1 and 2,

and concludes that

Is this correct? Provide the reason for your answer.

Cyclonic Storms

4.102 During the fall of 2005, Hurricane Wilma passed through

the Gulf of Mexico. When the storm was classified as a cate-

gory 5 hurricane, the pressure at the center of the hurricane was

measured at 902 mbars. The highest wind velocity was 175

mph. Assuming the pressure far from the center of the hurricane

was 1 bar and the air density was 1.2 kg m3, estimate the pres-

sure at the center of the hurricane. Comment on the difference in

your prediction and the measured value and provide some ratio-

nale for the discrepancy. 

4.103 On June 24, 2003, a violent tornado occurred near

Manchester, ND. A pressure drop of 100 mbar was recorded in

the tornado. Assume an air density of 1.2 kg m3 and estimate

the maximum velocity.

4.104 A whirlpool is modeled as the combination of a free and a

forced vortex. The maximum velocity in the whirlpool is 10 m s,
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and the radius at the juncture of the free and the forced vortex is

10 m. The pressure is atmospheric (gage pressure 0) at the free

surface. Plot the shape of the water surface from the center to a ra-

dius of 50 m. The elevation is zero for the vortex center, where the

velocity is zero.

4.105 The intensity of a tornado is measured by the Fujita Tor-

nado Intensity Scale (F-scale). An intense tornado with an F-

scale reading of 4 has a maximum wind velocity of 350 km hr.

The tornado is modeled as a combination of a free and a forced

vortex, and the radius of the forced vortex is 50 m. The atmo-

spheric pressure is 100 kPa. Plot the variation of pressure with

radius from the center. There is no elevation change.

4.106 A weather balloon is caught in a tornado modeled as a

combination free-forced vortex. Will it move toward the center

or away from the center? Think carefully about pressure gradi-

ents and buoyancy. Provide a rationale for your answer.

4.107 The pressure distribution in a tornado is predicted using

the Bernoulli equation, which is based on a constant density.

However, the density will decrease as the pressure decreases in

the tornado. Does the Bernoulli equation overpredict or under-

predict the pressure drop in the tornado? Explain.

Separation

4.108 The velocity distribution over the surface of a sphere up-

stream of the separation point is where U is the

free stream velocity and � is the angle measured from the for-

ward stagnation point. A pressure of – 2.5 in H2O gage is mea-

sured at the point of separation on a sphere in a 100 ft s airflow

with a density of 0.07 lbm ft3. The pressure far upstream of the

sphere in atmospheric. Estimate the location of the stagnation

point (�). Separation occurs on the windward side of the sphere.

4.109 Knowing the speed at point 1 of a fluid upstream of a

sphere and the average speed at point 2 in the wake of in the

sphere, can one use the Bernoulli equation to find the pressure

difference between the two points? Provide the rationale for

your decision.

General

4.110 Euler’s equations for a planar (two-dimensional) flow in

the xy-plane are

a. The slope of a streamline is given by

Using this relation in Euler’s equation, show that

or

which means that is constant along a streamline.

b. For an irrotational flow,

Substituting this equation into Euler’s equation, show that

which means that is constant in all directions.
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C H A P T E R

Control Volume Approach

and Continuity Equation

The engineer can find flow properties (pressure and velocity) in a flow field in one of two

ways. One approach is to generate a series of pathlines or streamlines through the field and

determine flow properties at any point along the lines by applying Euler’s equation or the

Bernoulli equation developed in Chapter 4. This is called the Lagrangian approach. The other

way is to solve a set of equations for flow properties at any point in the flow field. This is

called the Eulerian approach. Both approaches are discussed in this chapter. The foundational

concepts for the Eulerian approach, or control volume approach, are developed and applied

to the conservation of mass. This leads to the continuity equation, a fundamental and widely

used equation in fluid mechanics. 

Lagrangian and Eulerian Approach
Engineers are often concerned about evaluating the pressure and velocities at arbitrary loca-

tions in a flow field. They may need to find the local velocity around a bridge pier to assess

the possibility of erosion. Or they may need to evaluate the lowest pressure points in a flow

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Explain the key difference between the Lagrangian and Eulerian descriptions of a flow field.

• Explain the meaning of volume flow rate and mass flow rate.

• Explain what is meant by a system, control volume and control surface.

• State the purpose of the Reynolds transport theorem.

• Outline the steps in the derivation of the continuity equation.

• Describe the idea underlying cavitation. 

Procedural Knowledge

• Calculate the volume flow rate (discharge) and the mass flow rate.

• Apply the continuity equation to draining tanks and reservoirs.

• Apply continuity equation to velocity changes in variable-area ducts.

Applications (Typical)

• For flow through a venturimeter, relate pressure, velocity, and flow rate.

• For a tank or reservoir, estimate draining time.

• For a small leak in a pressurized chamber, estimate depressurization time.

• Predict the onset of cavitation.
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field to determine whether local boiling (cavitation) may occur. In the design of lifting sur-

faces, such as airfoils or hydrofoils, they may be interested in the pressure gradient to predict

the onset of separation. It is essential to have some scheme to find flow properties at a point

in a flow field. The Lagrangian and Eulerian descriptions of the flow field represent two dif-

ferent ways to obtain this information.

The flow into a sudden contraction, shown in Fig. 5.1, can be used to illustrate the dif-

ference between the Lagrangian and Eulerian approach to quantify flow properties in a flow

field. It is desired to evaluate the pressure at point B. The pressure and velocity are known at

the inlet. One approach is to locate the pathline that starts at the inlet, point A, and passes

through point B as shown in Fig. 5.1. As the fluid particle moves along this pathline, the pres-

sure changes with velocity according to Euler’s equation.* Integrating Euler’s equation from

A to B would yield the pressure at point B. If the flow is steady, the Bernoulli equation could

be used between the two points. This is called the Lagrangian approach. Obviously, it is an

enormous task to keep track of all the pathlines required to evaluate the flow properties at a

given point in the flow field. The problem is further compounded for unsteady flows where

different pathlines will pass through the same point at different times.

The other way to describe the flow is to develop a solution to the flow field that pro-

vides the flow properties at any point. Thus if the pressure were available as a function of lo-

cation, p(x,y), then the pressure at point B in Fig. 5.1 would simply be obtained by

substituting in the values of the coordinates at that point. Solving the fluid flow equations to

yield the flow properties at any point in the field is known as the Eulerian approach.
In order to use the Eulerian approach, the basic equations must be recast in Eulerian

form. In solid body mechanics, the fundamental equations are developed using the “free

body” concept in which an element in the field is isolated and the effect of the surroundings

is replaced by forces acting on the surface of element. An analogous approach is used in fluid

mechanics as shown in Fig. 5.2. The volume enclosing a point is identified as a “control vol-

ume.” The effects of the surroundings are replaced by forces due to pressure and shear stress

acting on the surface of the control volume. In addition to the forces like those applied to the

“free body,” there is a flow through the control volume that has to be taken into account. Be-

cause of the use of a control volume, the Eulerian approach is often called the control volume
approach.

The basic equations, such as Newton’s second law and the energy equation, are applica-

ble for a body of given mass, or a fluid particle, moving in the field; in other words, they are

in Lagrangian form. This chapter introduces a procedure for converting the Lagrangian form

to the Eulerian form so they can be applied to a control volume. In the limit as the control

volume approaches zero volume, the Eulerian forms of the differential equations are derived.

The solution of these equations provides the Eulerian description of the flow field. 

Figure 5.1

The Lagrangian and 

Eulerian approaches for 

quantifying the flow field 

in sudden contraction. 

A

B

Eulerian approachLagrangian approach

y

x

B

* If viscous effects were important, Euler’s equation would have to be extended to include such effects.
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The Eulerian form of the equations also provides the basic equations for numerical so-

lutions of the flow field, commonly known as CFD (computational fluid dynamics). The

equations are written as a set of algebraic equations that are solved by various numerical

schemes and provide flow properties at discrete points in the field. CFD is used extensively

for industrial design.

Rate of Flow

In order to develop the Eulerian, or control volume approach, there is a need to be able to

calculate the flow rates through a control volume. Also, the capability to calculate flow rates

is important in analyzing water supply systems, natural gas distribution networks, and river

flows. The equations for calculating flow rates are developed in this section.

Discharge
The discharge, Q, often called the volume flow rate, is the volume of fluid that passes

through an area per unit time. For example, when filling the gas tank of an automobile, the

discharge or volume flow rate would be the gallons per minute flowing through the nozzle.

Typical units for discharge are ft3 s (cfs), ft3 min (cfm), gpm, m3 s, and L s.

The discharge or volume flow rate in a pipe is related to the flow velocity and cross-

sectional area. Consider the idealized flow of fluid in a pipe as shown in Fig. 5.3 in which the

velocity is constant across the pipe section. Suppose a marker is injected over the cross sec-

tion at section A-A for a period of time �t. The fluid that passes A-A in time �t is represented

by the marked volume. The length of the marked volume is V�t so the volume is

�V AV�t, where A is the cross-sectional area of the pipe. The volume flow per unit time

past A-A is

Taking the limit as gives

(5.1)

which will be referred to as the discharge or volume flow rate equation. It is important to re-

alize that discharge refers to a volume flow rate.

The discharge given by Eq. (5.1) is based on a constant flow velocity over the cross-

sectional area. In general, the velocity varies across the section such as shown in Fig. 5.4.

Figure 5.2

A control volume in a 

flow field. p

p

p

V

V

p

�

�

�

�

5.1

⁄ ⁄ ⁄ ⁄

�

ΔV 
Δt
------- VA�

Δt 0→

Q
ΔV 
Δt
-------

Δt 0→
lim VA� �



130 CONTROL VOLUME APPROACH AND CONTINUITY EQUATION

The volume flow rate through a differential area of the section is V dA, and the total vol-

ume flow rate is obtained by integration over the entire cross-section:

(5.2)

In many problems—for example, those involving flow in pipes—one may know the

discharge and need to find the mean (average) velocity without knowing the actual velocity

distribution across the pipe section. By definition, the mean velocity is the discharge divided

by the cross-sectional area,

(5.3)

For laminar flows in circular pipes, the velocity profile is parabolic like the case

shown in Fig. 5.4. In this case, the mean velocity is half the centerline velocity. However,

for turbulent pipe flow as shown in Fig. 4.7b, the time-averaged velocity profile is nearly

uniformly distributed across the pipe, so the mean velocity is fairly close to the velocity

at the pipe center. It is customary to leave the bar off the velocity symbol and simply in-

dicate the mean velocity with V.

The volume flow rate equation can be generalized by using the concept of the dot prod-

uct. In Fig. 5.5 the flow velocity vector is not normal to the surface but is oriented at an angle

� with respect to the direction that is normal to the surface. The only component of velocity

that contributes to the flow through the differential area dA is the component normal to the

area, Vn. The differential discharge through area dA is

Figure 5.3
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If the vector, dA, is defined with magnitude equal to the differential area, dA, and direction

normal to the surface, then  where is the dot product

of the two vectors. Thus a more general equation for the discharge or volume flow rate

through a surface A is 

(5.4)

If the velocity is constant over the area and the area is a planar surface, then the discharge is

given as

If, in addition, the velocity and area vectors are aligned, then

which reverts to the original equation developed for discharge, Eq. (5.1).

Mass Flow Rate
The mass flow rate, is the mass of fluid passing through a cross-sectional area per unit

time. The common units for mass flow rate are kg s, lbm s, and slugs s. Using the same ap-

proach as for volume flow rate, the mass of the fluid in the marked volume in Fig. 5.3 is

where � is the average density. The mass flow rate equation is 

(5.5)

The generalized form of the mass flow equation corresponding to Eq. (5.4) is 

(5.6)

where both the velocity and fluid density can vary over the cross-sectional area. If the density

is constant, then Eq. (5.5) is recovered. Also if the velocity vector is aligned with the area

vector, such as integrating over the cross-sectional area of a pipe, the mass flow equation re-

duces to

(5.7)

In summary, Eqs. (5.1) to (5.7) can be combined to create several useful formulas for

volume flow rate (discharge): 

(5.8)

Useful formulas for mass flow rate are: 

(5.9)

The equations for discharge and mass flow rate are summarized in Table F.2.

Example 5.1 shows how to calculate the discharge and mean velocity using the mass

flow rate, fluid density, and pipe diameter.
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Example 5.2 shows how to evaluate the discharge when the velocity vector is not nor-

mal to the cross section area by using the dot product.

Example 5.3 illustrates how to evaluate the volume flow rate for a nonuniform velocity

distribution by integration. 

EXAMPLE 5.1   VOLUME FLOW RATE AND

MEAN VELOCITY

Air that has a mass density of 1.24 kg m3 (0.00241 slugs ft3)

flows in a pipe with a diameter of 30 cm (0.984 ft) at a mass rate 

of flow of 3 kg s (0.206 slugs s). What are the mean velocity 

and discharge in this pipe for both systems of units?

Problem Definition

Situation: Airflow in pipe with 30 cm diameter at 3 kg s.

Find:

1. Discharge (m3 s and ft3 s).

2. Mean velocity (m s and ft s).

Assumptions: Properties are uniformly distributed across 
section.

Properties: � 1.24 kg m3 (0.00241slugs ft3).

Plan

1. Find the volume flow rate using the volume flow rate 
equation, Eq. (5.5). 

2. Calculate the mean velocity using Eq. (5.3). 

Solution

1. Discharge:

2. Mean velocity

EXAMPLE 5.2   FLOW IN SLOPING CHANNEL

Water flows in a channel that has a slope of 30°. If the 

velocity is assumed to be constant, 12 m s, and if a depth of 

60 cm is measured along a vertical line, what is the discharge 

per meter of width of the channel?

Sketch:

Problem Definition

Situation: Channel slope of 30o. Velocity is 12 m/s and 
vertical depth is 60 cm.

Find: Discharge per meter width (m2 s).

Assumptions: Velocity is uniformly distributed across
channel.

Plan

Use Eq. (5.7) with area based on 1 meter width.

Solution

Review

The discharge per unit width is usually designated as q.
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Control Volume Approach

The control volume (or Eulerian) approach is the method whereby a volume in the flow field

is identified and the governing equations are solved for the flow properties associated with

this volume. A scheme is needed that allows one to rewrite the equations for a moving fluid

particle in terms of flow through a control volume. Such a scheme is the Reynolds transport

theorem introduced in this section. This is a very important theorem because it is used to

derive many of the basic equations used in fluid mechanics.

System and Control Volume
A system is a continuous mass of fluid that always contains the same matter. A system mov-

ing through a flow field is shown in Fig. 5.6. The shape of the system may change with time,

but the mass is constant since it always consists of the same matter. The fundamental equa-

tions, such as Newton’s second law and the first law of thermodynamics, apply to a system. 

A control volume is volume located in space and through which matter can pass, as

shown in Fig. 5.6. The system can pass through the control volume. The selection of the con-

trol volume position and shape is problem-dependent. The control volume is enclosed by the

control surface as shown in Fig. 5.6. Fluid mass enters and leaves the control volume through

the control surface. The control volume can deform with time as well as move and rotate in

space and the mass in the control volume can change with time.

EXAMPLE 5.3   DISCHARGE IN CHANNEL WITH 

NON-UNIFORM VELOCITY DISTRIBUTION

The water velocity in the channel shown in the accompanying 

figure has a distribution across the vertical section equal to 

What is the discharge in the channel if 

the water is 2 m deep (d 2 m), the channel is 5 m wide, and 

the maximum velocity is 3 m s?

Problem Definition

Situation: Water flows in a 2 m by 5 m channel with a given 
velocity distribution.

Find: Discharge (in m3 s).

Sketch:

Plan

Find the discharge by using Eq. (5.2).

Solution

Discharge equation

Q �
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0
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Channel is 5 m wide, so differential area is Using 

given velocity distribution, 
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Intensive and Extensive Properties
An extensive property is any property that depends on the amount of matter present. The ex-

tensive properties of a system include mass, m, momentum, mv (where v is velocity), and en-

ergy, E. Another example of an extensive property is weight because the weight is mg.

An intensive property is any property that is independent of the amount of matter

present. Examples of intensive properties include pressure and temperature. Many intensive

properties are obtained by dividing the extensive property by the mass present. The intensive

property for momentum is velocity v, and for energy is e, the energy per unit mass. The inten-

sive property for weight is g.

In this section an equation for a general extensive property, B, will be developed. The

corresponding intensive property will be b. The amount of extensive property B contained in

a control volume at a given instant is

(5.10)

where dm and are the differential mass and differential volume, respectively, and the inte-

gral is carried out over the control volume.

Property Transport Across the Control Surface
When fluid flows across a control surface, properties such as mass, momentum, and energy

are transported with the fluid either into or out of the control volume. Consider the flow

through the control volume in the duct in Fig. 5.7. If the velocity is uniformly distributed

across the control surface, the mass flow rate through each cross section is given by

The net mass flow rate out* of the control volume, that is, the outflow rate minus the inflow

rate, is

The same control volume is shown in Fig. 5.8 with each control surface area represented

by a vector, A, oriented outward from the control volume and with magnitude equal to the

Figure 5.6

System, control surface, 

and control volume in a 

flow field.

* Another term used often for net flow rate out is net efflux.

Control
volume

Control
surface

System

Bcv b md
cv� b� Vd

cv�� �

dV

m· 1 �1A1V1� m· 2 �2A2V2�

net mass outflow rate m· 2 m· 1– �2A2V2 �1A1V1–� �
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cross-sectional area. The velocity is represented by a vector, V. Taking the dot product of

the velocity and area vectors at both stations gives

because at station 1 the velocity and area have the opposite directions while at station 2 the

velocity and area vectors are in the same direction. Now the net mass outflow rate can be

written as

(5.11)

Equation (5.11) states that if the dot product is summed for all flows into and out of

the control volume, the result is the net mass flow rate out of the control volume, or the net

mass efflux. If the summation is positive, the net mass flow rate is out of the control volume.

If it is negative, the net mass flow rate is into the control volume. If the inflow and outflow

rates are equal, then 

In a similar manner, to obtain the net rate of flow of an extensive property B out of the

control volume, the mass flow rate is multiplied by the intensive property b:

(5.12)

To reinforce the validity of Eq. (5.12) one may consider the dimensions involved. Equation

(5.12) states that the flow rate of B is given by

Figure 5.7
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Equation (5.12) is applicable for all flows where the properties are uniformly distrib-

uted across the area. If the properties vary across a flow section, then it becomes necessary to

integrate across the section to obtain the rate of flow. A more general expression for the net

rate of flow of the extensive property from the control volume is thus

(5.13)

Equation (5.13) will be used in the most general form of the Reynolds transport theorem.

Reynolds Transport Theorem
The Reynolds transport theorem, fundamental to the control volume approach, is developed

in this section. It relates the Eulerian and Lagrangian approaches. The Reynolds transport

theorem is derived by considering the rate of change of an extensive property of a system as

it passes through a control volume.

A control volume with a system moving through it is shown in Fig. 5.9. The control

volume is enclosed by the control surface identified by the dashed line. The system is identi-

fied by the darker shaded region. At time t the system consists of the material inside the con-

trol volume and the material going in, so the property B of the system at this time is

(5.14)

At time the system has moved and now consists of the material in the control volume

and the material passing out, so B of the system is

(5.15)

The rate of change of the property B is

(5.16)

Substituting in Eqs. (5.14) and (5.15) results in

(5.17)

Rearranging terms yields

(5.18)
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The first term on the right side of Eq. (5.18) is the rate of change of the property B inside the

control volume, or

(5.19)

The remaining terms are

and

These two terms can be combined to give

(5.20)

or the net efflux, or net outflow rate, of the property B through the control surface. Equation

(5.18) can now be written as

Substituting in Eq. (5.13) for  and Eq. (5.10) for Bcv results in the most general form of

the Reynolds transport theorem:

(5.21)

This equation may be expressed in words as

The left side of the equation is the Lagrangian form; that is, the rate of change of property B
evaluated moving with the system. The right side is the Eulerian form; that is, the change of

property B evaluated in the control volume and the flux measured at the control surface. This

equation applies at the instant the system occupies the control volume and provides the con-

nection between the Lagrangian and Eulerian descriptions of fluid flow. The application of

this equation is called the control volume approach. The velocity V is always measured with

respect to the control surface because it relates to the mass flux across the surface.

A simplified form of the Reynolds transport theorem can be written if the mass cross-

ing the control surface occurs through a number of inlet and outlet ports, and the velocity,

density and intensive property b are uniformly distributed (constant) across each port. Then

(5.22)

where the summation is carried out for each port crossing the control surface.
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An alternative form can be written in terms of the mass flow rates:

(5.23)

where the subscripts i and o refer to the inlet and outlet ports, respectively, located on the

control surface. This form of the equation does not require that the velocity and density be

uniformly distributed across each inlet and outlet port, but the property b must be. 

Continuity Equation

The continuity equation derives from the conservation of mass, which, in Lagrangian form,

simply states that the mass of the system is constant.

The Eulerian form is derived by applying the Reynolds transport theorem. In this case the ex-

tensive property of the system is its mass, . The corresponding value for b is the

mass per unit mass, or simply, unity.

General Form of the Continuity Equation
The general form of the continuity equation is obtained by substituting the properties for

mass into the Reynolds transport theorem, Eq. (5.21), resulting in

However, so the general, or integral, form of the continuity equation is

(5.24)

This equation can be expressed in words as

If the mass crosses the control surface through a number of inlet and exit ports, the con-

tinuity equation simplifies to

(5.25)

where mcv is the mass of fluid in the control volume. Note that the two summation terms rep-

resent the net mass outflow through the control surface.

Example 5.4 shows an application of the continuity equation to calculating the mass ac-

cumulation rate in a tank.  
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The rate of water level rise in a reservoir is an often-used application of the continuity

equation. Example 5.5 illustrates this application. 

EXAMPLE 5.4   MASS ACCUMULATION IN A TANK

A jet of water discharges into an open tank, and water leaves 

the tank through an orifice in the bottom at a rate of 0.003 

m3 s. If the cross-sectional area of the jet is 0.0025 m2 where 

the velocity of water is 7 m s, at what rate is water 

accumulating in (or evacuating from) the tank?

Problem Definition

Situation: Jet of water (7 m/s at 0.0025 m2 ) entering tank 

and water leaving at 0.003 m3 s through orifice.

Find: Rate of accumulation (or evacuation) in tank (kg s).

Sketch:

Assumptions: Water density is 1000 kg m3.

Plan

A control volume is drawn around the tank as shown. There is 

one inlet and one outlet.

1. Develop equation for accumulation rate by applying the 
continuity equation, Eq. (5.25). 

2. Analyze equation term by term.

3. Calculate the accumulation rate.

Solution

1. Continuity equation

Because there is only one inlet and outlet, the equation 

reduces to

2. Term-by-term analysis

• The inlet mass flow rate is calculated using Eq. (5.5)

• Outlet flow rate is

3. Accumulation rate:

Review

Note that the result is positive so water is accumulating in the 

tank.

EXAMPLE 5.5   RATE OF WATER RISE

IN RESERVOIR

A river discharges into a reservoir at a rate of 400,000 ft3 s

(cfs), and the outflow rate from the reservoir through the flow 

passages in the dam is 250,000 cfs. If the reservoir surface 

area is 40 mi2, what is the rate of rise of water in the 

reservoir?

Problem Definition

Situation: Reservoir with 400,000 cfs entering and 250,000 

cfs leaving. Area is 40 mi2.

Find: Rate of water rise (ft/hr) in reservoir.

Sketch:

Assumptions: Water density is constant.
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Example 5.6 illustrates how to predict the emptying rate of a tank. In this example, a

control volume of varying size is chosen.

Plan

The control volume selected is shown in the sketch. There is 

an inlet from the river at location 1 and an outlet at location 2. 

The control surface 3 is just below the water surface and is 

stationary. Mass passes through control surface 3 as the water 

level in the reservoir rises (or falls). The mass in the control 

volume is constant. 

1. Apply the continuity equation, Eq. (5.25).

2. Analyze term by term.

3. Evaluate rise rate using Eq. (5.1).

Solution

Continuity equation:

2. Term-by-term analysis:

• Mass in the control volume is constant, so 

• Inlet port 1 is river flow rate, 

• Outlets are reservoir surface and dam outlet, 

Substitution of terms back into continuity equation:

3. Rise rate calculation using Eq. (5.1):

EXAMPLE 5.6   WATER LEVEL DROP RATE IN 

DRAINING TANK

A 10 cm jet of water issues from a 1 m diameter tank. 

Assume that the velocity in the jet is where h is 

the elevation of the water surface above the outlet jet. How 

long will it take for the water surface in the tank to drop from 

h0 2 m to hf 0.50 m?

Problem Definition

Situation: Water draining by a 10 cm jet from 1 m diameter tank.

Find: Time (in seconds) to drain from depth of 2 m to 0.5 m.

Sketch:

Plan

The control selected is shown in the sketch. The control 

surface is located at and moves with the water surface. Water 

crosses control surface at location 1.

1. Apply the continuity equation, Eq. (5.25).

2. Analyze term by term.

3. Solve the equation for elapsed time.

4. Calculate time to change levels.

Solution

1. Continuity equation

2. Term-by-term analysis

• Accumulation rate term

where AT is cross-sectional area of tank.
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Example 5.7 shows the application of the continuity equation to predict the time for de-

pressurization of a tank where gas leaks out through a small hole. In this case a control vol-

ume with constant volume is selected, but the mass in the control volume changes with time

as the density changes.

• Inlet mass flow rate with no inflow is

• Outlet mass flow rate

Substitution of terms in continuity equation:

3. Equation for elapsed time:

• Separating variables

• Integrating

• Substituting in initial condition, and final 
condition, and solving for time

4. Time calculation:

• Evaluating tank and outlet areas

• Elapsed time

EXAMPLE 5.7   DEPRESSURIZATION OF GAS IN TANK

Methane escapes through a small (10–7 m2 ) hole in a 10 m3

tank. The methane escapes so slowly that the temperature in 

the tank remains constant at 23°C. The mass flow rate of 

methane through the hole is given by 

where p is the pressure in the tank, A is

the area of the hole, R is the gas constant, and T is the 

temperature in the tank. Calculate the time required for the 

absolute pressure in the tank to decrease from 500 to 400 kPa.

Problem Definition

Situation: Methane leaks through a 10–7 m2 hole in 10 m3

tank.

Find: Time (in seconds) for pressure to decrease from 500 
kPa to 400 kPa.

Assumptions:

1. Gas temperatures constant at 23oC during leakage.

2. Ideal gas law is applicable.

Properties: Table A.2, 

Sketch:

Plan

Control volume selected encloses whole tank, the tank shell, 

and the methane in the tank. There are no inlets and only one 

outlet.

1. Apply continuity equation, Eq. (5.25).

2. Analyze term by term.

3. Solve equation for elapsed time.

4. Calculate time.
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Continuity Equation for Flow in a Pipe
Several simplified forms of the continuity equation are used by engineers for flow in a pipe.

The equation is developed by positioning a control volume inside a pipe, as shown in Fig.

5.10. Mass enters through station 1 and exits through station 2. The control volume is fixed to

the pipe walls, and its volume is constant. If the flow is steady, then mcv is constant so the

mass flow formulation of the continuity equation reduces to

For flow with a uniform velocity and density distribution, the continuity equation for steady

flow in a pipe is

(5.26)

If the flow is incompressible, then

(5.27)

Solution

1. Continuity equation

2. Term-by-term analysis.

• Rate of accumulation term. The mass in the control vol-
ume is the sum of the mass of the tank shell, and 
the mass of methane in the tank,

where V is the internal volume of the tank which is 

constant. The mass of the tank shell is constant, so

• There is no mass inflow:

• Mass out flow rate is

Substituting terms into continuity equation

3. Equation for elapsed time:

• Use ideal gas law (Eq. 2.5) for �,

• Because R, T, A, and V are constant,

or

• Integrating equation and substituting limits for initial 
and final pressure

4. Elapsed time

Review

1. The time corresponds to approximately one day.

2. Since the ideal gas law is used, the pressure and 
temperature have to be in absolute values.
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or, equivalently,

This equation is valid for both steady and unsteady incompressible flow.

Equations (5.26) and (5.27) are very common forms of the continuity equation and are

used in numerous applications. If the flow is not uniformly distributed, the mass flow must

be calculated using Eq. (5.5).

If there are more than two ports, then the general form of the continuity equation for

steady flow is

(5.28)

If the flow is incompressible, Eq. (5.28) can be written in terms of discharge:

(5.29)

Example 5.8 illustrates the application of the continuity equation to calculate velocity

in a variable-area pipe.

The venturimeter is a device commonly used in engineering applications. Example 5.9

illustrates the application of both the Bernoulli equation and the continuity equation to the

venturimeter, which is used routinely in industry to measure flow rates.

Figure 5.10

Flow through a pipe 

section.

Control
surface

V2

2

1

V1

EXAMPLE 5.8   VELOCITY IN A VARIABLE-AREA PIPE

A 120 cm pipe is in series with a 60 cm pipe. The speed of the 

water in the 120 cm pipe is 2 m s. What is the water speed in 

the 60 cm pipe?

Problem Definition

Situation: Two pipes connected in series. 

Find: Velocity in 60 cm pipe.

Sketch:

Plan

Flow rate is the same for each section, Use Eq. 

(5.27) to calculate velocity in the 60 cm pipe.

Solution

Equation (5.27) for V60

Calculation for V60:

Q2 Q1�

m· i
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� m· o
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��

Qi
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� Qo
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��

⁄

V = 2 m3/s
120 cm 60 cm

Q120 Q60.�
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A120

A60

----------�

V60 2m/s
120 cm( )2

60 cm( )2
-------------------------× 8 m/s� �
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Cavitation

Cavitation is the phenomenon that occurs when the fluid pressure is reduced to the local

vapor pressure and boiling occurs. Under such conditions vapor bubbles form in the liquid,

grow, and then collapse, producing shock waves, noise, and dynamic effects that lead to

decreased equipment performance and, frequently, equipment failure. Engineers are often

EXAMPLE 5.9   WATER FLOW THROUGH A 

VENTURIMETER

Water with a density of 1000 kg m3 flows through a vertical 

venturimeter as shown. A pressure gage is connected across 

two taps in the pipe (station 1) and the throat (station 2). The 

area ratio Athroat Apipe is 0.5. The velocity in the pipe is 10 

m s. Find the pressure difference recorded by the pressure 

gage. Assume the flow has a uniform velocity distribution 

and that viscous effects are not important.

Problem Definition

Situation: Water flow in venturimeter with gage connected 
between upstream and throat. Area ratio is 0.5 and pipe 
velocity is 10 m/s.

Find: Pressure difference measured by gage.

Assumptions:

1. Velocity distribution is uniform.

2. Viscous effects are unimportant.

Properties: 

Sketch:

Plan

1. Since viscous effects unimportant, apply the Bernoulli 
equation between stations 1 and 2.

2. Find mean velocity at station 2 by applying Eq. (5.27), and 
develop the equation for piezometric pressure.

3. Find the pressure on the gage by applying the hydrostatic 
equation, Eq. (3.7a).

Solution

1. The Bernoulli equation

Rewrite the equation in terms of piezometric pressure.

2. Continuity equation 

3. Gage is located at zero elevation. Apply hydrostatic 
equation through static fluid in gage line between gage 
attachment point where the pressure is and station 1 
where the gage line is tapped into the pipe,

Also so
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concerned about the possibility of cavitation, and they must design flow systems to avoid

potential problems.

Besides its deleterious effects on machinery, cavitation can also be beneficial. Cavita-

tion is responsible for the effectiveness of ultrasonic cleaning. Supercavitating torpedoes

have been developed in which a large bubble envelops the torpedo, significantly reducing the

contact area with the water and leading to significantly faster speeds. Cavitation plays a med-

ical role in shock wave lithotripsy for the destruction of kidney stones.

Cavitation typically occurs at locations where the velocity is high. Consider the water

flow through the pipe restriction shown in Fig. 5.11. The pipe area decreases, so the velocity

increases according to the continuity equation and, in turn, the pressure decreases as dictated

by the Bernoulli equation. For low flow rates, there is a relatively small drop in pressure at the

restriction, so the water remains well above the vapor pressure and boiling does not occur. How-

ever, as the flow rate increases, the pressure at the restriction becomes progressively lower until

a flow rate is reached where the pressure is equal to the vapor pressure as shown in Fig. 5.11.

At this point, the liquid boils to form bubbles and cavitation ensues. The onset of cavitation can

also be affected by the presence of contaminant gases, turbulence and viscosity.

The formation of vapor bubbles at the restriction is shown in Fig. 5.12a. The vapor bub-

bles form and then collapse as they move into a region of higher pressure and are swept down-

stream with the flow. When the flow velocity is increased further, the minimum pressure is still

the local vapor pressure, but the zone of bubble formation is extended as shown in Fig. 5.12b.

In this case, the entire vapor pocket may intermittently grow and collapse, producing serious

Figure 5.11

Flow through pipe 

restriction: variation of 

pressure for three 

different flow rates.

Figure 5.12

Formation of vapor 

bubbles in the process of 

cavitation.

(a) Cavitation. 

(b) Cavitation—higher 

flow rate.

Low flow
rate

Vapor pressure

Cavitation

High flow
rate
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Vapor bubbles

(b)

Vapor pocket



146 CONTROL VOLUME APPROACH AND CONTINUITY EQUATION

vibration problems. Severe damage that occurred on a centrifugal pump impeller is shown in

Fig. 5.13, and serious erosion produced by cavitation in a spillway tunnel of Hoover Dam is

shown in Fig. 5.14. Obviously, cavitation should be avoided or minimized by proper design of

equipment and structures and by proper operational procedures.  

Figure 5.13

Cavitation damage to 

impeller of a centrifugal 

pump.

Figure 5.14

Cavitation damage to a 

hydroelectric power dam 

spillway tunnel.
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Experimental studies reveal that very high intermittent pressure, as high as 800 MPa

(115,000 psi), develops in the vicinity of the bubbles when they collapse (1). Therefore, if

bubbles collapse close to boundaries such as pipe walls, pump impellers, valve casings, and

dam slipway floors, they can cause considerable damage. Usually this damage occurs in the

form of fatigue failure brought about by the action of millions of bubbles impacting (in ef-

fect, imploding) against the material surface over a long period of time, thus producing a ma-

terial pitting in the zone of cavitation.

The world’s largest and most technically advanced water tunnel for studying cavitation

is located in Memphis, Tennessee—the William P. Morgan Large Cavitation Tunnel. This fa-

cility is used to test large-scale models of submarine systems and full-scale torpedoes as well

as applications in the maritime shipping industry. 

More detailed discussions of cavitation can be found in Brennen (2) and Young (3).

Differential Form of the Continuity Equation

In the analysis of fluid flows and the development of numerical models, one of the

fundamental independent equations needed is the differential form of the continuity equation.

This equation is derived in this section. The derivation is accomplished by applying the

integral form of the continuity equation to a small control volume and taking the limit as the

volume approaches zero.

A small control volume defined by the x, y, z coordinate system is shown in Fig. 5.15.

The integral form of the continuity equation, Eq. (5.24), is

where V is the velocity measured with respect to the local control surface. Applying the Leib-

netz theorem for differentiation of an integral allows the unsteady term to be expressed as

Figure 5.15
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where Vs is the local velocity of the control surface with respect to the reference frame. For a

control volume with stationary sides, as shown in Fig. 5.15, so the continuity equa-

tion for the control volume can be written as

Because the volume is very small (infinitesimal), one can assume that the velocity and densi-

ties are uniformly distributed across each face (control surface), and the mass flux term be-

comes

and the continuity equation assumes the form

Considering the flow rates through the six faces of the cubical element and applying

those to the foregoing form of the continuity equation, results in

(5.30)

Dividing Eq. (5.30) by the volume of the element (�x�y�z) yields

Taking the limit as the volume approaches zero (that is, as �x, �y, and �z uniformly ap-

proach zero) yields the differential form of the continuity equation

(5.31)

If the flow is steady, the equation reduces to

(5.32)
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And if the fluid is incompressible, the equation further simplifies to

(5.33)

for both steady and unsteady flow.

In vector notation, Eq. (5.33) is given as

(5.34)

where � is the del operator, defined as

Summary

There are two ways to describe a flow field, the Lagrangian and Eulerian approaches. The

Eulerian, in which flow properties are available at points in the field, is the most appropriate

for fluid mechanics.

Flow rate refers to either the volume per unit time or the mass per unit time passing

through a surface. The volume flow rate, or discharge, is given by

where dA is the vector normal to the surface with magnitude equal the differential surface

area and V is the velocity vector. If the area vector and velocity vector are aligned, then

where  is the average velocity. The corresponding mass flow rate is

EXAMPLE 5.10   APPLICATION OF DIFFERENTIAL 

FORM OF CONTINUITY EQUATION

The expression is said to represent the 

velocity for a two-dimensional (planar) incompressible flow. 

Check to see if the continuity equation is satisfied.

Problem Definition

Situation: Velocity field is given.

Find: Determine if continuity equation is satisfied.

Plan

Reduce Eq. (5.33) to two-dimensional flow (w 0 and 

substitute velocity components into equation). 

Solution

Continuity equation for two-dimensional flow

Continuity is satisfied.
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If the density is uniformly distributed across the area,

A fluid system is a given quantity of matter consisting always of the same matter. A

control volume (cv) is a geometric volume defined in space and enclosed by a control surface

(cs). Mass can cross the control surface.

The Reynolds transport theorem relates the time rate of change of an extensive property

of a system to the rate of change of the property in the control volume plus the net outflow of

the property across the control surface. It provides a link between the Lagrangian and Eule-

rian forms for the rate of property changes in a fluid. 

The continuity equation derives from the application of the Reynolds transport theorem

to the conservation of mass principle and is expressed as

where V is the velocity with respect to the control surface and dA is the differential area di-

rected outward from the control volume. An alternative form of the continuity equation is

where Mcv is the mass in the control volume and and are the mass flow rates of flows

entering and leaving the control volume, respectively.

For steady, one-dimensional flow in a pipe, the continuity equation reduces to

where the subscripts 1 and 2 refer to the inlet and outlet of the pipe. If, in addition, the flow is

incompressible, then

The differential form of the continuity equation for incompressible flow is 

Cavitation occurs when the pressure drops to the local vapor pressure of the liquid and

bubbles appear due to liquid boiling. The presence of cavitation can cause serious equipment

failures.
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Problems

Flow Rate (Discharge)

5.1 ��� Consider filling the gasoline tank of an automobile at

a gas station. (a) Estimate the discharge in gpm. (b) Using the

same nozzle, estimate the time to put 50 gallons in the tank. (c)

Estimate the cross-sectional area of the nozzle and calculate the

velocity at the nozzle exit.

5.2 ��� The average flow rate (release) through Grand Cou-

lee Dam is 110,000 ft3/s. The width of the river downstream of

the dam is 100 yards. Making a reasonable estimate of the river

velocity, estimate the river depth.

5.3 ��� Taking a jar of known volume, fill it with water from

your household tap and measure the time to fill. Calculate the dis-

charge from the tap. Estimate the cross-sectional area of the fau-

cet outlet, and calculate the water velocity issuing from the tap.

5.4 ��� A liquid flows through a pipe with a constant velocity.

If a pipe twice the size is used with the same velocity, will the flow

rate be (a) halved, (b) doubled, (c) quadrupled. Explain. 

m· �Q�

d

dt
----- � Vd
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d

dt
-----Mcv m· i�� m· o�–

m· i m· o
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5.5 The discharge of water in a 25 cm diameter pipe is 0.05

m3 s. What is the mean velocity?

5.6 A pipe with a 16 in. diameter carries water having a veloc-

ity of 3 ft s. What is the discharge in cubic feet per second and

in gallons per minute (1 cfs is equivalent to 449 gpm)?

5.7 A pipe with a 2 m diameter carries water having a velocity

of 4 m s. What is the discharge in cubic meters per second and

in cubic feet per second?

5.8 A pipe whose diameter is 8 cm transports air with a temper-

ature of 20°C and pressure of 200 kPa absolute at 20 m s. De-

termine the mass flow rate.

5.9 Natural gas (methane) flows at 20 m s through a pipe with

a 1 m diameter. The temperature of the methane is 15°C, and the

pressure is 150 kPa gage. Determine the mass flow rate.

5.10 An aircraft engine test pipe is capable of providing a flow

rate of 200 kg s at altitude conditions corresponding to an ab-

solute pressure of 50 kPa and a temperature of –18°C. The ve-

locity of air through the duct attached to the engine is 240 m s.

Calculate the diameter of the duct.

5.11 A heating and air-conditioning engineer is designing a sys-

tem to move 1000 m3 of air per hour at 100 kPa abs, and 30°C.

The duct is rectangular with cross-sectional dimensions of 1 m

by 20 cm. What will be the air velocity in the duct?

5.12 The hypothetical velocity distribution in a circular duct is 

where r is the radial location in the duct, R is the duct radius,

and V0 is the velocity on the axis. Find the ratio of the mean ve-

locity to the velocity on the axis.

5.13 Water flows in a two-dimensional channel of width W and

depth D as shown in the diagram. The hypothetical velocity pro-

file for the water is

where Vs is the velocity at the water surface midway between the

channel walls. The coordinate system is as shown; x is measured

from the center plane of the channel and y downward from the water

surface. Find the discharge in the channel in terms of Vs, D, and W.

5.14 Water flows in a pipe that has a 4 ft diameter and the following

hypothetical velocity distribution: The velocity is maximum at the

centerline and decreases linearly with r to a minimum at the pipe

wall. If and what is the discharge

in cubic feet per second and in gallons per minute?

5.15 In Prob. 5.14, if and

what is the discharge in cubic meters per second and

the mean velocity?

5.16 Air enters this square duct at section 1 with the velocity

distribution as shown. Note that the velocity varies in the y di-

rection only (for a given value of y, the velocity is the same for

all values of z).

a. What is the volume rate of flow?

b. What is the mean velocity in the duct?

c. What is the mass rate of flow if the mass density of the air is

1.2 kg m3?

5.17 The velocity at section A-A is 18 ft s, and the vertical

depth y at the same section is 4 ft. If the width of the channel is

30 ft, what is the discharge in cubic feet per second?

5.18 The rectangular channel shown is 1.5 m wide. What is the

discharge in the channel?
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5.19 If the velocity in the channel of Prob. 5.18 is given as

and the channel width is 2 m, what is

the discharge in the channel and what is the mean velocity?

5.20 Water from a pipe is diverted into a weigh tank for exactly

20 min. The increased weight in the tank is 20 kN. What is the

discharge in cubic meters per second? Assume 

5.21 Water enters the lock of a ship canal through 180 ports,

each port having a 2 ft by 2 ft cross section. The lock is 900 ft

long and 105 ft wide. The lock is designed so that the water sur-

face in it will rise at a maximum rate of 6 ft min. For this con-

dition, what will be the mean velocity in each port?

5.22 An empirical equation for the velocity distribution in a hor-

izontal, rectangular, open channel is given by u umax

where u is the velocity at a distance y feet above the

floor of the channel. If the depth d of flow is 1.2 m,

umax 3 and what is the discharge in cubic

meters per second per meter of width of channel? What is the

mean velocity?

5.23 The hypothetical water velocity in a V-shaped channel (see

the accompanying figure) varies linearly with depth from zero

at the bottom to maximum at the water surface. Determine the

discharge if the maximum velocity is 6 ft s.

5.24 The velocity of flow in a circular pipe varies according to

the equation where Vc is the centerline

velocity, r0 is the pipe radius, and r is the radial distance from

the centerline. The exponent n is general and is chosen to fit a

given profile (n 1 for laminar flow). Determine the mean ve-

locity as a function of Vc and n.

5.25 Plot the velocity distribution across the pipe, and determine

the discharge of a fluid flowing through a pipe 1 m in diameter that

has a velocity distribution given by 

Here r0 is the radius of the pipe, and r is the radial distance from

the centerline. What is the mean velocity?

5.26 Water flows through a 2.0 in.–diameter pipeline at 80 lb min.

Calculate the mean velocity. Assume T 60°F.

5.27 Water flows through a 20 cm pipeline at 1000 kg min.

Calculate the mean velocity in meters per second if T 20°C.

5.28 Water from a pipeline is diverted into a weigh tank for ex-

actly 15 min. The increased weight in the tank is 4765 lbf. What

is the average flow rate in gallons per minute and in cubic feet

per second? Assume T 60°F.

5.29 A shell and tube heat exchanger consists of a one pipe in-

side another pipe as shown. The liquid flows in opposite direc-

tions in each pipe. If the speed of the liquid is the same in each

pipe, what is the ratio of the outer pipe diameter to the inner

pipe diameter if the discharge in each pipe is the same?

5.30 The cross section of a heat exchanger consists of three cir-

cular pipes inside a larger pipe. The internal diameter of the

three smaller pipes is 2.5 cm, and the pipe wall thickness is 3

mm. The inside diameter of the larger pipe is 8 cm. If the veloc-

ity of the fluid in region between the smaller pipes and larger pipe

is 10 m s, what is the discharge in m3 s?

5.31 The mean velocity of water in a 4 in. pipe is 10 ft s. Deter-

mine the flow in slugs per second, gallons per minute, and cubic

feet per second if T 60°F.

Control Volume Approach

5.32 ��� What is a control surface and a control volume? Can

mass pass through a control surface?

5.33 ��� What is the difference between an intensive and ex-

tensive property? Give an example of each.

5.34 ��� Explain the differences between the Eulerian and

Lagrangian descriptions of a flow field.

5.35 ��� What are the shortcomings of describing a flow field

using the Lagrangian description?

5.36 ��� What is the purpose of the Reynolds transport theo-

rem?

5.37 Gas flows into and out of the chamber as shown. For the

conditions shown, which of the following statement(s) are true

of the application of the control volume equation to the continu-

ity principle?

a.
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b.

c.

d.

e.

5.38 The piston in the cylinder is moving up. Assume that the

control volume is the volume inside the cylinder above the pis-

ton (the control volume changes in size as the piston moves). A

gaseous mixture exists in the control volume. For the given con-

ditions, indicate which of the following statements are true.

a.

b.

c. The mass density of the gas in the control volume is increas-

ing with time.

d. The temperature of the gas in the control volume is increas-

ing with time.

e. The flow inside the control volume is unsteady.

5.39 For cases a and b shown in the figure, respond to the fol-

lowing questions and statements concerning the application of

the Reynolds transport theorem to the continuity equation.

a. What is the value of b?

b. Determine the value of dBsys dt.

c. Determine the value of 

d. Determine the value of 

Continuity Equation

5.40 ��� A pipe flows full with water. Is it possible for the

volume flow rate into the pipe to be different than the flow rate

out of the pipe? Explain.

5.41 ��� Air is pumped into one end of a tube at a certain

mass flow rate. Is it necessary that the same mass flow rate of

air comes out the other end of the tube? Explain.

5.42 ��� If an automobile tire develops a leak, how does the

mass of air and density change inside the tire with time? Assum-

ing the temperature remains constant, how is the change in den-

sity related to the tire pressure?

5.43 ��� Two pipes are connected together in series. The di-

ameter of one pipe is twice the diameter of the second pipe.

With liquid flowing in the pipes, the velocity in the large pipe is

5 m s. What is the velocity in the smaller pipe?

5.44 Both pistons are moving to the left, but piston A has a speed

twice as great as that of piston B. Then the water level in the tank

is (a) rising, (b) not moving up or down, or (c) falling?

5.45 Two parallel disks of diameter D are brought together, each

with a normal speed of V. When their spacing is h, what is the

radial component of convective acceleration at the section just

inside the edge of the disk (section A) in terms of V, h, and D?

Assume uniform velocity distribution across the section.

5.46 Two streams discharge into a pipe as shown. The flows are in-

compressible. The volume flow rate of stream A into the pipe is given

by QA 0.02t m3 s and that of stream B by QB 0.008t 2 m3 s,
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where t is in seconds. The exit area of the pipe is 0.01 m2. Find the

velocity and acceleration of the flow at the exit at t 1 s. 

5.47 Air discharges downward in the pipe and then outward be-

tween the parallel disks. Assuming negligible density change in

the air, derive a formula for the acceleration of air at point A,

which is a distance r from the center of the disks. Express the

acceleration in terms of the constant air discharge Q, the radial

distance r, and the disk spacing h. If D 10 cm, h 0.6 cm,

and Q 0.380 what are the velocity in the pipe and the

acceleration at point A where r 20 cm?

5.48 All the conditions of Prob. 5.47 are the same except that

h 1 cm  and the discharge is given as Q Q0(t t0), where

Q0 0.1 m3 s and t0 1 s. For the additional conditions, what

will be the acceleration at point A when t 2 s and t 3 s?

5.49 A tank has a hole in the bottom with a cross-sectional area of

0.0025 m2 and an inlet line on the side with a cross-sectional area

of 0.0025 m2, as shown. The cross-sectional area of the tank is 0.1

m2. The velocity of the liquid flowing out the bottom hole is

where h is the height of the water surface in the tank

above the outlet. At a certain time the surface level in the tank

is 1 m and rising at the rate of 0.1 cm s. The liquid is incom-

pressible. Find the velocity of the liquid through the inlet.

5.50 A mechanical pump is used to pressurize a bicycle tire. The

inflow to the pump is 1 cfm. The density of the air entering the

pump is 0.075 lbm ft3. The inflated volume of a bicycle tire is

0.045 ft3. The density of air in the inflated tire is 0.4 lbm ft3.

How many seconds does it take to pressurize the tire if there ini-

tially was no air in the tire?

5.51 A 6 in.–diameter cylinder falls at a rate of 4 ft s in an

8 in.–diameter tube containing an incompressible liquid. What

is the mean velocity of the liquid (with respect to the tube) in the

space between the cylinder and the tube wall? 

5.52 This circular tank of water is being filled from a pipe as

shown. The velocity of flow of water from the pipe is 10 ft s.

What will be the rate of rise of the water surface in the tank?

5.53 A sphere 8 inches in diameter falls at 4 ft s downward ax-

ially through water in a 1 ft–diameter container. Find the up-

ward speed of the water with respect to the container wall at the

midsection of the sphere.

5.54 A rectangular air duct 20 cm by 60 cm carries a flow of

1.44 m3 s. Determine the velocity in the duct. If the duct tapers

to 10 cm by 40 cm, what is the velocity in the latter section? As-

sume constant air density.

5.55 A 30 cm pipe divides into a 20 cm branch and a 15 cm branch.

If the total discharge is 0.30 m3 s and if the same mean velocity

occurs in each branch, what is the discharge in each branch?

5.56 The conditions are the same as in Prob. 5.55 except that the

discharge in the 20 cm branch is twice that in the 15 cm branch.

What is the mean velocity in each branch?

5.57 Water flows in a 10 in. pipe that is connected in series with

a 6 in. pipe. If the rate of flow is 898 gpm (gallons per minute),

what is the mean velocity in each pipe?
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5.58 What is the velocity of the flow of water in leg B of the tee

shown in the figure?

5.59 For a steady flow of gas in the conduit shown, what is the

mean velocity at section 2?

5.60 Two pipes, A and B, are connected to an open water tank.

The water is entering the bottom of the tank from pipe A at 10

cfm. The water level in the tank is rising at 1.0 in. min, and the

surface area of the tank is 80 ft2. Calculate the discharge in a

second pipe, pipe B, that is also connected to the bottom of the

tank. Is the flow entering or leaving the tank from pipe B?

5.61 Is the tank in the figure filling or emptying? At what rate is

the water level rising or falling in the tank?

5.62 Given: Flow velocities as shown in the figure and water sur-

face elevation (as shown) at t 0 s. At the end of 22 s, will the

water surface in the tank be rising or falling, and at what speed?

5.63 A lake with no outlet is fed by a river with a constant flow

of 1200 ft3 s. Water evaporates from the surface at a constant

rate of 13 ft3 s per square mile surface area. The area varies

with depth h (feet) as A (square miles) 4.5 5.5h. What is

the equilibrium depth of the lake? Below what river discharge

will the lake dry up?

5.64 A stationary nozzle discharges water against a plate moving

toward the nozzle at half the jet velocity. When the discharge

from the nozzle is 5 cfs, at what rate will the plate deflect water?

5.65 An open tank has a constant inflow of 20 ft3 s. A 1.0 ft–

diameter drain provides a variable outflow velocity Vout equal

to What is the equilibrium height heq of the liquid

in the tank?

5.66 Assuming that complete mixing occurs between the two in-

flows before the mixture discharges from the pipe at C, find the

mass rate of flow, the velocity, and the specific gravity of the

mixture in the pipe at C.

5.67 Oxygen and methane are mixed at 250 kPa absolute pres-

sure and 100°C. The velocity of the gases into the mixer is 5

m s. The density of the gas leaving the mixer is 2.2 kg m3.

Determine the exit velocity of the gas mixture.
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5.68 A pipe with a series of holes as shown in the figure is used

in many engineering systems to distribute gas into a system.

The volume flow rate through each hole depends on the pres-

sure difference across the hole and is given by

where Ao is the area of the hole, is the pressure difference

across the hole and � is the density of the gas in the pipe. If the

pipe is sufficiently large, the pressure will be uniform along the

pipe. A distribution pipe for air at 20o C is 0.5 meters in diameter

and 10 m long. The gage pressure in the pipe is 100 Pa. The pres-

sure outside the pipe is atmospheric at 1 bar. The hole diameter is

2.5 cm and there are 50 holes per meter length of pipe. The pres-

sure is constant in the pipe. Find the velocity of the air entering

the pipe.

5.69 The globe valve shown in the figure is a very common de-

vice to control flow rate. The flow comes through the pipe at the

left and then passes through a minimum area formed by the disc

and valve seat. As the valve is closed, the area for flow between

the disc and valve is reduced. The flow area can be approxi-

mated by the annular region between the disc and the seat. The

pressure drop across the valve can be estimated by application

of the Bernoulli equation between the upstream pipe and the

opening between the disc and valve seat. Assume there is a 10

gpm (gallons per minute) flow of water at 60oF through the

valve. The inside diameter of the upstream pipe is 1 inch. The

distance across the opening from the disc to the seat is 1/8th of

an inch, and the diameter of the opening is 1 2 inch. What is

the pressure drop across the valve in psid?

5.70 In the flow through an orifice shown in the diagram the

flow goes through a minimum area downstream of the orifice.

This is called the “vena contracta.” The ratio of the flow area at

the vena contracta to the area of the orifice is 0.64.

a. Derive an equation for the discharge through the orifice in

the form where Ao is the area of the

orifice,  is the pressure difference between the upstream

flow and the vena contracta, and � is the fluid density. C is a

dimensionless coefficient.

b. Evaluate the discharge for water at 1000 kg m3 and a pres-

sure difference of 10 kPa for a 1.5 cm orifice centered in a

2.5 cm diameter pipe.

5.71 A compressor supplies gas to a 10 m3 tank. The inlet mass

flow rate is given by where � is the den-

sity in the tank and �0 is the initial density. Find the time it

would take to increase the density in the tank by a factor of 2 if

the initial density is 2 kg m3. Assume the density is uniform

throughout the tank.

5.72 A slow leak develops in a tire (assume constant volume),

in which it takes 3 hr for the pressure to decrease from 30 psig

to 25 psig. The air volume in the tire is 0.5 ft3, and the tempera-

ture remains constant at 60°F. The mass flow rate of air is given

by Calculate the area of the hole in the tire.

Atmospheric pressure is 14 psia.

5.73 Oxygen leaks slowly through a small orifice in an oxy-

gen bottle. The volume of the bottle is 0.1 m3, and the diame-

ter of the orifice is 0.12 mm. The temperature in the tank

remains constant at 18°C, and the mass-flow rate is given by

How long will it take the absolute pres-

sure to decrease from 10 to 5 MPa?

5.74 How long will it take the water surface in the tank shown to

drop from h 3 m to h 50 cm?

5.75 A cylindrical drum of water, lying on its side, is being emp-

tied through a 2 in.–diameter short pipe at the bottom of the

drum. The velocity of the water out of the pipe is

where g is the acceleration due to gravity and h is

the height of the water surface above the outlet of the tank. The

tank is 4 ft long and 2 ft in diameter. Initially the tank is half

full. Find the time for the tank to empty.
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5.76 Water is draining from a pressurized tank as shown in the

figure. The exit velocity is given by 

where p is the pressure in the tank, � is the water density, and h

is the elevation of the water surface above the outlet. The depth

of the water in the tank is 2 m. The tank has a cross-sectional

area of 1 m2, and the exit area of the pipe is 10 cm2. The pres-

sure in the tank is maintained at 10 kPa. Find the time required

to empty the tank. Compare this value with the time required if

the tank is not pressurized.

5.77 For the type of tank shown, the tank diameter is given as

where d is the bottom diameter and C1 is a con-

stant. Derive a formula for the time of fall of liquid surface from

h h0 to h h in terms of dj, d, h0, h, and C1. Solve for t if

h0 1 m, h 20 cm, d 20 cm, C1 0.3, and dj 5 cm.

The velocity of water in the liquid jet exiting the tank is

5.78 A spherical tank with a diameter of 1 m is half filled with

water. A port at the bottom of the tank is opened to drain the

tank. The hole diameter is 1 cm, and the velocity of the water

draining from the hole is Ve where h is the elevation

of the water surface above the hole. Find the time required for

the tank to empty.  

5.79 A tank containing oil is to be pressurized to decrease the

draining time. The tank, shown in the figure, is 2 m in diameter

and 6 m high. The oil is originally at a level of 5 m. The oil has

a density of 880 kg m3. The outlet port has a diameter of 2 cm,

and the velocity at the outlet is given by 
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where p is the gage pressure in the tank, � is the density of the

oil, and h is the elevation of the surface above the hole. Assume

during the emptying operation that the temperature of the air in

the tank is constant. The pressure will vary as

where L is the height of the tank, patm is the atmospheric pres-

sure, and the subscript 0 refers to the initial conditions. The

initial pressure in the tank is 300 kPa gage, and the atmospheric

pressure is 100 kPa.

Applying the continuity equation to this problem, one finds

Integrate this equation to predict the depth of the oil with time

for a period of one hour.

5.80 An end-burning rocket motor has a chamber diameter of

10 cm and a nozzle exit diameter of 8 cm. The density of the

propellant is 1750 kg m3, and the surface regresses at the

rate of 1 cm s. The gases crossing the nozzle exit plane have a

pressure of 10 kPa abs and a temperature of 2200°C. The gas

constant of the exhaust gases is 415 J kg K. Calculate the gas

velocity at the nozzle exit plane.

5.81 A cylindrical-port rocket motor has a grain design consist-

ing of a cylindrical shape as shown. The curved internal surface

and both ends burn. The propellant surface regresses uniformly

at 1.2 cm s. The propellant density is 2200 kg m3. The inside

diameter of the motor is 20 cm. The propellant grain is 40 cm

long and has an inside diameter of 12 cm. The diameter of the

nozzle exit plane is 20 cm. The gas velocity at the exit plane is

2000 m s. Determine the gas density at the exit plane.

5.82 The mass flow rate through a nozzle is given by

where pc and Tc are the pressure and temperature in the rocket

chamber and R is the gas constant of the gases in the chamber.

The propellant burning rate (surface regression rate) can be ex-

pressed as where a and n are two empirical constants.

Show, by application of the continuity equation, that the cham-

ber pressure can be expressed as

where �p is the propellant density and Ag is the grain surface

burning area. If the operating chamber pressure of a rocket mo-

tor is 3.5 MPa and n 0.3, how much will the chamber pres-

sure increase if a crack develops in the grain, increasing the

burning area by 20%?

5.83 The piston shown is moving up during the exhaust stroke

of a four-cycle engine. Mass escapes through the exhaust port at

a rate given by

where pc and Tc are the cylinder pressure and temperature, Av is

the valve opening area, and R is the gas constant of the exhaust

gases. The bore of the cylinder is 10 cm, and the piston is mov-

ing upward at 30 m s. The distance between the piston and the

head is 10 cm. The valve opening area is 1 cm2, the chamber

pressure is 300 kPa abs, the chamber temperature is 600°C, and

the gas constant is 350 J kg K. Applying the continuity equa-

tion, determine the rate at which the gas density is changing in

the cylinder. Assume the density and pressure are uniform in the

cylinder and the gas is ideal.  

PROBLEM 5.79

PROBLEM 5.80

p p0 patm+( )
L h0–( )
L h–( )

------------------- patm–�

hd

td
------

Ae

AT

------– 2gh
2p

�
------+�

h0 = 5 m

L = 6 m

Ve

⁄
⁄

⁄

10 cm 8 cm

⁄ ⁄

⁄

PROBLEM 5.81

PROBLEM 5.82

m· 0.65
pcAt

RTc

-------------�

r· apc

n
,�

pc

a�p

0.65
----------

1/ 1 n–( ) Ag

At

-----
1/ 1 n–( )

RTc( )1/ 2 1 n–( )[ ]
�

�

pc

At

Ag

m· 0.65
pc Av

RTc

-------------�

⁄

⁄



PROBLEMS 159

5.84 The flow pattern through the pipe contraction is as indi-

cated, and the discharge of water is 70 cfs. For  and

, what will be the pressure at point B if the pressure at

point A is 3500 psf?

5.85 Water flows through a rigid contraction section of circular

pipe in which the outlet diameter is one-half the inlet diameter.

The velocity of the water at the inlet varies with time as Vin

(10 m s)[1 exp(–t 10)]. How will the velocity vary with

time at the outlet?

5.86 The annular venturimeter is useful for metering flows in

pipe systems for which upstream calming distances are limited.

The annular venturimeter consists of a cylindrical section

mounted inside a pipe as shown in the figure. The pressure dif-

ference is measured between the upstream pipe and at the region

adjacent to the cylindrical section. Air at standard conditions

flows in the system. The pipe diameter is 4 inches. The ratio of

the cylindrical section diameter to the inside pipe diameter is

0.8. A pressure difference of 3 inches of water is measured. Find

the volume flow rate in the system. Assume the flow is incom-

pressible, inviscid, and steady and that the velocity is uniformly

distributed across the pipe sections. 

5.87 Venturi-type applicators are frequently used to spray liquid

fertilizers. Water flowing through the venturi creates a subatmo-

spheric pressure at the throat, which in turn causes the liquid

fertilizer to flow up the feed tube and mix with the water in the

throat region. The venturi applicator shown in the figure uses

water at 20°C to spray a liquid fertilizer with the same density.

The venturi exhausts to the atmosphere, and the exit diameter is

1 cm. The ratio of exit area to throat area (A2 A1) is 2. The flow

rate of water through the venturi is 10 lpm (liters per minute).

The bottom of the feed tube in the reservoir is 5 cm below the

liquid fertilizer surface and 10 cm below the centerline of the

venturi. The pressure at the liquid fertilizer surface is atmo-

spheric. The flow rate through the feed tube between the reser-

voir and venturi throat is

where �h is the drop in piezometric head (in meters) between

the feed tube entrance and the venturi centerline. Find the flow

rate of liquid fertilizer in the feed tube, Ql. Also find the concen-

tration of liquid fertilizer in the mixture, [Ql (Ql + Qw)], at the

end of the sprayer.  

5.88 Air with a density of 0.0644 lbm ft3 is flowing upward in the

vertical duct, as shown. The velocity at the inlet (station 1) is 80

ft s, and the area ratio between stations 1 and 2 is 0.5

(A2 A1 0.5). Two pressure taps, 10 ft apart, are connected to a

manometer, as shown. The specific weight of the manometer liq-

uid is 120 lbf ft3. Find the deflection, �h, of the manometer.

5.89 An atomizer utilizes a constriction in an air duct as shown.

Design an operable atomizer making your own assumptions re-

garding the air source.

5.90 A suction device is being designed based on the venturi prin-

ciple to lift objects submerged in water. The operating water tem-

perature is 15°C. The suction cup is located 1 m below the water

surface, and the venturi throat is located 1 m above the water. The

atmospheric pressure is 100 kPa. The ratio of the throat area to the
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exit area is , and the exit area is 0.001 m2. The area of the suction

cup is 0.1 m2.

a. Find the velocity of the water at the exit for maximum lift

condition.

b. Find the discharge through the system for maximum lift

condition.

c. Find the maximum load the suction cup can support.

5.91 A design for a hovercraft is shown in the figure. A fan

brings air at 60°F into a chamber, and the air is exhausted be-

tween the skirts and the ground. The pressure inside the cham-

ber is responsible for the lift. The hovercraft is 15 ft long and 7

ft wide. The weight of the craft including crew, fuel, and load is

2000 lbf. Assume that the pressure in the chamber is the stagna-

tion pressure (zero velocity) and the pressure where the air exits

around the skirt is atmospheric. Assume the air is incompress-

ible, the flow is steady, and viscous effects are negligible. Find

the airflow rate necessary to maintain the skirts at a height of 3

inches above the ground.  

5.92 Water is forced out of this cylinder by the piston. If the piston

is driven at a speed of 6 ft s, what will be the speed of efflux of

the water from the nozzle if and Neglecting

friction and assuming irrotational flow, determine the force F that

will be required to drive the piston. The exit pressure is atmo-

spheric pressure. 

5.93 Air flows through a constant-area heated pipe. At the en-

trance, the velocity is 10 m s, the pressure is 100 kPa absolute

and the temperature is 20°C. At the outlet, the pressure is 80 kPa

absolute, and the temperature is 50°C. What is the velocity at the

outlet? Can the Bernoulli equation be used to relate the pressure

and velocity changes? Explain.

Cavitation

5.94 ��� Sometimes driving your car on a hot day, you may

encounter a problem with the fuel pump called pump cavitation.

What is happening to the gasoline? How does this affect the op-

eration of the pump?

5.95 ��� What is cavitation? Why does the tendency for cavi-

tation in a liquid increase with increased temperatures?

5.96 When gage A indicates a pressure of 120 kPa gage, then

cavitation just starts to occur in the venturi meter. If D 40

cm and d 10 cm, what is the water discharge in the system for

this condition of incipient cavitation? The atmospheric pressure

is 100 kPa gage, and the water temperature is 10°C. Neglect

gravitational effects.

5.97 A sphere 1 ft in diameter is moving horizontally at a depth

of 12 ft below a water surface where the water temperature is

50°F. where Vo is the free stream velocity and

occurs at the maximum sphere width. At what speed in still wa-

ter will cavitation first occur?

5.98 When the hydrofoil shown was tested, the minimum

pressure on the surface of the foil was found to be 70 kPa ab-

solute when the foil was submerged 1.80 m and towed at a

speed of 8 m s. At the same depth, at what speed will cavita-

tion first occur? Assume irrotational flow for both cases and

T 10°C.

5.99 For the hydrofoil of Prob. 5.98, at what speed will cavita-

tion begin if the depth is increased to 3 m?

5.100 When the hydrofoil shown was tested, the minimum pres-

sure on the surface of the foil was found to be 2.5 psi vacuum

when the foil was submerged 4 ft and towed at a speed of 25

PROBLEM 5.89

PROBLEM 5.90

PROBLEM 5.91
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ft s. At the same depth, at what speed will cavitation first oc-

cur? Assume irrotational flow for both cases and T 50°F.

5.101 For the conditions of Prob. 5.100, at what speed will cavi-

tation begin if the depth is increased to 10 ft?

5.102 A sphere is moving in water at a depth where the absolute

pressure is 18 psia. The maximum velocity on a sphere occurs

90° from the forward stagnation point and is 1.5 times the free-

stream velocity. The density of water is 62.4 lbm ft3. Calculate

the speed of the sphere at which cavitation will occur. T 50°F.

5.103 The minimum pressure on a cylinder moving horizontally

in water (T 10°C) at 5 m s at a depth of 1 m is 80 kPa abso-

lute. At what velocity will cavitation begin? Atmospheric pres-

sure is 100 kPa absolute.

Differential Form of the Continuity Equation

5.104 It is predicted that a flow field will have the following ve-

locity components:

V is a constant. Is such a flow field possible? (Does it satisfy

continuity?)

5.105 The velocity components of a flow field are given by

Is continuity satisfied? Is the flow irrotational?

5.106 A u component of velocity is given by where A

is a constant. What is a possible v component? What must the v

component be if the flow is irrotational?

5.107 The continuity equation can be expressed in vector nota-

tion as 

Show that this equation can also be expressed as

where the operator D Dt is defined as

PROBLEMS 5.98, 5.99, 5.100, 5.101
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C H A P T E R

Momentum Equation

The analysis of forces on vanes and pipe bends, the thrust produced by a rocket or turbojet,

and torque produced by a hydraulic turbine are all examples of the application of the momen-

tum equation. In Chapter 5, the Reynolds transport theorem was introduced, which enables

one to take fundamental equations for a system (given mass) and write the equivalent equa-

tions in Eulerian form suitable for the control volume approach. In this chapter the Reynolds

transport theorem is applied to Newton’s second law of motion, to develop the Eu-

lerian form of the momentum equation. Application of this equation allows the engineer to

analyze forces and moments produced by flowing fluids.

Momentum Equation: Derivation

Newton’s second law of motion is a familiar concept in mechanics. In this section the

principle that the rate of change of momentum of a body is equal to the force acting on the

body is rewritten in Eulerian form using the Reynolds transport theorem. The result is

momentum equation in the form suitable for the control volume approach. 

When forces act on a particle, the particle accelerates according to Newton’s second

law of motion:

(6.1)

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Explain the steps in deriving the momentum equation.

• Define an inertial reference frame.

• Identify the accumulation and momentum flux terms in the momentum equation.

• Explain the steps in deriving the moment-of-momentum equation.

• Explain the water-hammer effect.

Procedural Knowledge

• Apply the component form of the momentum equation to stationary and moving control volumes.

• Apply the vector form of the momentum equation.

• Apply the moment-of-momentum equation to stationary and rotating control volumes.

Typical Applications

• For jets, vanes, nozzles and pipe sections, calculate forces and moments. 

• For water hammer effects, calculate pressure rise.

• For radial turbines, calculate power output.

F ma,�

6.1

F ma��
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By definition, the mass (m) is constant, so the equation may be written using momentum:

(6.2)

Although Eqs. (6.1) and (6.2) apply to a single particle, the law can also be formulated for a

system composed of a group of particles, for example, a fluid system. In this case, the law

may be written as

(6.3)

The term Momsys denotes the total momentum of all mass comprising the system.

Equation (6.3) is a Lagrangian equation. To derive an Eulerian equation, the Reynolds

transport theorem, Eq. (5.21),

is applied where V is fluid velocity relative to the control surface at the location where the

flow crosses the surface. The extensive property Bsys becomes the momentum of the system:

The corresponding intensive property b becomes the momentum per unit mass

within the system. The momentum of any fluid particle of mass m in the system is mv, and so

The velocity v must be relative to an inertial reference frame, that is, a

frame that does not rotate and can either be stationary or moving at a constant velocity. Sub-

stituting for Bsys and b into Eq. (5.21) gives

(6.4)

Combining Eqs. (6.3) and (6.4) gives the integral form of the momentum equation:

(6.5)

This equation can be expressed in words as

It is important to remember that the momentum equation is a vector equation; that is, there is

a direction associated with the each term in the equation. 

If the flow crossing the control surface occurs through a series of inlet and outlet ports

and if the velocity v is uniformly distributed across each port, then a simplified form of the

Reynolds transport theorem, Eq. (5.23), can be used, and the momentum equation becomes

(6.6)

where the subscripts o and i refer to the outlet and inlet ports, respectively. This form of the

momentum equation will be identified as the vector form. Notice that the product of  cor-

responds to the mass per unit time times velocity, or momentum per unit time, which has the

same units as force.
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As long as v is uniformly distributed across control surface, Eq. (6.6) applies to any

control volume, including one that is moving, deforming, or both. In all cases,  is the rate

at which mass is passing across the control surface, and v is velocity evaluated at the control

surface with respect to the inertial reference frame that is selected.

The three components of Eq. (6.6) for the Cartesian coordinate (x,y,z) system are

(6.7a)

(6.7b)

(6.7c)

where the subscripts x, y, and z refer to the force and velocity components in the coordinate di-

rections. These equations will be identified as the component form of the momentum equation.

When velocity v varies across the control surface, the general form of the momentum

equation, Eq. (6.5), must always be used. 

Momentum Equation: Interpretation

Application of the momentum equation to fluid flow problems is analogous to the use of the

free-body approach in solid mechanics. In solid mechanics, a system of interest is isolated

from its surroundings, thereby creating a free body, and forces are applied to replace the

influence of the surroundings. These forces are then summed and equated with the product of

mass and acceleration. In fluid mechanics, the system of interest is the material contained

within the control volume, and forces are applied to this system to represent the effect of the

surroundings. Forces are then summed and equated to momentum changes of the flow.

Figure 6.1

Forces associated with 

flow in a pipe: (a) pipe 

schematic, (b) control 

volume situated inside 

the pipe, and (c) control 

volume surrounding the 

pipe.
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Force Terms
In Eq. (6.5), the force term is the sum of all the forces acting on the matter in the control vol-

ume. For example, consider flow inside a vertical pipe, as shown in Fig. 6.1a. One possible

control volume is a cylinder with diameter D and length L located just inside the pipe wall.

As shown in Fig. 6.1b, the fluid within the control volume has been isolated from its sur-

roundings, and the effect of the surroundings are shown as forces. The effect of the wall is re-

placed by a force equal to the shear stress (�) times the pipe surface area The

force due to pressure is given by pressure (p) times the section area and al-

ways acts toward the control surface (a compressive force). The weight of the fluid is given

by Thus, the net force acting in the z-direction is given by

(6.8)

Another possible control volume has a length L and a diameter that is larger than the pipe’s out-

side diameter. As shown in Fig. 6.1c, this control volume cuts through the pipe wall. Comparing

Figs. 6.1b and 6.1c shows that the pressure forces are the same. However, in Fig. 6.1c, there

is no force associated with shear stress, but there are two new forces, F1 and F2, which represent

the forces due to the pipe wall. Also, the weight of matter within the control volume now in-

cludes the weight of the fluid and the pipe wall (Wp). The net z-direction force is

(6.9)

The choice of control volume depends on what information being sought. To relate the pres-

sure change between sections 1 and 2 to wall shear stress, Eq. (6.8) would be best. To find the

tensile force carried by the pipe wall, Eq. (6.9) would be used.

The sketches shown in Figs. 6.1b and 6.1c are identified as force diagrams (FD). A

force diagram shows the forces acting on the matter contained within a control volume. A

force diagram is equivalent to a free-body diagram at the instant in time when the momentum

equation is applied.

In Fig. 6.1b, the force of gravity (weight) acts on each mass element in the control volume

(with the resultant force acting at the mass center). A force that acts on mass elements within

the body is defined as a body force. A body force can act at a distance without any physical

contact. Examples of body forces include gravitational, electrostatic, and magnetic forces.

Except for the body force (weight), all forces shown in Figs. 6.1b and 6.1c are surface

forces. A surface force is defined as a force that requires physical contact, meaning that sur-

face forces act at the control surface. For example, p1A1 acts at the control surface and re-

quires contact between the fluid outside the control volume and the fluid inside the control

volume. With respect to pressure, the net force is obtained by integrating the pressure over

the area of the surface. For example, if the pressure varies hydrostatically, the magnitude of

the force and the line of action would be determined using the methods presented in Chapter

3. When evaluating pressure forces, engineers commonly use gage pressure. In this case, the

force associated with atmospheric pressure acting over a surface is zero. In addition to

pressure, surface forces can be caused by shear stress, for example the force �As shown in

Fig. 6.1b.

Momentum Accumulation
The first term on the right side of Eq. (6.5) represents the rate at which the momentum of the

material inside the control volume is changing with time. In particular, the mass of a volume

element in the control volume is � dV, so the product v � V is the momentum of a volume

As �DL�( ).
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element. Integrating over the control volume gives total momentum of the material in the

control volume. Taking the time derivative gives the rate at which the momentum is chang-

ing. This term may be described as the net rate of momentum accumulation, and it will be re-

ferred to it as the momentum accumulation term. The units are momentum per unit time,

which are equivalent to the units for force.

In many problems, the momentum accumulation is zero. For example, consider steady

flow through the control volume surrounding the nozzle shown in Fig. 6.2a. The fluid inside

the control volume has momentum because it is moving. However, the velocity and density

at each point do not change with time, so the total momentum in the control volume is con-

stant, and the momentum accumulation term is zero. The evaluation of the momentum accu-

mulation term is completed by considering the structural elements (i.e., the nozzle walls).

Since the structural elements are stationary, there is no momentum change, so the momentum

accumulation rate is zero.

In summary, the momentum of the material inside a control volume is evaluated by in-

tegrating the momentum of each volume element over the control volume. If the momentum

in each differential volume is constant with time (e.g., steady flow, a stationary structural

part), the momentum accumulation rate is zero.

Momentum Diagram
The momentum terms on the right side of Eq. (6.5) may be visualized with a momentum
diagram (MD). The momentum diagram is created by sketching a control volume and then

drawing a vector to represent the momentum accumulation term and a vector to represent

momentum flow at each section where mass crosses the control surface.

Although the momentum diagram applies to the integral form of the momentum princi-

ple, Eq. (6.5), the diagram takes on a simple form when the velocity v is uniformly distrib-

uted across each inlet and outlet port, and Eq. (6.6) applies. For example, consider steady

flow through the nozzle shown in Fig. 6.2. For the control volume indicated, the momentum

accumulation term is zero, and this vector is omitted from the diagram. If the velocity is as-

sumed to be uniform across the inlet and exit sections, the outlet momentum flow is given by

and the inlet momentum flow is given by as shown in Fig. 6.2b. To evaluate the

momentum flow, one can use the diagram to see that

Figure 6.2

(a) Nozzle, and 

(b) momentum diagram 

for nozzle.

(a) (b)

Flow
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and

Recognizing that  the above equations can be combined to show that the net

outward flow of momentum is

Using the momentum diagram is a straightforward way to evaluate the momentum terms.

Systematic Approach
A systematic approach is recommended for using the momentum equation. One such ap-

proach is summarized here.

Problem Setup

• Select an appropriate control volume. Sketch the control volume and coordinate axes.

Select an inertial reference frame.

• Identify governing equations. This will include either the vector or component form of

the momentum equation. Other equations, such as the Bernoulli equation and/or the continu-

ity equation, may be needed.

Force Analysis and Diagram

• Sketch body force(s) (usually only gravitational force) on the force diagram.

• Sketch surface forces on the force diagram; these are forces caused by pressure distribu-

tion, shear stress distribution, and supports and structures.

Momentum Analysis and Diagram

• Evaluate the momentum accumulation term. If the flow is steady and other materials in

the control volume are stationary, the momentum accumulation is zero. Otherwise, the mo-

mentum accumulation term is evaluated by integration, and an appropriate vector is added to

the momentum diagram.

• Sketch momentum flow vectors on the momentum diagram. For uniform velocity, each

vector is 

Common Applications

This section discusses four common applications of the momentum equation: fluid jets,

nozzles, vanes, and pipe bends.

Fluid Jets
A fluid jet is created by a high-speed stream of fluid leaving a nozzle as shown in Fig. 6.3.

Examples would include a firehose or an ink jet in a printer. Provided that the jet is “free”

(not confined by walls), the pressure is constant across any cross section of the jet, such as

m· ivi

cs
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sections B and C, and equal to the pressure of the surrounding fluid ps.* Thus

It is convenient to use gage pressures when calculating pressure forces so the

exit pressure is zero and so there is no surface force at the exit plane. Finally, it is typically

assumed that fluid velocity is uniform across the cross section of a jet.

Example 6.1 shows how to calculate the thrust on a rocket by applying the momentum

equation.

Figure 6.3

A fluid jet exiting a 

nozzle. Pressure of the 

ambient fluid is ps.

Letters indicate cross 

sections.

* This assumption is valid if a jet is subsonic, meaning the speed of the jet is less than the local speed of

sound in the fluid. Otherwise, the exit pressure can be higher than atmospheric pressure. Supersonic jets are

discussed in Chapter 12.

EXAMPLE 6.1   THRUST OF ROCKET

The sketch below shows a 40 g rocket, of the type used for 

model rocketry, being fired on a test stand in order to evaluate 

thrust. The exhaust jet from the rocket motor has a diameter 

of a speed of and a density of 

Assume the pressure in the exhaust jet 

equals ambient pressure, and neglect any momentum changes 

inside the rocket motor. Find the force Fb acting on the beam 

that supports the rocket.

Sketch:

Problem Definition

Situation: Model rocket supported by a beam. Exit 
conditions of model rocket provided.

Find: Force (in newtons) on beam.

Assumptions: Pressure is atmospheric at the nozzle exit
plane.

Properties: 

Plan

1. Choose a control volume such that the force acting on the 
control surface is the force on the beam and where 
information is available for the momentum flux crossing 
the control surface. 

2. Sketch the force diagram.

3. Sketch the momentum diagram.

4. Because this problem involves only one direction, the 
component form of the momentum equation in the 
z-direction, Eq. (6.7c), will be used. 

5. Evaluate the sum of the forces from the force diagram.

6. Evaluate momentum terms.

7. Calculate the force.

Solution

1. The control volume chosen is shown below. The control 
volume is stationary.

Flow

A CB

ps

pB pC ps.� �

d 1 cm,� v 450 m s⁄ ,�
� 0.5 kg m⁄ 3
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v

� 0.5 kg/m
3
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mv·
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Example 6.2 shows how to calculate the forces due to a jet flowing into a cart. The

component form of the momentum equation is utilized. 

2. From the force diagram, the force on the control surface 
exerted by the beam is chosen as downward (negative 
z-direction) with magnitude Fb. (The corresponding force 
exerted by the rocket on the beam is upward.) The weight 
also acts downward. Also there is no pressure force at the 
nozzle exit plane because exit pressure is atmospheric.

3. The momentum diagram shows only one momentum 
outflow and no inflow.

4. Momentum equation in z-direction:

5. Sum of forces.

6. Evaluation of momentum terms.

• Accumulation term: No changes in control volume, 

• Momentum inflow: No inflow, 

• Momentum outflow: 

7. Force on beam:

The direction of Fb (on the beam) is upward.

Review

1. The thrust force of the rocket motor is (1.79 
lbf); this value is typical of a small motor used for model 
rocketry.

2. The force Fb acts downward at the control surface, and an 
equal and opposite force acts upward on the support beam, 
as shown in the sketch below. This is an example of an 
action and reaction force, as described by Newton’s third 
law of motion.

3. For solving this problem, two separate diagrams were 
used: the force and the momentum diagrams. The rationale 
for this approach is to regard forces and momentum flows 
as separate phenomena. This facilitates writing the 
equations and provides a systematic approach to more 
complex problems. 

EXAMPLE 6.2   CONCRETE FLOWING INTO CART

As shown in the sketch, concrete flows into a cart sitting on a 

scale. The stream of concrete has a density of 

an area of and a speed of 

At the instant shown, the weight of the cart plus 

the concrete is 800 lbf. Determine the tension in the cable and 

the weight recorded by the scale. Assume steady flow.

Sketch: Density of concrete,  
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Problem Definition

Situation: Concrete flowing into cart held by cable and 
mounted on a scale.

Find:

1. Force (in lbf) on cable.

2. Weight (in lbf) recorded on scale.

Assumptions: The velocity of the concrete in the cart is zero.

Plan

1. Select a control volume that provides force on cable and 
weight on scale.

2. Sketch the force diagram.

3. Sketch the momentum diagram.

4. Since this problem involves two directions, the 
component form of the momentum equations in the x- and 
z-directions, Eqs. (6.7a) and (6.7c), will be used.

5. Evaluate forces from force diagram.

6. Evaluate momentum terms.

7. Calculate tension in cable and weight on scale.

Solution

1. Control volume selected is shown on diagram. Control 
volume is stationary.

2. Force diagram shows the tension in the cable and the 
weight on the scale. 

3. Momentum diagram shows only an inflow of momentum. 
Velocity of the concrete in the tank is neglected.

4. Component momentum equations

• Momentum equation in x-direction

• Momentum equation in z-direction

5. Forces from the force diagram

6. Evaluation of momentum terms

• Momentum accumulation: so 

• Momentum inflow

• Momentum outflow: No outflow, so,

7. Evaluate tension in cable using (a).

Evaluate force on scale using (b).

Review

1. The weight recorded by the scale is larger than the weight 
of the cart because of the momentum carried by the fluid 
jet.

2. Notice that unit conversions are usually needed when 
using English units.

3. There will be some velocity in the cart due to mixing, but 
the momentum associated with those velocities would be 
insignificant, so the momentum accumulation term can be 
neglected.

4. Answers are expressed with three significant figures.
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Nozzles
Nozzles are flow devices used to accelerate a fluid stream by reducing the cross-sectional

area of the flow. When a fluid flows through a nozzle as shown in Fig. 6.3, it is reasonable to

assume the velocity is uniform across sections A and B. Hence, the momentum flows will

have magnitude If the nozzle exhausts into the atmosphere, the pressure at section B is

atmospheric. Applying the Bernoulli equation between sections A and B will provide an

equation for the pressure at section A. This pressure will exert a force of magnitude pA,

where p is the pressure at the centroid of section A.

In many applications involving finding the force on a nozzle, the Bernoulli equation is

used along with the momentum equation. Example 6.3 illustrates one such application.

EXAMPLE 6.3    FORCE ON A NOZZLE

The sketch shows air flowing through a nozzle. The inlet 

pressure is p1 105 kPa abs, and the air exhausts into the 

atmosphere, where the pressure is 101.3 kPa abs. The nozzle 

has an inlet diameter of 60 mm and an exit diameter of 10 

mm, and the nozzle is connected to the supply pipe by 

flanges. Find the air speed at the exit of the nozzle and the 

force required to hold the nozzle stationary. Assume the air 

has a constant density of 1.22 kg m3. Neglect the weight of 

the nozzle.

Sketch:

Problem Definition

Situation: Air flows through nozzle with contraction ratio of 
6:1. Nozzle attached to pipe by flange.

Find:

1. Exit velocity (in m s) of nozzle.

2. Force on flange (in newtons) required to hold nozzle.

Assumptions:

1. Density is constant.

2. Viscous effects are negligible.

3. Flow is steady.

Properties: 

Plan

1. Select a control surface that includes the force on the 
flange.

2. Sketch the force diagram.

3. Sketch the momentum diagram.

4. Apply the Bernoulli equation and the continuity equation 
to find exit (and inlet) velocity.

5. Apply the component form of the momentum equation in 
the x-direction, Eq. (6.7a).

6. Evaluate forces (use gage pressures for pressure force).

7. Evaluate momentum terms.

8. Calculate force on flange.

Solution

1. Select control volume (and control surface). Control 
volume is stationary.

2. Force diagram shows force due to pressure and force from 
flange.

3. Momentum diagram shows a momentum inflow and 
outflow.

4. Application of the Bernoulli equation between sections 1 
and 2

• Set

• Set and now 

m· v.

�

⁄

Flow

1
2

Flanges

⁄

� 1.22 kg/m
3
.�

F

p1A1

x

mv1
· mv2

·

FD MD

2 2

1 1

p1 	z1

1

2
---�v1

2+ + p2 	z2

1

2
---�v2

2+ +�

z1 z2.�
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p1 105 kPa 101.3 kPa– 3.7 kPa gage.� �
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Vanes
A vane is a structural component, typically thin, that is used to turn a fluid jet or is turned by

a fluid jet. Examples include a blade in a turbine, a sail on a ship, and a thrust reverser on an

aircraft engine. Figure 6.4 shows a flat vane impacted by a jet of fluid. A typical control vol-

ume is also shown. In analyzing flow over a vane, it is common to neglect the pressure

change due to elevation difference. Since the pressure is constant (atmospheric pressure or

surrounding pressure), the Bernoulli equation shows the speed is constant An-

other common assumption is that viscous forces are negligible compared to pressure forces.

Thus when a vane is flat, as in Fig. 6.4, the force needed to hold the vane stationary is normal

to the vane.  

The Bernoulli equation simplifies to

From the continuity equation,

Substitute into the Bernoulli equation and solve for v2:

Evaluate exit velocity:

Inlet velocity is

5. Momentum equation

6. Sum of forces in x-direction

7. Term-by-term evaluation of momentum terms

• Accumulation term: Flow is steady, 

• Momentum outflux with one outflow at section 2,

• Momentum influx with one inlet at section 1,

8. Force on flange

Because F is negative, the direction is opposite to the 

direction assumed on the force diagram. Hence, the force 

on the control surface acts in the negative x-direction, but 

the force on the flange will be in the positive direction.

The tension in the bolts holding the flange will be 

increased.

Review

1. The direction initially assumed for the force on the flange 
was arbitrary. If the answer for the force is negative, then 
the force is opposite the chosen direction.

2. By choosing to use gage pressure there are no pressure 
forces on any surfaces exposed to the atmosphere. Also 
there is no force due to pressure across the nozzle exit 
plane.
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Example 6.4 illustrates how to calculate the force on a vane used to deflect a stream of

water. This example utilizes the vector form of the momentum equation.

Figure 6.4

Fluid jet striking a flat 

vane.

EXAMPLE 6.4   WATER DEFLECTED BY A VANE

A water jet is deflected 60° by a stationary vane as shown in 

the figure. The incoming jet has a speed of 100 ft s and a 

diameter of 1 in. Find the force exerted by the jet on the vane. 

Neglect the influence of gravity.

Sketch:

Problem Definition

Situation: Water deflected by a vane.

Find: Force (lbf) on vane due to jet.

Assumptions:

1. Viscous effects are negligible.

2. Neglect gravitational effects.

Properties: 

Plan

From the Bernoulli equation, since the pressure is constant, 

the inlet and outlet speeds are the same. Also, from 

continuity, 

1. Select a control volume such that the control surface 
includes the force on the vane and flux of momentum. 

2. Sketch the force diagram.

3. Sketch the momentum diagram. 

4. Use the vector form of momentum equation, Eq. (6.6).

5. Evaluate force terms.

6. Evaluate momentum terms 

7. Evaluate mass flow rate.

8. Calculate force. 

Solution

1. The control volume selected is shown in the sketch. The 
control volume is stationary.

2. The force diagram shows only the reaction force.

3. The momentum diagram shows an inflow and outflow.

4. Vector form of momentum equation.

5. Force vector is

⁄
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3
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3
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Example 6.5 shows how to calculate the force on an axisymmetric vane, which redi-

rects the flow in the radial direction. 

6. Evaluation of momentum terms

• Control volume is stationary, 

• Momentum outflow vector, 

• Momentum inflow vector, 

7. Mass flow rate

8. Force

For each component,

Force in x-direction

Force in y-direction

The force of the jet on the vane (Fjet) is opposite in 

direction to the force required to hold the vane stationary 

(F). Therefore,

EXAMPLE 6.5   FORCE ON AN AXISYMMETRIC 

VANE

As shown in the figure, an incident jet of fluid with density �,

speed v, and area A is deflected through an angle � by a 

stationary, axisymmetric vane. Find the force required to hold 

the vane stationary. Express the answer using �, v, A, and �.

Neglect the influence of gravity.

Sketch: Gravitational effects are negligible.

Problem Definition

Situation: Fluid deflected by axisymmetric vane.

Find: Force required to hold vane stationary.

Assumptions:

1. Flow is steady.

2. Fluid is incompressible.

3. Viscous effects are negligible.

Plan

Because the pressure is constant, the Bernoulli equation 

shows the inlet and outlet speeds are the same. Application of 

the continuity equation shows the inlet and outlet mass flows 

are also the same.

1. Select a control volume with the constraining force on 
control surface.

2. Sketch the force diagram.

3. Sketch the momentum diagram.

4. Apply the component form of the momentum equation in 
x-direction, Eq. (6.7a).

5. Evaluate force terms.

6. Evaluate momentum terms.

7. Calculate force.

d
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� 0�
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Fx 53.0 lbf�
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Pipe Bends
Calculating the force on pipe bends is important in engineering applications using large pipes

to design the support system. Because flow in a pipe is usually turbulent, it is common prac-

tice to assume that velocity is nearly constant across each cross section of the pipe. Also, the

force acting on a pipe cross section is given by pA, where p is the pressure at the centroid of

area and A is area.

Example 6.6 illustrates how to calculate a restraining force on a pipe bend using the vector

form of the momentum equation. In contrast to vanes, the pressure forces play a key role in the

solution.

Solution

1. Control volume selected is shown. Control volume is 
stationary.

2. The force diagram shows only one force.

3. The momentum diagram shows one momentum flux in 
and one axisymmetric flux out. The net radial flux of 
momentum is zero, so only the component in the axial 
direction contributes to the momentum flux.

4. Momentum equation in x-direction.

5. Sum of forces

6. Evaluation of momentum terms

• Accumulation term for stationary control volume is

• Momentum outflow is 

• Momentum inflow is 

7. Force on vane

Apply mass flow rate equation,

and the direction of this force is to the left, as shown in the 

force diagram.

Review

This type of reverse flow vane is used to reverse thrust on 

aircraft engines.

EXAMPLE 6.6   FORCES ACTING ON A PIPE BEND

A 1 m–diameter pipe bend shown in the diagram is carrying 

crude oil with a steady flow rate of 2 m3 s. The 

bend has an angle of 30° and lies in a horizontal plane. The 

volume of oil in the bend is 1.2 m3, and the empty weight of 

the bend is 4 kN. Assume the pressure along the centerline of 

the bend is constant with a value of 75 kPa gage. Find the net 

force required to hold the bend in place.

Sketch:
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Problem Definition

Situation: Crude oil flows through a 30° pipe bend.

Find: Force (in kN) required to hold bend in place.

Assumptions: Pressure is constant through bend.

Properties: Soil 0.94.

Plan

From the continuity equation, the inlet and outlet mass flows 

are the same.

1. Select a control volume that accommodates the pressure 
forces and reaction forces at the flanges.

2. Sketch the force diagram.

3. Sketch the momentum diagram.

4. Use the vector form of the momentum equation, Eq. (6.6).

5. Evaluate the sum of the forces.

6. Evaluate the momentum terms.

7. Calculate the reaction force.

Solution

1. The control volume selected is shown. The control volume 
is stationary. The z-direction is outward from the page.

2. The force diagram shows pressure forces and the 
component reaction forces.

3. Vector form of momentum equation

4. Sum of the forces: The weight of the pipe and fluid therein 
is W and acts in the negative z-direction.

5. Momentum terms

• Accumulation term for stationary control volume is 

• Momentum outflow is 

• Momentum inflow is 

6. Reaction force

• Equating components

• Pressure force 

• Fluid speed 

• Momentum flux

Reaction force in x-direction

Reaction force in y-direction

Reaction force in z-direction. (The bend weight includes 

the oil plus the empty pipe).

Reaction force vector
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Example 6.7 illustrates how to calculate the force required to restrain a reducing bend,

a bend in which the fluid speed and direction both change, by application of the component

form of the momentum equation. 

EXAMPLE 6.7   WATER FLOW THROUGH 

REDUCING BEND

Water flows through a 180° reducing bend, as shown. The 

discharge is 0.25 m3 s, and the pressure at the center of the 

inlet section is 150 kPa gage. If the bend volume is 0.10 m3,

and it is assumed that the Bernoulli equation is valid, what 

force is required to hold the bend in place? The metal in the 

bend weighs 500 N. The water density is 1000 kg m3. The 

bend is in the vertical plane.

Sketch:

Problem Definition

Situation: Water flow through reducing bend.

Find: Force (in newtons) required to hold bend in place.

Assumptions:

1. The Bernoulli equation is valid.

2. Neglect pipe wall thickness.

Properties: 

Plan

The flow is steady, so 

1. Select control volume that encloses bend and the reaction 
force acts on the control surface.

2. Sketch the force diagram.

3. Sketch the momentum diagram.

4. Apply the component form of the momentum equation in 
the x- and z-directions, Eqs. (6.7a) and (6.7c).

5. Evaluate the force terms.

6. Evaluate the momentum terms.

7. Solve momentum equations for reaction forces.

8. Calculate the inlet and outlet speed. 

  9.Apply the Bernoulli equation to find the outlet pressure. 

10. Calculate the reaction force.

Solution

1. The control volume selected is shown. The control volume 
is stationary.

2. There are two forces due to pressure and a reaction force 
component in the x-direction, and there are weight and 
reaction forces component in the z-direction.

3. There is inlet and outlet momentum flux in x-direction

4. Momentum equations in x- and z-directions

5. Summation of forces in x- and z-directions

6. Evaluation of momentum terms

• Accumulation terms, steady flow 

• Momentum outflow 

• Momentum inflow 
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Additional Applications

Evaluation of Drag Force on Wind Tunnel Model

The previous examples in this chapter were cases in which the velocity across each flow sec-

tion was constant. However in many applications the velocity is not uniformly distributed

across the control surface, and the momentum flux must be evaluated by integration.

Example 6.8 involves calculating the force on a model in a wind tunnel by application

on the integral form of the momentum equation. The downstream velocity profile is not uni-

form and requires integration to establish the momentum outflow. 

7. Solution for reaction forces

• x-direction

• z-direction

8. Inlet and outlet speeds

9. Outlet pressure (the Bernoulli equation between sections 1 
and 2)

From diagram, neglecting pipe wall thickness,

10. Reaction force

• Pressure forces

• Momentum flux

• Reaction force components
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EXAMPLE 6.8   DRAG FORCE ON 

WIND-TUNNEL MODEL

The drag force of a bullet-shaped device may be measured 

using a wind tunnel. The tunnel is round with a diameter of 

1 m, the pressure at section 1 is 1.5 kPa gage, the pressure at 

section 2 is 1.0 kPa gage, and air density is 1.0 kg m3. At the 

inlet, the velocity is uniform with a magnitude of 30 m s. At 

the exit, the velocity varies linearly as shown in the sketch. 

Determine the drag force on the device and support vanes. 

Neglect viscous resistance at the wall, and assume pressure is 

uniform across sections 1 and 2.

Sketch:

Problem Definition

Situation: Wind tunnel test on suspended model with 
upstream and downstream velocity distributions and 
pressures measured.

Find: Drag force (in newtons) on model.

Assumptions: Steady flow.

Properties: 

Plan

1. Select a control volume that encloses the model.

2. Sketch the force diagram.

3. Sketch the momentum diagram.

4. The downstream velocity profile is not uniformly 
distributed. Apply the integral form of the momentum 
equation, Eq. (6.5).

5. Evaluate the sum of forces.

6. Determine velocity profile at section 2 by application of 
continuity equation.

7. Evaluate the momentum terms.

8. Calculate drag force on model.

Solution

1. The control volume selected is shown. The control volume 
is stationary. 

2. The forces consist of the pressure forces and the force on 
the model support struts cut by the control surface. The 
drag force on the model is equal and opposite to the force 
on the support struts: 

3. There is inlet and outlet momentum flux.

4. Integral form of momentum equation in x-direction

On cross-section 1, and on 

cross-section 2, so

5. Evaluation of force terms.

6. Velocity profile at section 2.
Velocity is linear in radius, so choose 

where ro is the tunnel radius and K is a 

proportionality factor to be determined.

7. Evaluation of momentum terms

• Accumulation term for steady flow is  
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Force on a Sluice Gate
Sluice gates are often used in hydroelectric facilities to control the flow rate of water from the

dam onto a spillway. Example 6.9 provides another example on the use of the momentum

equation to predict the force on a sluice gate by accounting for the momentum flux.

• Momentum at cross-section 1 with  is

• Momentum at cross-section 2 is

8. Drag force

EXAMPLE 6.9   FORCE ON A SLUICE GATE

A sluice gate is used to control the water flow rate over a 

dam. The gate is 20 ft wide, and the depth of the water above 

the bottom of the sluice gate is 16 ft. The depth of the water 

upstream of the gate is 20 ft, and the depth downstream is 3 ft. 

Estimate the flow rate under the gate and the force on the 

gate. The water density is 62.4 lbm ft3.

Sketch:

Problem Definition

Situation: Sluice gate to control water flow over dam.

Find:

1. Flow rate (cfs) under the gate.

2. Force (tons) on gate.

Assumptions:

1. Velocity profiles are uniformly distributed.

2. Streamlines are straight at stations 1 and 2.

3. Viscous effects are negligible.

Properties: and

Plan

1. Select a control volume such that the control surface 
includes the force on the gate and passes through the outlet 
flow where the velocity profile is uniformly distributed.

2. Sketch the force diagram.

3. Sketch the momentum diagram.

4. Use the component form of the momentum equation in 
x-direction, Eq. (6.7a).

5. Use the Bernoulli and continuity equations to find the 
velocities at the inlet and outlet.

6. Evaluate the sum of the forces.

7. Evaluate the momentum terms.

8. Calculate the force on the gate.
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Solution

1. The control volume selected is shown. The control volume 
is stationary.

2. The force diagram shows forces due to pressure and the 
force on the gate.

3. The momentum diagram shows an influx and outflux of 
momentum.

4. Component form of momentum equation in x-direction.

5. The Bernoulli equation between points a and b along the 
streamline.

The piezometric pressure is constant across sections 1 and 

2, so and From continuity 

equation, Eq. (5.27), where w is the flow 

width. Combine the Bernoulli and continuity equations.

Velocities and discharge

6. Sum of the forces from force diagram

From equation for force on planar surface, Eq. (3.23), 

7. Evaluation of momentum terms

• Accumulation term for steady flow is 

• Momentum inflow with one inlet is 

• Momentum outflow with one outlet is 

8. Force on sluice gate

Review

1. The sluice gate is often used in hydroelectric facilities to 
control the flow rate of water from the dam onto a 
spillway.

2. Note that if a hydrostatic pressure distribution were 
assumed over the sluice gate, the force would be 79.9 tons, 
which is larger than predicted using the momentum 
equation. This is because the gage pressure at the bottom 
of the sluice gate will be zero and not the pressure 
predicted using the hydrostatic equation. 
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Moving Control Volumes
All the applications of the momentum equation up to this point have involved a stationary

control volume. However, in some problems it may be more useful to attach the control vol-

ume to a moving body. The purpose of this section is to illustrate how to apply the momen-

tum equation to nonstationary control volumes.

As discussed in Section 6.1, the velocity v in the momentum equation must be relative

to an inertial reference frame. When applying Eq. (6.6) or Eqs. (6.7a–6.7c) each mass flow

rate is calculated using the velocity with respect to the control surface, but the velocity v must

be evaluated with respect to an inertial reference frame.

Example 6.10 illustrates the use of a moving control volume to find the force on mov-

ing block due to an impinging water jet. The example emphasizes the selection of the refer-

ence frame. It shows that two different inertial reference frames can be used to address the

same problem. 

EXAMPLE 6.10   JET IMPINGING ON

MOVING BLOCK

A stationary nozzle produces a water jet with a speed of 

50 m s and a cross-sectional area of 5 cm2. The jet strikes a 

moving block and is deflected 90° relative to the block. The 

block is sliding with a constant speed of 25 m s on a surface 

with friction. The density of the water is 1000 kg m3. Find 

the frictional force F acting on the block.

Solve the problem using two different inertial reference
frames: (a) the moving block and (b) the stationary nozzle. 

Sketch:

Problem Definition

Situation: Jet impinges on block moving at constant velocity.

Find: The force (in newtons) on the block using 

(a) the block as the inertial reference frame.

(b) the nozzle as the inertial reference frame.

Plan

Two different inertial reference frames will be used. Case (a) 

will use the moving cart, which is a valid inertial frame 

because it moves at a constant velocity. Case (b) will use the 

stationary nozzle location.

1. Select a control volume that moves with the block. 

2. Sketch the force diagram.

3. Sketch the momentum diagram. 

4. Apply the component form of the momentum equation in 
the x-direction, Eq. (6.7a). 

5. Evaluate the sum of the forces.

6. Evaluate the momentum terms using (a) the moving block 
and (b) the stationary nozzle as inertial reference frames.

7. Evaluate mass flow rate.

8. Calculate force on cart.

Solution

1. The control volume selected is shown in the sketch. The 
control volume is not stationary.

2. The force diagram shows one force in the horizontal 
direction.

3. The momentum diagram shows an influx and outflux of 
momentum.
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One of the classic applications of the momentum equation to a moving control volume

is the development of the equation of motion for a rocket. In this situation the control volume

is drawn around the rocket, but the rocket cannot be used as an inertial reference frame be-

cause it is accelerating.

Up to this point, the accumulation term in the momentum equation has been zero. In ac-

celerating control volumes, the accumulation term is not zero and plays a very important role

in the analysis.

A rocket moving vertically upward with a speed vr measured with respect to the ground

is shown in Fig. 6.5. Exhaust gases leave the engine nozzle (area Ae ) at a speed Ve relative to

the rocket nozzle with a gage pressure of pe. The goal is to obtain the equation of motion of

the rocket which can be used to predict performance.

The control volume is drawn around and accelerates with the rocket. The force and mo-

mentum diagrams are shown in Fig. 6.6. There is a drag force of D and a weight of W acting

4. Momentum equation

5. The sum of the forces

6. Evaluation of terms in momentum equation
(a) Inertial reference frame on cart

• Accumulation term with is 

• Momentum inflow for x-component of velocity at 

station 1, is

• Momentum outflow for x-component of velocity at 

station 2, is

(b) Inertial reference frame at nozzle

• Accumulation term with is 

• Momentum inflow for x-component of velocity at 
station 1, , is

• Momentum outflow for x-component of velocity at 
station 2, is

7. Mass flow rate. Since flow is steady with respect to the 
block,

8. Evaluate force.
(a) Moving block as inertial reference frame

(b) Stationary nozzle as inertial reference frame

Force on cart

Review

Note that the same answer for force is obtained independent 

of the inertial reference frame chosen.
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downward. There is a pressure force of on the nozzle exit plane acting upward. The

summation of the forces in the z-direction is

(6.10)

There is only one momentum flux out of the rocket nozzle, The speed vo must be refer-

enced to an inertial reference frame, which in this case is chosen as the ground. The speed of

the exit gases with respect to the ground is

(6.11)

since the rocket is moving upward with speed vr with respect to the ground, and the exit gases

are moving downward at speed Ve with respect to the rocket. There is also a momentum accu-

mulation rate in the rocket of 

The component momentum equation, Eq. (6.7c), in the z-direction is

The velocity inside the control volume is the speed of the rocket, vr, so the accumulation

term becomes

Figure 6.5

Vertical launch of rocket.

Figure 6.6

Force and momentum 

diagrams for rocket.

Ve

vr

z

W

D

pe Ae

FD MD

mvo = m(Ve – vr)

d
dt

(mrvr)

· ·

peAe

Fz� peAe W– D–�

m· vo.

vo vr Ve–( )�

d mrvr( )dt.⁄

Fz� d

td
---- vz � V d

cv
�� m· ovoz

cs
� m· iviz

cs
�–+

d

td
---- vz � V d

cv
� d

td
---- vr � V d

cv
� td

d
mrvr( )� �



186 MOMENTUM EQUATION

There is no momentum inflow. The momentum outflow is

Substituting the sum of the forces and momentum terms into the momentum equation gives

(6.12)

By taking the derivative of the accumulation term by parts results in

(6.13)

The continuity equation can now be used to eliminate the second term on the right. Applying

the continuity equation, Eq. (5.25), to the control surface around the rocket leads to

(6.14)

Substituting Eq. (6.14) into Eq. (6.13) yields

(6.15)

The sum of the momentum outflow and the pressure force at the nozzle exit is identified as

the thrust of the rocket

so Eq. (6.15) simplifies to

(6.16)

which is the equation used to predict and analyze rocket performance. 

Integration of Eq. (6.16) leads to one of the fundamental equations for rocketry: the

burnout velocity or the velocity achieved when all the fuel is burned. Neglecting the drag and

weight, the equation of motion reduces to

(6.17)

The instantaneous mass of the rocket is given by , where mi is the initial rocket

mass and t is the time from ignition. Substituting the expression for mass into Eq. (6.17) and

integrating with the initial condition results in

(6.18)

where vbo is the burnout velocity and mf is the final (or payload) mass. The ratio is

known as the specific impulse, Isp, and has units of velocity. 
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Example 6.11 illustrates the use of the equation for rocket burnout velocity for condi-

tions necessary to achieve orbital velocity for a earth satellite.

Water Hammer: Physical Description
Whenever a valve is closed in a pipe, a positive pressure wave is created upstream of the

valve and travels up the pipe at the speed of sound. In this context a positive pressure wave is

defined as one for which the pressure is greater than the existing steady-state pressure. This

pressure wave may be great enough to cause pipe failure. Therefore, a basic understanding of

this process, which is called water hammer, is necessary for the proper design and operation

of such systems. The simplest case of water hammer will be considered here. For a more

comprehensive treatment of the subject, the reader is referred to Chaudhry (1) and Streeter

and Wylie (2).

Consider flow in the pipe shown in Fig. 6.7. Initially the valve at the end of the pipe is

only partially open (Fig. 6.7a); consequently, an initial velocity V and initial pressure p0 exist

in the pipe. At time t 0 it is assumed that the valve is instantaneously closed, thus creating

a pressure increase behind the valve and a pressure wave that travels from the valve toward the

reservoir at the speed of sound, c. All the water between the pressure wave and the upper end

of the pipe will have the initial velocity V, but all the water on the other side of the pressure wave

(between the wave and the valve) will be at rest. This condition is shown in Fig. 6.7b. Once the

pressure wave reaches the upper end of the pipe (after time ), it can be visualized that

all of the water in the pipe will be under a pressure however, the pressure in the res-

ervoir at the end of the pipe is only p0. This imbalance of pressure at the reservoir end causes

the water to flow from the pipe back into the reservoir with a velocity V. Thus a new pressure

wave is formed that travels toward the valve end of the pipe (Fig. 6.7c), and the pressure on the

reservoir side of the wave is reduced to p0. When this wave finally reaches the valve, all the wa-

ter in the pipe is flowing toward the reservoir with a velocity V. This condition is only momen-

tary, however, because the closed valve prevents any sustained flow.

EXAMPLE 6.11   PROPELLANT MASS RATIO FOR 

ACHIEVING ORBITAL VELOCITY

A single-stage rocket utilizing a liquid oxygen kerosene 

propellant has a specific impulse of 3200 m s. The orbital 

velocity for an earth satellite is 7600 m s. What would be the 

ratio of propellant mass to total initial mass to achieve orbital 

velocity?

Problem Definition

Situation: Rocket launch to achieve orbital velocity.

Find: Ratio of propellent mass to initial mass.

Plan

1. Use Eq. (6.18) to calculate initial/final mass ratio.

2. Calculate the propellant/initial mass ratio using 

Solution

1. From Eq. (6.18)

2. Solve for propellant/initial mass ratio:

Review

For single-stage rockets, a very large fraction of the initial 

mass must be propellant to achieve orbital speeds. For this 

reason, multi-stage rockets are used in space applications.
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Next, during time a rarefied wave of pressure travels

up to the reservoir, as shown in Fig. 6.7d. When the wave reaches the reservoir, all the water

in the pipe has a pressure less than that in the reservoir. This imbalance of pressure causes

flow to be established again in the entire pipe, as shown in Fig. 6.7f, and the condition is ex-

actly the same as in the initial condition (Fig. 6.7a). Hence the process will repeat itself in a

periodic manner.

Figure 6.7

Water hammer process.
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(b) Condition during

time 0 t L c.

(c) Condition during time 
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t 4L c.
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From this description, it may be seen that the pressure in the pipe immediately up-

stream of the valve will be alternately high and low, as shown in Fig. 6.7a. A similar obser-

vation for the pressure at the midpoint of the pipe reveals a more complex variation of

pressure with time, as shown in Fig. 6.8b. Obviously, a valve cannot be closed instanta-

neously, and viscous effects, which were neglected here, will have a damping effect on the

process. Therefore, a more realistic pressure–time trace for the point just upstream of the

valve is given in Fig. 6.8c. The finite time of closure erases the sharp discontinuities in the

pressure trace that were present in Fig. 6.8a. However, it should be noted that the maxi-

mum pressure developed at the valve will be virtually the same as for instantaneous clo-

sure if the time of closure is less than That is, the change in pressure will be the

same for a given change in velocity unless the negative wave from the reservoir mitigates

the positive pressure, and it takes a time before this negative wave can reach the

valve. The value is called the critical time of closure and is given the symbol tc.

Magnitude of Water Hammer Pressure and Speed of Pressure Wave
The quantitative relations for water hammer can be analyzed with the momentum equation

by letting the control volume either move with the pressure wave, thus creating steady mo-

tion, or be fixed, thus retaining the inherently unsteady character of the process. To illustrate

the use of the momentum equation with unsteady motion, the latter approach will be taken.

Consider a pressure wave in a rigid pipe, as shown in Fig. 6.9. The density, pressure, and ve-

locity of the fluid on the reservoir side of the pressure wave are �, p, and V, respectively, and

the similar quantities on the valve side of the wave are and 0. Because the

wave in this case is traveling from the valve to the reservoir, its distance from the valve at

any time t is given as ct. The momentum equation can now be applied to the flow in the

control volume. Let the x-direction be along the pipe. The equation for x-momentum, Eq.

6.7a, simplifies to

Figure 6.8

Variation of water 

hammer pressure with 

time at two points in a 
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The force terms are given by

The inlet momentum flow is given by The momentum within the control vol-

ume decreases with time because fluid that is in motion stops as the pressure wave passes by.

Evaluation of the momentum accumulation term gives

When force and momentum terms are substituted into the momentum equation, one obtains

This reduces to

In this equation the first term on the right-hand side is usually negligible with respect to the

second term on the right, because for liquids c is much greater than V. Consequently, the

equation simplifies to

(6.19)

The speed of the pressure wave can be obtained by applying the continuity equation to

the control volume in Fig. 6.9. The continuity equation is

and when applied to Fig. 6.9 results in

because there is no mass flow out of the control volume. The mass flow rate is given by

so the continuity equation reduces to

Figure 6.9

Pressure wave in a pipe.
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or (6.20)

However, by definition Therefore,

(6.21)

Now when  is eliminated between Eqs. (6.20) and (6.21), the result is

(6.22)

From Eq. (6.19), Therefore, Eq. (6.22) becomes

(6.23)

Thus, by application of the momentum and continuity equations, expressions for both

�p and c have been derived. 

Example 6.12 illustrates how to calculate the pressure rise due to the water hammer

effect. 

EXAMPLE 6.12   PRESSURE RISE DUE TO WATER 

HAMMER EFFECT

A rigid pipe leading from a reservoir is 3000 ft long, and 

water is flowing through it with a velocity of 4 ft s. If the 

initial pressure at the downstream end is 40 psig, what 

maximum pressure will develop at the downstream end when 

a rapid-acting valve at that end is closed in 1 s?

Problem Definition

Situation: Water flowing in pipe and valve closed quickly.

Find: Maximum pressure (psig) at downstream end.

Assumptions: Water temperature is 60oF.

Properties: From Table A.5, and

Plan

1. Calculate the speed of sound in the water from Eq. (6.23).

2. Calculate the critical closure time, tc.

3. Check to ensure that valve closure time is less than tc.

4. Calculate pressure rise using Eq. (6.19) and add initial 
pipe pressure.

Solution

1. Calculation for sound speed:

2. Calculation for critical closure time:

3. Closure time of 1 s is less than 1.23 s.

4. Pressure rise calculation:

Maximum pressure is
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As indicated by Example 6.12, water hammer pressures can be quite large. Therefore,

engineers must design piping systems to keep the pressure within acceptable limits. This is

done by installing an accumulator near the valve and or operating the valve in such a way

that rapid closure is prevented. Accumulators may be in the form of air chambers for rela-

tively small systems, or surge tanks (a surge tank is a large open tank connected by a

branch pipe to the main pipe) for large systems. Another way to eliminate excessive water-

hammer pressures is to install pressure-relief valves at critical points in the pipe system.

These valves are pressure-activated so that water is automatically diverted out of the sys-

tem when the water-hammer pressure reaches excessive levels.

Moment-of-Momentum Equation

The moment-of-momentum equation is very useful for situations that involve torques.

Examples include analyses of rotating machinery such as pumps, turbines, fans, and blowers.

Torques acting on a control volume are related to changes in angular momentum

through the moment-of-momentum equation. Development of this equation parallels the de-

velopment of the momentum equation as presented in Section 6.1. When forces act on a sys-

tem of particles, used to represent a fluid system, Newton’s second law of motion can be used

to derive an equation for rotational motion:

(6.24)

where M is a moment and Hsys is the total angular momentum of all mass forming the system.

Equation (6.24) is a Lagrangian equation, which can be converted to an Eulerian form

using the Reynolds transport theorem from Eq. (5.21). The extensive property Bsys becomes

the angular momentum of the system: The intensive property b becomes the

angular momentum per unit mass. The angular momentum of an element is and so

Substituting for Bsys and b into Eq. (5.21) gives

(6.25)

Combining Eqs. (6.24) and (6.25) gives the integral form of the moment-of-momentum equa-
tion:

(6.26)

where r is a position vector that extends from the moment center, V is flow velocity relative

to the control surface, and v is flow velocity relative to the inertial reference frame selected.

The moment-of-momentum equation has the following physical interpretation: The

sum of moments acting on the material within the control volume equals the rate of change of

angular momentum within the control volume plus the net rate at which angular momentum

flows out of the control volume. 
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If the mass crosses the control surface through a series of inlet and outlet ports with uni-

formly distributed properties across each port, the moment-of-momentum equation becomes

(6.27)

The methods used for applying the moment-of-momentum equation parallel the methods de-

scribed in Section 6.2. The origin for evaluating moments may be selected at any convenient

location.

Example 6.13 shows how to apply the moment-of-momentum equation to find the re-

sisting moment required to support the flow through a 180° reducing bend.

EXAMPLE 6.13   RESISTING MOMENT ON 

REDUCING BEND

The reducing bend shown in the figure is supported on a 

horizontal axis through point A. Water flows through the 

bend at 0.25 m3 s. The inlet pressure at cross-section 1 is 

150 kPa gage, and the outlet pressure at section 2 is 59.3 kPa 

gage. A weight of 1420 N acts 20 cm to the right of point A. 

Find the moment the support system must resist. The 

diameters of the inlet and outlet pipes are 30 cm and 10 cm, 

respectively.

Sketch:

Situation: Reverse bend supported on a horizontal axis.

Find: Resisting moment (in ) by support system.

Assumptions:

1. Water flow is steady. 

2. Water temperature is 20oC. 

Properties: From Table A.5,  

Plan

The reducing bend is stationary, so it serves as an inertial 

reference frame. Flow is steady, so  

1. Select a control volume surrounding the reducing bend. 

2. Sketch the force (and moment) diagram. 

3. Sketch the momentum diagram. 

4. Apply the moment-of-momentum equation, Eq. (6.27). 
The bend lies in the x-z plane so the y-direction,
represented by unit vector j, goes into the page. A positive 
moment in the x-z plane is in the clockwise direction.

5. Evaluate the sum of moments.

6. Evaluate the moments of momentum.

7. Calculate resisting moment.

Solution

1. The control volume selected is shown in diagram.

2. The force diagram shows two pressure forces contributing 
to the moment and the resisting moment.

3. The momentum diagram shows an influx and outflux of 
momentum.

4. Apply the moment-of-momentum equation.
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��

⁄
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Example 6.14 illustrates how the moment-of-momentum equation can be applied to

predict the power delivered by turbomachinery. The momentum enters and exits radially.

This analysis can be applied to both power-producing machines (turbines) and power-

absorbing machines (pumps and compressors), which are addressed in Chapter 14.

5. Sum of moments about axis A.

6. Evaluate the moment-of-momentum terms.

• Accumulation term, steady flow, is 

.

• Inflow term is 

• Outflow term is 

7. Resisting moment at A

• Torque due to pressure

• Net moment-of-momentum flow

• Moment exerted by support

Thus, a moment of 3.62  acting in the j, or clockwise, 

direction is needed to hold the bend stationary. Stated 

differently, the support system must be designed to withstand 

a counterclockwise moment of 3.62

Review

1. Care must be taken in addressing moment-of-momentum 
problems that the “right-hand-rule” to find the direction of 
the moment be applied correctly.

2. This type of problem may be encountered when the 
flanges are flexible and provide no force on the system.

EXAMPLE 6.14   POWER DELIVERED BY A 

FRANCIS TURBINE

A Francis turbine is shown in the diagram. Water is directed 

by guide vanes into the rotating wheel (runner) of the turbine. 

The guide vanes have a 70° angle from the radial direction. 

The water exits with only a radial component of velocity with 

respect to the environment. The outer diameter of the wheel is

1 m, and the inner diameter is 0.5 m. The distance across the 

runner is 4 cm. The discharge is 0.5 m3 s, and the rotational 

rate of the wheel is 1200 rpm. The water density is 1000 

kg m3. Find the power (kW) produced by the turbine.

MA� MA 0.15p1A1 0.475p2A2 0.2W–+ +( )– j�

d

dt
----- r v×( )� V d

cv
� 0�

ri m· ivi( )×
cs
� r1 m· v1( )× r– 1m· v1j.� �

ro

cs
� m· ovo( )× r2 m· v2( )× r2m· v2j.� �

MA 0.15p1A1 0.475p2A2 0.2W–+ +( )– j m· r2v2 r1v1+( )j�

MA 0.15p1A1 0.475p2A2 0.2W m· r2v2 r1v1+( )–+––�

0.15p
1

A
1

0.15 m( ) 150 1000 N m⁄ 2×( ) � 0.3
2

4 m
2⁄×( )�

1590 N m��

0.475p
2

A
2

0.475 m( ) 59.3 1000 N m⁄ 2×( ) � 0.15
2

4 m
2⁄×( )�

498 N m��

m· �Q 998 kg m⁄ 3( ) 0.25 m
3

s⁄( )� �

250 kg s⁄�

v1

Q

A1

------
0.25 m

3
s⁄

� 0.15
2
m

2×
------------------------------ 3.54 m s⁄� � �

v2

Q

A2

------
0.25 m

3
s⁄

� 0.075
2
m

2×
--------------------------------- 14.15 m s⁄� � �

m· r2v2 r1v1+( ) 250 kg s⁄( )�

0.475 14.15 0.15 3.54×+×( )× m
2

s⁄( )
1813 N m��

MA 0.15p1A1 0.475p2A2 0.2W m· r2v2 r1v1+( )–+––�

1590 N m�( ) 498 N m�( )––�

0.2 m 1420 N×( ) 1813 N m�( )–+

MA 3.62 kN m�–�

 kN m�

 kN m.�

⁄

⁄



6.5 MOMENT-OF-MOMENTUM EQUATION 195

Sketch:

Problem Definition

Situation: Water flows through a Francis turbine and exits 
with no circumferential velocity.

Find: The power (kW) produced by the turbine.

Properties: 

Plan

1. Select a control volume enclosing the turbine wheel.

2. Sketch the force diagram (in this case, moment diagram).

3. Sketch the momentum diagram.

4. Apply the moment-of-momentum equation, Eq. (6.27).

5. Evaluate the sum of moments. The counterclockwise 
direction is the positive direction.

6. Evaluate the moment-of-momentum terms.

7. Calculate the torque and power.

Solution

1. The control volume selected is shown in the sketch. The 
control volume is stationary.

2. The force diagram shows positive torque acting on control 
surface.

3. The moment diagram shows an inflow and outflow of 
momentum.

4. Moment of momentum equation

5. Sum of moments

6. Moment-of-momentum terms

• Accumulation term for steady flow is 

.

• Inlet momentum flux is 

• Outlet momentum flux with at outlet, is 

7. Torque and power

• Radial velocity component, vr

• Tangential velocity, vt, from velocity triangle,

• Torque

• Power
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Navier-Stokes Equation

In Chapter 5, the continuity equation at a point in the flow is derived using a control volume

of infinitesimal size. The resulting differential equation is an independent equation in the

analysis of fluid flow. The same approach can be applied to the momentum equation,

yielding the differential equation for momentum at a point in the flow. For simplicity, the

derivation will be restricted to a two-dimensional planar flow, and the extension to three

dimensions will be outlined.

Consider the infinitesimal control volume shown in Fig. 6.10a. The dimensions of the

control volume are �x and �y, and the dimension in the third direction (normal to page) is

taken as unity. Assume that the center of the control volume is fixed with respect to the coor-

dinate system and that the coordinate system is an inertial reference frame. Also assume that

the control surfaces are fixed with respect to the coordinate system. The x-direction momen-

tum equation is Eq. (6.7a), namely

where vx is the x-component of velocity of the fluid with respect to an inertial reference frame.

In this derivation, the component velocities in the x- and y-directions are u and v, respectively.

These velocities are referenced to the coordinate system, which is an inertial reference frame.

The velocities at the control surface are also u and v since the control surfaces are fixed with

respect to the coordinate system.

The forces acting on the fluid are due to pressure, stress, and body force, as shown in

Fig. 6.10b. The pressure on the east face (the face to the right of the center of the element) is

 and on the west face is The net force acting in the x-direction due to pres-

sure is

(6.28)

The pressures on the north and south faces do not contribute to the force in the x-direction.

The body force due to gravity acting on the fluid in the control volume is

(6.29)

where gx is the component of the gravitational vector acting in the x-direction.

Figure 6.10

Infinitesimal control 

volume.

6.6

Fx� d

dt
----- �vx V d

cv� m· ovox
m· ivix

cs

�–
cs

�+�

p x Δx 2⁄+ p x Δx 2⁄– .

Fx p, p
x Δx 2⁄–

p
x Δx 2⁄+

–( )Δy�

Fx g, gx�ΔxΔy�

x

y

x

y

x

y

Δy v

u

Δx

Control volume

(a) (b) (c)

yx|y + Δy/2τ

yx|y – Δy/2τ

uv|y + Δy/2ρ

uv|y – Δy/2ρ

uu|x + Δx/2ρ

uu|x – Δx/2ρ
xx|x + Δx/2τxx|x – Δx/2τ

px – Δx/2 px + Δx/2

yx|y – Δy/2τ



6.6 NAVIER-STOKES EQUATION 197

The evaluation of the net shear stress forces is somewhat more complicated. The shear

stress acting in the x-direction on the north face is The subscripts on � refer to the

face on which the force acts and to the direction of the force. Thus �yx is the shear stress that

acts on the y face in the x-direction. The face of a control surface is defined in the same way

as the area vector in Section 5.2; that is, the y face corresponds to the face with the area vector

in the y-direction. The shear stress on the south face inside the control volume is

However, the stress that acts on the south face outside the control volume is equal

and opposite to the stress on the inside face. Thus, the stress on the fluid on the south face of

the control volume is 

There is also a normal stress (other than pressure) that acts on the east and west faces.

This stress is proportional to strain rate of the fluid in the control volume in the x-direction.

The stress on the east face is The stress acting on the outside west face of the

control volume is using the same argument as used for the shear stress on the

south face. The net force in the x-direction due to shear and normal stresses is

(6.30)

Applying Liebnitz theorem for the differentiation of an integral in the same fashion as

done for the continuity equation, the rate of change of momentum in the x-direction of the

fluid in the control volume can be expressed as

(6.31)

where Vc is the velocity of the control surface with respect to the coordinate system. For the

control volume used in this derivation, Thus the rate of change of momentum of the

fluid in the control volume becomes*

(6.32)

The net efflux of momentum is obtained by summing the momentum flow from all four

faces as shown in Fig. 6.10c. The flux of momentum outward from the east face is

 or The momentum flux outward from the north face

is  or The moment flux inward from the west and

south faces is calculated in the same fashion. Finally, the net efflux of momentum is

(6.33)

Collecting all the terms that Eq. (6.7a) comprises and dividing through by the product

�x�y results in

* In the limit, as �x and �y approach zero, 
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(6.34)

Taking the limit as �x and �y approach zero yields the differential form of the momentum

equation in the x-direction:

(6.35)

One further step is to use the differential form of the continuity equation for two-di-

mensional flow [Eq. (5.31) with ] to convert the equation to a different form.

Through differentiation by parts, the left side of Eq. (6.35) can be written as

(6.36)

Note that the last term is zero because of the continuity equation (Eq. 5.23), so the momen-

tum equation in the x-direction at a point becomes

(6.37)

The left side of this equation is the product of the density and the acceleration of a fluid ele-

ment in the x-direction and is usually written in more compact form as so the equa-

tion can be expressed as

(6.38)

By applying Eq. (6.7b) to the same control volume, the momentum equation in the

y-direction at a point can be derived. The result is

(6.39)

The same approach can be used to derive the momentum equation in three dimensions. In

this case the two-dimensional infinitesimal volume is extended to a three-dimensional vol-

ume with depth �z and with a velocity component w in the z-direction.

In order to complete the development of these equations, a relationship is needed be-

tween the shear and normal stresses and the rate of strain of the fluid elements. These rela-

tionships are called the “constitutive equations.” For a Newtonian fluid, by definition, the

stress is proportional to the rate of strain. The rate of shear strain of a fluid element can be

related to the gradients in velocity in the same way as the rate of rotation in Section 4.6.
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With reference to Fig. 4.18, the shear strain of an element is so the rate of shear

strain is

(6.40)

The constant of proportionality between the shear stress and the rate of shear strain is 2�,

where � is the coefficient of dynamic viscosity, so the shear stress �yx is related to the veloc-

ity gradients by

(6.41)

The normal stress in the x-direction for an incompressible fluid* is given by

(6.42)

Substituting the foregoing constitutive relations into Eq. (6.39) yields

(6.43)

If the dynamic viscosity is constant, the normal and shear stress terms can be written as

(6.44)

From the continuity equation for the planar flow of an incompressible fluid, the last term is

zero, so Eq. (6.43) reduces to

(6.45)

The corresponding equation in the y-direction is

(6.46)

The three-dimensional form for these equations can be found in Schlichting (3). These are

called the Navier-Stokes equations after L. M. Navier (1785–1836) and G. G. Stokes (1819–

1903), who are credited with their development.

Example 6.15 shows how the Navier-Stokes equations can be used to solve for the ver-

tical flow of fluid between two plates. The equations are reduced to the only terms that apply,

then integrated.

* An additional term is needed for the normal stress equation for a compressible fluid, which is discussed in

Schlichting (3). 
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EXAMPLE 6.15   APPLICATION OF THE NAVIER-

STOKES EQUATIONS

A two-dimensional (planar) flow is generated between a fixed 

and moving vertical plate as shown in the figure. The left 

plate is fixed, and the right plate moves with a velocity U.

The distance between the plates is �. The flow is steady and 

fully developed; that is, there is no change in the x-direction.

The fluid is incompressible, and the pressure is constant. Use 

the Navier-Stokes equations to find the velocity distribution 

between the plates.

Sketch:

Problem Definition

Situation: Flow between a fixed and moving vertical plate.

Find: The velocity distribution between the plates, using the 
Navier-Stokes equations.

Plan

The following conditions are given:

• Pressure is constant.

• Flow is steady, 

• Flow is fully developed in x-direction,  and 

• Boundary conditions are 

• Gravitational acceleration is 

1. Use continuity equation, Eq. (5.31), to evaluate velocity 
component v.

2. Write out the x-component of Navier-Stokes equation, Eq. 
(6.45), and eliminate the terms that are zero.

3. Integrate equation and substitute in boundary conditions 
for the velocity u.

Solution

1. Continuity equation

But so which means that v does 

not change with y. Thus everywhere.

2. The Navier-Stokes equation in x-direction

Eliminate terms that are zero:

Since u is only a function of y, the partial derivative can be 

replaced by total derivatives.

3. Integrate and solve for u.

Substitute in boundary conditions.

Review

Note that, due to gravity, the velocity profile lies below the 

linear profile The linear profile is approached 

for closer plate spacing, higher kinematic viscosity, and larger 

velocity.
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Summary

The momentum principle is used to analyze problems involving forces and flow. It is

expressed as

where V is flow velocity relative to the control surface, and v is flow velocity relative to an

inertial (nonaccelerating) reference frame.

The physical interpretation of the momentum principle is that the sum of forces equals

the rate of momentum change inside the control volume plus the net rate at which momentum

flows out of the control volume. To apply the momentum equation, one selects a control vol-

ume and then evaluates the forces, momentum accumulation, and momentum flow terms.

These terms may be represented visually by using a force diagram and a momentum diagram.

The force term represents all external forces that act on the material inside the control

volume. These forces can be either body forces or surface forces. For most problems, the

only body force is weight. There are three common types of surface forces: those caused by

structural elements, those caused by pressure, and those caused by shear stress distributions.

The momentum accumulation term gives the rate at which the mo-

mentum inside the control volume is changing with time. If flow is steady, and other mass in

the control volume is stationary, the momentum accumulation is zero. Otherwise, the mo-

mentum accumulation is evaluated by integration.

The momentum flow term gives the net rate at which momentum is

flowing outward across the control surface. If velocity varies across the control surface, inte-

gration is needed to find the momentum flow. 

If mass enters and leaves the control volume through a number of ports, and if the ve-

locity v is uniformly distributed across each port, the momentum equation simplifies to

where subscripts o and i denote out and in, respectively. In this equation,  is the rate at

which mass is crossing the control surface, and v is flow velocity evaluated at the control sur-

face with respect to the inertial reference frame selected.

Water hammer is due to a pressure wave in a duct that travels at the speed of sound. The

pressure rise across the wave is

where V is the duct flow velocity and c is the speed of sound, given by

Problems involving moments may be analyzed by applying the moment-of-momentum

principle. If mass crosses the control surface through a number of inlet and outlet ports, and if
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the properties are uniformly distributed across each port, the moment-of-momentum princi-

ple is expressed as

where r is a position vector from the moment center. The physical interpretation is that the

sum of moments equals the rate of angular-momentum change inside the control volume plus

the net rate at which angular momentum flows out of the control volume. Application of the

moment-of-momentum equation parallels the approaches used for the momentum equation.

The Navier-Stokes equation is a differential form of Newton’s second law that applies

to motion of a fluid element. The Navier-Stokes equation is a nonlinear, partial-differential

equation that is widely used in advanced studies of fluid mechanics phenomena.
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Problems

Momentum Equation

6.1 ��� Using the Internet or some other source as refer-

ence, define in your own words the meaning of “inertial ref-

erence frame.”

6.2 ��� The surface of the earth is not a true inertial refer-

ence frame because there is a centripetal acceleration due to

the earth’s rotation. The earth rotates once every 24 hours

and has a diameter of 8000 miles. What is the centripetal ac-

celeration on the surface of the earth, and how does it com-

pare to the gravitational acceleration?

6.3 ��� Newton’s second law can be stated that the force is

equal to the rate of change of momentum, Tak-

ing the derivative by parts yields  

 This does not correspond to What is the source

of the discrepancy?

Jets

6.4 ��� Give five examples of jets and how they are used in

practice.

6.5 A “balloon rocket” is a balloon suspended from a taut wire by

a hollow tube (drinking straw) and string. The nozzle is formed

of a 1 cm–diameter tube, and an air jet exits the nozzle with a

speed of 40 m s and a density of 1.2 kg m3. Find the force F

needed to hold the balloon stationary. Neglect friction.

6.6 The balloon rocket is held in place by a force F. The pres-

sure inside the balloon is 8 in-H2O, the nozzle diameter is 1.0

cm, and the air density is 1.2 kg m3. Find the exit velocity v

and the force F. Neglect friction and assume the air flow is in-

viscid and irrotational.

6.7 A water jet of diameter 30 mm and speed v 20 m s is

filling a tank. The tank has a mass of 20 kg and contains 20 li-

ters of water at the instant shown. The water temperature is

15°C. Find the force acting on the bottom of the tank and the

force acting on the stop block. Neglect friction.

M
cs
� d

dt
----- � r v×( ) Vd ro m· ovo( )× ri m· ivi( )×

cs
�–

cs
�+

cv
��

F d mv( ) dt⁄ .�
F m dv( )� ⁄ dt( ) v dm( )+ ⁄
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⁄
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6.8 A water jet of diameter 2 inches and speed v 50 ft s is

filling a tank. The tank has a mass of 25 lbm and contains 5 gal-

lons of water at the instant shown. The water temperature is

70°F. Find the minimum coefficient of friction such that the

force acting on the stop block is zero.

6.9 A design contest features a submarine that will travel at a

steady speed of Vsub 1 m s in 15°C water. The sub is pow-

ered by a water jet. This jet is created by drawing water from an

inlet of diameter 25 mm, passing this water through a pump and

then accelerating the water through a nozzle of diameter 5 mm

to a speed of Vjet. The hydrodynamic drag force (FD) can be cal-

culated using

where the coefficient of drag is CD 0.3 and the projected area

is Ap 0.28 m2. Specify an acceptable value of Vjet.

6.10 A horizontal water jet at 70°F impinges on a vertical-

perpendicular plate. The discharge is 2 cfs. If the external force

required to hold the plate in place is 200 lbf, what is the velocity

of the water?

6.11 A horizontal water jet at 70°F issues from a circular orifice

in a large tank. The jet strikes a vertical plate that is normal to

the axis of the jet. A force of 600 lbf is needed to hold the plate

in place against the action of the jet. If the pressure in the tank is

25 psig at point A, what is the diameter of the jet just down-

stream of the orifice?

6.12 An engineer, who is designing a water toy, is making pre-

liminary calculations. A user of the product will apply a force

F1 that moves a piston (D 80 mm) at a speed of Vpiston 300

mm s. Water at 20°C jets out of a converging nozzle of diame-

ter d 15 mm. To hold the toy stationary, the user applies a

force F2 to the handle. Which force (F1 versus F2) is larger? Ex-

plain your answer using concepts of the momentum principle.

Then calculate F1 and F2. Neglect friction between the piston

and the walls.

6.13 A firehose on a boat is producing a 3 in.–diameter water jet

with a speed of The boat is held stationary by a

cable attached to a pier, and the water temperature is 50°F. Cal-

culate the tension in the cable.

6.14 A boat is held stationary by a cable attached to a pier. A

firehose directs a spray of 5°C water at a speed of

If the allowable load on the cable is 5 kN, calcu-

late the mass flow rate of the water jet. What is the correspond-

ing diameter of the water jet?

6.15 A tank of water (15°C) with a total weight of 200 N (water

plus the container) is suspended by a vertical cable. Pressurized

air drives a water jet out the bottom of the tank

such that the tension in the vertical cable is 10 N. If

find the required air pressure in units of atmo-

spheres (gage). Assume the flow of water is irrotational.

6.16 A jet of water (60°F) is discharging at a constant rate of 2.0 cfs

from the upper tank. If the jet diameter at section 1 is 4 in., what
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forces will be measured by scales A and B? Assume the empty

tank weighs 300 lbf, the cross-sectional area of the tank is 4

ft2, h 1 ft, and H 9 ft.

6.17 A conveyor belt discharges gravel into a barge as shown at

a rate of 50 yd3 min. If the gravel weighs 120 lbf ft3, what is

the tension in the hawser that secures the barge to the dock?  

6.18 The hemicircular nozzle sprays a sheet of liquid through

180° of arc as shown. The velocity is V at the efflux section

where the sheet thickness is t. Derive a formula for the external

force F (in the y-direction) required to hold the nozzle system in

place. This force should be a function of �, V, r, and t.

6.19 The expansion section of a rocket nozzle is often conical in

shape; and because the flow diverges, the thrust derived from

the nozzle is less than it would be if the exit velocity were ev-

erywhere parallel to the nozzle axis. By considering the flow

through the spherical section suspended by the cone and assum-

ing that the exit pressure is equal to the atmospheric pressure,

show that the thrust is given by

where  is the mass flow through the nozzle, Ve is the exit veloc-

ity, and � is the nozzle half-angle.

Vanes

6.20 Determine the external reactions in the x- and y-directions

needed to hold this fixed vane, which turns the oil jet in a horizontal

plane. Here V1 is 18 m s, V2 17 m s, and Q 0.15 m3 s.

6.21 Solve Prob. 6.20 for V1 90 ft s, V2 85 ft s, and Q 2 cfs.

6.22 This planar water jet (60°F) is deflected by a fixed vane.

What are the x- and y-components of force per unit width

needed to hold the vane stationary? Neglect gravity.

6.23 A water jet with a speed of 20 ft s and a mass flow rate of

25 lbm s is turned 30° by a fixed vane. Find the force of the

water jet on the vane. Neglect gravity.
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6.24 Water ( ) strikes a block as shown and is

deflected 30°. The flow rate of the water is 1.5 kg s, and the in-

let velocity is The mass of the block is 1 kg. The

coefficient of static friction between the block and the surface is

0.1 (friction force normal force). If the force parallel to the sur-

face exceeds the frictional force, the block will move. Deter-

mine the force on the block and whether the block will move.

Neglect the weight of the water.

6.25 For the situation described in Prob. 6.24, find the maximum

inlet velocity (V) such that the block will not slip.

6.26 Plate A is 50 cm in diameter and has a sharp-edged orifice at

its center. A water jet (at 10°C) strikes the plate concentrically

with a speed of 30 m s. What external force is needed to hold the

plate in place if the jet issuing from the orifice also has a speed of

30 m s? The diameters of the jets are D 5 cm and d 2 cm.

6.27 A two-dimensional liquid jet impinges on a vertical wall.

Assuming that the incoming jet speed is the same as the exiting

jet speed derive an expression for the force per unit

width of jet exerted on the wall. What form do you think the up-

per liquid surface will take next to the wall? Sketch the shape

you think it will take, and explain your reasons for drawing it

that way.

6.28 A cone that is held stable by a wire is free to move in the

vertical direction and has a jet of water (at 10°C) striking it from

below. The cone weighs 30 N. The initial speed of the jet as it

comes from the orifice is 15 m s, and the initial jet diameter is

2 cm. Find the height to which the cone will rise and remain sta-

tionary. Note: The wire is only for stability and should not enter

into your calculations.

6.29 A horizontal jet of water (at 10°C) that is 6 cm in diameter

and has a velocity of 20 m s is deflected by the vane as shown.

If the vane is moving at a rate of 7 m s in the x-direction, what

components of force are exerted on the vane by the water in the

x- and y-directions? Assume negligible friction between the wa-

ter and the vane.

6.30 A vane on this moving cart deflects a 10 cm water

jet as shown. The initial speed of the water
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in the jet is 20 m s, and the cart moves at a speed of 3 m s. If

the vane splits the jet so that half goes one way and half the

other, what force is exerted on the vane by the jet?

6.31 Refer to the cart of Prob. 6.30. If the cart speed is constant

at 5 ft s, and if the initial jet speed is 60 ft s, and jet

diameter 0.15 ft, what is the rolling resistance of the cart?

6.32 The water ( ) in this jet has a speed of 25

m s to the right and is deflected by a cone that is moving to

the left with a speed of 13 m s. The diameter of the jet is 10

cm. Determine the external horizontal force needed to move the

cone. Assume negligible friction between the water and the

vane.

6.33 This two-dimensional water (at 50°F) jet is deflected by the

two-dimensional vane, which is moving to the right with a

speed of 60 ft s. The initial jet is 0.30 ft thick (vertical dimen-

sion), and its speed is 100 ft s. What power per foot of the jet

(normal to the page) is transmitted to the vane?

6.34 Assume that the scoop shown, which is 20 cm wide, is used

as a braking device for studying deceleration effects, such as

those on space vehicles. If the scoop is attached to a 1000 kg

sled that is initially traveling horizontally at the rate of 100

m s, what will be the initial deceleration of the sled? The scoop

dips into the water 8 cm (T 10°C) 

6.35 This snowplow “cleans” a swath of snow that is 4 in. deep

and 2 ft wide The snow leaves the blade

in the direction indicated in the sketches. Neglecting friction be-

tween the snow and the blade, estimate the power required for

just the snow removal if the speed of the snowplow is 40 ft s.

6.36 A finite span airfoil can be regarded as a vane as shown in

the figure. The cross section of air affected is equal to the circle

with the diameter of the wing span, b. The wing deflects the air

by an angle � and produces a force normal to the free-stream

velocity, the lift L, and in the free-stream direction, the drag D.
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The airspeed is unchanged. Calculate the lift and drag for a 30 ft

wing span in a 300 ft/s airstream at 14.7 psia and 60°F for flow

deflection of 2°.

6.37 The “clam shell” thrust reverser sketched in the figure is

often used to decelerate aircraft on landing. The sketch shows

normal operation (a) and when deployed (b). The vanes are ori-

ented 20° with respect to the vertical. The mass flow through

the engine is 150 lbm/s, the inlet velocity is 300 ft/s and the exit

velocity is 1400 ft/s. Assume that when the thrust reverser is de-

ployed, the exit velocity of the exhaust is unchanged. Assume

the engine is stationary. Calculate the thrust under normal oper-

ation (lbf) and when the thrust reverser is deployed.

Pipes

6.38 A hot gas stream enters a uniform-diameter return bend as

shown. The entrance velocity is 100 ft s, the gas density is

0.02 lbm ft3, and the mass flow rate is 1 lbm s. Water is

sprayed into the duct to cool the gas down. The gas exits with

a density of 0.06 lbm ft3. The mass flow of water into the gas

is negligible. The pressures at the entrance and exit are the same

and equal to the atmospheric pressure. Find the force required to

hold the bend.  

6.39 Assume that the gage pressure p is the same at sections 1

and 2 in the horizontal bend shown in the figure. The fluid flow-

ing in the bend has density �, discharge Q, and velocity V. The

cross-sectional area of the pipe is A. Then the magnitude of the

force (neglecting gravity) required at the flanges to hold the

bend in place will be (a) pA, (b) pA �QV, (c) 2pA �QV, or

(d) 2pA 2�QV.

6.40 The pipe shown has a 180° vertical bend in it. The diameter

D is 1 ft, and the pressure at the center of the upper pipe is 15 psig.

If the flow in the bend is 20 cfs, what external force will be re-

quired to hold the bend in place against the action of the water?

The bend weighs 200 lbf, and the volume of the bend is 3 ft3. As-

sume the Bernoulli equation applies.

6.41 The pipe shown has a 180° horizontal bend in it as shown,

and D is 20 cm. The discharge of water in the

pipe and bend is 0.30 m3 s, and the pressure in the pipe and

bend is 100 kPa gage. If the bend volume is 0.10 m3 and the

bend itself weighs 500 N, what force must be applied at the

flanges to hold the bend in place?

6.42 Water (at 50°F) flows in the horizontal bend at a rate of 12

cfs and discharges into the atmosphere past the downstream

flange. The pipe diameter is 1 ft. What force must be applied at

the upstream flange to hold the bend in place? Assume that the

volume of water downstream of the upstream flange is 4 ft3 and

that the bend and pipe weigh 100 lbf. Assume the pressure at the

inlet section is 4 psig.

6.43 The gage pressure throughout the horizontal 90° pipe bend

is 300 kPa. If the pipe diameter is 1 m and the water (at 10°C)

flow rate is 10 m3 s, what x-component of force must be ap-

plied to the bend to hold it in place against the water action?
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6.44 This 30° vertical bend in a pipe with a 2 ft diameter carries

water at a rate of 31.4 cfs. If the pressure p1

is 10 psi at the lower end of the bend, where the elevation is 100

ft, and p2 is 8.5 psi at the upper end, where the elevation is 103

ft, what will be the vertical component of force that must be ex-

erted by the “anchor” on the bend to hold it in position? The

bend itself weighs 300 lb, and the length L is 4 ft.  

6.45 This bend discharges water ( ) into the at-

mosphere. Determine the force components at the flange re-

quired to hold the bend in place. The bend lies in a horizontal

plane. Assume viscous forces are negligible. The interior vol-

ume of the bend is 0.25 m3, D1 60 cm, D2 30 cm, and

V2 10 m s. The mass of the bend material is 250 kg.

6.46 This nozzle bends the flow from vertically upward to 30°

with the horizontal and discharges water (	 62.4 lbf ft3) at a

speed of V 130 ft s. The volume within the nozzle itself is 1.8

ft3, and the weight of the nozzle is 100 lbf. For these conditions,

what vertical force must be applied to the nozzle at the flange to

hold it in place?

6.47 A pipe 1 ft in diameter bends through an angle of 135°. The ve-

locity of flow of gasoline (S 0.8) is 20 ft s, and the pressure is

10 psig in the bend. What external force is required to hold the bend

against the action of the gasoline? Neglect the gravitational force.

6.48 A 6 in. horizontal pipe has a 180° bend in it. If the rate of

flow of water (60°F) in the bend is 6 cfs and the pressure therein

is 20 psig, what external force in the original direction of flow is

required to hold the bend in place?

6.49 A pipe 15 cm in diameter bends through 135°. The velocity

of flow of gasoline (S 0.8) is 8 m s, and the pressure is 100 kPa

gage throughout the bend. Neglecting gravitational force, deter-

mine the external force required to hold the bend against the ac-

tion of the gasoline.

6.50 A horizontal reducing bend turns the flow of water

( ) through 60°. The inlet area is 0.001 m2, and

the outlet area is 0.0001 m2. The water from the outlet dis-

charges into the atmosphere with a velocity of 50 m s. What

horizontal force (parallel to the initial flow direction) acting

through the metal of the bend at the inlet is required to hold the

bend in place?

6.51 Water (at 10°C) flows in a duct as shown. The inlet water

velocity is 10 m s. The cross-sectional area of the duct is 0.1 m2.

Water is injected normal to the duct wall at the rate of 500 kg s

midway between stations 1 and 2. Neglect frictional forces on

the duct wall. Calculate the pressure difference between

stations 1 and 2.

6.52 For this wye fitting, which lies in a horizontal plane, the

cross-sectional areas at sections 1, 2, and 3 are 1 ft2, 1 ft2, and

0.25 ft2, respectively. At these same respective sections the pres-

sures are 1000 psfg, 900 psfg, and 0 psfg, and the water discharges

are 20 cfs to the right, 12 cfs to the right, and exits to atmo-

sphere at 8 cfs. What x-component of force would have to be ap-

plied to the wye to hold it in place?
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6.53 Water flows through a horizontal bend

and T section as shown. The mass flow rate entering at section

a is 12 lbm s, and those exiting at sections b and c are 6

lbm s each. The pressure at section a is 5 psig. The pressure at

the two outlets is atmospheric. The cross-sectional areas of the

pipes are the same: 5 in2. Find the x-component of force neces-

sary to restrain the section.

6.54 Water ( ) flows through a horizontal bend

and T section as shown. At section a the flow enters with a ve-

locity of 6 m s, and the pressure is 4.8 kPa. At both sections b

and c the flow exits the device with a velocity of 3 m s, and the

pressure at these sections is atmospheric (p 0). The cross-

sectional areas at a, b, and c are all the same: 0.20 m2. Find the x-

and y-components of force necessary to restrain the section.

6.55 For this horizontal T through which water (� 1000 kg m3)

is flowing, the following data are given: Q1 0.25 m3 s, Q2

0.10 m3 s, p1 100 kPa, p2 70 kPa, p3 80 kPa, D1 15 cm,

D2 7 cm, and D3 15 cm. For these conditions, what external

force in the x-y plane (through the bolts or other supporting de-

vices) is needed to hold the T in place?

Nozzles

6.56 ��� Firehoses are fitted with special nozzles. Use the In-

ternet or contact your local fire department to find information on

operational conditions and typical hose and nozzle sizes used.

6.57 High-speed water jets are used for speciality cutting appli-

cations. The pressure in the chamber is approximately 60,000

psig. Using the Bernoulli equation, estimate the water speed ex-

iting the nozzle exhausting to atmospheric pressure. Neglect

compressibility effects and assume a water temperature of 60oF.

6.58 Water at 60°F flows through a nozzle that contracts from a

diameter of 3 in. to 1 in. The pressure at section 1 is 2500 psfg,

and atmospheric pressure prevails at the exit of the jet. Calcu-

late the speed of the flow at the nozzle exit and the force re-

quired to hold the nozzle stationary. Neglect weight.

6.59 Water at 15°C flows through a nozzle that contracts from a

diameter of 10 cm to 2 cm. The exit speed is and

atmospheric pressure prevails at the exit of the jet. Calculate the

pressure at section 1 and the force required to hold the nozzle

stationary. Neglect weight.

6.60 Write a computer program that models the nozzle de-

scribed in Prob. 6.59. Apply your computer program to solve

Probs. 6.59 and 6.15 and compare answers. 

6.61 Water (at 50°F) flows through this nozzle at a rate of 15 cfs

and discharges into the atmosphere. D1 12 in., and D2 9 in.

Determine the force required at the flange to hold the nozzle in

place. Assume irrotational flow. Neglect gravitational forces.

6.62 Solve Prob. 6.61 using the following values: Q 0.30 m3 s,

D1 30 cm, and D2 10 cm. 

6.63 This “double” nozzle discharges water 

into the atmosphere at a rate of 16 cfs. If the nozzle is lying in a
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horizontal plane, what x-component of force acting through the

flange bolts is required to hold the nozzle in place? Note: As-

sume irrotational flow, and assume the water speed in each jet to

be the same. Jet A is 4 in. in diameter, jet B is 4.5 in. in diameter,

and the pipe is 1 ft in diameter. 

6.64 This “double” nozzle discharges water (at 10°C) into the

atmosphere at a rate of 0.50 m3 s. If the nozzle is lying in a

horizontal plane, what x-component of force acting through the

flange bolts is required to hold the nozzle in place? Note: As-

sume irrotational flow, and assume the water speed in each jet to

be the same. Jet A is 10 cm in diameter, jet B is 12 cm in diame-

ter, and the pipe is 30 cm in diameter.

6.65 A rocket-nozzle designer is concerned about the force re-

quired to hold the nozzle section on the body of a rocket. The

nozzle section is shaped as shown in the figure. The pressure

and velocity at the entrance to the nozzle are 1.5 MPa and 100

m s. The exit pressure and velocity are 80 kPa and 2000 m s.

The mass flow through the nozzle is 220 kg s. The atmospheric

pressure is 100 kPa. The rocket is not accelerating. Calculate the

force on the nozzle-chamber connection. Note: The given pres-

sures are absolute.

6.66 A 15 cm nozzle is bolted with six bolts to the flange of a 30

cm pipe. If water ( ) discharges from the nozzle

into the atmosphere, calculate the tension load in each bolt when

the pressure in the pipe is 200 kPa. Assume irrotational flow.

6.67 Water is discharged from the two-

dimensional slot shown at the rate of 8 cfs per foot of slot. De-

termine the pressure p at the gage and the water force per foot

on the vertical end plates A and C. The slot and jet dimensions B

and b are 8 in. and 4 in., respectively. 

6.68 Water (at 10°C) is discharged from the two-dimensional

slot shown at the rate of 0.40 m3 s per meter of slot. Determine

the pressure p at the gage and the water force per meter on the

vertical end plates A and C. The slot and jet dimensions B and b

are 20 cm and 7 cm, respectively. 

6.69 This spray head discharges water at a

rate of 4 ft3 s. Assuming irrotational flow and an efflux

speed of 65 ft s in the free jet, determine what force acting

through the bolts of the flange is needed to keep the spray head

on the 6 in. pipe. Neglect gravitational forces.

6.70 Two circular water jets of 1 in. diameter

(d 1 in.) issue from this unusual nozzle. If the efflux speed is

80.2 ft s, what force is required at the flange to hold the nozzle in

place? The pressure in the 4 in. pipe  is 43 psig.

6.71 Liquid (S 1.2) enters the “black sphere” through a 2 in.

pipe with velocity of 50 ft s and a pressure of 60 psig. It

leaves the sphere through two jets as shown. The velocity in the

vertical jet is 100 ft s, and its diameter is 1 in. The other jet’s

diameter is also 1 in. What force through the 2 in. pipe wall is

PROBLEMS 6.63, 6.64

PROBLEM 6.65

x

B

A

y

30°

⁄

⁄ ⁄
⁄

u = 100 m/s

A = 1 m2

p = 1.5 MPa

m = 220 kg/s

Ve = 2000 m/s

Ae = 2 m2

pe = 80 kPa
Chamber Nozzle

p0 = 100 kPa

·

� 1000 kg m
3⁄�

� 62.4 lbm ft
3⁄�( )

PROBLEMS 6.67, 6.68

PROBLEM 6.69

PROBLEM 6.70

⁄

p
C

b

A

B

� 62.4 lbm ft
3⁄�( )

⁄
⁄

y

30° 30°

� 62.4 lbm ft
3⁄�( )

�
⁄

D 4 in.�( )

30°

pD

d

Vj

Vj

d

�
⁄

⁄



PROBLEMS 211

required in the x- and y-directions to hold the sphere in place?

Assume the sphere plus the liquid inside it weighs 200 lbf.

6.72 Liquid (S 1.5) enters the “black sphere” through a 5 cm

pipe with a velocity of 10 m s and a pressure of 400 kPa. It

leaves the sphere through two jets as shown. The velocity in the

vertical jet is 30 m s, and its diameter is 25 mm. The other jet’s

diameter is also 25 mm. What force through the 5 cm pipe wall

is required in the x- and y-directions to hold the sphere in place?

Assume the sphere plus the liquid inside it weighs 600 N.

Applications (Stationary)

6.73 Assume that you have access to a laboratory that includes a

sluice gate as shown in Example (6.9). Design an experiment

utilizing the sluice gate to verify the analytic approach. In your

design you may attach instruments or drill holes in the sluice

gate, etc., to facilitate the taking of data. In any case describe

what is to be done to achieve a workable experiment.

6.74 Neglecting viscous resistance, determine the force of the

water per unit of width acting on a sluice gate for which the up-

stream depth is 5 ft and the downstream depth is 0.6 ft.

6.75 For laminar flow in a pipe, wall shear stress (�0) causes

the velocity distribution to change from uniform to parabolic

as shown. At the fully developed section (section 2), the veloc-

ity is distributed as follows: Derive a

formula for the force on the wall due to shear stress, F�, be-

tween 1 and 2 as a function of U (the mean velocity in the

pipe), �, p1, p2, and D (the pipe diameter).

6.76 The propeller on a swamp boat produces a slipstream 3 ft

in diameter with a velocity relative to the boat of 100 ft s. If

the air temperature is 80°F, what is the propulsive force when

the boat is not moving and also when its forward speed is 30

ft s? Hint: Assume that the pressure, except in the immediate

vicinity of the propeller, is atmospheric.

6.77 A windmill is operating in a 10 m s wind that has a den-

sity of 1.2 kg m3. The diameter of the windmill is 4 m. The

constant-pressure (atmospheric) streamline has a diameter of 3

m upstream of the windmill and 4.5 m downstream. Assume

that the velocity distributions are uniform and the air is incom-

pressible. Determine the thrust on the windmill.

6.78 The figure illustrates the principle of the jet pump. Derive a

formula for p2 p1 as a function of Dj, Vj, D0, V0, and �. Assume

that the fluid from the jet and the fluid initially flowing in the pipe

are the same, and assume that they are completely mixed at sec-

tion 2, so that the velocity is uniform across that section. Also as-

sume that the pressures are uniform across both sections 1 and 2.

What is p2 p1 if the fluid is water, Aj A0 1 3, Vj 15 m s,

and V0 2 m s? Neglect shear stress.

6.79 Jet-type pumps are sometimes used for special purposes,

such as to circulate the flow in basins in which fish are being

reared. The use of a jet-type pump eliminates the need for me-

chanical machinery that might be injurious to the fish. The ac-

companying figure shows the basic concept for this type of

application. For this type of basin the jets would have to in-

crease the water surface elevation by an amount equal to

6V2 2g, where V is the average velocity in the basin (1 ft s as

shown in this example). Propose a basic design for a jet system

that would make such a recirculating system work for a channel

8 ft wide and 4 ft deep. That is, determine the speed, size, and

number of jets.
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6.80 An engineer is measuring the lift and drag on an airfoil sec-

tion mounted in a two-dimensional wind tunnel. The wind tun-

nel is 0.5 m high and 0.5 m deep (into the paper). The upstream

wind velocity is uniform at 10 m s, and the downstream ve-

locity is 12 m s and 8 m s as shown. The vertical component

of velocity is zero at both stations. The test section is 1 m long.

The engineer measures the pressure distribution in the tunnel

along the upper and lower walls and finds

where x is the distance in meters measured from the beginning

of the test section. The gas density is homogeneous throughout

and equal to 1.2 kg m3. The lift and drag are the vectors indi-

cated on the figure. The forces acting on the fluid are in the op-

posite direction to these vectors. Find the lift and drag forces

acting on the airfoil section.

6.81 A torpedo-like device is tested in a wind tunnel with an air

density of 0.0026 slugs ft3. The tunnel is 3 ft in diameter, the

upstream pressure is 0.24 psig, and the downstream pressure is

0.10 psig. If the mean air velocity V is 120 ft s, what are the

mass rate of flow and the maximum velocity at the downstream

section at C? If the pressure is assumed to be uniform across the

sections at A and C, what is the drag of the device and support

vanes? Assume viscous resistance at the walls is negligible.

6.82 A ramjet operates by taking in air at the inlet, providing

fuel for combustion, and exhausting the hot air through the exit.

The mass flow at the inlet and outlet of the ramjet is 60 kg s

(the mass flow rate of fuel is negligible). The inlet velocity is

225 m s. The density of the gases at the exit is 0.25 kg m3,

and the exit area is 0.5 m2. Calculate the thrust delivered by the

ramjet. The ramjet is not accelerating, and the flow within the

ramjet is steady.

6.83 A modern turbofan engine in a commercial jet takes in air,

part of which passes through the compressors, combustion

chambers, and turbine, and the rest of which bypasses the com-

pressor and is accelerated by the fans. The mass flow rate of by-

pass air to the mass flow rate through the compressor-

combustor-turbine path is called the “bypass ratio.” The total

flow rate of air entering a turbofan is 300 kg s with a velocity

of 300 m s. The engine has a bypass ratio of 2.5. The bypass

air exits at 600 m s, whereas the air through the compressor-

combustor-turbine path exits at 1000 m s. What is the thrust of

the turbofan engine? Clearly show your control volume and ap-

plication of momentum equation.

Applications (Nonstationary)

6.84 ��� A large tank of liquid is resting on a frictionless

plane as shown. Explain in a qualitative way what will happen

after the cap is removed from the short pipe.

6.85 Consider a tank of water ( ) in a container

that rests on a sled. A high pressure is maintained by a compres-

sor so that a jet of water leaving the tank horizontally from an

orifice does so at a constant speed of 25 m s relative to the

tank. If there is 0.10 m3 of water in the tank at time t and the
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diameter of the jet is 15 mm, what will be the acceleration of the

sled at time t if the empty tank and compressor have a weight of

350 N and the coefficient of friction between the sled and the

ice is 0.05?

6.86 A cart is moving along a track at a constant velocity of 5 m s

as shown. Water issues from a nozzle at 10

m s and is deflected through 180° by a vane on the cart. The

cross-sectional area of the nozzle is 0.0012 m2. Calculate the re-

sistive force on the cart.

6.87 A water jet is used to accelerate a cart as shown. The dis-

charge (Q) from the jet is 0.1 m3 s, and the velocity of the jet (Vj)

is 10 m s. When the water hits the cart, it is deflected normally

as shown. The mass of the cart (M) is 10 kg. The density of water

(�) is 1000 kg m3. There is no resistance on the cart, and the initial

velocity of the cart is zero. The mass of the water in the jet is much

less than the mass of the cart. Derive an equation for the acceler-

ation of the cart as a function of Q, �, Vc,M, and Vj. Evaluate the

acceleration of the cart when the velocity is 5 m s.

6.88 A water jet strikes a cart as shown. After striking the cart,

the water is deflected vertically with respect to the cart. The cart

is initially at rest and is accelerated by the water jet. The mass in

the water jet is much less than that of the cart. There is no resis-

tance on the cart. The mass flow rate from the jet is 10 kg/s. The

mass of the cart is 100 kg. Find the time required for the cart to

achieve a speed one-half of the jet speed.

6.89 It is common practice in rocket trajectory analyses to ne-

glect the body-force term and drag, so the velocity at burnout is

given by

Assuming a thrust-to-mass-flow ratio of 3000 and a

final mass of 50 kg, calculate the initial mass needed to estab-

lish the rocket in an earth orbit at a velocity of 7200 m s.

6.90 A very popular toy on the market several years ago was the

water rocket. Water (at 10°C) was loaded into a plastic rocket

and pressurized with a hand pump. The rocket was released and

would travel a considerable distance in the air. Assume that a

water rocket has a mass of 50 g and is charged with 100 g of wa-

ter. The pressure inside the rocket is 100 kPa gage. The exit area

is one-tenth of the chamber cross-sectional area. The inside di-

ameter of the rocket is 5 cm. Assume that Bernoulli’s equation

is valid for the water flow inside the rocket. Neglecting air fric-

tion, calculate the maximum velocity it will attain.

Water Hammer

6.91 A valve at the end of a gasoline pipeline is rapidly closed

(assume it is closed instantaneously). If the gasoline velocity

was initially 12 m s, what will be the water-hammer pressure

rise? The bulk modulus of elasticity of the gasoline is 715

MPa, and the density of gasoline is 680 kg m3.

6.92 Estimate the maximum water-hammer pressure that is gen-

erated in a rigid pipe if the initial water ( ) ve-

locity is 4 m s and the pipe is 10 km long with a valve at the

downstream end that is closed in 10 s.

6.93 The length of a 20 cm rigid pipe carrying 0.15 m3 s of water

(at 10°C) is estimated by instantaneously closing a valve at the

downstream end and noting the time required for the pressure

fluctuation to complete a cycle. If the time interval is 3 s, what

is the pipe length?

6.94 Estimate the maximum water-hammer pressure that is gen-

erated in a rigid pipe if the initial water ve-

locity is 8 ft s and the pipe is 5 mi long with a valve at the

downstream end that is closed in 10 s.

6.95 A rigid pipe 4 km long and 12 cm in diameter discharges

water ( ) at the rate of 0.03 m3 s. If a valve at

the end of the pipe is closed in 3 s, what is the maximum force

that will be exerted on the valve as a result of the pressure rise?

Assume that the water temperature is 10°C.

6.96 By letting the control volume move with the water-hammer

wave, steady-flow conditions are established. Using the mo-

mentum and continuity equations and the steady-flow approach,

derive Eq. (6.19).

6.97 The 60-cm pipe carries water (at 10°C) with an initial ve-

locity, V0, of 0.10 m s. If the valve at C is instantaneously

closed at time t 0, what will the pressure-versus-time trace

look like at point B for the next 5 s? Graph your results and
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indicate significant quantitative relations or values from t 0

to t 5 s. What does the pressure versus the position along the

pipe look like at t 1.5 s? Plot your results and indicate the ve-

locity or velocities in the pipe.

6.98 Steady flow initially occurs in this 1 m steel pipe. There is

a rapid-acting valve at the end of the pipe at point B, and there

are pressure transducers at both points A and B. If the valve is

closed at B and the p-versus-t traces are made as shown, esti-

mate the initial discharge and the length L from A to B.

Moment-of-Momentum

6.99 Water ( ) is discharged from the slot in

the pipe as shown. If the resulting two-dimensional jet is 100

cm long and 15 mm thick, and if the pressure at section A-A is

30 kPa, what is the reaction at section A-A? In this calculation,

do not consider the weight of the pipe.

6.100 Two small liquid-propellant rocket motors are mounted at

the tips of a helicopter rotor to augment power under emergency

conditions. The diameter of the helicopter rotor is 7 m, and it

rotates at 1 rev s. The air enters at the tip speed of the rotor,

and exhaust gases exit at 500 m s with respect to the rocket

motor. The intake area of each motor is 20 cm2, and the air

density is 1.2 kg m3. Calculate the power provided by the

rocket motors. Neglect the mass rate of flow of fuel in this

calculation.

6.101 Design a rotating lawn sprinkler to deliver 0.25 in. of

water per hour over a circle of 50 ft radius. Make the simplify-

ing assumptions that the pressure to the sprinkler is 50 psig and

that frictional effects involving the flow of water through the

sprinkler flow passages are negligible (the Bernoulli equation is

applicable). However, do not neglect the friction between the

rotating element and the fixed base of the sprinkler.

6.102 What is the force and moment reaction at section 1? Water

(at 50°F) is flowing in the system. Neglect gravitational forces.

6.103 What is the reaction at section 1? Water ( )

is flowing, and the axes of the two jets lie in a vertical plane. The

pipe and nozzle system weighs 90 N.

6.104 A reducing pipe bend is held in place by a pedestal as

shown. There are expansion joints at sections 1 and 2, so no

force is transmitted through the pipe past these sections. The
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pressure at section 1 is 20 psig, and the rate of flow of water

is 2 cfs. Find the force and moment that

must be applied at section 3 to hold the bend stationary. Assume

the flow is irrotational and neglect the influence of gravity.

6.105 A centrifugal fan is used to pump air. The fan rotor is 1 ft

in diameter, and the blade spacing is 2 in. The air enters with no

angular momentum and exits radially with respect to the fan ro-

tor. The discharge is 1500 cfm. The rotor spins at 3600 rev/min.

The air is at atmospheric pressure and a temperature of 60oF.

Neglect the compressibility of the air. Calculate the power (hp)

required to operate the fan.

Navier-Stokes Equation

6.106 Show how the momentum equation can be applied to de-

rive Euler’s equation for the flow of inviscid fluids. Hint: Select

an arbitrary control volume of length �s enclosed by a stream

tube in an unsteady, nonuniform flow as shown. The volume of

the control volume is First derive the

continuity equation by applying the continuity principle to the

flow through the control volume. Then apply the momentum

equation along the stream-tube direction, and use the continuity

equation to reduce it to Euler’s equation.

6.107 Using a three-dimensional, infinitesimal parallelepiped with

dimensions �x, �y, and �z and velocity components u, v, and w,

show that, as the volume approaches zero, (a) the rate of mo-

mentum change in the x-direction per unit volume in the control

volume plus the next efflux of momentum from the six surfaces

per unit volume is

(b) the forces due to pressure, normal, and shear stresses per

unit volume are

and (c) the body force per unit volume is �gx. Assemble these

three components to obtain the momentum equation in the

x-direction at a point and use the continuity equation to arrive at

the form
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6.108 Using the constitutive relations (stress proportional to rate

of strain) for an incompressible liquid,

show for a liquid with constant dynamic viscosity that

6.109 A flow with rectilinear streamlines adjacent to a wall is

shown. The y-direction is normal to the wall. Apply the Navier-

Stokes equation in the y-direction, Eq. (6.46), to show that the

piezometric pressure is constant in the y-direction. The relation-

ship between and is shown on the figure.
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The Energy Equation

Chapters 4 to 6 have introduced important (i.e., commonly applied) equations such as the flow

rate equations, the continuity equation, the momentum equation, and the Bernoulli equation.

To complete this list, this chapter introduces the energy equation, which is used in many ap-

plications. This chapter also introduces equations for determining power and efficiency.

Energy, Work, and Power

The energy equation involves energy, work, and power as well as machines that interact with

flowing fluids. These topics are introduced in this section.

When matter has energy, the matter can be used to do work. A fluid can have several

forms of energy. For example a fluid jet has kinetic energy, water behind a dam has gravita-

tional potential energy, and hot steam has thermal energy. Work is force acting through a dis-

tance when the force is parallel to the direction of motion. For example, for the spray bottle

shown in Fig. 7.1, work is done when a finger exerts a force that acts through a distance as

the trigger is depressed. Similarly, work is done when the piston exerts a pressure force that

acts on the liquid over a distance. Another example of work involves wind passing over the

blades of a wind turbine as shown in Figure 7.2. The wind exerts a force on the blades; this

force produces a torque and work is given by

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Explain the meaning of energy, work, and power. 

• Describe various type of head terms (pressure head, pump head, velocity head, turbine head, etc.).

• Explain the meaning of pump, turbine, efficiency, and head loss.

• List the steps used to derive the energy equation.

Procedural Knowledge

• Apply the energy equation to predict variables such as pressure drop and head loss.

• Apply the power equation to find the power required for a pump or power supplied by a turbine.

• Sketch an Energy Grade Line (EGL) or a Hydraulic Grade Line (HGL) and explain the trends.

Applications (Typical)

• For a centrifugal pump or an axial fan, determine the requirements (e.g., energy, head, flow rate).

• For a turbine, establish how much power can be produced. 

• For a piping system, identify locations of cavitation by sketching an HGL. 

7.1

work force distance× torque angular displacement×� �
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A machine is any device that transmits or modifies energy, typically to perform or as-

sist in a human task. In fluid mechanics, a turbine is a machine that is used to extract energy

from a flowing fluid.* Examples of turbines include the horizontal-axis wind turbine shown

in Fig. 7.2, the gas turbine, the Kaplan turbine, the Francis turbine, and the Pelton wheel.

Similarly, a pump is a machine that is used to provide energy to a flowing fluid. Examples of

pumps include the piston pump shown in Fig. 7.1, the centrifugal pump, the diaphragm

pump, and the gear pump.

Work and energy both have the same primary dimensions, and the same units, and both

characterize an amount or quantity. For example, 1 calorie is the amount of thermal energy

needed to raise the temperature of 1 gram of water by 1oC. Other common units include the

joule (J), newton-meter, kilowatt-hour (kWh), foot-pound-force (ft-lbf), calorie (cal), and the

British thermal unit (Btu).

Power, which expresses a rate of work or energy, is defined by

(7.1)

Equation (7.1) uses a derivative because power can vary with each instant in time. To derive

an equation for power, let the amount of work be given by the product of force and displace-

ment

(7.2a)

where V is velocity of a moving body. When a shaft is rotating (e.g., Fig. 7.2), the amount of

work is given by the product of torque and angular displacement In this case,

the power equation is 

(7.2b)

where is the angular speed. Common units are radians per second (s–1), revolutions per

minute (rpm), and revolutions per second (rps). 

Equations (7.2a) and (7.2b) may be combined to show the relationships between power

associated with linear motion and power associated with rotational motion:

(7.3)

Common units for power are the watt (W), horsepower (hp), and the ft-lbf s. Other

units are given in Table F.1. Watts and horsepower are related by 1 kW 1.34 hp. Similarly,

1 hp 550 ft-lbf s. It is useful to know some typical values of power. A 60-watt light bulb

uses 60 J/s of electrical energy. A well-conditioned athlete can sustain a power output of

about 300 W 0.4 hp for one hour. A 1970 Volkswagen bug has an engine that is rated at

about 50 hp. The Bonneville Dam on the Columbia River 40 miles east of Portland, Oregon,

has a rated power of about 1080 MW. 

* The engine on a jet, which is called a gas turbine, is a notable exception. The jet engine adds energy to a

flowing fluid, thereby increasing the momentum of a fluid jet and producing thrust. 
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Energy Equation: General Form

This section derives the energy equation for a control volume by applying the Reynolds

transport theorem to the system equation. The energy equation for a system is (1, 2):

(7.4)

Equation (7.4), also called the first law of thermodynamics, can be stated in words:

Recall that a system is a body of matter that is under consideration. By definition, a sys-

tem always contains the same matter. An imaginary boundary separates the system from all

other matter, which is called the environment (or surroundings).

Equation (7.4) involves sign conventions. Thermal energy is positive when there is an

addition of thermal energy to the system and negative when there is a removal. Work is posi-

tive when the system is doing work on the environment and negative when work is done on

the system.

To extend Eq. (7.4) to a control volume, apply the Reynolds transport theorem Eq.

(5.21). Let the extensive property be energy and let to obtain

(7.5)

where e is energy per mass in the fluid. Let where ek is the kinetic energy per

unit mass, ep is the gravitational potential energy per unit mass, and u is the thermal energy

(or internal energy) per unit mass. 

(7.6)

To simplify Eq. (7.6), let* 

(7.7)

Similarly, let

(7.8)

* It is assumed that the control surface is not accelerating, so V, which is referenced to the control surface, is

also referenced to an inertial reference frame.
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where z is the elevation measured relative to a datum. When Eqs. (7.7) and (7.8) are substi-

tuted into Eq. (7.6), the result is

(7.9)

Shaft and Flow Work
Work is classified into two categories:

Each work term involves force acting over a distance. When this force is associated with a

pressure distribution, then the work is called flow work. Alternatively, shaft work is any work

that is not associated with a pressure force. Shaft work is usually done through a shaft (from

which the term originates) and is commonly associated with a pump or turbine. According to

the sign convention for work (see p. 219), pump work is negative. Similarly, turbine work is

positive. Thus,

(7.10)

To derive an equation for flow work, use the idea that work equals force times distance.

For example, Fig. 7.3 defines a control volume that is situated inside a converging pipe. At

section 2, the fluid that is inside the control volume will push on the fluid that is outside of

the control volume. The magnitude of the pushing force is p2A2. During a time interval 

the displacement of the fluid at section 2 is Thus, the amount of work is 

(7.11)

Convert the amount of work given by Eq. (7.11) into a rate of work: 

(7.12)

This work is positive because the fluid inside the control volume is doing work on the envi-

ronment. In a similar manner, the flow work at section 1 is negative and is given by

Figure 7.3

Sketch for deriving flow 

work.

Q
·

W
·

–
d

dt
----- V

2

2
----- gz u+ + � dV V

2

2
----- gz u+ + �V dA�

cs�+
cv

��

work( ) flow work( ) shaft work( )+�

W
·

shaft W
·

turbines W
·

pumps– W
·

t W
·

p–� �

Δt,
Δx2 V2Δt.�

ΔW2 F2( ) Δx2( ) p2A2( ) V2Δt( )� �

W
·

2
ΔW2

Δt
-----------

Δt 0→
lim p2A2V2

p2

�
----- �A2V2( ) m·

p2

�
-----� � � �

W
·

1 m·–
p1

�
-----�

Control surface

Flow

1

2



7.2 ENERGY EQUATION: GENERAL FORM 221

The net flow work for the situation pictured in Fig. 7.3 is

(7.13)

Equation (7.13) can be generalized to a situation involving multiple streams of fluid passing

across a control surface: 

(7.14)

To develop a general form of flow work, use integrals to account for velocity and pressure

variation across the control surface. Also, use the dot product to account for flow direction.

The general equation for flow work is

(7.15)

In summary, the work term is the sum of flow work [Eq. (7.15)] and shaft work [Eq. (7.10)]:

(7.16)

Final Steps in the Derivation of the Energy Equation
Introduce the work term from Eq. (7.16) into Eq. (7.9) and let 

(7.17)

In Eq. (7.17), combine the last term on the left side with the last term on the right side:

(7.18)

Replace by the specific enthalpy, h. The integral form of the energy principle is:

(7.19)

If the flow crossing the control surface occurs through a series of inlet and outlet ports and if

the velocity V is uniformly distributed across each port, then a simplified form of the Rey-

nolds transport theorem, Eq. (5.21), can be used to derive the following form of the energy

equation:
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(7.20)

where the subscripts o and i refer to the outlet and inlet ports, respectively. 

Energy Equation: Pipe Flow

Section 7.2 showed how to derive the general form of the energy equation for a control

volume. Now, this section will simplify this general form to give an equation that is much

easier to use yet still applicable to most situations. The first step is to develop a way to

account for the kinetic energy distribution in the flowing fluid.

Kinetic Energy Correction Factor
Figure 7.4 shows fluid that is pumped through a pipe. At sections 1 and 2, kinetic energy is

transported across the control surface by the flowing fluid. To derive an equation for this ki-

netic energy, start with the mass flow rate equation.

This integral can be conceptualized as adding up the mass of each fluid particle that is cross-

ing the section area and then dividing by the time interval associated with this crossing. To

convert this integral to kinetic energy (KE), multiply the mass of each fluid particle by

Figure 7.4
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control surface.
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The kinetic energy correction factor is defined as 

For a constant density fluid, this equation simplifies to

(7.21)

In most cases, � takes on a value of 1 or 2. When the velocity profile in a pipe is uniformly

distributed, then � 1. When flow is laminar, the velocity distribution is parabolic and

� 2. When flow is turbulent, the velocity profile is plug-like and � 1.05. For turbulent

flow it is common practice to let � 1.

To establish a value for �, integrate the velocity profile using Eq. (7.21). This approach

is illustrated in Example 7.1.

Derivation of a Simplified Form of the Energy Equation
Now that the KE correction factor is available for representing the distribution of kinetic en-

ergy, the derivation may by completed. Begin by applying Eq. (7.18) to the control volume

shown in Fig. 7.4. Assuming steady flow, Eq. (7.18). simplifies to:

(7.22)

As explained in Chapter 4, (see p. 87), piezometric head is constant across

sections 1 and 2 because the streamlines are straight and parallel. If temperature is also as-

sumed constant across each section, then can be taken outside the integral to

yield

(7.23)
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EXAMPLE 7.1   KINETIC ENERGY CORRECTION 

FACTOR FOR LAMINAR FLOW

The velocity distribution for laminar flow in a pipe is given 

by the equation

Here r0 is the radius of the pipe and r is the radial distance 

from the center. Find the kinetic-energy correction factor �.

Problem Definition

Situation: Laminar flow in a round pipe. Velocity profile is 
given.

Find: Kinetic-energy correction factor � (no units).

Sketch:

Plan

1. Find dA using the above sketch. 

2.  Find the mean velocity using the flow rate equation 
(5.8).

3.  Find � using Eq. (7.21).

Solution

1. Differential area

• From the sketch, dA can be visualized as a rectangular 
strip of length 2�r and width dr. Thus, dA 2�r dr.

2.  Mean velocity

Interpretation: For laminar flow in a round pipe, the mean 

velocity is one-half of the maximum (centerline) velocity.

3.  Kinetic-energy correction factor (�).

To evaluate the integral, make a change of variable by 

letting The integral becomes
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Next, factor out from each term in Eq. (7.23). Since does not appear

as a factor of express as where � is the kinetic en-

ergy correction factor: 

(7.24)

Divide through by 

(7.25)

Introduce Eq. (7.10) into Eq. (7.25):

(7.26)

Introduce pump head and turbine head:

(7.27)

Equation (7.26) becomes

(7.28)

Equation (7.28) is separated into terms that represent mechanical energy (nonbracketed

terms) and terms that represent thermal energy (the bracketed term). This bracketed term is

always positive because of the second law of thermodynamics. This term is called head loss

and is represented by hL. Head loss is the conversion of useful mechanical energy to waste

thermal energy through viscous action between fluid particles. Head loss is analogous to

thermal energy (heat) that is produced by Coulomb friction. When the bracketed term is re-

place by head loss hL, Eq. (7.28) becomes the energy equation. 

(7.29)

Equation (7.29) is based on three main assumptions: (a) the flow is steady; (b) the control vol-

ume has one inlet port and one exit port; and (c) the density of the flow is constant.

In words, Eq. (7.29) can be stated as 

Terms in Eq. (7.29) use the concept of head. A head term has a primary dimension of length,

and it represents an energy or work concept. Head is related to energy or work:
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Thus, another way to interpret Eq. (7.29) is that work and energy flows are balanced as

shown in Fig. 7.5. Energy can enter the control volume in two ways: energy can be trans-

ported across the control surface by the flowing fluid* or a pump can do work on the fluid

and thereby add energy to the fluid. Energy can leave the cv in three ways. Energy within the

flow can be used to do work on a turbine, energy can be transported across the control sur-

face by the flowing fluid, or mechanical energy can be converted to waste heat via head loss.

The recommended way to apply the energy equation is to start with Eq. (7.29) and

then analyze each term in a stepwise fashion as shown in Example 7.2.

* The term “ ” includes a work term, namely flow work.

EXAMPLE 7.2   PRESSURE IN A PIPE

A horizontal pipe carries cooling water at 10°C for a thermal 

power plant from a reservoir as shown. The head loss in the 

pipe is 

where L is the length of the pipe from the reservoir to the 

point in question, V is the mean velocity in the pipe, and D is 

the diameter of the pipe. If the pipe diameter is 20 cm and the 

rate of flow is 0.06 m3 s, what is the pressure in the pipe at 

L 2000 m. Assume �2 1.

Problem Definition

Situation: Cooling water for a power plant is flowing in a 
horizontal pipe. 

Find: Pressure (kPa) in the pipe at section 2.

Sketch:

Assumptions: �2 1.0.

Properties: Water (10°C), Table A.5: 

Plan

1. Write the energy equation from Eq. (7.29) between 
section 1 and section 2. 

2.  Analyze each term in the energy equation. 

3.  Solve for p2.

Solution

1. Energy equation (general form)

2.  Term-by-term analysis

• p1 0 because the pressure at top of a reservoir is 
patm 0 gage.

• V1 0 because the level of the reservoir is constant or 
changing very slowly.

• z1 100 m; z2 20 m.

• hp ht 0 because there are no pumps or turbines in 
the system.

• Find V2 using the flow rate equation (5.3).

• Head loss is

3.  Combine steps 1 and 2.

Figure 7.5
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Power Equation

The last section showed how to find the head of a pump or turbine. This section shows how

to relate head to power and efficiency. These parameters are used for applications such as

selecting a motor for operating a centrifugal pump, calculating the amount of power that can

supplied by a proposed hydroelectric plant, and estimating the pump size for a piping system. 

An equation for pump power follows from the definition of pump head given in Eq.

(7.27):

(7.30a)

Similarly, the power delivered from a flow to a turbine is

(7.30b)

Equations (7.30a) and (7.30b) can be generalized to give an equation called the power

equation:

(7.31)

Both pumps and turbines lose energy due to factors such as mechanical friction, vis-

cous dissipation, and leakage. These losses are accounted for by the efficiency, which is de-

fined as the ratio of power output to power input:

(7.32)

If the mechanical efficiency of the pump is �p, the power output  delivered by the pump

to the flow is

(7.33a)

where  is the power supplied to the pump, usually by a rotating shaft that is connected to

a motor. For a turbine, the output power is usually delivered by a rotating shaft to a

generator. If the mechanical efficiency of the turbine is �t, the output power supplied by the

turbine is

(7.33b)

where  is the power input to the turbine from the flow. Example 7.3 shows how to apply

the power equation. 

EXAMPLE 7.3   POWER NEEDED BY A PUMP

A pipe 50 cm in diameter carries water (10oC) at a rate of 

0.5 m3 s. A pump in the pipe is used to move the water from 

an elevation of 30 m to 40 m. The pressure at section 1 is 

70 kPa gage and the pressure at section 2 is 350 kPa gage. 

What power in kilowatts and in horsepower must be supplied 

to the flow by the pump? Assume hL 3 m of water and 

�1 �2 1.

Problem Definition

Situation: A pump is used to increase the elevation and 
pressure of water.

Find: Power (kW and hp) that is supplied to the water. 

Properties: Water (10°C), Table A.5:  
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Example 7.4 shows how efficiency enters into a calculation of power. 

Sketch:

Plan

1. Write the energy equation between section 1 and section 2.

2.  Analyze each term in the energy equation.

3.  Calculate the head of the pump hp.

4.  Find the power by applying the power equation (7.30a).

Solution

1. Energy equation (general form)

2.  Term-by-term analysis

• Velocity head cancels because V1 V2.

• ht 0 because there are no turbines in the system.

• All other head terms are given.

• Inserting terms into the general equation gives

3.  Pump head (from step 2)

Interpretation: The head provided by the pump (41.5 m) is 

balanced by the increase in pressure head (28.5 m) plus the 

increase in elevation head (10 m) plus the head loss (3 m).

4.  Power equation

EXAMPLE 7.4   POWER PRODUCED BY

A TURBINE

At the maximum rate of power generation, a small 

hydroelectric power plant takes a discharge of 14.1 m3 s

through an elevation drop of 61 m. The head loss through the 

intakes, penstock, and outlet works is 1.5 m. The combined 

efficiency of the turbine and electrical generator is 87%. 

What is the rate of power generation?

Problem Definition

Situation: A small hydroelectric plant is producing electrical 
power. 

Find: Electrical power generation (in kW).

Properties: Water (10°C), Table A.5:  

Sketch:
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Contrasting the Bernoulli Equation and the Energy Equation

While the Bernoulli equation given in Eq. (4.18b) and the energy equation from Eq. (7.29)

have a similar form and several terms in common, they are not the same equation. This

section explains the differences between these two equations. This information is important

for conceptual understanding of these two very important equations. 

The Bernoulli equation and the energy equation are derived in different ways. The Ber-

noulli equation was derived by applying Newton’s second law to a particle and then integrat-

ing the resulting equation along a streamline. The energy equation was derived by starting

with the first law of thermodynamics and then using the Reynolds transport theorem. Conse-

quently, the Bernoulli equation involves only mechanical energy, whereas the energy equa-

tion includes both mechanical and thermal energy. 

The two equations have different methods of application. The Bernoulli equation is ap-

plied by selecting two points on a streamline and then equating terms at these points: 

In addition, these two points can be anywhere in the flow field for the special case of irrota-

tional flow. The energy equation is applied by selecting an inlet section and an outlet section

in a pipe and then equating terms as they apply to the pipe:

Plan

1. Write the energy equation (7.29) between section 1 and 
section 2. 

2.  Analyze each term in the energy equation. 

3.  Solve for the head of the turbine ht .

4.  Find the input power to the turbine using the power 
equation (7.30a).

5.  Find the output power from generator by using the 
efficiency equation (7.32). 

Solution

1. Energy equation (general form)

2.  Term-by-term analysis

• Velocity heads are negligible because V1 0 and 
V2 0.

• Pressure heads are zero because p1 p2 0 gage.

• hp 0 because there is no pump in the system.

• Elevation head terms are given.

3.  Combine steps 1 and 2:

Interpretation: Head supplied to the turbine (59.5 m) is 

equal to the net elevation change of the dam (61 m) minus 

the head loss (1.5 m).

4.  Power equation

5.  Efficiency equation
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The two equations have different assumptions. The Bernoulli equation applies to

steady, incompressible, and inviscid flow. The energy equation applies to steady, viscous, in-

compressible flow in a pipe with additional energy being added through a pump or extracted

through a turbine. 

Under special circumstances the energy equation can be reduced to the Bernoulli equa-

tion. If the flow is inviscid, there is no head loss; that is, hL 0. If the “pipe” is regarded as a

small stream tube enclosing a streamline, then � 1. There is no pump or turbine along a

streamline, so hp ht 0. In this case the energy equation is identical to the Bernoulli equa-

tion. Note that the energy equation cannot be developed starting with the Bernoulli equation. 

In summary, the energy equation is not the Bernoulli equation.

Transitions

The purpose of this section is to illustrate how the energy, momentum, and continuity

equations can be used together to analyze (a) head loss for an abrupt expansion and (b) forces

on transitions. These results are useful for designing systems, especially those with large

pipes such as the penstock in a dam.

Abrupt Expansion
An abrupt or sudden expansion in a pipe or duct is a change from a smaller section area to a

larger section area as shown in Fig. 7.6. Notice that a confined jet of fluid from the smaller

pipe discharges into the larger pipe and creates a zone of separated flow. Because the stream-

lines in the jet are initially straight and parallel, the piezometric pressure distribution across

the jet at section 1 will be uniform. This same uniform pressure distribution will also occur in

the zone of separated flow. Apply the energy equation between sections 1 and 2: 

(7.34)

Figure 7.6

Flow through an abrupt 

expansion.
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Assume turbulent flow conditions so The momentum equation for the fluid in

the large pipe between section 1 and section 2, written for the s direction, is

Neglect the force due to shear stress to give

or (7.35)

The continuity equation simplifies to

(7.36)

Combining Eqs. (7.34) to (7.36) gives an equation for the head loss hL caused by a sud-

den expansion: 

(7.37)

If a pipe discharges fluid into a reservoir, then and the sudden-expansion head

loss simplifies to

which is the velocity head of the liquid in the pipe. This energy is dissipated by the viscous

action of the fluid in the reservoir.

Forces on Transitions
To find forces on transitions in pipes, apply the momentum equation in combination with the

energy equation, the flow rate equations, and head loss equations. This approach is illustrated

by Example 7.5.   

EXAMPLE 7.5   FORCE ON A CONTRACTION IN 

A PIPE

A pipe 30 cm in diameter carries water (10oC, 250 kPa) at a 

rate of 0.707 m3 s. The pipe contracts to a diameter of 20 

cm. The head loss through the contraction is given by

where V2 is the velocity in the 20 cm pipe. What horizontal 

force is required to hold the transition in place? Assume 

�1 �2 1.

Problem Definition

Situation: Water flows through a contraction in a round pipe.

Find: The horizontal force Fx (newtons) required to hold the 
contraction stationary.

Sketch:
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Assumptions: �1 �2 1.

Properties: Water (10°C), Table A.5: 

Plan

1. Develop an equation for Fx by applying the momentum 
equation (6.6).

2.  Develop an equation for p2 by applying the energy 
equation (7.29).

3.  Calculate p2.

4.  Calculate Fx .

Solution

1. Momentum equation (horizontal direction)

• General equation

• Force terms (see force diagram)

• Momentum accumulation is zero because flow is 
steady.

• Momentum efflux is

• Substitute force and momentum terms into the 
momentum equation.

2.  Energy equation (from section 1 to section 2)

• Since �1 �2 1, z1 z2, and hp ht 0, Eq. 
(7.29) simplifies to 

3.  Pressure at section 2

• Find velocities using the flow rate equation.

• Calculate head loss.

• Calculate pressure.

4.  Calculate Fx.
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Hydraulic and Energy Grade Lines

This section introduces the hydraulic grade line (HGL) and the energy grade line (EGL),

which are graphical representations that show head in a system. This visual approach

provides insights and helps one locate and correct trouble spots in the system (usually points of

low pressure). 

The EGL, shown in Fig. 7.7, is a line that indicates the total head at each location in a

system. The EGL is related to terms in the energy equation by

(7.38)

Notice that total head, which characterizes the energy that is carried by a flowing fluid,

is the sum of velocity head, the pressure head, and the elevation head. 

The HGL, shown in Fig. 7.7, is a line that indicates the piezometric head at each loca-

tion in a system:

(7.39)

Since the HGL gives piezometric head, the HGL will be coincident with the liquid sur-

face in a piezometer as shown in Fig. 7.7. Similarly, the EGL will be coincident with the liq-

uid surface in a stagnation tube. 

Tips for Drawing HGLs and EGLs

1. In a lake or reservoir, the HGL and EGL will coincide with the liquid surface. Also,

both the HGL and EGL will indicate piezometric head. For example, see Fig. 7.7.

2. A pump causes an abrupt rise in the EGL and HGL by adding energy to the flow. For

example, see Fig. 7.8.

3. For steady flow in a pipe of constant diameter and wall roughness, the slope 

of the EGL and the HGL will be constant. For example, see Fig. 7.7.

Figure 7.7

EGL and HGL in a 

straight pipe.
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4. Locate the HGL below the EGL by a distance of the velocity head 

5. Height of the EGL decreases in the flow direction unless a pump is present.

6. A turbine causes an abrupt drop in the EGL and HGL by removing energy from the

flow. For example, see Fig. 7.9. 

7. Power generated by a turbine can be increased by using a gradual expansion at the tur-

bine outlet. As shown in Fig. 7.9, the expansion converts kinetic energy to pressure. If the

outlet to a reservoir is an abrupt expansion, as in Fig. 7.11, this kinetic energy is lost.

8. When a pipe discharges into the atmosphere the HGL is coincident with the system be-

cause at these points. For example, in Figures 7.10 and 7.12, the HGL in the liquid

jet is drawn through the jet itself. 

9. When a flow passage changes diameter, the distance between the EGL and the HGL

will change (see Fig. 7.10 and Fig. 7.11) because velocity changes. In addition, the slope on

the EGL will change because the head loss per length will be larger in the conduit with the

larger velocity (see Fig. 7.11). 

10. If the HGL falls below the pipe, then is negative, indicating subatmospheric pres-

sure (see Fig. 7.12) and a potential location of cavitation.   

Figure 7.8

Rise in EGL and HGL due 

to pump.

Figure 7.9

Drop in EGL and HGL 

due to turbine.

Figure 7.10

Change in HGL and 

EGL due to flow through 

a nozzle.
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The recommended procedure for drawing an EGL and HGL is shown in Example 7.6.

Notice how the tips from pp. 233–234 are applied. 

Figure 7.11

Change in EGL and 

HGL due to change in 

diameter of pipe.

Figure 7.12

Subatmospheric pressure 

when pipe is above HGL.

EXAMPLE 7.6   EGL AND HGL FOR A SYSTEM

A pump draws water (50°F) from a reservoir, where the 

water-surface elevation is 520 ft, and forces the water through 

a pipe 5000 ft long and 1 ft in diameter. This pipe then 

discharges the water into a reservoir with water-surface 

elevation of 620 ft. The flow rate is 7.85 cfs, and the head loss 

in the pipe is given by

Determine the head supplied by the pump, hp, and the power 

supplied to the flow, and draw the HGL and EGL for the 

system. Assume that the pipe is horizontal and is 510 ft in 

elevation.

Problem Definition

Situation: Water is pumped from a lower reservoir to a 
higher reservoir. 

Find:

1. Pump head (in ft).

2.  Power (in hp) supplied to the flow.

3.  Draw HGL. Draw EGL.

Properties: Water (50°F), Table A.5:  

HGL and EGL
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Summary

The energy equation relates the rate of change of energy of a system to the rate of heat

transfer to the system and the rate at which the system does work on the surroundings.

Sketch:

Plan

1. Apply the energy equation (7.29) between sections 1 and 
section 2. 

2.  Calculate terms in the energy equation.

3.  Find the power by applying the power equation (7.30a).

4.  Draw the HGL and EGL by using the tips given on p. 270. 

Solution

1. Energy equation (general form)

• Velocity heads are negligible because V1 0 and 
V2 0.

• Pressure heads are zero because p1 p2 0 gage.

• ht 0 because there are no turbines in the system.

Interpretation: Head supplied by the pump provides the 

energy to lift the fluid to a higher elevation plus the energy 

to overcome head loss.

2.  Calculations of terms in the energy equation

• Calculate V using the flow rate equation.

• Calculate head loss.

• Calculate hp.

3.  Power

4.  HGL and EGL

• From Tip 1 on p. 233, locate the HGL and EGL along 
the reservoir surfaces.

• From Tip 2, sketch in a head rise of 178 ft correspond-
ing to the pump.

• From Tip 3, sketch the EGL from the pump outlet to the 
reservoir surface. Use the fact that the head loss is 
77.6 ft. Also, sketch EGL from the reservoir on the left 
to the pump inlet. Show a small head loss. 

• From Tip 4, sketch the HGL below the EGL by a
distance of 

• From Tip 5, check the sketches to ensure that EGL and 
HGL are decreasing in the direction of flow (except at 
the pump). 

Sketch: HGL (dashed black line) and EGL (solid blue line)
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Applying the energy equation to a control volume with steady and uniform flow at the

control surfaces results in 

where is the rate of heat transfer to the control volume, is the rate at which shaft work

is done on the surroundings, and h is the enthalpy of the fluid.

Further simplification of the energy equation for the flow of an incompressible fluid in

a pipe yields

where � is the kinetic-energy correction factor, hp is the head provided by a pump, ht is the

head removed by a turbine, and hL is the head loss. Station 1 is always upstream, and station

2 is downstream. For laminar flow, � 2 and for turbulent flow, � 1. The increase in head

across a pump is related to the pump power by

and the power delivered by a turbine is given by

The actual power required by the pump is and the actual power delivered

by a turbine is where �p and �t are the pump and turbine efficiencies.

The head loss is always positive and represents the irreversible conversion of mechani-

cal energy to thermal energy through the viscous action of the fluid. The head loss due to a

sudden expansion is

where V1 and V2 are the upstream and downstream velocities.

The hydraulic grade line (HGL) is the profile of the piezometric head, along a

pipe. The energy grade line (EGL) is a plot of the total head, along a pipe.

If the hydraulic grade line falls below the elevation of a pipe, subatmospheric pressure exists in

the pipe at that location, giving rise to the possibility of cavitation or leakage into the pipe.

References 

1. Cengel, Y. A., and M. A. Boles. Thermodynamics: An Engi-
neering Approach. McGraw-Hill, New York, 1998.

2. Moran, M. J., and H. N. Shapiro. Fundamentals of Engineer-
ing Thermodynamics. John Wiley, New York, 1992.

Problems

Energy and Power

7.1 ��� From the list below, select one topic that is interest-

ing to you. Then, use references such as the Internet to research

your topic and prepare one page of documentation that you

could use to present your topic to your peers.

a. Explain how hydroelectric power is produced.

b. Explain how a Kaplan turbine works, how a Francis turbine

works, and the differences between these two types of turbines.

c. Explain how a horizontal-axis wind turbine is used to pro-

duce electrical power.

d. Explain how a steam turbine is used to produce electrical power.
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7.2 ��� Skim this chapter and identify three real-world appli-

cations that are motivating to you. For each application, write a

paragraph that describes what you already know about the ap-

plication and why this application has appeal to you.

7.3 ��� Using Section 7.1 and other resources, answer the

following questions. Strive for depth, clarity, and accuracy.

Also, strive for effective use of sketches, words, and equations. 

a. What are the common forms of energy? Which of these

forms are relevant to fluid mechanics?

b. What is work? Describe three example of work that are rele-

vant to fluid mechanics.

c. What are the most common units of power?

d. List three significant differences between power and energy.

7.4 ��� Apply the grid method to each situation.

a. Calculate the energy in joules used by a 1 hp pump that is op-

erating for 6 hours. Also, calculate the cost of electricity for this

time period. Assume that electricity costs $0.15 per kW-hr. 

b. A motor is being to used to turn the shaft of a centrifugal pump.

Apply Eq. (7.2b) to calculate the power in watts corresponding

to a torque of 100 lbf-in and a rotation speed of 850 rpm.

c. A turbine produces a power of 7500 ft-lbf/s. Calculate the

power in hp and in watts.

7.5 ��� Estimate the power required to spray water out of the

spray bottle that is pictured in Fig. 7.1. Hint: Make appropriate

assumptions about the number of sprays per unit time and the

force exerted by the finger.

7.6 The sketch shows a common consumer product called the

Water Pik. This device uses a motor to drive a piston pump

that produces a jet of water (d 3 mm, T 10°C) with a

speed of 25 m s. Estimate the minimum electrical power in

watts that is required by the device. Hints: (a) Assume that the

power is used only to produce the kinetic energy of the water in

the jet; and (b) in a time interval the amount of mass that

flows out the nozzle is and the corresponding amount of ki-

netic energy is 

7.7 An engineer is considering the development of a small wind

turbine (D 1.25 m) for home applications. The design wind

speed is 15 mph at T 10°C and p 0.9 bar. The efficiency of

the turbine is � 20%, meaning that 20% of the kinetic energy

in the wind can be extracted. Estimate the power in watts that

can be produced by the turbine. Hint: In a time interval the

amount of mass that flows through the rotor is and

the corresponding amount of kinetic energy in this flow is

Kinetic Energy Correction Factor (�)

7.8 ��� Using Section 7.3 and other resources, answer the

questions below. Strive for depth, clarity, and accuracy while

also combining sketches, words, and equations in ways that en-

hance the effectiveness of your communication.

a. What is the kinetic-energy correction factor? Why do engi-

neers use this term?

b. What is the meaning of each variable that ap-

pears in Eq. 7.21?

c. What values of  � are commonly used? 

7.9 For this hypothetical velocity distribution in a wide rectan-

gular channel, evaluate the kinetic-energy correction factor �.

7.10 For these velocity distributions in a round pipe, indicate

whether the kinetic-energy correction factor � is greater than,

equal to, or less than unity. 

7.11 Calculate � for case (c) in Prob. 7.10.

7.12 Calculate � for case (d) in Prob. 7.10.
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7.13 An approximate equation for the velocity distribution in a

pipe with turbulent flow is

where Vmax is the centerline velocity, y is the distance from the

wall of the pipe, r0 is the radius of the pipe, and n is an exponent

that depends on the Reynolds number and varies between 1 6

and 1 8 for most applications. Derive a formula for � as a func-

tion of n. What is � if n 1 7?

7.14 An approximate equation for the velocity distribution in a

rectangular channel with turbulent flow is

where umax is the velocity at the surface, y is the distance from

the floor of the channel, d is the depth of flow, and n is an expo-

nent that varies from about 1 6 to 1 8 depending on the Rey-

nolds number. Derive a formula for � as a function of n. What is

the value of � for n 1 7?

7.15 The following data were taken for turbulent flow in a circu-

lar pipe with a radius of 3.5 cm. Evaluate the kinetic energy cor-

rection factor. The velocity at the pipe wall is zero.  

Energy Equation

7.16 ��� Using Section 7.3 and other resources, answer the

questions below. Strive for depth, clarity, and accuracy. Also,

strive for effective use of sketches, words, and equations. 

a. What is conceptual meaning of the first law of thermody-

namics for a system?

b. What is flow work? How is the equation for flow work (Eq.

7.15) derived?

c. What is shaft work? How is shaft work different than flow work? 

7.17 ��� Using Section 7.3 and other resources, answer the

questions below. Strive for depth, clarity, and accuracy. Also,

strive for effective use of sketches, words, and equations. 

a. What is head? How is head related to energy? To power?

b. What is head of a turbine?

c. How is head of a pump related to power? To energy?

d. What is head loss?

7.18 ��� Using Sections 7.3 and 7.6 and using other re-

sources, answer the following questions. Strive for depth, clar-

ity, and accuracy. Also, strive for effective use of sketches,

words and equations. 

a. What are the five main terms in the energy equation (7.29)?

What does each term mean?

b. How are terms in the energy equation related to energy? To

power?

c. What assumptions are required for using the energy equation

(7.29)?

d. How is the energy equation (7.29) similar to the Bernoulli

equation? How is it different? Give three important similari-

ties and three important differences.

7.19 Using the energy equation (7.29), prove that fluid in a pipe

will flow from a location with high piezometric head to a loca-

tion with low piezometric head. Assume there are no pumps or

turbines and that the pipe has a constant diameter.

7.20 Water flows at a steady rate in this vertical pipe. The pres-

sure at A is 10 kPa, and at B it is 98.1 kPa. Then the flow in the

pipe is (a) upward, (b) downward, or (c) no flow. (Hint: see

problem 7.19). 

7.21 Determine the discharge in the pipe and the pressure at point

B. Neglect head losses. Assume � 1.0 at all locations.

7.22 A pipe drains a tank as shown. If x 10 ft, y 4 ft, and head

losses are neglected, what is the pressure at point A and what is the

velocity at the exit? Assume � 1.0 at all locations.

r (cm) V (m s) r (cm) V (m s)

0.0 32.5 2.8 22.03
0.5 32.44 2.9 21.24
1.0 32.27 3.0 20.49
1.5 31.22 3.1 19.6
2.0 28.21 3.2 18.69
2.25 26.51 3.25 18.16
2.5 24.38 3.3 17.54
2.6 23.7 3.35 17.02
2.7 22.88 3.4 16.14
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7.23 A pipe drains a tank as shown. If x 10 m, y 1.5 m, and

head losses are neglected, what is the pressure at point A and

what is the velocity at the exit? Assume � 1.0 at all locations.

7.24 For this system, the discharge of water is 0.1 m3 s,

 and the pipe diameter is 30

cm. Neglecting head losses, what is the pressure head at point 2

if the jet from the nozzle is 10 cm in diameter? Assume � 1.0

at all locations.

7.25 If and and if crude oil

is flowing at a rate of 0.06 m3 s, determine the differ-

ence in pressure between sections A and B. Neglect head losses.

7.26 Gasoline having a specific gravity of 0.8 is flowing in the

pipe shown at a rate of 5 cfs. What is the pressure at section 2

when the pressure at section 1 is 18 psig and the head loss is 6 ft

between the two sections? Assume � 1.0 at all locations. 

7.27 Water flows from a pressurized tank as shown. The pres-

sure in the tank above the water surface is 100 kPa gage, and the

water surface level is 8 m above the outlet. The water exit ve-

locity is 10 m s. The head loss in the system varies as

hL KLV
2 2g, where KL is the minor-loss coefficient. Find the

value for KL. Assume � 1.0 at all locations.

7.28 A reservoir with water is pressurized as shown. The pipe

diameter is 1 in. The head loss in the system is given by

hL 5V 2 2g. The height between the water surface and the

pipe outlet is 10 ft. A discharge of 0.10 ft3 s is needed. What

must the pressure in the tank be to achieve such a flow rate? As-

sume � 1.0 at all locations.

7.29 In the figure for Probs. 7.27 and 7.28, suppose that the res-

ervoir is open to the atmosphere at the top. The valve is used to

control the flow rate from the reservoir. The head loss across the

valve is given as where V is the velocity in the

pipe. The cross-sectional area of the pipe is 9 cm2. The head loss

due to friction in the pipe is negligible. The elevation of the wa-

ter level in the reservoir above the pipe outlet is 11 m. Find the

discharge in the pipe. Assume � 1.0 at all locations.

7.30 As shown a microchannel is being designed to transfer fluid in

a MEMS (microelectricalmechanical system) application. The

channel is 200 micrometers in diameter and is 5 cm long. Ethyl al-

cohol is driven through the system at the rate of 0.1 microliters s

(�L s) with a syringe pump, which is essentially a moving piston.

The pressure at the exit of the channel is atmospheric. The flow is

laminar, so � 2. The head loss in the channel is given by

where L is the channel length, D the diameter, V the mean veloc-

ity, � the viscosity of the fluid, and 	 the specific weight of the

fluid. Find the pressure in the syringe pump. The velocity head

associated with the motion of the piston in the syringe pump is

negligible.
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7.31 Fire-fighting equipment requires that the exit velocity of

the firehose be 40 m s at an elevation of 50 m above the hy-

drant. The nozzle at the end of the hose has a contraction ratio

of 4:1 The head loss in the hose is

 where V is the velocity in the hose. What must the

pressure be at the hydrant to meet this requirement? The pipe

supplying the hydrant is much larger than the firehose.

7.32 The discharge in the siphon is 2.80 cfs, 

and Determine the head loss between the

reservoir surface and point C. Determine the pressure at point B

if three-quarters of the head loss (as found above) occurs be-

tween the reservoir surface and point B. Assume � 1.0 at all

locations.

7.33 For this siphon the elevations at A, B, C, and D are 30 m,

32 m, 27 m, and 26 m, respectively. The head loss between the

inlet and point B is three-quarters of the velocity head, and the

head loss in the pipe itself between point B and the end of the

pipe is one-quarter of the velocity head. For these conditions,

what is the discharge and what is the pressure at point B? The

pipe diameter 25 cm. Assume � 1.0 at all locations. 

7.34 For this system, point B is 10 m above the bottom of the upper

reservoir. The head loss from A to B is and the pipe area

is 10–4 m2. Assume a constant discharge of For

these conditions, what will be the depth of water in the upper res-

ervoir for which cavitation will begin at point B? Vapor

pressure 1.23 kPa and atmospheric pressure 100 kPa. As-

sume � 1.0 at all locations. 

7.35 In this system, and

The discharge of water in the system is 10 cfs. Is

the machine a pump or a turbine? What are the pressures at

points A and B? Neglect head losses. Assume � 1.0 at all

locations.  

7.36  The pipe diameter D is 30 cm, d is 15 cm, and the atmo-

spheric pressure is 100 kPa. What is the maximum allowable

discharge before cavitation occurs at the throat of the venturi

meter if Assume � 1.0 at all locations.

7.37 In this system and the head loss

from the venturi meter to the end of the pipe is given by

where V is the velocity in the pipe. Neglecting

all other head losses, determine what head H will first initiate

cavitation if the atmospheric pressure is 100 kPa absolute. What

will be the discharge at incipient cavitation? Assume � 1.0 at

all locations.

7.38 A pump is used to fill a tank 5 m in diameter from a river as

shown. The water surface in the river is 2 m below the bottom

of the tank. The pipe diameter is 5 cm, and the head loss in the

pipe is given by where V is the mean velocity

in the pipe. The flow in the pipe is turbulent, so The
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head provided by the pump varies with discharge through the

pump as where the discharge is given in

cubic meters per second (m3 s) and hp is in meters. How long

will it take to fill the tank to a depth of 10 m? 

Power Equation

7.39 As shown, water at 15oC is flowing in a 15 cm–diameter by

60 m–long run of pipe that is situated horizontally. The mean

velocity is 2 m s, and the head loss is 2 m. Determine the pres-

sure drop and the required pumping power to overcome head

loss in the pipe.

7.40 A fan produces a pressure rise of 6 mm of water to move air

through a hair dryer. The mean velocity of the air at the exit is 10

m s, and the exit diameter is 44 mm. Estimate the electrical

power in watts that needs to be supplied to operate the fan. As-

sume that the fan/motor combination has an efficiency of 60%. 

7.41 As shown in the figure, the pump supplies energy to the

flow such that the upstream pressure (12 in. pipe) is 5 psi and

the downstream pressure (6 in. pipe) is 90 psi when the flow of

water is 5.0 cfs. What horsepower is delivered by the pump to

the flow? Assume � 1.0 at all locations. 

7.42 A water discharge of 8 m3 s is to flow through this hori-

zontal pipe, which is 1 m in diameter. If the head loss is given as

(V is velocity in the pipe), how much power will have

to be supplied to the flow by the pump to produce this dis-

charge? Assume � 1.0 at all locations.

7.43 An engineer is making an estimate for a home owner. This

owner has a small stream (Q 1.4 cfs, T 40°F) that is lo-

cated at an elevation H 34 ft above the owner’s residence.

The owner is proposing to dam the stream, diverting the flow

through a pipe (penstock). This flow will spin a hydraulic tur-

bine, which in turn will drive a generator to produce electrical

power. Estimate the maximum power in kilowatts that can be

generated if there is no head loss and both the turbine and gener-

ator are 100% efficient. Also, estimate the power if the head

loss is 5.5 ft, the turbine is 70% efficient, and the generator is

90% efficient. 

7.44 A pump draws water through an 8 in. suction pipe and dis-

charges it through a 4 in. pipe in which the velocity is 12 ft s.

The 4 in. pipe discharges horizontally into air at C. To what

height h above the water surface at A can the water be raised if 25
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hp is delivered to the pump? Assume that the pump operates at

60% efficiency and that the head loss in the pipe between A and

C is equal to Assume � 1.0 at all locations.

7.45 A pump draws water (20°C) through a 20 cm suction pipe and

discharges it through a 10 cm pipe in which the velocity is 3 m s.

The 10 cm pipe discharges horizontally into air at point C. To what

height h above the water surface at A can the water be raised if 35

kW is delivered to the pump? Assume that the pump operates at

60% efficiency and that the head loss in the pipe between A and C

is equal to Assume � 1.0 at all locations. 

7.46 An engineer is designing a subsonic wind tunnel. The test

section is to have a cross-sectional area of 4 m2 and an airspeed

of 60 m s. The air density is 1.2 kg m3. The area of the tunnel

exit is 10 m2. The head loss through the tunnel is given by

where VT is the airspeed in the test sec-

tion. Calculate the power needed to operate the wind tunnel.

Hint: Assume negligible energy loss for the flow approaching

the tunnel in region A, and assume atmospheric pressure at the

outlet section of the tunnel. Assume � 1.0 at all locations. 

7.47 Neglecting head losses, determine what horsepower the

pump must deliver to produce the flow as shown. Here the

elevations at points A, B, C, and D are 110 ft, 200 ft, 110 ft,

and 90 ft, respectively. The nozzle area is 0.10 ft2.

7.48 Neglecting head losses, determine what power the pump

must deliver to produce the flow as shown. Here the elevations

at points A, B, C, and D are 40 m, 65 m, 35 m, and 30 m, respec-

tively. The nozzle area is 25 cm2.

7.49 A pumping system is to be designed to pump crude oil a

distance of 1 mile in a 1 foot-diameter pipe at a rate of 3500

gpm. The pressures at the entrance and exit of the pipe are at-

mospheric, and the exit of the pipe is 200 feet higher than the

entrance. The pressure loss in the system due to pipe friction is

60 psi. The specific weight of the oil is 53 lbf ft3. Find the

power, in horsepower, required for the pump.

7.50 Water (10°C) is flowing at a rate of 0.35 m3 s, and it is as-

sumed that  from the reservoir to the gage, where

V is the velocity in the 30-cm pipe. What power must the pump

supply? Assume � 1.0 at all locations. 

7.51 In the pump test shown, the rate of flow is 6 cfs of oil

(S 0.88). Calculate the horsepower that the pump supplies to

the oil if there is a differential reading of 46 in. of mercury in the

U-tube manometer. Assume � 1.0 at all locations.
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7.52 If the discharge is 500 cfs, what power output may be ex-

pected from the turbine? Assume that the turbine efficiency is

90% and that the overall head loss is where V is the

velocity in the 7 ft penstock Assume � 1.0 at all locations.

7.53 A small-scale hydraulic power system is shown. The eleva-

tion difference between the reservoir water surface and the pond

water surface downstream of the reservoir, H, is 15 m. The ve-

locity of the water exhausting into the pond is 5 m s, and the

discharge through the system is 1 m3 s. The head loss due to

friction in the penstock is negligible. Find the power produced

by the turbine in kilowatts.

7.54 A pump is used to transfer SAE-30 oil from tank A to tank

B as shown. The tanks have a diameter of 12 m. The initial

depth of the oil in tank A is 20 m, and in tank B the depth is 1 m.

The pump delivers a constant head of 60 m. The connecting

pipe has a diameter of 20 cm, and the head loss due to friction in

the pipe is Find the time required to transfer the oil

from tank A to B; that is, the time required to fill tank B to 20 m

depth.

7.55 A pump is used to pressurize a tank to 300 kPa abs. The

tank has a diameter of 2 m and a height of 4 m. The initial level

of water in the tank is 1 m, and the pressure at the water surface

is 0 kPa gage. The atmospheric pressure is 100 kPa. The pump

operates with a constant head of 50 m. The water is drawn from

a source that is 4 m below the tank bottom. The pipe connecting

the source and the tank is 4 cm in diameter and the head loss, in-

cluding the expansion loss at the tank, is The flow is

turbulent.
Assume the compression of the air in the tank takes place iso-

thermally, so the tank pressure is given by

where zt is the depth of fluid in the tank in meters. Write a

computer program that will show how the pressure varies in

the tank with time, and find the time to pressurize the tank to

300 kPa abs.

Sudden Expansions and Other Components 

7.56 What is the head loss at the outlet of the pipe that dis-

charges water into the reservoir at a rate of 10 cfs if the diameter

of the pipe is 12 in.?

7.57 What is the head loss at the outlet of the pipe that dis-

charges water into the reservoir at a rate of 0.5 m3 s if the diam-

eter of the pipe is 50 cm?

7.58 An 8 cm pipe carries water with a mean velocity of 2 m s.

If this pipe abruptly expands to a 15 cm pipe, what will be the

head loss due to the abrupt expansion?

7.59 A 6 in. pipe abruptly expands to a 12 in. size. If the dis-

charge of water in the pipes is 5 cfs, what is the head loss due to

abrupt expansion?

7.60 Water is draining from tank A to tank B. The elevation differ-

ence between the two tanks is 10 m. The pipe connecting the two

tanks has a sudden-expansion section as shown. The cross-
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sectional area of the pipe from A is 8 cm2, and the area of the pipe

into B is 25 cm2. Assume the head loss in the system consists only

of that due to the sudden-expansion section and the loss due to

flow into tank B. Find the discharge between the two tanks.

7.61 A 40 cm pipe abruptly expands to a 60 cm size. These

pipes are horizontal, and the discharge of water from the smaller

size to the larger is 1.0 m3 s. What horizontal force is required

to hold the transition in place if the pressure in the 40 cm pipe is

70 kPa gage? Also, what is the head loss? Assume � 1.0 at

all locations.

7.62 Water flows through a horizontal con-

stant diameter pipe with a cross-sectional area of 9 in2. The ve-

locity in the pipe is 15 ft s, and the water discharges to the

atmosphere. The head loss between the pipe joint and the end of

the pipe is 3 ft. Find the force on the joint to hold the pipe. The

pipe is mounted on frictionless rollers. Assume � 1.0 at all

locations.  

7.63 This abrupt expansion is to be used to dissipate the high-

energy flow of water in the 5 ft–diameter penstock. Assume

� 1.0 at all locations.

a. What power (in horsepower) is lost through the expansion?

b. If the pressure at section 1 is 5 psig, what is the pressure at

section 2?

c. What force is needed to hold the expansion in place?

7.64 This rough aluminum pipe is 6 in. in diameter. It weighs

1.5 lb per foot of length, and the length L is 50 ft. If the dis-

charge of water is 6 cfs and the head loss due to friction from

section 1 to the end of the pipe is 10 ft, what is the longitudinal

force transmitted across section 1 through the pipe wall? 

7.65 Water flows in this bend at a rate of 5 m3 s, and the pressure

at the inlet is 650 kPa. If the head loss in the bend is 10 m, what

will the pressure be at the outlet of the bend?  Also estimate the

force of the anchor block on the bend in the x direction required

to hold the bend in place. Assume � 1.0 at all locations.

7.66 Fluid flowing along a pipe of diameter D accelerates

around a disk of diameter d as shown in the figure. The velocity

far upstream of the disk is U, and the fluid density is �. Assum-

ing incompressible flow and that the pressure downstream of

the disk is the same as that at the plane of separation, develop an

expression for the force required to hold the disk in place in

terms of U, D, d, and �. Using the expression you developed,

determine the force when 

and Assume � 1.0 at all locations.  

EGL and HGL

7.67 ��� Using resources such as the Internet and Section 7.7,

identify two real-world applications of HGLs and EGLs that are

interesting to you. For each application, write a paragraph in

which you describe how and why HGLs and EGLs are used.

7.68 ��� Using Section 7.7 and other resources, answer the

following questions. Strive for depth, clarity, and accuracy

while also combining sketches, words, and equations in ways

that enhance the effectiveness of your communication.

a. What are three important reasons that engineers use the HGL

and the EGL?

b. What factors influence the magnitude of the HGL? What

factors influence the magnitude of the EGL?
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c. How are the EGL and HGL related to the piezometer? To the

stagnation tube?

d. How is the EGL related to the energy equation? 

e. How can you use an HGL or an EGL to determine the direction

of flow?

7.69 The energy grade line for steady flow in a uniform-diameter

pipe is shown. Which of the following could be in the “black box”?

(a) a pump, (b) a partially closed valve, (c) an abrupt expansion, or

(d) a turbine. Choose all valid answer(s) and state your rationale.  

7.70 If the pipe shown has constant diameter, is this type of HGL

possible? If so, under what additional conditions? If not, why not? 

7.71 For the system shown,

a. What is the flow direction?

b. What kind of machine is at A?

c. Do you think both pipes, AB and CA, are the same diameter?

d. Sketch in the EGL for the system.

e. Is there a vacuum at any point or region of the pipes? If so,

identify the location.

7.72 The HGL and the EGL are as shown for a certain flow system.

a. Is flow from A to E or from E to A?

b. Does it appear that a reservoir exists in the system?

c. Does the pipe at E have a uniform or a variable diameter?

d. Is there a pump in the system?

e. Sketch the physical setup that could yield the conditions

shown between C and D.

f. Is anything else revealed by the sketch? 

7.73 Sketch the HGL and the EGL for this conduit, which tapers

uniformly from the left end to the right end.

7.74 The HGL and the EGL for a pipeline are shown in the figure.

a. Indicate which is the HGL and which is the EGL.

b. Are all pipes the same size? If not, which is the smallest?

c. Is there any region in the pipes where the pressure is below

atmospheric pressure? If so, where?

d. Where is the point of maximum pressure in the system?

e. Where is the point of minimum pressure in the system?

f. What do you think is located at the end of the pipe at point E?

g. Is the pressure in the air in the tank above or below atmo-

spheric pressure?

h. What do you think is located at point B?

7.75 Assume that the head loss in the pipe is given by hL

0.014(L D)(V2 2g), where L is the length of pipe and D is the

pipe diameter. Assume � 1.0 at all locations.

a. Determine the discharge of water through this system.

b. Draw the HGL and the EGL for the system.

c. Locate the point of maximum pressure.

d. Locate the point of minimum pressure.

e. Calculate the maximum and minimum pressures in the system.
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7.76 Sketch the HGL and the EGL for the reservoir and pipe of

Example 7.2.

7.77 The discharge of water through this turbine is 1000 cfs.

What power is generated if the turbine efficiency is 85% and the

total head loss is 4 ft? H 100 ft. Also, carefully sketch the

EGL and the HGL.

7.78 Water flows from the reservoir through a pipe and then dis-

charges from a nozzle as shown. The head loss in the pipe itself

is given as where L and D are the

length and diameter of the pipe and V is the velocity in the

pipe. What is the discharge of water? Also draw the HGL and

EGL for the system. Assume � 1.0 at all locations.

7.79 Refer to Fig. 7.11. Assume that the head loss in the pipes is

given by where V is the mean veloc-

ity in the pipe, D is the pipe diameter, and L is the pipe length.

The water surface elevations of the upper and lower reservoirs

are 100 m and 70 m, respectively. The respective dimensions for

upstream and downstream pipes are Du 30 cm, and Lu 200

m, and Dd 15 cm, and Ld 100 m. Determine the discharge

of water in the system.

7.80 What horsepower must be supplied to the water to pump

3.0 cfs at 68°F from the lower to the upper reservoir? Assume

that the head loss in the pipes is given by hL 0.018 (L D)

(V2 2g), where L is the length of the pipe in feet and D is the

pipe diameter in feet. Sketch the HGL and the EGL.

7.81 Water flows from reservoir A to reservoir B. The water

temperature in the system is 10°C, the pipe diameter D is 1 m,

and the pipe length L is 300 m. If and the

pipe head loss is given by where V

is the velocity in the pipe, what will be the discharge in the

pipe? In your solution, include the head loss at the pipe outlet,

and sketch the HGL and the EGL. What will be the pressure at

point P halfway between the two reservoirs? Assume � 1.0 at

all locations.

PROBLEM 7.74
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PROBLEM 7.81
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7.82 Water flows from the reservoir on the left to the reservoir

on the right at a rate of 16 cfs. The formula for the head losses in

the pipes is What elevation in the

left reservoir is required to produce this flow? Also carefully

sketch the HGL and the EGL for the system. Note: Assume the

head-loss formula can be used for the smaller pipe as well as for

the larger pipe. Assume � 1.0 at all locations.

7.83 What power is required to pump water at a rate of 3 m3 s

from the lower to the upper reservoir? Assume the pipe head loss

is given by where L is the length of

pipe, D is the pipe diameter, and V is the velocity in the pipe. The

water temperature is 10°C, the water surface elevation in the

lower reservoir is 150 m, and the surface elevation in the upper res-

ervoir is 250 m. The pump elevation is 100 m, 

and Assume the pump

and motor efficiency is 74%. In your solution, include the head

loss at the pipe outlet and sketch the HGL and the EGL. Assume

� 1.0 at all locations. 

7.84 Refer to Fig. 7.12. Assume that the head loss in the pipe is

given by where V is the mean veloc-

ity in the pipe, D is the pipe diameter, and L is the pipe length. The

elevations of the reservoir water surface, the highest point in the

pipe, and the pipe outlet are 200 m, 200 m, and 185 m, respec-

tively. The pipe diameter is 30 cm, and the pipe length is 200 m.

Determine the water discharge in the pipe, and, assuming that the

highest point in the pipe is halfway along the pipe, determine the

pressure in the pipe at that point. Assume � 1.0 at all locations.

PROBLEM 7.82
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C H A P T E R

Dimensional Analysis

and Similitude

Because of the complexity of fluid mechanics, the design of fluid systems relies heavily on

experimental results. Tests are typically carried out on a subscale model, and the results are

extrapolated to the full-scale system (prototype). The principles underlying the correspon-

dence between the model and the prototype are addressed in this chapter.

The ideas of primary dimensions, dimensionless groups, and dimensional homogeneity

were introduced in Chapter 1. In this chapter, the procedures for obtaining the significant di-

mensionless groups are outlined, and the requirements for model testing to have correspon-

dence between the model and prototype are presented.

Need for Dimensional Analysis

Fluid mechanics is more heavily involved with experimental testing than other disciplines

because the analytical tools currently available to solve the momentum and energy equations

are not capable of providing accurate results. This is particularly evident in turbulent,

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• State the Buckingham � theorem.

• Identify and explain the significance of the common �-groups.

• Distinguish between model and prototype.

• Explain the concepts of dynamic and geometric similitude.

Procedural Knowledge

• Apply the Buckingham � theorem to determine number of dimensionless variables.

• Apply the step-by-step procedure to determine the dimensionless �-groups.

• Apply the exponent method to determine the dimensionless �-groups.

• Distinguish the significant �-groups for a given a flow problem.

Typical Applications

• Drag force on a blimp from model testing.

• Ship model tests to evaluate wave and friction drag.

• Pressure drop in a prototype nozzle from model measurements.

8.1
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separating flows. The solutions obtained by utilizing techniques from computational fluid

dynamics with the largest computers available yield only fair approximations for turbulent

flow problems—hence the need for experimental evaluation and verification.

For analyzing model studies and for correlating the results of experimental research, it is

essential that researchers employ dimensionless groups. To appreciate the advantages of using

dimensionless groups, consider the flow of water through the unusual orifice illustrated in Fig.

8.1. Actually, this is much like a nozzle used for flow metering except that the flow is in the op-

posite direction. An orifice operating in this flow condition will have a much different perfor-

mance than one operating in the normal mode. However, it is not unlikely that a firm or city

water department might have such a situation where the flow may occur the “right way” most

of the time and the “wrong way” part of the time—hence the need for such knowledge. 

Because of size and expense it is not always feasible to carry out tests on a full-scale

prototype. Thus engineers will test a subscale model and measure the pressure drop across

the model. The test procedure may involve testing several orifices, each with a different

throat diameter d0. For purposes of discussion, assume that three nozzles are to be tested. The

Bernoulli equation, introduced in Chapter 4, suggests that the pressure drop will depend on

flow velocity and fluid density. It may also depend on the fluid viscosity. 

The test program may be carried out with a range of velocities and possibly with fluids

of different density (and viscosity). The pressure drop, , is a function of the velocity

V1, density �, and diameter d0. By carrying out numerous measurements at different values of

V1 and � for the three different nozzles, the data could be plotted as shown in Fig. 8.2a for

tests using water. In addition, further tests could be planned with different fluids at consider-

ably more expense. 

The material introduced in this chapter leads to a much better approach. Through di-

mensional analysis it can be shown that the pressure drop can be expressed as

(8.1)

which means that dimensionless group for pressure, /( /2), is a function of the

dimensionless throat/pipe diameter ratio  and the dimensionless group, 

which will be identified later as the Reynolds number. The purpose of the experimental pro-

gram is to establish the functional relationship. As will be shown later, if the Reynolds num-

ber is sufficiently large, the results are independent of Reynolds number. Then

(8.2)

Thus for any specific orifice design (same ) the pressure drop, divided by

/2 for the model is same for the prototype.  Therefore the data collected from the model

Figure 8.1
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tests can be applied directly to the prototype. Only one test is needed for each orifice design.

Consequently only three tests are needed, as shown in Fig. 8.2b. The fewer tests result in

considerable savings in effort and expense.

The identification of dimensionless groups that provide correspondence between model

and prototype data is carried out through dimensional analysis.

Buckingham � Theorem

In 1915 Buckingham (1) showed that the number of independent dimensionless groups of

variables (dimensionless parameters) needed to correlate the variables in a given process is

equal to where n is the number of variables involved and m is the number of basic

dimensions included in the variables.

Buckingham referred to the dimensionless groups as �, which is the reason the theorem

is called the � theorem. Henceforth dimensionless groups will be referred to as �-groups. If
the equation describing a physical system has n dimensional variables and is expressed as 

then it can be rearranged and expressed in terms of �-groups as

Thus if the drag force F of a fluid flowing past a sphere is known to be a function of the ve-

locity V, mass density �, viscosity �, and diameter D, then five variables (F, V, �, �, and D)

and three basic dimensions (L, M, and T) are involved.* By the Buckingham � theorem there

will be �-groups that can be used to correlate experimental results in the form

Figure 8.2

Relations for pressure, 

velocity, and diameter. 

(a) Using dimensional 

variables. (b) Using 

dimensionless groups.

* Note that only three basic dimensions will be considered here. Temperature will not be included. 
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Dimensional Analysis

Dimensional analysis is the process used to obtain the �-groups for experimental design. There are

two methods: the step-by-step method and the exponent method. Both are addressed in this section.

The Step-by-Step Method
Several methods may be used to carry out the process of finding the �-groups, but the step-

by-step approach, very clearly presented by Ipsen (2), is one of the easiest and reveals much

about the process. The procedure for the step-by-step method follows in Table 8.1.

The final result can be expressed as a functional relationship of the form

(8.3)

The selection of the dependent and independent �-groups depends on the application. Also

the selection of variables used to eliminate dimensions is arbitrary.

Example 8.1 shows how to use the step-by-step method to find the �-groups for a body

falling in a vacuum.  

Table 8.1 THE STEP-BY-STEP APPROACH

Step Action Taken During This Step

1 Identify the significant dimensional variables and write out the primary dimensions of each.

2 Apply the Buckingham � theorem to find the number of �-groups.*

3 Set up table with the number of rows equal to the number of dimensional variables and the 
number of columns equal to the number of basic dimensions plus one ( ).

4 List all the dimensional variables in the first column with primary dimensions.

5 Select a dimension to be eliminated, choose a variable with that dimension in the first column, 
and combine with remaining variables to eliminate the dimension. List combined variables in 
the second column with remaining primary dimensions.

6 Select another dimension to be eliminated, choose from variables in the second column that 
has that dimension, and combine with the remaining variables. List the new combinations with 
remaining primary dimensions in the third column

7 Repeat Step 6 until all dimensions are eliminated. The remaining dimensionless groups are the 
�-groups. List the �-groups in the last column

* Note that, in rare instances, the number of �-groups may be one more than predicted by the Buckingham � theorem.
This anomaly can occur because it is possible that two-dimensional categories can be eliminated when dividing (or
multiplying) by a given variable. See Ipsen (2) for an example of this.

EXAMPLE 8.1 �-GROUPS FOR BODY FALLING

IN A VACUUM

There are three significant dimensional variables for a body 

falling in a vacuum (no viscous effects): the velocity V ; the

acceleration due to gravity, g ; and the distance through which 

the body falls, h. Find the �-groups using the step-by-step 

method.

Problem Definition

Situation: Body falling in vacuum, 

Find: �-groups.

Plan

Follow procedure for step-by-step method in Table 8.1. 

8.3

�1 f �2 �2 ...�n, ,( )�

m 1+

V f g h,( ).�
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Example 8.2 illustrates the application of the step-by-step method for finding �-groups

for a problem with five variables and three primary dimensions. 

Solution

1. Significant variables and dimensions

There are only two dimensions, L and T.

2. From the Buckingham � theorem, there is only one 
(three variables–two dimensions) �-group.

3. Set up table with three rows (number of variables) and 
three (dimensions + 1) columns.

4. List variables and primary dimensions in first column.

5. Select h to eliminate L. Divide g by h, enter in second 
column with dimension 1/T 2. Divide V by h, enter in 
second column with dimension 1/T. 

6. Select g/h to eliminate T. Divide V/h by and enter in 
third column.
As expected, there is only one �-group,

The final functional form of equation of the equation is

Review

1. From basic physics 

2. The proper relationship between V, h, and g is found with 
dimensionless analysis. If the value of C were not known 
from basic physics, it could be determined from 
experiment.

EXAMPLE 8.2 �-GROUPS FOR DRAG ON A 

SPHERE USING STEP-BY-STEP METHOD

The drag FD of a sphere in a fluid flowing past the sphere is a 

function of the viscosity �, the mass density �, the velocity of 

flow V, and the diameter of the sphere D. Use the step-by-step 

method to find the �-groups.

Problem Definition

Situation: Given

Find: The �-groups using the step-by-step method. 

Plan

Use the step-by-step procedure from Table 8.1. 

Solution

1. Dimensions of significant variables

2. Number of �-groups, 5 – 3 = 2.

3. Set up table with five rows and four columns. 

4. Write variables and dimensions in first column.
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The form of the �-groups obtained will depend on the variables selected to eliminate

dimensions. For example, if in Example 8.2, had been used to eliminate the time di-

mension, the two �-groups would have been

 and 

The result is still valid but may not be convenient to use. The form of any �-group can be al-

tered by multiplying or dividing by another �-group. Multiplying the by the square of

yields the original in Example 8.2.

By so doing the two �-groups would be the same as in Example 8.2.

The Exponent Method
An alternative method for finding the �-groups is the exponent method. This method in-

volves solving a set of algebraic equations to satisfy dimensional homogeneity. The proce-

dural steps for the exponent method follow.

5. Eliminate L using D and write new variable combinations 
with corresponding dimensions in the second column.

6. Eliminate M using  and write new variable 
combinations with dimensions in the third column. 

7. Eliminate T using and write new combinations in the 
fourth column. 
The final two �-groups are

and

The functional equation can be written as

Review

The functional relationship between the �-groups is obtained 

from experiment. 

Table 8.2 THE EXPONENT METHOD

Step Action Taken During This Step

1 Identify the significant dimensional variables, and write out the primary dimensions of each, 

2 Apply the Buckingham � theorem to find the number of �-groups.

3 Write out the product of the primary dimensions in the form

where n is the number of dimensional variables and a, b, etc. are exponents.

4 Find the algebraic equations for the exponents that satisfy dimensional homogeneity (same power for 
dimensions on each side of equation).

5 Solve the equations for the exponents.

6 Express the dimensional equation in the form  and identify the �-groups.
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Example 8.3 illustrates how to apply the exponent method to find the �-groups of the

same problem addressed in Example 8.2.

Selection of Significant Variables
All the foregoing procedures deal with straightforward situations. However, some problems

do occur. In order to apply dimensional analysis one must first decide which variables are

significant. If the problem is not sufficiently well understood to make a good choice of the

significant variables, dimensional analysis seldom provides clarification.

A serious shortcoming might be the omission of a significant variable. If this is done,

one of the significant �-groups will likewise be missing. In this regard, it is often best to

identify a list of variables that one regards as significant to a problem and to determine if

only one dimensional category (such as M or L or T ) occurs. When this happens, it is likely

that there is an error in choice of significant variables because it is not possible to combine

EXAMPLE 8.3 �-GROUPS FOR DRAG ON A 

SPHERE USING EXPONENT METHOD

The drag of a sphere, in a flowing fluid is a function of the 

velocity V, the fluid density the fluid viscosity and the 

sphere diameter D. Find the �-groups using the exponent 

method.

Problem Definition

Situation: Given

Find: The �-groups using exponent method.

Plan

Follow the procedure for the exponent method in Table 8.2.

Solution

1. Dimensions of significant variables are

2. Number of �-groups is 

3. Form product with dimensions.

4. Dimensional homogeneity. Equate powers of dimensions 
on each side.

L:

M:

T:

5. Solve for exponents a, b, and c in terms of d.

The value of the determinant is –1 so a unique solution is 

achievable. Solution is 

6. Write dimensional equation with exponents.

There are two �-groups:

and

By dividing by the square of , the group can be 

written as so the functional form of the 

equation can be written as

Review

1. The group of variables raised to the power forms a �-
group.

2. The functional relationship between the two �-groups is 
obtained from experiment.
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two variables to eliminate the lone dimension. Either the variable with the lone dimension

should not have been included in the first place (it is not significant), or another variable

should have been included.

How does one know if a variable is significant for a given problem? Probably the tru-

est answer is by experience. After working in the field of fluid mechanics for several years,

one develops a feel for the significance of variables to certain kinds of applications. How-

ever, even the inexperienced engineer will appreciate the fact that free-surface effects have

no significance in closed-conduit flow; consequently, surface tension, 
, would not be in-

cluded as a variable. In closed-conduit flow, if the velocity is less than approximately one-

third the speed of sound, compressibility effects are usually negligible. Such guidelines,

which have been observed by previous experimenters, help the novice engineer develop

confidence in her or his application of dimensional analysis and similitude.

Common �-Groups

The most common �-groups can be found by applying dimensional analysis to all the

variables that might be significant in a general flow situation, The purpose of this section is

to develop these common �-groups and discuss their significance.

Variables that have significance in a general flow field are the velocity V, the density �,

the viscosity �, and the acceleration due to gravity g. In addition, if fluid compressibility

were likely, then the bulk modulus of elasticity, Ev, should be included. If there is a liquid-

gas interface, the surface tension effects may also be significant. Finally the flow field will be

affected by a general length, L, such as the width of a building or the diameter of a pipe.

These variables will be regarded as the independent variables. The primary dimensions of the

significant independent variables are

There are several other independent variables that could be identified for thermal ef-

fects, such as temperature, specific heat, and thermal conductivity. Inclusion of these vari-

ables is beyond the scope of this text.

Products that result from a flowing fluid are pressure distributions (p), shear stress dis-

tributions (�), and forces on surfaces and objects (F) in the flow field. These will be identified

as the dependent variables. The primary dimensions of the dependent variables are

There are other dependent variables not included here, but they will be encountered and in-

troduced for specific applications.

Altogether there are 10 significant variables, which, by application of the Buckingham

� theorem, means there are seven �-groups. Utilizing either the step-by-step method or the

exponent method yields 

8.4
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The first three groups, the dependent �-groups, are identified by specific names. For

these groups it is common practice to use the kinetic pressure, /2, instead of . In

most applications one is concerned with a pressure difference, so the pressure �-group is ex-

pressed as

where  is called the pressure coefficient and is a reference pressure. The pressure coef-

ficient was introduced earlier in Chapter 4 and Section 8.1. The �-group associated with

shear stress is called the shear-stress coefficient and defined as

where the subscript f denotes “friction.” The �-group associated with force is referred to,

here, as a force coefficient and defined as

This coefficient will be used extensively in Chapter 11 for lift and drag forces on airfoils and

hydrofoils.

The independent �-groups are named after earlier contributors to fluid mechanics. The

�-group is called the Reynolds number, after Osborne Reynolds, and designated by

Re. The group is rewritten as since is the speed of sound, c. This

�-group is called the Mach number and designated by M. The �-group is called the

Weber number and designated by We. The remaining �-group is usually expressed as

and identified as the Froude (rhymes with “food”) number* and written as Fr.

The general functional form for all the �-groups is

(8.4)

which means that either of the three dependent �-groups are functions of the four independent

�-groups; that is, the pressure coefficient, the shear-stress coefficient, or the force coefficient

are functions of the Reynolds number, Mach number, Weber number, and Froude number.

The �-groups, their symbols, and their names are summarized in Table 8.3. Each inde-

pendent �-group has an important interpretation as indicated by the ratio column. The Rey-

nolds number can be viewed as the ratio of kinetic to viscous forces. The kinetic forces are

the forces associated with fluid motion. The Bernoulli  equation indicates that the pressure

* Sometimes the Froude number is written as and called the densimetric Froude number. It

has application in studying the motion of fluids in which there is density stratification, such as between salt

water and fresh water in an estuary or heated-water effluents associated with thermal power plants.
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difference required to bring a moving fluid to rest is the kinetic pressure, so the

kinetic forces,* should be proportional to

The shear force due to viscous effects, is proportional to the shear stress and area

and the shear stress is proportional to

so Taking the ratio of the kinetic to the viscous forces

yields the Reynolds number. The magnitude of the Reynolds number provides important in-

formation about the flow. A low Reynolds number implies viscous effects are important; a

high Reynolds number implies kinetic forces predominate. The Reynolds number is one of

the most widely used �-groups in fluid mechanics. It is also often written using kinematic

viscosity, 

The ratios of the other independent �-groups have similar significance. The Mach

number is an indicator of how important compressibility effects are in a fluid flow. If the

Mach number is small, then the kinetic force associated with the fluid motion does not cause

Table 8.3 COMMON �-GROUPS

�-Group Symbol Name Ratio

Cp Pressure coefficient

cf Shear-stress coefficient

CF Force coefficient

Re Reynolds number

M Mach number

We Weber number

Fr Froude number

* Traditionally the kinetic force has been identified as the “inertial” force.
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a significant density change, and the flow can be treated as incompressible (constant density).

On the other hand, if the Mach number is large, there are often appreciable density changes

that must be considered in model studies.

The Weber number is an important parameter in liquid atomization. The surface tension

of the liquid at the surface of a droplet is responsible for maintaining the droplet’s shape. If a

droplet is subjected to an air jet and there is a relative velocity between the droplet and the

gas, kinetic forces due to this relative velocity cause the droplet to deform. If the Weber num-

ber is too large, the kinetic force overcomes the surface-tension force to the point that the

droplet shatters into even smaller droplets. Thus a Weber-number criterion can be useful in

predicting the droplet size to be expected in liquid atomization. The size of the droplets re-

sulting from liquid atomization is a very significant parameter in gas-turbine and rocket

combustion.

The Froude number is unimportant when gravity causes only a hydrostatic pressure dis-

tribution, such as in a closed conduit. However, if the gravitational force influences the pat-

tern of flow, such as in flow over a spillway or in the formation of waves created by a ship as

it cruises over the sea, the Froude number is a most significant parameter.

Similitude

Scope of Similitude

Similitude is the theory and art of predicting prototype performance from model observations.

Whenever it is necessary to perform tests on a model to obtain information that cannot be

obtained by analytical means alone, the rules of similitude must be applied. The theory of

similitude involves the application of �-groups, such as the Reynolds number or the Froude

number, to predict prototype performance from model tests. The art of similitude enters the

problem when the engineer must make decisions about model design, model construction,

performance of tests, or analysis of results that are not included in the basic theory.

Present engineering practice makes use of model tests more frequently than most people re-

alize. For example, whenever a new airplane is being designed, tests are made not only on the gen-

eral scale model of the prototype airplane but also on various components of the plane. Numerous

tests are made on individual wing sections as well as on the engine pods and tail sections.

Models of automobiles and high-speed trains are also tested in wind tunnels to predict

the drag and flow patterns for the prototype. Information derived from these model studies

often indicates potential problems that can be corrected before the prototype is built, thereby

saving considerable time and expense in development of the prototype.

In civil engineering, model tests are always used to predict flow conditions for the spill-

ways of large dams. In addition, river models assist the engineer in the design of flood-con-

trol structures as well as in the analysis of sediment movement in the river. Marine engineers

make extensive tests on model ship hulls to predict the drag of the ships. Much of this type of

testing is done at the David Taylor Model Basin, Naval Surface Warfare Center, Carderock

Division, near Washington, D.C. (see Fig. 8.3). Tests are also regularly performed on models

of tall buildings to help predict the wind loads on the buildings, the stability characteristics of

the buildings, and the airflow patterns in their vicinity. The latter information is used by the

architects to design walkways and passageways that are safer and more comfortable for pe-

destrians to use.

8.5
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Geometric Similitude
Geometric similitude means that the model is an exact geometric replica of the prototype.*

Consequently, if a 1:10 scale model is specified, all linear dimensions of the model must be

1 10 of those of the prototype. In Fig. 8.4 if the model and prototype are geometrically simi-

lar, the following equalities hold:

(8.5)

Here �, w, and c are specific linear dimensions associated with the model and prototype, and

Lr is the scale ratio between model and prototype. It follows that the ratio of corresponding

Figure 8.3

Ship-model test at the 

David Taylor Model 

Basin, Naval Surface 

Warfare Center, 

Carderock Division.

* For most model studies this is a basic requirement. However, for certain types of problems, such as river

models, distortion of the vertical scale is often necessary to obtain meaningful results.

Figure 8.4

(a) Prototype. (b) Model.
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areas between model and prototype will be the square of the length ratio: The ratio

of corresponding volumes will be given by 

Dynamic Similitude
Dynamic similitude means that the forces that act on corresponding masses in the model and

prototype are in the same ratio throughout the entire flow field. For ex-

ample, the ratio of the kinetic to viscous forces must be the same for the model and the proto-

type. Since the forces acting on the fluid elements control the motion of those elements, it

follows that dynamic similarity will yield similarity of flow patterns. Consequently, the flow

patterns for the model and the prototype will be the same if geometric similitude is satisfied

and if the relative forces acting on the fluid are the same in the model as in the prototype.

This latter condition requires that the appropriate �-groups introduced in Section 8.4 be the

same for the model and prototype, because these �-groups are indicators of relative forces

within the fluid.

A more physical interpretation of the force ratios can be illustrated by considering the

flow over the spillway shown in Fig. 8.5a. Here corresponding masses of fluid in the model

and prototype are acted on by corresponding forces. These forces are the force of gravity Fg,

the pressure force Fp , and the viscous resistance force Fv. These forces add vectorially as

shown in Fig. 8.5 to yield a resultant force FR, which will in turn produce an acceleration of

the volume of fluid in accordance with Newton’s second law of motion. Hence, because the

force polygons in the prototype and model are similar, the magnitudes of the forces in the

prototype and model will be in the same ratio as the magnitude of the vectors representing

mass times acceleration:

or

which reduces to

But

so

(8.6)

Taking the square root of each side of Eq. (8.6) gives

 or (8.7)

Thus the Froude number for the model must be equal to the Froude number for the prototype

to have the same ratio of forces on the model and the prototype. 
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Equating the ratio of the forces producing acceleration to the ratio of viscous forces,

(8.8)

where leads to

The same analysis can be carried out for the Mach number and the Weber number. To sum-

marize, if the independent �-groups for the model and prototype are equal, then the condition

for dynamic similitude is satisfied.

Referring back to Eq. (8.4) for the general functional relationship,

if the independent �-groups are the same for the model and the prototype, then dependent �-

groups must also be equal so

(8.9)

To have complete similitude between the model and the prototype, it is necessary to have

both geometric and dynamic similitude.

In many situations it may not be possible nor necessary to have all the independent �-

groups the same for the model and the prototype to carry out useful model studies. For the

flow of a liquid in a horizontal pipe, for example, in which the fluid completely fills the pipe

Figure 8.5

Model-prototype

relations: prototype view 

(a) and model view (b).
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(no free surface), there would be no surface tension effects, so the Weber number would be

inappropriate. Compressibility effects would not be important, so the Mach number would

not be needed. In addition, gravity would not be responsible for the flow, so the Froude num-

ber would not have to be considered. The only significant �-group would be the Reynolds

number; thus dynamic similitude would be achieved by matching the Reynolds number be-

tween the model and the prototype. 

On the other hand if a model test were to be done for the flow over a spillway, the

Froude number would be a significant �-group because gravity is responsible for the motion

of the fluid. Also, the action of viscous stresses due to the spillway surface could possibly af-

fect the flow pattern, so the Reynolds number may be a significant �-group. In this situation,

dynamic similitude may require that both the Froude number and the Reynolds number be

the same for the model and prototype. 

The choice of significant �-groups for dynamic similitude and their actual use in pre-

dicting prototype performance are considered in the next two sections.

Model Studies for Flows Without Free-Surface Effects

Free-surface effects are absent in the flow of liquids or gases in closed conduits, including

control devices such as valves, or in the flow about bodies (e.g., aircraft) that travel through

air or are deeply submerged in a liquid such as water (submarines). Free-surface effects are

also absent where a structure such as a building is stationary and wind flows past it. In all

these cases, given relatively low Mach numbers, the Reynolds-number criterion is the most

significant for dynamic similarity. That is, the Reynolds number for the model must equal the

Reynolds number for the prototype. 

Example 8.4 illustrates the application of Reynolds-number similitude for the flow over

a blimp.  

EXAMPLE 8.4   REYNOLDS-NUMBER SIMILITUDE

The drag characteristics of a blimp 5 m in diameter and 60 m 

long are to be studied in a wind tunnel. If the speed of the 

blimp through still air is 10 m s, and if a 1 10 scale model is 

to be tested, what airspeed in the wind tunnel is needed for 

dynamically similar conditions? Assume the same air pressure 

and temperature for both model and prototype.

Problem Definition

Situation: Wind tunnel test of a 1 10 scale model blimp. 
Prototype speed is 10 m s.

Find: Speed (in m s) in wind tunnel for dynamic similitude. 

Assumptions: Same air pressure and temperature for model
and prototype, therefore 

Plan

The only �-group that is appropriate is the Reynolds number 

(there are no compressibility effects, free-surface effects, or 

gravitation effects). Thus equating the model and prototype 

Reynolds number satisfies dynamic similitude. 

1. Equate the Reynolds number of the model and the 
prototype.

2. Calculate model speed.

Solution

1. Reynolds-number similitude

2. Model velocity
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Example 8.4 shows that the airspeed in the wind tunnel must be 100 m/s for true Reynolds-

number similitude. This speed is quite large, and in fact Mach-number effects may start to be-

come important at such a speed. However, it will be shown in Section 8.9 that it is not always

necessary to operate models at true Reynolds-number similitude to obtain useful results.

If the engineer feels that it is essential to maintain Reynolds-number similitude, then

only a few alternatives are available. One way to produce high Reynolds numbers at nominal

airspeeds is to increase the density of the air. A NASA wind tunnel at the Ames Research

Center at Moffett Field in California is one such facility. It has a 12 ft–diameter test section;

it can be pressurized up to 90 psia (620 kPa); it can be operated to yield a Reynolds number

per foot up to 1.2 107, and the maximum Mach number at which a model can be tested in

this wind tunnel is 0.6. The airflow in this wind tunnel is produced by a single-stage, 20-

blade axial-flow fan, which is powered by a 15,000-horsepower, variable-speed, synchronous

electric motor (3). There are several problems that are peculiar to a pressurized tunnel. First,

a shell (essentially a pressurized bottle) must surround the entire tunnel and its components,

adding to the cost of the tunnel. Second, it takes a long time to pressurize the tunnel in prepa-

ration for operation, increasing the time from the start to the finish of runs. In this regard it

should be noted that the original pressurized wind tunnel at the Ames Research Center was

built in 1946; however, because of extensive use, the tunnel’s pressure shell began to deterio-

rate, so a new facility (the one previously described) was built and put in operation in 1995.

Improvements over the old facility include a better data collection system, very low turbu-

lence, and capability of depressurizing only the test section instead of the entire 620,000 ft3

wind tunnel circuit when installing and removing models. The original pressurized wind tun-

nel was used to test most models of U.S. commercial aircraft over the past half-century, in-

cluding the Boeing 737, 757, and 767; Lockheed L-1011; and McDonnell Douglas DC-9 and

DC-10.

The Boeing 777 was tested in the low-speed, pressurized 5 m–by–5 m tunnel in Farn-

borough, England. This tunnel, operated by the Defence Evaluation and Research Agency

(DERA) of Great Britain, can operate at three atmospheres with Mach numbers up to 0.2.

Approximately 15,000 hours of total testing time was required for the Boeing 777 (4).

Another method of obtaining high Reynolds numbers is to build a tunnel in which the

test medium (gas) is at a very low temperature, thus producing a relatively high-density–

low-viscosity fluid. NASA has built such a tunnel and operates it at the Langley Research

Center. This tunnel, called the National Transonic Facility, can be pressurized up to 9 atmo-

spheres. The test medium is nitrogen, which is cooled by injecting liquid nitrogen into the

system. In this wind tunnel it is possible to reach Reynolds numbers of 108 based on a model

size of 0.25 m (5). Because of its sophisticated design, its initial cost of approximately

$100,000,000 (6), and its operating expenses are high.

Another modern approach in wind-tunnel technology is the development of magnetic

or electrostatic suspension of models. The use of the magnetic suspension with model air-

planes has been studied (6), and the electrostatic suspension for the study of single-particle

aerodynamics has been reported (7).

The use of wind tunnels for aircraft design has grown significantly as the size and so-

phistication of aircraft have increased. For example, in the 1930s the DC-3 and B-17 each

had about 100 hours of wind-tunnel tests at a rate of $100 per hour of run time. By contrast

the F-15 fighter required about 20,000 hours of tests at a cost of $20,000 per hour (6). The

latter test time is even more staggering when one realizes that a much greater volume of data

per hour at higher accuracy is obtained from the modern wind tunnels because of the high-

speed data acquisition made possible by computers.

Example 8.5 illustrates the use of Reynolds-number similitude to design a test for a

valve.  

×
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Model-Prototype Performance

Geometric (scale model) and dynamic (same �-groups) similitude mean that the dependent

�-groups are the same for both the model and the prototype. For this reason, measurements

made with the model can be applied directly to the prototype. Such correspondence is

illustrated in this section.

Example 8.6 shows how the pressure difference measured in a model test can be used

to find the pressure difference between the corresponding two points on the prototype.  

EXAMPLE 8.5   REYNOLDS-NUMBER SIMILITUDE 

OF A VALVE

The valve shown is the type used in the control of water in 

large conduits. Model tests are to be done, using water as the 

fluid, to determine how the valve will operate under wide-

open conditions. The prototype size is 6 ft in diameter at the 

inlet. What flow rate is required for the model if the prototype 

flow is 700 cfs? Assume that the temperature for model and 

prototype is 60°F and that the model inlet diameter is 1 ft.

Sketch:

Situation: A 1 6 scale model of valve tested in water tunnel. 
Prototype flow rate is 700 cfs.

Find: Flow rate through model.

Assumptions:

1. No compressibility, free surface or gravitational effects. 

2. Temperature of water in model and prototype is the same. 
Therefore kinematic viscosity of model and prototype are 
equal.

Plan

Dynamic similitude is obtained by equating the model and 

prototype Reynolds number. The model prototype area ratio 

is the square of the scale ratio.

1. Equate Reynolds number of model and prototype.

2. Calculate the velocity ratio. 

3. Calculate the discharge ratio using model/prototype area 
ratio.

Solution

1. Reynolds-number similitude

2. Velocity ratio

Since

3. Discharge

Review

This discharge is very large and serves to emphasize that very 

few model studies are made that completely satisfy the 

Reynolds-number criterion. This subject will be discussed 

further in the next sections. 
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Example 8.7 illustrates calculating the fluid dynamic force on a prototype blimp from

wind tunnel data using similitude.  

EXAMPLE 8.6   APPLICATION OF PRESSURE 

COEFFICIENT

A 1 10 scale model of a blimp is tested in a wind tunnel 

under dynamically similar conditions. The speed of the blimp 

through still air is 10 m s. A 17.8 kPa pressure difference is 

measured between two points on the model. What will be the 

pressure difference between the two corresponding points on 

the prototype? The temperature and pressure in the wind tunnel 

is the same as the prototype.

Problem Definition

Situation: A 1 10 scale of a blimp is tested in a wind tunnel 
under dynamically similar conditions. A pressure difference 
of 17.8 kPa is measured on model.

Find: Corresponding pressure difference (Pa) on prototype.

Properties: Pressure and temperature are the same for wind

tunnel test and prototype, so 

Plan

Reynolds number is the only significant �-group. Thus Eq. 

(8.4) reduces to

For dynamic similitude, Then with geometric 

similitude,

1. Calculate the model/prototype velocity ratio.

2. Calculate pressure difference on prototype. 

Solution

1. Reynolds-number similitude

2. Pressure coefficient correspondence

Pressure difference on prototype

EXAMPLE 8.7   DRAG FORCE FROM WIND 

TUNNEL TESTING

A 1 10 scale of a blimp is tested in a wind tunnel under 

dynamically similar conditions. If the drag force on the model 

blimp is measured to be 1530 N, what corresponding force 

could be expected on the prototype? The air pressure and 

temperature are the same for both model and prototype.

Problem Definition

Situation: A 1 10 scale model of blimp is tested in a wind 
tunnel, and a drag force of 1530 N is measured.

Find: The drag force (in newtons) on the prototype.

Properties: Pressure and temperature are the same,  

Plan

Reynolds number is the only significant �-group, so Eq. (8.4) 

reduces to  For dynamic similtude, 

Thus with geometric similitude 

1. Find velocity ratio by equating Reynolds numbers. 

2. Find the force ratio from force coefficient.

Solution

1. Reynolds-number similitude
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Approximate Similitude at High Reynolds Numbers

The primary justification for model tests is that it is more economical to get answers needed for

engineering design by such tests than by any other means. However, as revealed by Examples

8.3, 8.4, and 8.6, Reynolds-number similitude requires expensive model tests (high-pressure

facilities, large test sections, or using different fluids). This section shows that approximate

similitude is achievable even though high Reynolds numbers cannot be reached in model tests.

Consider the size and power required for wind-tunnel tests of the blimp in Example 8.3.

The wind tunnel would probably require a section at least 2 m by 2 m to accommodate the

model blimp. With a 100 m s airspeed in the tunnel, the power required for producing con-

tinuously a stream of air of this size and velocity is in the order of 4 MW. Such a test is not

prohibitive, but it is very expensive. It is also conceivable that the 100 m s airspeed would

introduce Mach-number effects not encountered with the prototype, thus generating concern

over the validity of the model data. Furthermore, a force of 1530 N is generally larger than

that usually associated with model tests. Therefore, especially in the study of problems in-

volving non-free-surface flows, it is desirable to perform model tests in such a way that large

magnitudes of forces or pressures are not encountered.

For many cases, it is possible to obtain all the needed information from abbreviated

tests. Often the Reynolds-number effect (relative viscous effect) either becomes insignificant

at high Reynolds numbers or becomes independent of the Reynolds number. The point where

testing can be stopped often can be detected by inspection of a graph of the pressure coeffi-

cient Cp versus the Reynolds number Re. Such a graph for a venturi meter in a pipe is shown

in Fig. 8.6. In this meter, �p is the pressure difference between the points shown, and V is the

velocity in the restricted section of the venturi meter. Here it is seen that viscous forces affect

the value of Cp below a Reynolds number of approximately 50,000. However, for higher

Reynolds numbers, Cp is virtually constant. Physically this means that at low Reynolds num-

bers (relatively high viscous forces), a significant part of the change in pressure comes from

viscous resistance, and the remainder comes from the acceleration (change in kinetic energy)

of the fluid as it passes through the venturi meter. However, with high Reynolds numbers (re-

sulting from either small viscosity or a large product of V, D, and �), the viscous resistance is

negligible compared with the force required to accelerate the fluid. Since the ratio of �p to

the kinetic pressure does not change (constant Cp) for high Reynolds numbers, there is no

need to carry out tests at higher Reynolds numbers. This is true in general, so long as the flow

pattern does not change with the Reynolds number.

2. Force coefficient correspondence Therefore

Review

The result that the model force is the same as the prototype 

force is interesting. When Reynolds-number similitude is 

used, and the fluid properties are the same fluid for model and 

prototype, the forces on the model will always be the same as 

the forces on the prototype. 
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In a practical sense, whoever is in charge of the model test will try to predict from pre-

vious works approximately what maximum Reynolds number will be needed to reach the

point of insignificant Reynolds-number effect and then will design the model accordingly.

After a series of tests has been made on the model, Cp versus Re will be plotted to see

whether the range of constant Cp has indeed been reached. If so, then no more data are

needed to predict the prototype performance. However, if Cp has not reached a constant

value, the test program has to be expanded or results extrapolated. Thus the results of some

model tests can be used to predict prototype performance even though the Reynolds numbers

are not the same for the model and the prototype. This is especially valid for angular-shaped

bodies, such as model buildings, tested in wind tunnels.

In addition, the results of model testing can be combined with analytic results. Compu-

tational fluid dynamics (CFD) may predict the change in performance with Reynolds number

but may not be reliable to predict the performance level. In this case, the model testing would

be used to establish the level and of performance, and the trends predicted by CFD would be

used to extrapolate the results to other conditions.

Example 8.8 is an illustration on the approximate similitude at high Reynolds number

for flow through a constriction.  

Figure 8.6

Cp for a venturi meter as 

a function of the 

Reynolds number.

EXAMPLE 8.8   MEASURING HEAD LOSS IN 

NOZZLE IN REVERSE FLOW

Tests are to be performed to determine the head loss in a 

nozzle under a reverse-flow situation. The prototype operates 

with water at 50°F and with a nominal reverse-flow velocity 

of 5 ft s. The diameter of the prototype is 3 ft. The tests are 

done in a 1 12 scale model facility with water at 60°F. A 

head loss (pressure drop) of 1 psid is measured with a 

velocity of 20 ft s. What will be the head loss in the actual 

nozzle?
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In some situations viscous and compressibility effects may both be important, but it is

not possible to have dynamic similitude with both �-groups. Which �-group is chosen for si-

militude depends a great deal on what information the engineer is seeking. If the engineer is

interested in the viscous motion of fluid near a wall in shock-free supersonic flow, then the

Reynolds number should be selected as the significant �-group. However, if the shock wave

pattern over a body is of interest, then the Mach number should be selected for similitude. A

useful rule of thumb is that compressibility effects are unimportant for 

Example 8.9 shows the difficulty in having Reynolds-number similitude and avoiding

Mach-number effects in wind tunnel tests of an automobile. 

Problem Definition

Situation: A 1 12 scale model tests for head loss in a 
reverse-flow nozzle. A pressure difference of 1 psid is 

measured with model at 20 ft s.

Find: Pressure drop (psid) in actual nozzle.

Properties: Table F.5.: Water at 50°F, � 1.94 slugs ft3,
 ft2 s; water at 60°F, � 1.94 slugs ft3,

 ft2 s.

Plan

The only significant �-group is the Reynolds number, so Eq. 

(8.4) reduces to Dynamic similitude achieved if 

then From Fig. 8.6, if  

then

1. Calculate Reynolds number for model and prototype.

2. Check if both exceed 103. If not, model tests need to be 
reevaluated.

3. Calculate pressure coefficient.

4. Evaluate pressure drop in prototype. 

Solution

1. Reynolds numbers

2. Both Reynolds numbers exceed 103. Therefore 
 The test is valid.

3. Pressure coefficient from model tests

4. Pressure drop in prototype

Review

1. Because the Reynolds numbers are so much greater than 
103, the equation for pressure drop is valid over a wide 
range of velocities. 

2. This example justifies the independence of Reynolds 
number referred to in Section 8.1. 

EXAMPLE 8.9   MODEL TESTS FOR DRAG FORCE 

ON AN AUTOMOBILE

A 1 10 scale of an automobile is tested in a wind tunnel with 

air at atmospheric pressure and 20oC. The automobile is 4 m 

long and travels at a velocity of 100 km hr in air at the same 

conditions. What should the wind-tunnel speed be such that 

the measured drag can be related to the drag of the prototype? 

Experience shows that the dependent �-groups are 

independent of Reynolds numbers for values exceeding 105.

The speed of sound is 1235 km hr.

Problem Definition

Situation: A 1 10 scale model of a 4 m–long automobile 

moving at 100 km hr is tested in wind tunnel. 

Find: The wind tunnel speed to achieve similitude. 

Properties: Air (20oC), Table A.3, 
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Free-Surface Model Studies

Spillway Models

The flow over a spillway is a classic case of a free-surface flow. The major influence, besides

the spillway geometry itself, on the flow of water over a spillway is the action of gravity.

Hence the Froude-number similarity criterion is used for such model studies. It can be appre-

ciated for large spillways with depths of water on the order of 3 m or 4 m and velocities on

the order of 10 m s or more, that the Reynolds number is very large. At high values of the

Reynolds number, the relative viscous forces are often independent of the Reynolds number,

as noted in the foregoing section (Sec. 8.8). However, if the reduced-scale model is made too

small, the viscous forces as well as the surface-tension forces would have a larger relative ef-

fect on the flow in the model than in the prototype. Therefore, in practice, spillway models

are made large enough so that the viscous effects have about the same relative effect in the

model as in the prototype (i.e., the viscous effects are nearly independent of the Reynolds

number). Then the Froude number is the significant �-group. Most model spillways are made

at least 1 m high, and for precise studies, such as calibration of individual spillway bays, it is

not uncommon to design and construct model spillway sections that are 2 m or 3 m high. Fig-

ures 8.7 and 8.8 show a comprehensive model and spillway model for Hell’s Canyon Dam in

Idaho.  

Plan

Mach number of the prototype is about 0.08 (100 1235), so 

Mach-number effects are unimportant. Dynamic similitude is 

achieved with Reynolds numbers, With dynamic 

similitude, and model measurements can be 

applied to prototype.

1. Determine the model speed for dynamic similitude.

2. Evaluate the model speed. If it is not feasible, continue to 
next step.

3. Calculate the prototype Reynolds number. If 
then for 

4. Find the speed for which  

Solution

1. Velocity from Reynolds-number similitude

2. With this velocity, This is too 
high for model tests because it would introduce unwanted 
compressibility effects.

3. Reynolds number of prototype 

Therefore  if  

4. Wind tunnel speed 

Review

The wind-tunnel speed must exceed 3.8 m s. From a 

practical point of view, the speed will be chosen to provide 

sufficiently large forces for reliable and accurate 

measurements.
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Example 8.10 is an application of Froude-number similitude in modeling discharge

over a spillway.  

Figure 8.7

Comprehensive model 

for Hell’s Canyon Dam. 

Tests were made at the 

Albrook Hydraulic 

Laboratory, Washington 

State University.

Figure 8.8

Spillway model for Hell’s 

Canyon Dam. Tests were 

made at the Albrook 

Hydraulic Laboratory, 

Washington State 

University.

EXAMPLE 8.10   MODELING FLOOD DISCHARGE 

OVER A SPILLWAY

A 1 49 scale model of a proposed dam is used to predict 

prototype flow conditions. If the design flood discharge over 

the spillway is 15,000 m3 s, what water flow rate should be 

established in the model to simulate this flow? If a velocity of 

1.2 m s is measured at a point in the model, what is the 

velocity at a corresponding point in the prototype?

Problem Definition

Situation: A 1 49 scale model of spillway with discharge of 

15,000 m3 s.

Find:

1. Flow rate over model.

2. Velocity on prototype at point where velocity is 1.2 m s 
on model.

⁄
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⁄
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Ship Model Tests
The largest facility for ship testing in the United States is the David Taylor Model Basin, Na-

val Surface Warfare Center, Carderock Division, near Washington, D.C. Two of the core fa-

cilities are the towing basins and the rotating arm facility. In the rotating arm facility, models

are suspended from the end of a rotating arm in a larger circular basin. Forces and moments

can be measured on ship models up to 9 m in length at steady-state speeds as high as 15.4

m s (30 knots). In the high-speed towing basin, models 1.2 m to 6.1 m can be towed at

speeds up to 16.5 m s (32 knots). 

The aim of the ship model testing is to determine the resistance that the propulsion sys-

tem of the ship must overcome. This resistance is the sum of the wave resistance and the sur-

face resistance of the hull. The wave resistance is a free-surface, or Froude-number,

phenomenon, and the hull resistance is a viscous, or Reynolds-number, phenomenon. Be-

cause both wave and viscous effects contribute significantly to the overall resistance, it

would appear that both the Froude and Reynolds criteria should be used. However, it is im-

possible to satisfy both if the model liquid is water (the only practical test liquid), because the

Reynolds-number similitude dictates a higher velocity for the model than for the prototype

[equal to Vp(Lp Lm)], whereas the Froude-number similitude dictates a lower velocity for the

model [equal to ]. To circumvent such a dilemma, the procedure is to model

for the phenomenon that is the most difficult to predict analytically and to account for the

other resistance by analytical means. Since the wave resistance is the most difficult problem,

the model is operated according to the Froude-number similitude, and the hull resistance is

accounted for analytically.

To illustrate how the test results and the analytical solutions for surface resistance are

merged to yield design data, the following necessary sequential steps are indicated:

1. Make model tests according to Froude-number similitude, and the total model resis-

tance is measured. This total model resistance will be equal to the wave resistance plus the

surface resistance of the hull of the model.

Plan

Gravity is responsible for the flow, so significant �-group is 

the Froude number. For dynamic similitude, 

1. Calculate velocity ratio from Froude-number similitude.

2. Calculate discharge ratio using scale ratio and calculate 
model discharge.

3. Use velocity ratio from step 1 to find velocity at point on 
prototype.

Solution

1. Froude-number similitude

The acceleration due to gravity is the same, so

2. Discharge ratio

Discharge for model

3. Velocity on prototype
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2. Estimate the surface resistance of the model by analytical calculations.

3. Subtract the surface resistance calculated in step 2 from the total model resistance of

step 1 to yield the wave resistance of the model.

4. Using the Froude-number similitude, scale the wave resistance of the model up to yield

the wave resistance of the prototype.

5. Estimate the surface resistance of the hull of the prototype by analytical means.

6. The sum of the wave resistance of the prototype from step 4 and the surface resistance

of the prototype from step 5 yields the total prototype resistance, or drag.

Summary

Dimensional analysis involves combining dimensional variables to form dimensionless

groups. These groups, called �-groups, can be regarded as the scaling parameters for fluid

flow. The Buckingham � theorem states that the number of independent �-groups is

where n is the number of dimensional variables and m is the number of basic

dimensions included in the variables. In fluid mechanics the three basic dimensions are mass

(M), length (L), and time (T).

The �-groups can be found by either the step-by-step method or the exponent method.

In the step-by-step method each dimension is removed by successively using a dimensional

variable until the �-groups are obtained. In the exponent method, each variable is raised to a

power, they are multiplied together, and three simultaneous algebraic equations formulated

for dimensional homogeneity are solved to yield the �-groups.

Four common independent �-groups are

Three common dependent �-groups are

The general functional form of the common �-groups is

Experimental testing is often performed with a small-scale replica (model) of the full-

scale structure (prototype). Similitude is the art and theory of predicting prototype perfor-

mance from model observations. To achieve exact similitude, the model must be a scale

model of the prototype (geometric similitude), and the values of the �-groups must be the

same for the model and the prototype (dynamic similitude). In practice, it is not always possi-

ble to have complete dynamic similitude, so only the most important �-groups are matched.

8.10
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Problems

Dimensional Analysis

8.1 ��� Find the primary dimensions of density �, viscosity

�, and pressure p.

8.2 ��� According to the Buckingham � theorem, if there are

six dimensional variables and three primary dimensions, how

many dimensionless variables will there be?

8.3 ��� Explain what is meant by dimensional homogeneity.

8.4 ��� Determine which of the following equations are dimen-

sionally homogeneous: 

a.

where Q is discharge, C is a pure number, L is length, g is ac-

celeration due to gravity, and H is head.

b.

where V is velocity, n is length to the one-sixth power, R is

length, and S is slope.

c.

where hf is head loss, f is a dimensionless resistance coefficient, L is

length, D is diameter, V is velocity, and g is acceleration due to gravity.

d.

where D is drag force, Re is Vx v, B is width, x is length, � is

mass density,  is the kinematic viscosity, and V is velocity.

8.5 ��� Determine the dimensions of the following variables

and combinations of variables in terms of primary dimensions. 

a. T (torque)

b. where V is velocity and � is mass density

c. where � is shear stress

d. Q ND3, where Q is discharge, D is diameter, and N is an-

gular speed of a pump

8.6 It takes a certain length of time for the liquid level in a tank of

diameter D to drop from position h1 to position h2 as the tank is

being drained through an orifice of diameter d at the bottom. De-

termine the �-groups that apply to this problem. Assume that the

liquid is nonviscous. Express your answer in the functional form.

8.7 The maximum rise of a liquid in a small capillary tube is a function

of the diameter of the tube, the surface tension, and the specific weight

of the liquid. What are the significant �-groups for the problem?

8.8 For very low velocities it is known that the drag force FD of

a small sphere is a function solely of the velocity V of flow past

the sphere, the diameter d of the sphere, and the viscosity � of

the fluid. Determine the �-groups involving these variables.

8.9 Observations show that the side thrust F, for a rough spinning

ball in a fluid is a function of the ball diameter D, the free-stream

velocity V0, the density �, the viscosity �, the roughness height

ks, and the angular velocity of spin �. Determine the dimension-

less parameter(s) that would be used to correlate the experimental

results of a study involving the variables noted above. Express

your answer in the functional form
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8.10 Consider steady viscous flow through a small horizontal

tube. For this type of flow, the pressure gradient along the tube,

should be a function of the viscosity �, the mean velocity

V, and the diameter D. By dimensional analysis, derive a func-

tional relationship relating these variables.

8.11 A flow-metering device, called a vortex meter, consists of a

square element mounted inside a pipe. Vortices are generated by

the element, which gives rise to an oscillatory pressure mea-

sured on the leeward side of the element. The fluctuation fre-

quency is related to the flow velocity. The discharge in the pipe

is a function of the frequency of the oscillating pressure �, the

pipe diameter D, the size of the element l, the density �, and the

viscosity �. Thus 

Find the �-groups in the form 

8.12 It is known that the pressure developed by a centrifugal

pump, �p, is a function of the diameter D of the impeller, the

speed of rotation n, the discharge Q, and the fluid density �. By

dimensional analysis, determine the �-groups relating these

variables.

8.13 The force on a satellite in the earth’s upper atmosphere

depends on the mean path of the molecules � (a length), the

density �, the diameter of the body D, and the molecular speed

c: Find the nondimensional form of this

equation.

8.14 A general study is to be made of the height of rise of liquid

in a capillary tube as a function of time after the start of a test.

Other significant variables include surface tension, mass den-

sity, specific weight, viscosity, and diameter of the tube. Deter-

mine the dimensionless parameters that apply to the problem.

Express your answer in the functional form

8.15 An engineer is using an experiment to characterize the

power P consumed by a fan (see photo) to be used in an elec-

tronics cooling application. Power depends on four variables:

where � is the density of air, D is the diame-

ter of the fan impeller, Q is the flow rate produced by the fan,

and n is the rotation rate of the fan. Find the relevant �-groups

and suggest a way to plot the data. 

8.16 By dimensional analysis, determine the �-groups for the

change in pressure that occurs when water or oil flows through a

horizontal pipe with an abrupt contraction as shown. Express

your answer in the functional form

8.17 A solid particle falls through a viscous fluid. The falling

velocity V, is believed to be a function of the fluid density �f ,

the particle density �p, the fluid viscosity �, the particle diame-

ter D, and the acceleration due to gravity g:

By dimensional analysis, develop the �-groups for this prob-

lem. Express your answer in the form

8.18 An experimental test program is being set up to calibrate a

new flow meter. The flow meter is to measure the mass flow

rate of liquid flowing through a pipe. It is assumed that the mass

flow rate is a function of the following variables: 

where �p is the pressure difference across the meter, D is the

pipe diameter, � is the liquid viscosity, and � is the liquid density.

Using dimensional analysis, find the �-groups. Express your an-

swer in the form

8.19A torpedo-like device is being designed to travel just below the

water surface. Which dimensionless numbers in Section 8.4 would

be significant in this problem? Give a rationale for your answer.
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8.20 Experiments are to be done on the drag forces on an os-

cillating fin in a water tunnel. It is assumed that the drag force

FD, is a function of the liquid density �, the fluid velocity V, the

surface area of the fin S, and the frequency of oscillation �:

By dimensional analysis, find the dimensionless parameters for

this problem. Express your answer in the form

8.21 Flow situations in biofluid mechanics involve the flow

through tubes that change in size with time (such as blood ves-

sels) or are supplied by an oscillatory source. The volume flow

rate Q in the tube will be a function of the frequency the tube

diameter D, the fluid density , viscosity , and the pressure

gradient Find the �-groups for this situation in the

form

8.22 The rise velocity of a bubble with diameter D in a liquid

of density  and viscosity depends on the acceleration due to

gravity, g, and the density difference between the bubble and the

fluid, Find the �-groups in the form

8.23 The discharge of a centrifugal pump is a function of the ro-

tational speed of the pump N, the diameter of the impeller D, the

head across the pump hp, the viscosity of the fluid �, the density

of the fluid �, and the acceleration due to gravity g. The func-

tional relationship is 

By dimensional analysis, find the dimensionless parameters.

Express your answer in the form

8.24 Drag tests show that the drag of a square plate placed normal

to the free-stream velocity is a function of the velocity V, the

density �, the plate dimensions B, the viscosity �, the free-

stream turbulence root mean square velocity urms, and the turbu-

lence length scale Lx. Here urms and Lx are in ft s and ft, respec-

tively. By dimensional analysis, develop the �-groups that could

be used to correlate the experimental results. Express your an-

swer in the functional form

Similitude

8.25 ��� What is meant by geometric similitude?

8.26 ��� Many automobile companies advertise products with

low drag for improved performance. Gather all the information

you can find on wind-tunnel testing of automobiles and summa-

rize your findings in a concise, informative manner on two

pages or less.

8.27 ��� One of the shortcomings of mounting a model of an

automobile in a wind tunnel and measuring drag is that the ef-

fect of the road is not included. Give some thought as to your

impressions of what the effect of the road may be on automobile

drag and your reasoning. Also list some variables that may in-

fluence the effect of the ground on automobile drag.

8.28 ��� One of the largest wind tunnels in the United States

is the NASA facility in Moffat Field, California. Look up infor-

mation on this facility (size, test section velocity, etc.) and sum-

marize your findings in a concise, informative manner.

8.29 ��� The hydrodynamic drag on a sailboat is very impor-

tant to the performance of the craft, especially in competitive

races such as the America’s Cup. Investigate on the Internet or

other sources the extent and types of simulations that have been

carried out on high performance sailboats.

8.30 The drag on a submarine moving below the free sur-

face is to be determined by a test on a 1 15 scale model in a

water tunnel. The velocity of the prototype in sea water

( ) is 2 m s. The test is

done in pure water at 20°C. Determine the speed of the water in

the water tunnel for dynamic similitude and the ratio of the drag

force on the model to the drag force on the prototype.

8.31 Water with a kinematic viscosity of flows through

a 4 cm pipe. What would the velocity of water have to be for the wa-

ter flow to be dynamically similar to oil  flowing

through the same pipe at a velocity of 0.5 m s? 

8.32 Oil with a kinematic viscosity of flows

through a smooth pipe 15 cm in diameter at 2 m s. What velocity

should water have at 20°C in a smooth pipe 5 cm in diameter to

be dynamically similar?

8.33 A large venturi meter is calibrated by means of a 1 10

scale model using the prototype liquid. What is the discharge

ratio Qm Qp for dynamic similarity? If a pressure difference of

400 kPa is measured across ports in the model for a given dis-

charge, what pressure difference will occur between similar

ports in the prototype for dynamically similar conditions?
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8.34 A 1 5 scale model of an experimental bathosphere that

will operate at great depths is to be tested to determine its drag

characteristic by towing it behind a submarine. For true simili-

tude, what should be the towing speed relative to the speed of

the prototype?

8.35 A spherical balloon that is to be used in air at 60°F and at-

mospheric presssure is tested by towing a 1 4 scale model in a

lake. The model is 1 ft in diameter, and a drag of 15 lbf is mea-

sured when the model is being towed in deep water at 5 ft s.

What drag (in pounds force and newtons) can be expected for

the prototype in air under dynamically similar conditions? As-

sume that the water temperature is 60°F.

8.36 An engineer needs a value of lift force for an airplane that

has a coefficient of lift (CL) of 0.4. The �-group is defined as

where FL is the lift force, � is the density of ambient air, V is the

speed of the air relative to the airplane, and S is the area of the

wings from a top view. Estimate the lift force in newtons for a

speed of 80 m s, an air density of 1.1 kg m3, and a wing area

(planform area) of 15 m2.

8.37 An airplane travels in air ( T 10°C) at 150

m s. If a 1 5 scale model of the plane is tested in a wind tunnel

at 25°C, what must the density of the air in the tunnel be so that

both the Reynolds-number and the Mach-number criteria are

satisfied? The speed of sound varies with the square root of the

absolute temperature. (Note: The dynamic viscosity is indepen-

dent of pressure.)

8.38 The new Airbus A380-300 has a wing span of 79.8 m. The

cruise altitude is 10,000 m in a standard atmosphere. Assume

you are designing a wind tunnel to operate with air at 20oC. The

span of the scale model A380 in the wind tunnel is 1 m. Assume

Mach number correspondence between model and prototype.

Both the speed of sound and the dynamic viscosity vary linearly

with the square root of the absolute temperature. What would

the pressure of the air in the wind tunnel have to be to have

Reynolds-number similitude? Use the properties for a standard

atmosphere in Chapter 3 to find properties at 10,000 m altitude.

8.39 The new Boeing 787-3 Dreamliner has a wing span of 52

m. It flies at a cruise Mach number of 0.85, which corresponds

to a velocity of 945 km hr at an altitude of 10,000 m. You are

going to estimate the drag on the prototype by measuring the

drag on a 1 m wing span scale model in a wind tunnel with air

where the speed of sound is 340 m s and the density is 0.98

kg m3. What is the ratio of the force on the prototype to the

force on the model. Only Mach-number similitude is consid-

ered. Use the properties of the standard atmosphere in Chapter 3

to evaluate the density of air for the prototype.

8.40 Flow in a given pipe is to be tested with air and then with

water. Assume that the velocities (VA and VW) are such that the

flow with air is dynamically similar to the flow with water.

Then for this condition, the magnitude of the ratio of the veloci-

ties, VA VW, will be (a) less than unity, (b) equal to unity, or (c)

greater than unity.

8.41 A smooth pipe designed to carry crude oil (diameter 48 in.,

and ) is to be mod-

eled with a smooth pipe 4 in. in diameter carrying water (T

60°F). If the mean velocity in the prototype is 4 ft s, what should

be the mean velocity of water in the model to ensure dynamically

similar conditions?

8.42 A student is competing in a contest to design a radio-

controlled blimp. The drag force acting on the blimp depends

on the Reynolds number, where V is the speed

of the blimp, D is the maximum diameter, � is the density of air,

and � is the viscosity of air. This blimp has a coefficient of drag

(CD) of 0.3. This �-group is defined as

where FD is the drag force � is the density of ambient air, V is

the speed of the air relative to the blimp, and is

the maximum section area of the blimp from a front view. Cal-

culate the Reynolds number, the drag force in newtons, and the

power in watts required to move the blimp through the air.

Blimp speed is 800 mm/s, and the maximum diameter is 475

mm. Assume that ambient air is at 20°C.

8.43 Colonization of the moon will require an improved under-

standing of fluid flow under reduced gravitational forces. The

gravitational force on the moon is 1 5 that on the surface of the

earth. An engineer is designing a model experiment for flow in

a conduit on the moon. The important scaling parameters are the

Froude number and the Reynolds number. The model will be

full-scale. The kinematic viscosity of the fluid to be used on the
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moon is What should be the kinematic viscosity

of the fluid to be used for the model on earth?

8.44 A drying tower at an industrial site is 10 m in diameter. The air

inside the tower has a kinematic viscosity of and

enters at 12 m s. A 1 15 scale model of this tower is fabri-

cated to operate with water that has a kinematic viscosity of

What should the entry velocity of the water be to

achieve Reynolds-number scaling?

8.45 A discharge meter to be used in a 40 cm pipeline carrying oil

is to be calibrated by means

of a model (1 4 scale) carrying water (T 20°C and standard at-

mospheric pressure). If the model is operated with a velocity of

1 m s, find the velocity for the prototype based on Reynolds-

number scaling. For the given conditions, if the pressure differ-

ence in the model was measured as 3.0 kPa, what pressure differ-

ence would you expect for the discharge meter in the oil pipeline? 

8.46 Water at 10°C flowing through a rough pipe 10 cm in diameter

is to be simulated by air (20°C) flowing through the same pipe. If

the velocity of the water is 1.5 m s, what will the air velocity have

to be to achieve dynamic similarity? Assume the absolute air pres-

sure in the pipe to be 150 kPa. If the pressure difference between

two sections of the pipe during air flow was measured as 780 Pa,

what pressure difference occurs between these two sections

when water is flowing under dynamically similar conditions?

8.47 The “noisemaker” B is towed behind the mine-sweeper A

to set off enemy acoustic mines such as that shown at C. The

drag force of the “noisemaker” is to be studied in a water tunnel

at a 1 5 scale (the model is 1 5 the size of the full scale). If the

full-scale towing speed is 5 m s, what should be the water ve-

locity in the water tunnel for the two tests to be exactly similar?

What will be the prototype drag force if the model drag force is

found to be 2400 N? Assume that sea water at the same tempera-

ture is used in both the full-scale and the model tests.  

8.48 An experiment is being designed to measure aerodynamic

forces on a building. The model is a 1 100 scale replica of the

prototype. The wind velocity on the prototype is 30 ft s, and

the density is 0.0024 slugs ft3. The maximum velocity in the

wind tunnel is 300 ft s. The viscosity of the air flowing for the

model and the prototype is the same. Find the density needed in

the wind tunnel for dynamic similarity. A force of 50 lbf is mea-

sured on the model. What will the force be on the prototype?

8.49A 60 cm valve is designed for control of flow in a petroleum

pipeline. A 1 3 scale model of the full-size valve is to be tested with

water in the laboratory. If the prototype flow rate is to be 0.5 m3 s,

what flow rate should be established in the laboratory test for dy-

namic similitude to be established? Also, if the pressure coefficient

Cp in the model is found to be 1.07, what will be the corresponding

Cp in the full-scale valve? The relevant fluid properties for the petro-

leum are S 0.82 and The viscosity of

water is 

8.50 The moment acting on a submarine rudder is studied by a

1 50 scale model. If the test is made in a water tunnel and if the

moment measured on the model is when the fresh-wa-

ter speed in the tunnel is 10 m s, what are the corresponding mo-

ment and speed for the prototype? Assume the prototype

operates in sea water. Assume T 10°C for both the fresh wa-

ter and the sea water.

8.51 A model hydrofoil is tested in a water tunnel. For a given

angle of attack, the lift of the hydrofoil is measured to be 25 kN

when the water velocity is 15 m s in the tunnel. If the prototype

hydrofoil is to be twice the size of the model, what lift force

would be expected for the prototype for dynamically similar

conditions? Assume a water temperature of 20°C for both

model and prototype.

8.52 A 1 8 scale model of an automobile is tested in a pressurized

wind tunnel. The test is to simulate the automobile traveling at 80

km h in air at atmospheric pressure and 25°C. The wind tunnel

operates with air at 25°C. At what pressure in the test section

must the tunnel operate to have the same Mach and Reynolds

numbers? The speed of sound in air at 25°C is 345 m s.

8.53 If the tunnel in Prob. 8.52 were to operate at atmospheric

pressure and 25°C, what speed would be needed to achieve the

same Reynolds number for the prototype? At this speed, would

you conclude that Mach-number effects were important?

8.54 Experimental studies have shown that the condition for

breakup of a droplet in a gas stream is

where Re is the Reynolds number and We is the Weber number

based on the droplet diameter. What diameter water droplet would

break up in a 25 m s air stream at 20°C and standard atmospheric

pressure? The surface tension of water is 

8.55 Water is sprayed from a nozzle at 30 m s into air at atmo-

spheric pressure and 20°C. Estimate the size of the droplets pro-

duced if the Weber number for breakup is 6.0 based on the

droplet diameter.

8.56 Determine the relationship between the kinematic viscosity

ratio vm vP and the scale ratio if both the Reynolds-number and

the Froude-number criteria are to be satisfied in a given model

test.
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8.57 A hydraulic model, 1 20 scale, is built to simulate the flow

conditions of a spillway of a dam. For a particular run, the

waves downstream were observed to be 8 cm high. How high

would be similar waves on the full-scale dam operating under

the same conditions? If the wave period in the model is 2 s,

what would the wave period in the prototype be? 

8.58 The scale ratio between a model dam and its prototype is

1 25. In the model test, the velocity of flow near the crest of the

spillway was measured to be 2.5 m s. What is the correspond-

ing prototype velocity? If the model discharge is 0.10 m3 s,

what is the prototype discharge? 

8.59 A seaplane model is built at a 1 10 scale. To simulate take-

off conditions at 125 km h, what should be the corresponding

model speed to achieve Froude-number scaling?

8.60 If the scale ratio between a model spillway and its proto-

type is 1 36, what velocity and discharge ratio will prevail be-

tween model and prototype? If the prototype discharge is 3000

m3 s, what is the model discharge? 

8.61 The depth and velocity at a point in a river are measured to

be 20 ft and 15 ft s, respectively. If a 1 64 scale model of this

river is constructed and the model is operated under dynami-

cally similar conditions to simulate the free-surface conditions,

then what velocity and depth can be expected in the model at the

corresponding point?

8.62 A 1 25 scale model of a spillway is tested in a laboratory.

If the model velocity and discharge are 7.87 ft s and 3.53 cfs,

respectively, what are the corresponding values for the proto-

type?

8.63 Flow around a bridge pier is studied using a model at 1 12

scale. When the velocity in the model is 0.9 m s, the standing

wave at the pier nose is observed to be 2.5 cm in height. What

are the corresponding values of velocity and wave height in the

prototype?

8.64 A 1 25 scale model of a spillway is tested. The discharge

in the model is 0.1 m3 s. To what prototype discharge does this

correspond? If it takes 1 min for a particle to float from one

point to another in the model, how long would it take a similar

particle to traverse the corresponding path in the prototype?

8.65 A tidal estuary is to be modeled at 1 250 scale. In the ac-

tual estuary, the maximum water velocity is expected to be 4

m s, and the tidal period is approximately 12.5 h. What corre-

sponding velocity and period would be observed in the model?

8.66 The maximum wave force on a 1 36 model sea wall was

found to be 80 N. For a corresponding wave in the full-scale

wall, what full-scale force would you expect? Assume fresh wa-

ter is used in the model study. Assume T 10°C for both model

and prototype water.

8.67 A model of a spillway is to be built at 1 25 scale. If the

prototype has a discharge of 200 m3 s, what must be the water

discharge in the model to ensure dynamic similarity? The total

force on part of the model is found to be 22 N. To what proto-

type force does this correspond?

8.68 A newly designed dam is to be modeled in the laboratory.

The prime objective of the general model study is to determine

the adequacy of the spillway design and to observe the water ve-

locities, elevations, and pressures at critical points of the struc-

ture. The reach of the river to be modeled is 1200 m long, the

width of the dam (also the maximum width of the reservoir up-

stream) is to be 300 m, and the maximum flood discharge to be

modeled is 5000 m3 s. The maximum laboratory discharge is

limited to 0.90 m3 s, and the floor space available for the model

construction is 50 m long and 20 m wide. Determine the largest

feasible scale ratio (model prototype) for such a study.

8.69 A ship model 5 ft long is tested in a towing tank at a speed

that will produce waves that are dynamically similar to those

observed around the prototype. The test speed is 5 ft s. What

should the prototype speed be, given that the prototype length is

150 ft? Assume both the model and the prototype are to operate

in fresh water.

8.70 The wave resistance of a model of a ship at 1 25 scale is 2

lbf at a model speed of 5 ft s. What are the corresponding ve-

locity and wave resistance of the prototype?

8.71 A 1 20 scale model building that is rectangular in plan

view and is three times as high as it is wide is tested in a wind

tunnel. If the drag of the model in the wind tunnel is measured

to be 200 N for a wind speed of 20 m s, then the prototype build-

ing in a 40 m s wind (same temperature) should have a drag of

about (a) 40 kN, (b) 80 kN, (c) 230 kN, or (d) 320 kN.

8.72 A model of a high-rise office building at 1 250 scale is

tested in a wind tunnel to estimate the pressures and forces on

the full-scale structure. The wind-tunnel air speed is 20 m s at

20°C and atmospheric pressure, and the full-scale structure is

expected to withstand winds of 150 km h (10°C). If the ex-

treme values of the pressure coefficient are found to be 1.0,

–2.7, and –0.8 on the windward wall, side wall, and leeward

wall of the model, respectively, what corresponding pressures

could be expected to act on the prototype? If the lateral wind

force (wind force on building normal to wind direction) was

measured as 20 N in the model, what lateral force might be ex-

pected in the prototype in the 150 km h wind?

8.73 Experiments were carried out in a water tunnel and a wind

tunnel to measure the drag force on an object. The water tunnel

was operated with fresh water at 20°C, and the wind tunnel was

operated at 20°C and atmospheric pressure. Three models were

used with dimensions of 5 cm, 8 cm, and 15 cm. The drag force

on each model was measured at different velocities. The follow-

ing data were obtained.

Data for the water tunnel
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Data for the wind tunnel

The drag force is a function of the density, viscosity, velocity,

and model size,

Using dimensional analysis, express this equation using �-groups

and then write a computer program or use a spread sheet to reduce

the data. Plot the data using the dimensionless parameters.

8.74 Experiments are performed to measure the pressure drop in

a pipe with water at 20°C and crude oil at the same temperature.

Data are gathered with pipes of two diameters, 5 cm and 10 cm.

The following data were obtained for pressure drop per unit

length.

For water

For crude oil

The pressure drop per unit length is assumed to be a function of

the pipe diameter, liquid density and viscosity, and the velocity,

Perform a dimensional analysis to obtain the �-groups and then

write a computer program or use a spreadsheet to reduce the

data. Plot the results using the dimensionless parameters.

Model Size, cm Velocity, m s Force, N

8 10 0.025
8 40 0.21
8 80 0.64

15 10 0.06
15 40 0.59
15 80 1.82

Pipe Diameter, 
cm

Velocity, 
m s

Pressure Drop,
N m3

5 1 210
5 2 730
5 5 3750

10 1 86
10 2 320
10 5 1650

⁄
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⁄ ⁄

Pipe Diameter, 
cm

Velocity, 
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Pressure Drop, 
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5 1 310
5 2 1040
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10 1 130
10 2 450
10 5 2210
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C H A P T E R

Surface Resistance

Viscous stresses create resistance to motion, or drag, as a body travels through a fluid. Aero-

nautical engineers and naval architects are vitally interested in the drag on an airplane or the

surface resistance of a ship because the success or failure of the craft is directly related to its

resistive force. If the force is too large, the craft may be an economic failure because of the

excessive costs (initial and operational) of the propulsion system.

The phenomena responsible for shear stress at a surface and the prediction of shear

force, or surface resistance, on a flat plate are addressed in this chapter. The discussion will

build on the ideas of shear stress, viscosity, and velocity gradients presented in Chapter 2. In

addition the concepts of the boundary layer and separation, introduced in Chapter 4, will be

further expanded.

Surface Resistance with Uniform Laminar Flow

In this section two cases of one-dimensional laminar flow with parallel streamlines are

introduced, flow between two parallel plates with one plate stationary and the other moving

and flow between two stationary parallel plates. The flows are uniform and steady. These

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Identify Couette and Hele-Shaw flows.

• Distinguish between the laminar and turbulent boundary layer.

• Sketch the development of a boundary layer on a flat plate showing main features.

• Explain the meaning of the boundary-layer thickness.

• Distinguish between the local shear stress and average shear stress coefficients.

• Explain the process of boundary-layer separation.

Procedural Knowledge

• Calculate shear stress in Couette flow.

• Calculate flow rate or pressure gradient in Hele-Shaw flow.

• Calculate the boundary-layer thickness.

• Calculate local shear stress and overall resistance for laminar and turbulent boundary layers.

Typical Applications

• For Couette flow, calculate surface resistance.

• For Hele-Shaw flow, determine the flow rate.

• For flow over a flat plate, find the shear stress as a function of Reynolds number.

9.1
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flows have important practical applications and illustrate the connections between velocity

gradient and shear stress.

Differential Equation for Uniform Laminar Flow
Consider the control volume shown in Fig. 9.1, which is aligned with the flow direction s.

The streamlines are inclined at an angle � with respect to the horizontal plane. The control

volume has dimensions that is, the control volume has a unit length into the

page. By application of the momentum equation, the sum of the forces acting in the s-direction

is equal to the net outflow of momentum from the control volume. The flow is uniform, so

the outflow of momentum is equal to the inflow and the momentum equation reduces to

(9.1)

There are three forces acting on the matter in the control volume: the forces due to pres-

sure, shear stress, and gravity. The net pressure force is

The net force due to shear stress is

The component of gravitational force is �g�s�ysin�. However, sin� can be related to the rate

at which the elevation, z, decreases with increasing s and is given by Thus the grav-

itational force becomes

Summing all the forces to zero and dividing through by �s�y results in

(9.2)

Figure 9.1
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where it is noted that the gradient of the shear stress is equal to the gradient in piezometric

pressure in the flow direction. The shear stress is equal to so the basic equation

becomes

(9.3)

where � is constant. This equation is now applied to the two flow configurations.

Flow Produced by a Moving Plate (Couette Flow)
Consider the flow between the two plates shown in Fig. 9.2. The lower plate is fixed, and the

upper plate is moving with a speed U. The plates are separated by a distance L. In this prob-

lem there is no pressure gradient in the flow direction and the streamlines are

in the horizontal direction so Eq. (9.3) reduces to

The two boundary conditions are

Integrating this equation twice gives

Applying the boundary conditions results in

(9.4)

which shows that the velocity profile is linear between the two plates. The shear stress is con-

stant and equal to

(9.5)

This flow is known as a Couette flow after a French scientist, M. Couette, who did pioneering

work on the flow between parallel plates and rotating cylinders. It has application in the de-

sign of lubrication systems.

Example 9.1 illustrates the application of Couette flow in calculating surface

resistance.

Figure 9.2
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Flow Between Stationary Parallel Plates (Hele-Shaw Flow)
Consider the two parallel plates separated by a distance B in Fig. 9.3. In this case, the flow

velocity is zero at the surface of both plates, so the boundary conditions for Eq. (9.3) are

Because the flow is uniform (i.e., there is no change in velocity in the streamwise direction),

u is a function of y only. Therefore, in Eq. (9.3), as well as the gradient in piezometric

pressure, must also be equal to a constant in the streamwise direction. Integrating Eq. (9.3)

twice gives

To satisfy the boundary condition at y 0, set C2 0. Applying the boundary condition at

y B requires that C1 be

so the final equation for the velocity is

(9.6)

which is a parabolic profile with the maximum velocity occurring on the centerline between

the plates, as shown in Fig. 9.3. The maximum velocity is

(9.7a)

EXAMPLE 9.1    SHEAR STRESS IN COUETTE FLOW

SAE 30 lubricating oil at T 38°C flows between two 

parallel plates, one fixed and the other moving at 1.0 m s. 

Plates are spaced 0.3 mm apart. What is the shear stress on 

the plates?

Problem Definition

Situation: SAE 30 lubricating oil between parallel plates. 

Find: Shear stress (in N m2) on top plate.

Properties: From Table A.4, 

Sketch:

Plan

Calculate shear stress using Eq. (9.5).

Solution

Review

Because the velocity gradient is constant, the shear stress is 

constant throughout the flow. The magnitude of the shear 

stress is the same for the bottom plate as the top plate.
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or in terms of piezometric head

(9.7b)

The fluid always flows in the direction of decreasing piezometric pressure or piezometric

head, so is negative, giving a positive value for umax.

The discharge per unit width, q, is obtained by integrating the velocity over the distance

between the plates:

(9.8)

The average velocity is

(9.9)

Note that flow is the result of a change of the piezometric head, not just a change of p or z
alone. Experiments reveal that if the Reynolds number is less than 1000, the flow is

laminar. For a Reynolds number greater than 1000, the flow may be turbulent and the equa-

tions developed in this section are invalid.

The flow between parallel plates is often called Hele-Shaw flow. It has application in

flow visualization studies and in microchannel flows.

A significant difference between Couette flow and Hele-Shaw flow is that the motion

of a plate is responsible for Couette flow, whereas a gradient in piezometric pressure pro-

vides the force to move a Hele-Shaw flow. 

Example 9.2 illustrates how to calculate the pressure gradient required for flow be-

tween two parallel plates. 

Figure 9.3

Uniform flow between 

two stationary plates 

(Hele-Shaw flow).

EXAMPLE 9.2   PRESSURE GRADIENT FOR FLOW 

BETWEEN PARALLEL PLATES

Oil having a specific gravity of 0.8 and a viscosity of 

flows downward between two vertical 

smooth plates spaced 10 mm apart. If the discharge per meter 

of width is 0.01 what is the pressure gradient 

for this flow? 

Problem Definition

Situation: Oil flows downward between two vertical smooth 
plates spaced 10 mm apart. The discharge per meter of width 

is 0.01  

Find: Pressure gradient  (in Pa m) for this flow.

Sketch:
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Qualitative Description of the Boundary Layer

The purpose of this section is to provide a qualitative description of the boundary layer,
which is the region adjacent to a surface over which the velocity changes from the free-

stream value (with respect to the object) to zero at the surface. This region, which is generally

very thin, occurs because of the viscosity of the fluid. The velocity gradient at the surface is

responsible for the viscous shear stress and surface resistance.

The boundary-layer development for flow past a thin plate oriented parallel to the flow

direction shown in Fig. 9.4a. The thickness of the boundary layer, �, is defined as the dis-

tance from the surface where the velocity is 99% of the free-stream velocity. The actual

thickness of a boundary layer may be 2%–3% of the plate length, so the boundary-layer

thickness shown in Fig. 9.4a is exaggerated at least by a factor of five to show details of the

flow field. Fluid passes over the top and underneath the plate, so two boundary layers are de-

picted (one above and one below the plate). For convenience, the surface is assumed to be

stationary, and the free-stream fluid is moving at a velocity 

The development and growth of the boundary layer occurs because of the “no-slip”

condition at the surface; that is, the fluid velocity at the surface must be zero. As the fluid

particles next to the plate pass close to the leading edge of the plate, a retarding force (from

the shear stress) begins to act on the particles to slow them down. As these particles progress

farther downstream, they continue to be subjected to shear stress from the plate, so they

Properties: S 0.8,  

Plan

1. Check to see if the flow is laminar If it is 
laminar, continue.

2. Calculate piezometric head gradient using Eq. (9.8). 

3. Subtract elevation gradient to obtain the pressure gradient. 

Solution

1. Laminar flow condition is

Flow is laminar, equations apply.

2. Kinematic viscosity:

Piezometric head gradient is

3. Plates are oriented vertically, s is positive downward, so 

Thus

or

Review

Note that the pressure increases in the downward direction, 

which means that the pressure, in part, supports the weight of 

the fluid.
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continue to decelerate. In addition, these particles (because of their lower velocity) retard

other particles adjacent to them but farther out from the plate. Thus the boundary layer be-

comes thicker, or “grows,” in the downstream direction. The broken line in Fig. 9.4a identi-

fies the outer limit of the boundary layer. As the boundary layer becomes thicker, the velocity

gradient at the wall becomes smaller and the local shear stress is reduced.

The initial section of the boundary layer is the laminar boundary layer. In this region

the flow is smooth and steady. Thickening of the laminar boundary layer continues smoothly

in the downstream direction until a point is reached where the boundary layer becomes unsta-

ble. Beyond this point, the critical point, small disturbances in the flow will grow and spread,

leading to turbulence. The boundary becomes fully turbulent at the transition point. The re-

gion between the critical point and the transition point is called the transition region.

In most problems of practical interest, the extent of the laminar boundary layer is small

and contributes little to the total drag force on a body. Still it is important for flow of very vis-

cous liquids and for flow problems with small length scales.

The turbulent boundary layer is characterized by intense cross-stream mixing as turbu-

lent eddies transport high-velocity fluid from the boundary layer edge to the region close to

the wall. This cross-stream mixing gives rise to a high effective viscosity, which can be three

orders of magnitude higher than the actual viscosity of the fluid itself. The effective viscosity,

due to turbulent mixing is not a property of the fluid but rather a property of the flow, namely,

the mixing process. Because of this intense mixing, the velocity profile is much “fuller” than

the laminar-flow velocity profile as shown in Fig. 9.4a. This situation leads to an increased

velocity gradient at the surface and a larger shear stress.

Figure 9.4

Development of 

boundary layer and 

shear stress along a thin, 

flat plate. 

(a) Flow pattern above 

and below the plate. 

(b) Shear-stress 

distribution on either 

side of plate.
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The shear-stress distribution along the plate is shown in Fig. 9.4b. It is easy to visualize

that the shear stress must be relatively large near the leading edge of the plate where the ve-

locity gradient is steep, and that it becomes progressively smaller as the boundary layer

thickens in the downstream direction. At the point where the boundary layer becomes turbu-

lent, the shear stress at the boundary increases because the velocity profile changes produc-

ing a steeper gradient at the surface.

These qualitative aspects of the boundary layer serve as a foundation for the quantita-

tive relations presented in the next section.

Laminar Boundary Layer

This section summarizes the equations for the velocity profile and shear stress in a laminar

boundary layer and describes how to calculate shear stress and shear forces on a surface.

This information can be used to estimate drag forces on surfaces in low Reynolds-number

flows.

Boundary-Layer Equations
In 1904 Prandtl (1) first stated the essence of the boundary-layer hypothesis, which is that

viscous effects are concentrated in a thin layer of fluid (the boundary layer) next to solid

boundaries. Along with his discussion of the qualitative aspects of the boundary layer, he

also simplified the general equations of motion of a fluid (Navier-Stokes equations) for appli-

cation to the boundary layer.

In 1908, Blasius, one of Prandtl’s students, obtained a solution for the flow in a laminar

boundary layer (2) on a flat plate with a constant free-stream velocity. One of Blasius’s key

assumptions was that the shape of the nondimensional velocity distribution did not vary from

section to section along the plate. That is, he assumed that a plot of the relative velocity,

versus the relative distance from the boundary, would be the same at each sec-

tion. With this assumption and with Prandtl’s equations of motion for boundary layers, Bla-

sius obtained a numerical solution for the relative velocity distribution, shown in Fig. 9.5.*

In this plot, x is the distance from the leading edge of the plate, and Rex is the Reynolds num-

ber based on the free-stream velocity and the length along the plate In Fig. 9.5

the outer limit of the boundary layer occurs at approximately 5.

Since y � at this point, the following relationship is derived for the boundary-layer thickness
in laminar flow on a flat plate:

(9.10)

The Blasius solution also showed that

* Experimental evidence indicates that the Blasius solution is valid except very near the leading edge of the

plate. In the vicinity of the leading edge, an error results because of certain simplifying assumptions. How-

ever, the discrepancy is not significant for most engineering problems.
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which can be used to find the shear stress at the surface. The velocity gradient at the bound-

ary becomes

(9.11)

Equation (9.11) shows that the velocity gradient (and shear stress) decreases with increasing

distance x along the plate.

Shear Stress
The shear stress at the boundary is obtained from

(9.12)

Equation (9.12) is used to obtain the local shear stress at any given section (any given value

of x) for the laminar boundary layer.

Example 9.3 illustrates the application of the laminar boundary layer equations for cal-

culating boundary layer thickness and shear stress.

Surface Resistance 
Consider one side of a flat plate with width B and length L. Because the shear stress at the

boundary, �0, varies along the plate, it is necessary to integrate this stress over the entire sur-

face to obtain the total surface resistance, Fs.

(9.13)

Figure 9.5

Velocity distribution in 

laminar boundary layer. 

[After Blasius (2).]
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EXAMPLE 9.3   LAMINAR BOUNDARY-LAYER 

THICKNESS AND SHEAR STRESS

Crude oil at 70°F ( ) with a free-

stream velocity of 1 ft s flows past a thin, flat plate that is 4 

ft wide and 6 ft long in a direction parallel to the flow. The 

flow is laminar. Determine and plot the boundary-layer 

thickness and the shear stress distribution along the plate.

Problem Definition

Situation: Crude oil flows past a thin, flat plate. Free-stream 

velocity is 1 ft s. plate. 

Find:

1. Surface shear stress, as function of x.

2. Boundary-layer thickness, �, as function of x.

Properties: For oil,

Sketch:

Assumptions:

1. Plate is smooth, flat with sharp leading edge.

2. Boundary layer is laminar.

Plan

1. Calculate boundary-layer thickness with Eq. (9.10).

2. Calculate shear-stress distribution with Eq. (9.12). 

Solution

1. Reynolds-number variation with distance

Boundary-layer thickness

2. Shear-stress distribution

The results for Example 9.3 are plotted in the accompanying 

figure and listed in Table 9.1.

Review

Notice that the boundary-layer thickness increases with 

distance and that it is very thin. At the end of the plate 

or the boundary-layer thickness is 2% of the 

distance from leading edge.

Notice also that shear stress decreases with distance from
leading edge of the plate.
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Table 9.1 RESULTS—� AND �0 FOR DIFFERENT 
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Substituting in Eq. (9.12) for �0 and integrating gives

(9.14)

where ReL is the Reynolds number based on the approach velocity and the length of the plate.

Shear-Stress Coefficients
It is convenient to express the shear stress at the boundary, �0 , and the total shearing force Fs

in terms of �-groups involving the kinetic pressure of the free stream, The local
shear-stress coefficient, cf , is defined as

(9.15)

Substituting Eq. (9.12) into Eq. (9.15) gives cf  as a function of Reynolds number based on

the distance from the leading edge.

(9.16)

The total shearing force, as given by Eq. (9.13), can also be expressed as a �-group

(9.17)

where A is the plate area. This �-group is called the average shear-stress coefficient. Substi-

tuting Eq. (9.14) into Eq. (9.17) gives Cf :

(9.18)

Example 9.4 shows how to calculate the total surface resistance for a laminar boundary

layer on a flat plate.

EXAMPLE 9.4    RESISTANCE CALCULATION FOR 

LAMINAR BOUNDARY LAYER ON A FLAT PLATE

Crude oil at 70°F ( S 0.86.) with a free-

stream velocity of 1 ft s flows past a thin, flat plate that is 

4 ft wide and 6 ft long in a direction parallel to the flow. The 

flow is laminar. Determine the resistance on one side of the 

plate.

Problem Definition

Situation: Crude oil flows past a thin, flat plate. Free-stream 

velocity is 1 ft s.

Find: Shear resistance (in lbf) on one side of plate.

Properties: For oil, S 0.86.

Assumptions: Flow is laminar. 
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Boundary Layer Transition

Transition is the zone where the laminar boundary layer changes into a turbulent boundary

layer as shown in Fig. 9.4a. As the laminar boundary layer continues to grow, the viscous

stresses are less capable of damping disturbances in the flow. A point is then reached where

disturbances occurring in the flow are amplified, leading to turbulence. The critical point

occurs at a Reynolds number of about 105 based on the distance from the leading

edge. Vortices created near the wall grow and mutually interact, ultimately leading to a fully

turbulent boundary layer at the transition point, which nominally occurs at a Reynolds

number of For purposes of simplicity in this text, it will be

assumed that the boundary layer changes from laminar to turbulent flow at a Reynolds

number 500,000. The details of the transition region can be found in White (3).

Transition to a turbulent boundary layer can be influenced by several other flow condi-

tions, such as free-stream turbulence, pressure gradient, wall roughness, wall heating, and

wall cooling. With appropriate roughness elements at the leading edge, the boundary layer

can become turbulent at the very beginning of the plate. In this case it is said that the bound-

ary layer is “tripped” at the leading edge.

Turbulent Boundary Layer

Understanding the mechanics of the turbulent boundary layer is important because in the

majority of practical problems it is the turbulent boundary layer that is primarily responsible

for surface shear force, or surface resistance. In this section the velocity distribution in the

Sketch:

Plan

1. Calculate the Reynolds number based on plate length.

2. Evaluate Cf using Eq. (9.18). 

3. Calculate total shear force using Eq. (9.17).

Solution

1. Reynolds number.

2. Value for Cf :

3. Total shear force.
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turbulent boundary layer on a flat plate oriented parallel to the flow is presented. The

correlations for boundary-layer thickness and shear stress are also included.

Velocity Distribution
The velocity distribution in the turbulent boundary layer is more complicated than the laminar

boundary layer. The turbulent boundary has three zones of flow that require different equations

for the velocity distribution in each zone, as opposed to the single relationship of the laminar

boundary layer. Figure 9.6 shows a portion of a turbulent boundary layer in which the three dif-

ferent zones of flow are identified. The zone adjacent to the wall is the viscous sublayer; the

zone immediately above the viscous sublayer is the logarithmic region; and, finally, beyond that

region is the velocity defect region. Each of these velocity zones will be discussed separately.

Viscous Sublayer

The zone immediately adjacent to the wall is a layer of fluid that is essentially laminar be-

cause the presence of the wall dampens the cross-stream mixing and turbulent fluctuations.

This very thin layer is called the viscous sublayer. This thin layer behaves as a Couette flow

introduced in Section 9.1. In the viscous sublayer, � is virtually constant and equal to the

shear stress at the wall, �0. Thus which on integration yields

(9.19)

Dividing the numerator and denominator by � gives

(9.20)

The combination of variables has the dimensions of velocity and recurs again and

again in derivations involving boundary-layer theory. It has been given the special name

shear velocity. The shear velocity (which is also sometimes called friction velocity) is sym-

bolized as u*. Thus, by definition,

(9.21)

Figure 9.6

Sketch of zones in 

turbulent boundary 

layer.

ud yd⁄ �0 �,⁄�

u
�0 y

�
--------�

u
�0 �⁄
� �⁄
------------y�

u

�0 �⁄
----------------

�0 �⁄


----------------y�

�0 �⁄

u*

�0

�
----�

U0

Turbulent velocity
defect law

Logarithmic distribution

Viscous sublayer

y

x
δ'



294 SURFACE RESISTANCE

Now, substituting u* for in Eq. (9.20), yields the nondimensional velocity distribution

in the viscous sublayer:

(9.22)

Experimental results show that the limit of viscous sublayer occurs when is approxi-

mately 5. Consequently, the thickness of the viscous sublayer, identified by is given as

(9.23)

The thickness of the viscous sublayer is very small (typically less than one-tenth the thick-

ness of a dime). The thickness of the viscous sublayer increases as the wall shear stress de-

creases in the downstream direction.

The Logarithmic Velocity Distribution

The flow zone outside the viscous sublayer is turbulent; therefore, a completely different

type of flow is involved. The mixing action of turbulence causes small fluid masses to be

swept back and forth in a direction transverse to the mean flow direction. A small mass of

fluid swept from a low-velocity zone next to the viscous sublayer into a higher-velocity

zone farther out in the stream has a retarding effect on the higher-velocity stream. Simi-

larly, a small mass of fluid that originates farther out in the boundary layer in a high-veloc-

ity flow zone and is swept into a region of low velocity has the effect of accelerating the lower-

velocity fluid. Although the process just described is primarily a momentum exchange phe-

nomenon, it has the same effect as applying a shear stress to the fluid; thus in turbulent

flow these “stresses” are termed apparent shear stresses, or Reynolds stresses after the

British scientist-engineer who first did extensive research in turbulent flow in the late

l800s.

The mixing action of turbulence causes the velocities at a given point in a flow to fluc-

tuate with time. If one places a velocity-sensing device, such as a hot-wire anemometer, in a

turbulent flow, one can measure a fluctuating velocity, as illustrated in Fig. 9.7. It is conve-

nient to think of the velocity as composed of two parts: a mean value, plus a fluctuating

part, The fluctuating part of the velocity is responsible for the mixing action and the mo-

mentum exchange, which manifests itself as an apparent shear stress as noted previously. In

fact, the apparent shear stress is related to the fluctuating part of the velocity by

(9.24)

Figure 9.7
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where and refer to the x and y components of the velocity fluctuations, respectively, and

the bar over these terms denotes the product of averaged over a period of time.* The ex-

pression for apparent shear stress is not very useful in this form, so Prandtl developed a the-

ory to relate the apparent shear stress to the temporal mean velocity distribution.

The theory developed by Prandtl is analogous to the idea of molecular transport creat-

ing shear stress presented in Chapter 2. In the turbulent boundary layer, the principal flow is

parallel to the boundary. However, because of turbulent eddies, there are fluctuating compo-

nents transverse to the principal flow direction. These fluctuating velocity components are

associated with small masses of fluid, as shown in Fig. 9.8, that move across the boundary

layer. As the mass moves from the lower-velocity region to the higher-velocity region it tends

to retain its original velocity. The difference in velocity between the surrounding fluid and

the transported mass is identified as the fluctuating velocity component For the mass

shown in Fig. 9.8, would be negative and approximated by†

where  is the mean velocity gradient and � is the distance the small fluid mass travels

in the transverse direction. Prandtl identified this distance as the “mixing length.” Prandtl as-

sumed that the magnitude of the transverse fluctuating velocity component is proportional to

the magnitude of the fluctuating component in the principal flow direction: which

seems to be a reasonable assumption because both components arise from the same set of ed-

dies. Also, it should be noted that a positive  will be associated with a negative  so

the product  will be negative. Thus the apparent shear stress can be expressed as

(9.25)

A more general form of Eq. (9.25) is

which ensures that the sign for the apparent shear stress is correct.

Figure 9.8
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The theory leading to Eq. (9.25) is called Prandtl’s mixing-length theory and is used ex-

tensively in analyses involving turbulent flow.* Prandtl also made the important and clever

assumption that the mixing length is proportional to the distance from the wall (� �y) for

the region close to the wall. If one considers the velocity distribution in a boundary layer where

is positive, as is shown in Fig. 9.8, and substitutes �y for �, then Eq. (9.25) reduces to

For the zone of flow near the boundary, it is assumed that the shear stress is uniform and ap-

proximately equal to the shear stress at the wall. Thus the foregoing equation becomes

(9.26)

Taking the square root of each side of Eq. (9.26) and rearranging yields

Integrating the above equation and substituting u* for  gives

(9.27)

Experiments on smooth boundaries indicate that the constant of integration C can be given in

terms of u*, , and a pure number as

When this expression for C is substituted into Eq. (9.27), the result is

(9.28)

In Eq. (9.28), � has sometimes been called the universal turbulence constant, or Karman’s

constant. Experiments show that this constant is approximately 0.41 (3) for the turbulent

zone next to the viscous sublayer. Introducing this value for � into Eq. (9.28) gives the

logarithmic velocity distribution

(9.29)

Obviously the region where this model is valid is limited because the mixing length cannot

continuously increase to the boundary layer edge. This distribution is valid for values of

ranging from approximately 30 to 500.

The region between the viscous sublayer and the logarithmic velocity distribution is the

buffer zone. There is no equation for the velocity distribution in this zone, although various em-

pirical expressions have been developed (6). However, it is common practice to extrapolate the

velocity profile for the viscous sublayer to larger values of and the logarithmic velocity

profile to smaller values of until the velocity profiles intersect as shown in Fig. 9.9. The

* Prandtl published an account of his mixing-length concept in 1925. G. I. Taylor (5) published a similar con-

cept in 1915, but the idea has been traditionally attributed to Prandtl.

�

ud yd⁄

�app �κ2
y

2 ud

yd
------

2

�

�0 �κ2
y

2 ud

yd
------

2

�

ud
�0 �⁄
κ

----------------
yd

y
-----�

�0 �⁄
u

u*

-----
1

κ
--- yln C+�

C 5.56
1

κ
--- 

u*

-----ln–�

u

u*

-----
1

κ
--- ln

yu*


-------- 5.56+�

u

u*

----- 2.44
yu*


--------ln 5.56+�

yu* ⁄

yu* ⁄
yu* ⁄



9.5 TURBULENT BOUNDARY LAYER 297

intersection occurs at and is regarded as the demarcation between the viscous

sublayer and the logarithmic profile. The “nominal” thickness of the viscous sublayer is

(9.30)

The combination of the viscous and logarithmic velocity profile for the range of 

from 0 to approximately 500 is called the law of the wall.
Making a semilogarithmic plot of the velocity distribution in a turbulent boundary

layer, as shown in Fig. 9.9, makes it straightforward to identify the velocity distribution in the

viscous sublayer and in the region where the logarithmic equation applies. However, the log-

arithmic nature of this plot accentuates the nondimensional distance near the wall. A

better perspective of the relative extent of the regions is obtained by plotting the graph on a

linear scale, as shown in Fig. 9.10. From this plot one notes that the laminar sublayer and

buffer zone are a very small part of the thickness of the turbulent boundary layer.

Velocity Defect Region

For and the velocity profile corresponding to the law of the wall

becomes increasingly inadequate to match experimental data, so a third zone, called the ve-

locity defect region, is identified. The velocity in this region is represented by the velocity
defect law, which for a flat plate with zero pressure gradient is simply expressed as

(9.31)

Figure 9.9
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and the correlation with experimental data is plotted in Fig. 9.11. At the edge of the boundary

layer and so or the free-stream velocity. This law applies to

rough as well as smooth surfaces. However, the functional relationship has to be modified for

flows with free-stream pressure gradients.

Figure 9.10

Velocity distribution in a 

turbulent boundary 

layer—linear scales.

Figure 9.11

Velocity defect law for 

boundary layers on flat 

plate (zero pressure 

gradient).
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As shown in Fig. 9.9, the demarcation between the law of the wall and the velocity de-

fect regions is somewhat arbitrary, so there is considerable overlap between the two regions.

The three zones of the turbulent boundary layer and their range of applicability are summa-

rized in Table 9.2.

Power-Law Formula for Velocity Distribution

Analyses have shown that for a wide range of Reynolds numbers the

velocity profile in the turbulent boundary layer on a flat plate is approximated reasonably by the

power-law equation

(9.32)

Comparisons with experimental results show that this formula conforms to those results

very closely over about 90% of the boundary layer Obviously it is not

valid at the surface because which implies infinite surface shear

stress. For the inner 10% of the boundary layer, one must resort to equations for the law of the

wall (see Fig. 9.9) to obtain a more precise prediction of velocity. Because Eq. (9.32) is valid

over the major portion of the boundary layer, it is used to advantage in deriving the overall

thickness of the boundary layer as well as other relations for the turbulent boundary layer.

Example 9.5 illustrates the application of various equations to calculate the velocity in

the turbulent boundary layer.

Table 9.2 ZONES FOR TURBULENT BOUNDARY LAYER ON FLAT PLATE

Zone Velocity Distribution Range

Viscous Sublayer

Logarithmic Velocity Distribution

Velocity Defect Law

EXAMPLE 9.5    TURBULENT BOUNDARY-LAYER 

PROPERTIES

Water (60°F) flows with a velocity of 20 ft s past a flat plate. 

The plate is oriented parallel to the flow. At a particular 

section downstream of the leading edge of the plate, the 

boundary layer is turbulent, the shear stress on the plate is 

0.896 lbf ft2, and the boundary-layer thickness is 0.0880 ft. 

Find the velocity of the water at a distance of 0.0088 ft from 

the plate as determined by 

a. The logarithmic velocity distribution

b. The velocity defect law

c. The power-law formula

Also, what is the nominal thickness of the viscous sublayer? 

Problem Definition

Situation: Water flows past a flat plate oriented parallel to 
the flow. At a point downstream of the leading edge of the 
plate, shear stress on the plate is 0.896 lbf ft2 and boundary 
layer thickness is 0.0880 ft.

Find:

1. Velocity at 0.0088 ft from plate using
a. Logarithmic velocity distribution

b. Velocity defect law

c. Power-law formula

2. Nominal thickness of viscous sublayer

Properties: 

From Table A.5,  
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Boundary-Layer Thickness and Shear-Stress Correlations
Unlike the laminar boundary layer, there is no analytically derived equation for the thickness

of the turbulent boundary layer. There is a way to obtain an equation by using momentum

principles, empirical data for the local shear stress, and by assuming the 1/7 power velocity

profile (3). The result is

(9.33)

where x is the distance from the leading edge of the plate and Rex is 

Many empirical expressions have been proposed for the local shear-stress distribution

for the turbulent boundary layer on a flat plate. One of the simplest correlations is

(9.34a)

Sketch:

Plan

1. Calculate shear velocity, from Eq. (9.21).

2. Calculate u using Eq. (9.29) for logarithmic profile. 

3. Calculate and find from Fig. 9.11.

4. Calculate u from for velocity defect law.

5. Calculate u from Eq.(9.32) for power law.

6. Calculate  from Eq. (9.30).

Solution

1. Shear velocity

2. Logarithmic velocity distribution

3. Nondimensional distance

From Fig. 9.11

4. Velocity from defect law

5. Power-law formula

6. Nominal sublayer thickness

Review

Notice that the velocity obtained using logarithmic 

distribution and defect law are nearly the same, which 

indicates that the point is in the overlap region.
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and the corresponding average shear-stress coefficient is

(9.34b)

where ReL is the Reynolds number of the plate based on the length of the plate in the stream-

wise direction.

Even though the variation of cf with Reynolds number given by Eq. (9.34a) pro-

vides a reasonably good fit with experimental data for Reynolds numbers less than 107, it

tends to underpredict the skin friction at higher Reynolds numbers. There are several correla-

tions that have been proposed in the literature; see the review by Schlichting (4). A correla-

tion proposed by White (3) that fits the data for turbulent Reynolds numbers up to 1010 is

(9.35)

The corresponding average shear-stress coefficient is

(9.36)

These are the correlations for shear-stress coefficients recommended here.

The boundary layer on a flat plate is composed of both a laminar and turbulent part.

The purpose here is to develop a correlation valid for the combined boundary layer. As noted

in Section 9.3, the boundary layer on a flat plate consists first of a laminar boundary layer

that grows in thickness, develops instability, and becomes turbulent. A turbulent boundary

layer develops over the remainder of the plate. As discussed earlier in Section 9.4, the transi-

tion from a laminar to turbulent boundary layer is not immediate but takes place over a tran-

sition length. However for the purposes of analysis here it is assumed that transition occurs at

a point corresponding to a transition Reynolds number, Retr, of about 500,000.

The idea here is to take the turbulent shear force for length L, assuming the

boundary layer is turbulent from the leading edge, subtract the portion up to the transition point,

and replace it with the laminar shear force up to the transition point Thus

the composite shear force on the plate is

Substituting in Eq. (9.18) for laminar flow and Eq. (9.36) for turbulent flow over a plate of

width B gives

(9.37)

where Retr is the Reynolds number at the transition, ReL is the Reynolds number at the end of

the plate, and Ltr is the distance from the leading edge of the plate to the transition zone.

Expressing the resistance force in terms of the average shear-stress coefficient, Cf

gives
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Here Therefore,

Finally, for Retr 500,000, the equation for average shear-stress coefficient becomes

(9.38)

The variation of Cf with Reynolds number is shown by the solid line in Fig. 9.12. This

curve corresponds to a boundary layer that begins as a laminar boundary layer and then

changes to a turbulent boundary layer after the transition Reynolds number. This is the normal

condition for a flat-plate boundary layer. Table 9.3 summarizes the equations for boundary-

layer-thickness, and for local shear-stress and average shear-stress coefficients for the boundary

layer on a flat plate. 

Figure 9.12

Average shear-stress 

coefficients.
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Example 9.6 shows the calculation of surface resistance due to a boundary layer on a

flat plate.

If the boundary layer is “tripped” by some roughness or leading-edge disturbance

(such as a wire across the leading edge), the boundary layer is turbulent from the leading

edge. This is shown by the dashed line in Fig. 9.12. For this condition the boundary layer

thickness, local shear-stress coefficient, and average shear-stress coefficient are fit reason-

ably well by Eqs. (9.33), (9.34a), and (9.34b).

EXAMPLE 9.6    LAMINAR/TURBULENT 

BOUNDARY LAYER ON FLAT PLATE

Assume that air 20°C and normal atmospheric pressure flows 

over a smooth, flat plate with a velocity of 30 m s. The 

initial boundary layer is laminar and then becomes turbulent 

at a transitional Reynolds number of The plate is 3 m 

long and 1 m wide. What will be the average resistance 

coefficient Cf for the plate? Also, what is the total shearing 

resistance of one side of the plate, and what will be the 

resistance due to the turbulent part and the laminar part of the 

boundary layer?

Problem Definition

Situation: Air flows past a flat plate parallel to the flow 

with a velocity of 30 m s.

Find:

1. Average shear-stress coefficient, Cf, for the plate.

2. Total shear force (in newtons) on one side of plate.

3. Shear force (in newtons) due to laminar part.

4. Shear force (in newtons) due to turbulent part.

Assumptions: The leading edge of the plate is sharp, and the
boundary is not tripped on the leading edge.

Sketch:

Properties: From Table A.3,

Plan

1. Calculate the Reynolds number based on plate length, ReL.

2. Calculate Cf  using Eq. (9.38).

3. Calculate the total shear force on one side of plate using 

4. Using value for transition Reynolds number, find 
transition point.

5. Use Eq. (9.18) to find average shear-stress coefficient for 
laminar portion.

6. Calculate shear force for laminar portion.

7. Subtract laminar portion from total shear force.

Solution

1. Reynolds number based on plate length

2. Average shear-stress coefficient

3. Total shear force

4. Transition point

5. Laminar average shear-stress coefficient

6. Laminar shear force

7. Turbulent shear force
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(9.39)

which are valid up to a Reynolds number of 107. For Reynolds numbers beyond 107, the av-

erage shear-stress coefficient given by Eq. (9.36) can be used. It is of interest to note that ma-

rine engineers incorporate tripping mechanisms for the boundary layer on ship models to

produce a boundary layer that can be predicted more precisely than a combination of laminar

and turbulent boundary layers.

Example 9.7 illustrates calculating surface resistance with a tripped boundary layer.

Even though the equations in this chapter have been developed for flat plates, they are

useful for engineering estimates for some surfaces that are not truly flat plates. For example,

the skin friction drag of the submerged part of the hull of a ship can be estimated with Eq. (9.38).

Pressure Gradient Effects on Boundary Layers

In the preceding sections the features of a boundary layer on a flat plate where the external

pressure gradient is zero have been presented. The boundary layer begins as laminar, goes

through transition, and becomes turbulent with a “fuller” velocity profile and an increase in

EXAMPLE 9.7    RESISTANCE FORCE WITH 

TRIPPED BOUNDARY LAYER

Air at 20°C flows past a smooth, thin plate with a free-stream 

velocity of 20 m s. Plate is 3 m wide and 6 m long in the 

direction of flow and boundary layer is tripped at the leading 

edge.

Problem Definition

Situation: Air flows past a smooth, thin plate. Boundary 
layer is tripped at leading edge.

Find: Total shear resistance (in newtons) on both sides of 
plate.

Sketch:

Assumptions: From Table A.3,

Plan

1. Calculate the Reynolds number based on plate length.

2. Find average shear-stress coefficient from Fig. 9.12. 

3. Calculate surface resistance for both sides of plate.

Solution

1. Reynolds number

Reynolds number is less than 107.

2. Average shear-stress coefficient

3. Resistance force
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local shear stress. The purpose of this section is to present some features of the boundary

layer over a curved surface where the external pressure gradient is not zero.

The flow over an airfoil section is shown in Fig. 9.13. The variation in static pressure

with distance, s, along the surface is also shown on the figure. The point corresponding to

is the forward stagnation point where the pressure is equal to the stagnation pressure.

The pressure then decreases toward a minimum value at the midsection. This minimum pres-

sure corresponds to the location of maximum speed as predicted by the Bernoulli equation.

The pressure then rises again as the flow accelerates toward the trailing edge. When the pres-

sure decreases with increasing distance the pressure gradient is referred to as

a favorable pressure gradient as introduced in Chapter 4. This means that the direction of the

force due to the pressure gradient is in the flow direction. In other words, the effect of the pres-

sure gradient is to accelerate the flow. This is the condition between the forward stagnation

point and the point of minimum pressure. A rise in pressure with distance is

called an adverse pressure gradient and occurs between the point of minimum pressure and

the trailing edge. The pressure force due to the adverse pressure gradient acts in the direction

opposite to the flow direction and tends to decelerate the flow.

The external pressure gradient effects the properties of the boundary layer. Compared

to a flat plate, the laminar boundary layer in a favorable pressure gradient grows more slowly

and is more stable. This means that the boundary-layer thickness is less and the local shear

stress is increased. Also the transition region is moved downstream, so the boundary layer

becomes turbulent somewhat later. Of course, free-stream turbulence and surface roughness

will still promote the early transition to a fully turbulent boundary layer.

The effect of external pressure gradient on the boundary layer is most pronounced for

the adverse pressure gradient. The development of the velocity profiles for the laminar and

turbulent boundary layers in an adverse pressure gradient are shown in Fig. 9.14. The retard-

ing force associated with the adverse pressure gradient decelerates the flow, especially near

the surface where the velocities are the lowest. Ultimately there is a reversal of flow at the

wall, which gives rise to a recirculatory pattern and the formation of an eddy. This phenome-

non is called boundary-layer separation. The point of separation is defined where the veloc-

ity gradient becomes zero as indicated on the figure. The separation point for the

turbulent boundary layer occurs farther downstream because the velocity profile is much

fuller (higher velocities persist closer to the wall) than the laminar profile, and it takes longer

for the adverse pressure gradient to decelerate the flow. Thus the turbulent boundary layer is

less affected by the adverse pressure gradient.

Figure 9.13
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Even though shear stresses on a body in a flow may not contribute significantly to the to-

tal drag force, the effect of boundary-layer separation can be very important. When boundary-

layer separation takes place on airfoils at a high angle of attack, “stall” occurs, which means the

airfoil loses its capability to provide lift. A photograph illustrating boundary-layer separation on

an airfoil section is shown in Fig. 4.26. Boundary-layer separation on a cylinder was discussed

and illustrated in Section 4.8 on page 111. Understanding and controlling boundary-layer sepa-

ration is important in the design of fluid dynamic shapes for maximum performance.

Summary

The variation in velocity for a planar (two-dimensional) steady flow with parallel streamlines

is governed by the equation

where the distance y is normal to the streamlines and the distance s is along the streamlines.

In this chapter, this equation is used to analyze two flow configurations: Couette flow (flow

generated by a moving plate) and Hele-Shaw flow (flow between stationary parallel plates).

The boundary layer is the region where the viscous stresses are responsible for the ve-

locity change between the wall and the free stream. The boundary-layer thickness is the dis-

tance from the wall to the location where the velocity is 99% of the free-stream velocity. The

laminar boundary layer is characterized by smooth (nonturbulent) flow where the momentum

transfer between fluid layers occurs because of the fluid viscosity. As the boundary layer

thickness grows, the laminar boundary-layer becomes unstable, and a turbulent boundary

layer ensues. The transition point for a boundary layer on a flat plate occurs at a nominal Rey-

nolds number of based on the free stream velocity and the distance from the leading

edge.

The turbulent boundary layer is characterized by an unsteady flow where the momen-

tum exchange between fluid layers occurs because of the mixing of fluid elements normal to

the direction of fluid motion. This effect, known as the Reynolds stress, significantly en-

hances the momentum exchange and leads to a much higher “effective” shear stress.

Figure 9.14
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The local shear-stress coefficient is defined as

where �0 is the wall shear stress and U0 is the free-stream velocity. The value for the local

shear-stress coefficient on a flat plate depends on the Reynolds number based on the distance

from the leading edge. The average shear-stress coefficient is

where Fs is the force due to shear-stress, or surface resistance, on a surface with area A. The

value for the average shear-stress coefficient for a flat plate depends on the nature of the

boundary layer as related to the Reynolds number based on the length of the plate in the flow

direction. The laminar boundary layer near the leading edge and the subsequent turbulent

boundary layer contribute to the average shear stress on a flat plate. Through leading-edge

roughness or other flow disturbance, the boundary layer can be “tripped” at the plate’s lead-

ing edge, effecting a turbulent boundary layer over the entire plate.

The boundary layer for flow over a curved body is subjected to an external pressure

gradient. A favorable pressure gradient produces a force in the flow direction and tends to

keep the boundary layer stable. An adverse pressure gradient decelerates the flow and can

lead to boundary layer separation.
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Problems

Uniform Laminar Flow

9.1 ��� The velocity distribution in a Couette flow is linear if

the viscosity is constant. If the moving plate is heated and the vis-

cosity of the liquid is decreased near the hot plate, how will the ve-

locity distribution change? Give a qualitative description and the

rationale for your argument.

9.2 ��� Consider the flow between two parallel plates. If the

viscosity of the fluid is constant along the flow direction, the pres-

sure gradient is linear with distance. How would the pressure gra-

dient differ if the viscosity of the fluid decreased (due to

temperature rise) along the flow direction. The density is un-

changed. Give a qualitative description of pressure distribution

and provide rationale for your answer.

9.3 ��� Consider the flow of a gas between two parallel plates.

If there were an increase in temperature due to heat transfer along

the flow direction, the gas density would decrase. Assume the vis-

cosity is unaffected. How will the velocity and pressure distribu-

tion change from the case with constant density. Sketch the

pressure distribution and give the rationale for your result.

9.4 A cube weighing 150 N and measuring 35 cm on a side is al-

lowed to slide down an inclined surface on which there is a film

of oil having a viscosity of What is the velocity

of the block if the oil has a thickness of 0.1 mm? 

9.5 A board 3 ft by 3 ft that weighs 40 lbf slides down an inclined

ramp with a velocity of 0.5 fps. The board is separated from the ramp

by a layer of oil 0.02 in. thick. Neglecting the edge effects of the

board, calculate the approximate dynamic viscosity � of the oil.  
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9.6 A board 1 m by 1 m that weighs 20 N slides down an inclined

ramp with a velocity of 10 The board is separated from the

ramp by a layer of oil 0.5 mm thick. Neglecting the edge effects

of the board, calculate the approximate dynamic viscosity � of the

oil.

9.7 Uniform, steady flow is occurring between horizontal paral-

lel plates as shown.

a. In a few words, tell what other condition must be present to

cause the odd velocity distribution.

b. Where is the minimum shear stress located? 

9.8 Under certain conditions (pressure decreasing in the x-direction

and a moving plate), the laminar velocity distribution will be as

shown here. For such a condition, indicate whether each of the fol-

lowing statements is true or false.

a. The greatest shear stress in the liquid occurs next to the fixed

plate.

b. The shear stress midway between the plates is zero.

c. The minimum shear stress in the liquid occurs next to the

moving plate.

d. The shear stress is greatest where the velocity is the greatest.

e. The minimum shear stress occurs where the velocity is the

greatest.

9.9 A flat plate is pulled to the right at a speed of 30 Oil

with a viscosity of fills the space between the plate

and the solid boundary. The plate is 1 m long (L 1 m) by 30 cm

wide, and the spacing between the plate and boundary is 2.0 mm.

a. Express the velocity mathematically in terms of the coordi-

nate system shown.

b. By mathematical means, determine whether this flow is rota-

tional or irrotational.

c. Determine whether continuity is satisfied, using the differen-

tial form of the continuity equation.

d. Calculate the force required to produce this plate motion.

9.10 The velocity distribution that is shown represents laminar

flow. Indicate which of the following statements are true.

a. The velocity gradient at the boundary is infinitely large.

b. The maximum shear stress in the liquid occurs midway be-

tween the walls.

c. The maximum shear stress in the liquid occurs next to the

boundary.

d. The flow is irrotational.

e. The flow is rotational.

9.11 The upper plate shown is moving to the right with a velocity

V, and the lower plate is free to move laterally under the action of

the viscous forces applied to it. For steady-state conditions, derive

an equation for the velocity of the lower plate. Assume that the

area of oil contact is the same for the upper plate, each side of the

lower plate, and the fixed boundary.
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9.12 A circular horizontal disk with a 15 cm diameter has a clear-

ance of 2.0 mm from a horizontal plate. What torque is required

to rotate the disk about its center at an angular speed of 10 rad s

when the clearance space contains oil (� 8 N  s m2)?

9.13 A plate 2 mm thick and 1 m wide (normal to the page) is

pulled between the walls shown in the figure at a speed of 0.40

Note that the space that is not occupied by the plate is filled

with glycerine at a temperature of 20°C. Also, the plate is posi-

tioned midway between the walls. Sketch the velocity distribution

of the glycerine at section A-A. Neglecting the weight of the plate,

estimate the force required to pull the plate at the speed given.

9.14 A bearing uses SAE 30 oil with a viscosity of 0.1 N s m2.

The bearing is 30 mm in diameter, and the gap between the shaft

and the casing is 1 mm. The bearing has a length of 1 cm. The shaft

turns at Assuming that the flow between the

shaft and the casing is a Couette flow, find the torque required to

turn the bearing. 

9.15 An important application of surface resistance is found in lu-

brication theory. Consider a shaft that turns inside a stationary

cylinder, with a lubricating fluid in the annular region. By con-

sidering a system consisting of an annulus of fluid of radius r and

width �r, and realizing that under steady-state operation the net

torque on this ring is zero, show that where � is

the viscous shear stress. For a flow that has a tangential compo-

nent of velocity only, the shear stress is related to the velocity by

� �rd(V r) dr. Show that the torque per unit length acting on

the inner cylinder is given by T 4��� (1 ), where

� is the angular velocity of the shaft. 

9.16 Using the equation developed in Prob. 9.15, find the power

necessary to rotate a 2 cm shaft at 60  if the inside diameter

of the casing is 2.2 cm, the bearing is 3 cm long, and SAE 30 oil

at 38°C is the lubricating fluid.

9.17 The analysis developed in Prob. 9.15 applies to a device used

to measure the viscosity of a fluid. By applying a known torque

to the inner cylinder and measuring the angular velocity achieved,

one can calculate the viscosity of the fluid. Assume you have a 4

cm inner cylinder and a 4.5 cm outer cylinder. The cylinders are

10 cm long. When a force of 0.6 N is applied to the tangent of the

inner cylinder, it rotates at 20 rpm. Calculate the viscosity of the

fluid.

9.18 Two horizontal parallel plates are spaced 0.01 ft apart. The pres-

sure decreases at a rate of 12 in the horizontal x-direction in

the fluid between the plates. What is the maximum fluid velocity

in the x direction? The fluid has a dynamic viscosity of

and a specific gravity of 0.80.

9.19 A viscous fluid fills the space between these two plates, and

the pressures at A and B are 150 psf and 100 psf, respectively. The

fluid is not accelerating. If the specific weight of the fluid is 100

then one must conclude that (a) flow is downward, (b)

flow is upward, or (c) there is no flow. 

9.20 Glycerine at 20°C flows downward between two vertical

parallel plates separated by a distance of 0.4 cm. The ends are

open, so there is no pressure gradient. Calculate the discharge per

unit width, q, in 
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9.21 Two vertical parallel plates are spaced 0.01 ft apart. If the pres-

sure decreases at a rate of 60 in the vertical z-direction in the

fluid between the plates, what is the maximum fluid velocity in the

z-direction? The fluid has a viscosity of and a spe-

cific gravity of 0.80.

9.22 Two parallel plates are spaced 0.09 in. apart, and motor oil

(SAE 30) with a temperature of 100°F flows at a rate of 0.009 cfs

per foot of width between the plates. What is the pressure gradient

in the direction of flow if the plates are inclined at 60° with the

horizontal and if the flow is downward between the plates? 

9.23 Glycerine at 20°C flows downward in the annular region be-

tween two cylinders. The internal diameter of the outer cylinder

is 3 cm, and the external diameter of the inner cylinder is 2.8 cm.

The pressure is constant along the flow direction. The flow is lam-

inar. Calculate the discharge. (Hint: The flow between the two

cylinders can be treated as the flow between two flat plates.) 

9.24 One type of bearing that can be used to support very large

structures is shown in the accompanying figure. Here fluid under

pressure is forced from the bearing midpoint (slot A) to the exte-

rior zone B. Thus a pressure distribution occurs as shown. For this

bearing, which is 30 cm wide, what discharge of oil from slot A

per meter of length of bearing is required? Assume a 50 kN load

per meter of bearing length with a clearance space t between

the floor and the bearing surface of 0.60 mm. Assume an oil

viscosity of How much oil per hour would have

to be pumped per meter of bearing length for the given conditions? 

9.25 Often in liquid lubrication applications there is a heat gen-

erated that is transferred across the lubricating layer. Consider a

Couette flow with one wall at a higher temperature than the other.

The temperature gradient across the flow affects the fluid viscos-

ity according to the relationship.

where is the viscosity at y 0 and L is the distance between

the walls. Incorporate this expression into the Couette flow

equation, integrate and express the shear stress in the form

where C is a constant and U is the velocity of the moving wall.

Analyze your answer. Should the shear stress be greater or less

than that with uniform viscosity?

9.26 Gases form good insulating layers. Consider an application

in which there is a Couette flow with the moving plate at a higher

temperature than the fixed plate. The viscosity varies between the

plates as

where is the viscosity at y 0 and L is the distance between

the plates. Incorporate this expression into the Couette flow

equation, integrate and express the shear stress in the form

where C is a constant and U is the velocity of the moving plate.

Analyze your answer. Should the shear stress be greater or less

than that with uniform viscosity?

9.27 An engineer is designing a very thin, horizontal channel for

cooling electronic circuitry. The channel is 2 cm wide and 5 cm

long. The distance between the plates is 0.2 mm. The average

velocity is 5 cm s. The fluid used has a viscosity of 1.2 cp and

a density of 800 kg m3. Assuming no change in viscosity or

density, find the pressure drop in the channel and the power re-

quired to move the flow through the channel. 
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9.28 Consider the channel designed for electronic cooling in

Prob. 9.27. Because of the heating, the viscosity will change

through the channel. Assume the viscosity varies as

where is the viscosity at s 0 and L is the length of the

channel. Find the percentage change of the pressure drop due to

viscosity variation.

Laminar Boundary Layer

9.29 ��� Explain in your own words what is meant by “bound-

ary layer.”

9.30 ��� Define “boundary layer thickness.”

9.31 ��� List three features of the laminar boundary layer.

9.32��� Assume the wall adjacent to a liquid laminar boundary is

heated and the viscosity of the fluid is lower near the wall and in-

creases the free-stream value at the edge of the boundary layer. How

would this variation in viscosity affect the boundary layer thickness

and local shear stress? Give the rationale for your answers.

9.33 A thin plate 6 ft long and 3 ft wide is submerged and held

stationary in a stream of water (T 60°F) that has a velocity of

5 What is the thickness of the boundary layer on the plate for

Rex 500,000 (assume the boundary layer is still laminar), and at

what distance downstream of the leading edge does this Reynolds

number occur? What is the shear stress on the plate at this point?

9.34 What is the ratio of the boundary-layer thickness on a

smooth, flat plate to the distance from the leading edge just before

transition to turbulent flow? 

9.35 A model airplane has a wing span of 3 ft and a chord (leading

edge–trailing edge distance) of 5 in. The model flies in air at 60°F

and atmospheric pressure. The wing can be regarded as a flat plate

so far as drag is concerned. At what speed will a turbulent bound-

ary layer start to develop on the wing? What will be the total drag

force on the wing just before turbulence appears?

9.36 Oil ( ) flows past a

plate in a tangential direction so that a boundary layer develops.

If the velocity of approach is 4 m s, then at a section 30 cm down-

stream of the leading edge the ratio of �� (shear stress at the edge

of the boundary layer) to �0 (shear stress at the plate surface) is ap-

proximately (a) 0, (b) 0.24, (c) 2.4, or (d) 24. 

9.37 A liquid (� 1000 kg m3; � 2 10–2 N s m2; v

2 10–5 m2 s) flows tangentially past a flat plate. If the approach

velocity is 1 m s, what is the liquid velocity 1 m downstream

from the leading edge of the plate and 1 mm away from the plate? 

9.38 The plate of Prob. 9.37 has a total length of 3 m (parallel to

the flow direction), and it is 1 m wide. What is the skin friction

drag (shear force) on one side of the plate? 

9.39 Oil ( ) flows tangentially past a thin plate. If

the free-stream velocity is 5 m s, what is the velocity 1 m down-

stream from the leading edge and 3 mm away from the plate? 

9.40 Oil ( S 0.9) flows past a plate in a tan-

gential direction so that a boundary layer develops. If the velocity

of approach is 1 m s, what is the oil velocity 1 m downstream

from the leading edge and 10 cm away from the plate?

9.41 A thin plate 0.7 m long and 1.5 m wide is submerged and held

stationary in a stream of water (T 10°C) that has a velocity of

1.5 m s. What is the thickness of the boundary layer on the plate

for Rex 500,000 (assume the boundary layer is still laminar),

and at what distance downstream of the leading edge does this

Reynolds number occur? What is the shear stress on the plate on

this point? 

9.42 A flat plate 1.5 m long and 1.0 m wide is towed in water at

20°C in the direction of its length at a speed of 15 Deter-

mine the resistance of the plate and the boundary layer thickness

at its aft end.

9.43Transition from a laminar to a turbulent boundary-layer occurs

between the Reynolds numbers of Rex 105 and Rex  3 106.

The thickness of the turbulent boundary-layer based on the distance

from the leading edge is  Find the ratio of

the thickness of the laminar boundary layer at the beginning of tran-

sition to the thickness of the turbulent bounday layer at the end of

transition.

Turbulent Boundary Layer

9.44 ��� List three features that describe the difference be-

tween the laminar and turbulent boundary layer.

9.45 ��� Assume that a turbulent gas boundary layer was ad-

jacent to a cool wall and the viscosity in the wall region was re-

duced. How may this affect the features of the boundary layer?

Give some rationale for your answers.

9.46An element for sensing local shear stress is positioned in a flat

plate 1 meter from the leading edge. The element simply consists of

a small plate, mounted flush with the wall, and the

shear force is measured on the plate. The fluid flowing by the

plate is air with a free-stream velocity of 30 m s, a density of

1.2 and a kinematic viscosity of The

boundary layer is tripped at the leading edge. What is the magnitude

of the force due to shear stress acting on the element? 
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9.47 For the conditions of Prob. 9.46, what is the shearing resis-

tance on one side of the plate for the part of the plate that has a

Reynolds number, Rex, less than 500,000? What is the ratio of the

laminar shearing force to the total shearing force on the plate? 

9.48 An airplane wing of 2 m chord length (leading edge to trail-

ing edge distance) and 11 m span flies at 200 in air at

30°C. Assume that the resistance of the wing surfaces is like that

of a flat plate.

a. What is the friction drag on the wing?

b. What power is required to overcome this?

c. How much of the chord is laminar?

d. What will be the change in drag if a turbulent boundary layer

is tripped at the leading edge?

9.49 A turbulent boundary layer exists in the flow of water at

20°C over a flat plate. The local shear stress measured at the sur-

face of the plate is 0.1 N m2. What is the velocity at a point 1 cm

from the plate surface? 

9.50 A liquid flows tangentially past a flat plate. The fluid prop-

erties are and � Find the skin

friction drag on the plate per unit width if the plate is 2 m long and

the approach velocity is 20 m s. Also, what is the velocity gra-

dient at a point that is 1 m downstream of the leading edge and just

next to the plate (y 0)?

9.51 For the hypothetical boundary layer on the flat plate shown,

what is the shear-stress on the plate at the downstream end (point

A)? Here and 

9.52Assume that the velocity profile in a boundary layer is replaced

by a step profile, as shown in the figure, where the velocity is zero

adjacent to the surface and equal to the free-stream velocity (U ) at

a distance greater than �* from the surface. Assume also that the den-

sity is uniform and equal to the free-stream density The dis-

tance �* (displacement thickness) is so chosen that the mass flux

corresponding to the step profile is equal to the mass flux through

the actual boundary layer. Derive an integral expression for the

displacement thickness as a function of u, U, y, and �.

9.53 Because of the reduction of velocity associated with the

boundary layer, the streamlines outside the boundary layer are

shifted away from the boundary. This amount of displacement of

the streamlines is defined as the displacement thickness �*. Using

the expression developed in Prob. 9.52, evaluate the displacement

thickness of the boundary layer at the downstream edge of the

plate (point A) in Prob. 9.51.

9.54 Use the expression developed in Prob. 9.52 to find the ratio

of the displacement thickness to the boundary layer thickness for

the turbulent boundary layer profile given by 

9.55 What is the ratio of the skin friction drag of a plate 30 m long

and 5 m wide to that of a plate 10 m long and 5 m wide if both

plates are towed lengthwise through water (T 20°C) at 10

?

9.56 Estimate the power required to pull the sign shown if it is

towed at 40 and if it is assumed that the sign has the same

resistance characteristics as a flat plate. Assume standard atmo-

spheric pressure and a temperature of 10°C. 

9.57A thin plastic panel (3 mm thick) is lowered from a ship to

a construction site on the ocean floor. The plastic panel weighs

300 N in air and is lowered at a rate of 3 Assuming that the

panel remains vertically oriented, calculate the tension in the cable.

9.58 The plate shown in the figure is weighted at the bottom so it

will fall stably and steadily in a liquid. The weight of the plate in

air is 23.5 N, and the plate has a volume of 0.002 m3. Estimate its

falling speed in fresh water at 20°C. The boundary layer is nor-

mal; that is, it is not tripped at the leading edge.
In this problem, the final falling speed (terminal velocity) oc-

curs when the weight is equal to the sum of the skin friction and

buoyancy.

Hint: Find the final falling speed. This problem requires an iterative

solution.
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9.59 A turbulent boundary layer develops from the leading edge

of a flat plate with water at 20°C flowing tangentially past the

plate with a free-stream velocity of 5 Determine the thick-

ness of the viscous sublayer, at a distance 1 m downstream

from the leading edge.

9.60 A model airplane descends in a vertical dive through air at

standard conditions (1 atmosphere and 20°C). The majority of the

drag is due to skin friction on the wing (like that on a flat plate).

The wing has a span of 1 m (tip to tip) and a chord length (leading

edge to trailing edge distance) of 10 cm. The leading edge is

rough, so the turbulent boundary layer is “tripped.” The model

weighs 3 N. Determine the speed (in meters per second) at which

the model will fall. 

9.61 A flat plate is oriented parallel to a 15 airflow at 20°C

and atmospheric pressure. The plate is 1 m long in the flow di-

rection and 0.5 m wide. On one side of the plate, the boundary

layer is tripped at the leading edge, and on the other side there is

no tripping device. Find the total drag force on the plate.

9.62 An engineer is designing a horizontal, rectangular conduit

that will be part of a system that allows fish to bypass a dam. In-

side the conduit, a flow of water at 40°F will be divided into two

streams by a flat, rectangular metal plate. Calculate the viscous

drag force on this plate, assuming boundary-layer flow with

free-stream velocity of 15 ft s and plate dimensions of L 8 ft

and W 4.0 ft.

9.63 A model is being developed for the entrance region between

two flat plates. As shown in the figure, it is assumed that the re-

gion is approximated by a turbulent boundary layer originating at

the leading edge. The system is designed such that the plates end

where the boundary layers merge. The spacing between the plates

is 4 mm, and the entrance velocity is 10 The fluid is water at

20°C. Roughness at the leading edge trips the boundary layers.

Find the length L where the boundary layers merge, and find the

force per unit depth (into the paper) due to shear stress on both

plates.  

9.64 An outboard racing boat “planes” at 70 mph over water at

60°F. The part of the hull in contact with the water has an average

width of 3 ft and a length of 8 ft. Estimate the power required to

overcome its surface resistance.

9.65 A motor boat pulls a long, smooth, water-soaked log (0.5 m

in diameter and 50 m long) at a speed of 1.7 m s. Assuming total

submergence, estimate the force required to overcome the surface

resistance of the log. Assume a water temperature of 10°C and

that the boundary layer is tripped at the front of the log.

9.66 Modern high-speed passenger trains are streamlined to re-

duce surface resistance. The cross section of a passenger car of

one such train is shown. For a train 150 m long, estimate the

surface resistance for a speed of 100 km hr and for one of 200

km hr. What power is required for just the surface resistance at

these speeds? Assume T 10°C and that the boundary layer is

tripped at the front of the train.

9.67 Consider the boundary layer next to the smooth hull of a ship.

The ship is cruising at a speed of 45 ft s in 60°F fresh water. As-

suming that the boundary layer on the ship hull develops the same as

on a flat plate, determine

a. The thickness of the boundary layer at a distance x 100 ft

downstream from the bow.
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b. The velocity of the water at a point in the boundary layer at

x 100 ft and 

c. The shear stress, �0, adjacent to the hull at x 100 ft.

9.68 An Eiffel-type wind tunnel operates by drawing air through

a contraction, passing this air through a test section, and then ex-

hausting the air using a large axial fan. Experimental data are re-

corded in the test section, which is typically a rectangular section

of duct that is made of clear plastic (usually acrylic). In the test

section, the velocity should have a very uniform distribution;

thus, it is important that the boundary layer be very thin at the end

of the test section. For the pictured wind tunnel, the test section

is square with a dimension of W 457 mm on each side and a

length of L 914 mm. Find the ratio of maximum boundary-layer

thickness to test section width for two cases: min-

imum operating velocity (1 m s) and maximum operating velocity

(70 m s). Assume air properties at 1 atm and 20°C.

9.69 A ship 600 ft long steams at a rate of 25 ft s through still

fresh water (T 50°F). If the submerged area of the ship is

50,000 ft2, what is the skin friction drag of this ship?

9.70 A river barge has the dimensions shown. It draws 2 ft of water

when empty. Estimate the skin friction drag of the barge when it is

being towed at a speed of 10 ft s through still fresh water at 60°F. 

9.71 A supertanker has length, breadth, and draught (fully loaded)

dimensions of 325 m, 48 m, and 19 m, respectively. In open seas the

tanker normally operates at a speed of 18 kt (1 kt 0.515 ).

For these conditions, and assuming that flat-plate boundary-layer

conditions are approximated, estimate the skin friction drag of

such a ship steaming in 10°C water. What power is required to

overcome the skin friction drag? What is the boundary-layer

thickness at 300 m from the bow? 

9.72 A model test is to be done to predict the wave drag on a ship.

The ship is 500 ft long and operates at 30 ft s in sea water at 10°C.

The wetted area of the prototype is 25,000 ft2. The model pro-

totype scale ratio is 1 100. Modeling is done in fresh water at

60°F to match the Froude number. The viscous drag can be cal-

culated by assuming a flat plate with the wetted area of the model

and a length corresponding to the length of the model. A total drag

of 0.1 lbf is measured in the model tests. Calculate the wave drag

on the actual ship. 

9.73 A ship is designed so that it is 250 m long, its beam measures

30 m, and its draft is 12 m. The surface area of the ship below the

water line is 8800 m2. A 1 40 scale model of the ship is tested and

is found to have a total drag of 26.0 N when towed at a speed of

1.45 m s. Using the methods outlined in Section 8.9, answer the

following questions, assuming that model tests are made in fresh

water (20°C) and that prototype conditions are sea water (10°C).

a. To what speed in the prototype does the 1.45 m s correspond?

b. What are the model skin friction drag and wave drag? 

c. What would the ship drag be in salt water corresponding to

the model test conditions in fresh water? 

9.74 A hydroplane 3 m long skims across a very calm lake

(T 20°C) at a speed of 15 m s. For this condition, what will be

the minimum shear stress along the smooth bottom? 

9.75 Estimate the power required to overcome the surface resis-

tance of a water skier if he or she is towed at 30 mph and each

ski is 4 ft by 6 in. Assume the water temperature is 60°F. 

9.76 If the wetted area of an 80 m ship is 1500 m2, approximately

how great is the surface drag when the ship is traveling at a speed

of 15 m s. What is the thickness of the boundary layer at the

stern? Assume seawater at T 10°C.  
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C H A P T E R

Flow in Conduits

The fundamentals of the energy equation were presented in Chapter 7, and the fundamentals

of shear stress, velocity profiles, and boundary layer in Chapter 9. This chapter combines

these ideas to describe flow in conduits. A conduit is any pipe, tube, or duct that is com-

pletely filled with a flowing fluid. Examples include a pipeline transporting liquefied natural

gas, a microchannel transporting hydrogen in a fuel cell, and a duct transporting air for heat-

ing of a building. A pipe that is partially filled with a flowing fluid, for example a drainage

pipe, is classified as an open-channel flow and will be analyzed in Chapter 15.

The main goal of this chapter is to describe how to predict head loss. Predicting head

loss involves classifying flow as laminar or turbulent and then using equations to calculate

head losses in pipes and components. This chapter also describes how to use data from a

pump manufacturer to select the right size of pump for a given application and how to model

a network of pipes.

T

h

e

The Alaskan pipeline, a 

significant accomplishment of the 

engineering profession, 

transports oil 1286 km across the 

state of Alaska. The pipe diameter 

is 1.2 m, and the 44 pumps are 

used to drive the flow. This 

chapter presents information for 

designing systems involving pipes, 

pumps, and turbines. 

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Describe laminar flow, turbulent flow, developing flow, and fully 

developed flow in a conduit.

• Describe how to characterize total head loss by using component and 

pipe head loss.

• List the steps used to derive the (a) Darcy-Weisbach equation and 

(b) Poiseuille flow solution.

• Describe the main features of the Moody diagram.

Procedural Knowledge

• Classify flow as (a) laminar or turbulent and (b) developing or fully 

developed.

• Using equations or the Moody diagram, find values of the friction 

factor f.

• Calculate pipe head loss, component head loss, and total head loss.

Typical Applications

• For flow in a pipe, find the pressure drop or head loss.

• For a specified system, find the flow rate.

• For a specified flow rate and pressure drop, determine the size of 

pipe required.

• For a system with a pump, find the pump specifications (power, 

head, flow rate).

• For a specified elevation change and flow rate, find the power that 

can be produced by a turbine.



316 FLOW IN CONDUITS

Classifying Flow

This section describes how to classify flow in a conduit by considering (a) whether the flow is

laminar or turbulent, and (b) whether the flow is developing or fully developed. Classifying

flow is essential for selecting the proper equation for calculating head loss.

Laminar Flow and Turbulent Flow
Flow in a conduit is classified as being either laminar or turbulent, depending on the magni-

tude of the Reynolds number. The original research involved visualizing flow in a glass tube

as shown in Fig. 10.1a. Reynolds (1) in the 1880s injected dye into the center of the tube and

observed the following:

• When the velocity was low, the streak of dye flowed down the tube with little expan-

sion, as shown in Fig. 10.1b. However, if the water in the tank was disturbed, the streak

would shift about in the tube.

• If velocity was increased, at some point in the tube, the dye would all at once mix with

the water as shown in Fig. 10.1c.

• When the dye exhibited rapid mixing (Fig. 10.1c), illumination with an electric spark

revealed eddies in the mixed fluid as shown in Fig. 10.1d.

The flow regimes shown in Fig. 10.1 are laminar flow (Fig. 10.1b) and turbulent flow (Figs.

10.1c and 10.1d ). Reynolds showed that the onset of turbulence was related to a �-group

that is now called the Reynolds number in honor of Reynolds’ pioneering

work. Reynolds discovered that if the fluid in the upstream reservoir was not completely still

or if the pipe had some vibrations, then the change from laminar to turbulent flow occurred at

However, if conditions were ideal, it was possible to reach a much higher Rey-

nolds number before the flow became turbulent. Reynolds also found that, when going from

high velocity to low velocity, the change back to laminar flow occurred at Based

Figure 10.1

Reynolds’ experiment.

(a) Apparatus.

(b) Laminar flow of dye 

in tube.

(c) Turbulent flow of dye 

in tube.

(d) Eddies in turbulent 

flow. 

10.1

Re �VD �⁄�( )

Re 2100.∼

Re 2000.∼

Dye

Glass tube

(a)

(b)

(c)

(d)
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on Reynolds’ experiments, engineers use guidelines to establish whether or not flow in a con-

duit will be laminar or turbulent. The guidelines used in this text are as follows:

(10.1)

In Eq. (10.1), the middle range corresponds to a the type of flow that is

unpredictable because it can changes back and forth between laminar and turbulent states.

Recognize that precise values of Reynolds number versus flow regime do not exist. Thus, the

guidelines given in Eq. (10.1) are approximate and other references may give slightly differ-

ent values. For example, some references use as the criteria for turbulence.

There are several equations for calculating Reynolds number in a pipe.

(10.2)

These equations are derived by using the definition of Re, the definition of kinematic viscos-

ity from Eq. (2.8), and the flow rate equations from Eqs. (5.8 and 5.9).

Developing Flow and Fully Developed Flow
Flow in a conduit is classified as being developing flow or fully developed flow. For exam-

ple, consider laminar fluid entering a pipe from a reservoir as shown in Fig. 10.2. As the fluid

moves down the pipe, the velocity distribution changes in the streamwise direction as viscous

effects cause the plug-type profile to gradually change into a parabolic profile. This region of

changing velocity profile is called developing flow. After the parabolic distribution is

achieved, the flow profile remains unchanged in the streamwise direction, and flow is called

fully developed flow.

The distance required for flow to develop is called the entrance length This

length depends on the shear stress that acts on the pipe wall. For laminar flow, the wall shear-

stress distribution is shown in Fig. 10.2. Near the pipe entrance, the radial velocity gradient

(change in velocity with distance from the wall) is high, so the shear stress is large. As the ve-

locity profile progresses to a parabolic shape, the velocity gradient and the wall shear stress

decrease until a constant value is achieved. The entry length is defined as the distance at

which the shear stress reaches to within 2% of the fully developed value. Correlations for en-

try length are

(10.3a)

(10.3b)

Eq. (10.3) is valid for flow entering a circular pipe from a reservoir under quiescent

conditions. Other upstream components such as valves, elbows, and pumps produce complex

flow fields that require different lengths to achieve fully developing flow.

In summary, flow in a conduit is classified into four categories: laminar developing,

laminar fully developed, turbulent developing, or turbulent fully developed. The key to clas-

sification is to calculate the Reynolds number as shown by Example 10.1. 

Re 2000              laminar flow≤
2000 Re 3000     unpredictable≤ ≤

Re 3000              turbulent flow≥

2000 Re 3000≤ ≤( )

Re 2300�

Re
VD


--------

�VD

�
-----------

4Q

�D
------------

4m·

�D�
-------------� � � �

Le( ).

Le

D
----- 0.05Re       laminar flow: Re 2000≤( )�

Le

D
----- 50       turbulent flow: Re 3000≥( )�
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Figure 10.2

In developing flow, the 

wall shear stress is 

changing. In fully 

developed flow, the wall 

shear stress is constant.

EXAMPLE 10.1   CLASSIFYING FLOW IN CONDUITS

Consider fluid flowing in a round tube of length 1 m and 

diameter 5 mm. Classify the flow as laminar or turbulent and 

calculate the entrance length for (a) air (50°C) with a speed of 

12 m s and (b) water (15°C) with a mass flow rate of 

Problem Definition

Situation: Fluid is flowing in a round tube (two cases given).

Find:

1. Whether each flow is laminar or turbulent.

2. Entrance length (in meters) for each case. 

Properties: 

1. Air (50°C), Table A.3,  

2. Water (15°C), Table A.5,  

Sketch:

Assumptions:

1. The pipe is connected to a reservoir.

2. The entrance is smooth and tapered.

Plan

1. Calculate the Reynolds number using Eq. (10.2).

2. Establish whether the flow is laminar or turbulent using 

Eq. (10.1).

3. Calculate the entrance length using Eq. (10.3).

Solution

a. Air

Since the 

b. Water

Since , the 

Wall shear stress is 
changing due to the 
change in velocity 
profile as boundary
layer grows.

Le

s

Distance (s)

Developing flow
Fully developed
flow

Potential core (inviscid flow)

Edge of boundary layer

W
al

l s
he

ar
 s

tr
es

s 
(τ

o) Wall shear stress is 
constant because
velocity profile is 
constant with s.

⁄
m· 8 g/s.�

 1.79 10
5–×  m

2
/s.�

� 1.14 10
3–×   N s� m

2⁄ .�

(a) Air, 50°C, V = 10 m/s
(b) Water, 15°C, m• = 0.008 kg/s

D = 0.005 m

L = 1.0 m
Flow

Re
VD


--------

12 m/s( ) 0.005m( )
1.79 10

5–×  m
2
/s

--------------------------------------------- 3350� � �

Re 3000,� flow is turbulent. 

Le 50D 50 0.005 m( ) 0.25 m� � �

Re
4m·

�D �
-------------

4 0.008 kg/s( )
� 0.005m( ) 1.14 10

3–×   N s� m
2⁄( )

--------------------------------------------------------------------------------------� �

1787�

Re 2000� flow is laminar. 

Le 0.05ReD 0.05 1787( ) 0.005m( ) 0.447 m� � �
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Specifying Pipe Sizes

This section describes how to specify pipes using the Nominal Pipe Size (NPS) standard.

This information is useful for specifying a size of pipe that is available commercially.

Standard Sizes for Pipes (NPS)
One of the most common standards for pipe sizes is called the Nominal Pipe Size (NPS)

system. The terms used in the NPS system are introduced in Fig. 10.3. The ID (pro-

nounced “eye dee”) indicates the inner pipe diameter, and the OD (“oh dee”) indicates

the outer pipe diameter. As shown in Table 10.1, an NPS pipe is specified using two val-

ues: a Nominal Pipe Size (NPS) and a schedule. The nominal pipe size determines the

outside diameter or OD. For example, pipes with a nominal size of 2 inches have an OD

of 2.375 inches. Once the nominal size reaches 14 inches, the nominal size and the OD

are equal. That is, a pipe with a nominal size of 24 inches will have an OD of 24 in.

Pipe schedule is related to the thickness of the wall. The original meaning of sched-

ule was the ability of a pipe to withstand pressure, thus pipe schedule correlates with wall

thickness. Each nominal pipe size has many possible schedules that range from schedule

5 to schedule 160. The data in Table 10.1 show representative ODs and schedules; more

pipe sizes are specified in engineering handbooks and on the Internet.

Table 10.1 NOMINAL PIPE SIZES

NPS (in) OD (in) Schedule Wall Thickness (in) ID (in)

1/2 0.840 40 0.109 0.622

80 0.147 0.546

1 1.315 40 0.133 1.049

80 0.179 0.957

2 2.375 40 0.154 2.067

80 0.218 1.939

4 4.500 40 0.237 4.026

80 0.337 3.826

8 8.625 40 0.322 7.981

80 0.500 7.625

14 14.000 10 0.250 13.500

40 0.437 13.126

80 0.750 12.500

120 1.093 11.814

24 24.000 10 0.250 23.500

40 0.687 22.626

80 1.218 21.564

120 1.812 20.376

10.2

ID (Inside diameter)

A larger schedule indicates
thicker walls. A schedule
40 pipe has thicker walls than
a schedule 10 pipe.

OD (Outside diameter)

Figure 10.3

Section view of a pipe.
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Pipe Head Loss 

This section presents the Darcy-Weisbach equation, which is used for calculating head loss in

a straight run of pipe. This equation is one of the most useful equations in fluid mechanics.

Combined (Total) Head Loss
Pipe head loss is one type of head loss; the other type is called component head loss. All head

loss is classified using these two categories:

(10.4)

Component head loss is associated with flow through devices such as valves, bends, and tees.

Pipe head loss is associated with fully developed flow in conduits, and it is caused by shear

stresses that act on the flowing fluid. Note that pipe head loss is sometimes called major head

loss, and component head loss is sometimes called minor head loss. Pipe head loss is pre-

dicted with the Darcy-Weisbach equation.

Derivation of the Darcy-Weisbach Equation
To derive the Darcy-Weisbach equation, start with the situation shown in Fig. 10.4. Assume

fully developed and steady flow in a round tube of constant diameter D. Situate a cylindrical

control volume of diameter D and length  inside the pipe. Define a coordinate system with

an axial coordinate in the streamwise direction (s direction) and a radial coordinate in the r di-

rection.

Apply the momentum equation (6.5) to the control volume shown in Fig. 10.4.

(10.5)

Select the streamwise direction and analyze each of the three terms in Eq. (10.5). The

net efflux of momentum is zero because the velocity distribution at section 2 is identical to

the velocity distribution at section 1. The momentum accumulation term is also zero because

Figure 10.4

Initial situation for the 

derivation of the Darcy- 

Weisbach equation.

10.3

Total head loss( ) Pipe head loss( ) Component head loss( )+�

ΔL

F� d

td
---- v� V d

cv
� v�V Ad�

cs
�+�

Net forces( ) Momentum accumulation rate( ) Net efflux of momentum( )+�

D

Flow

ΔL

ΔL

ΔL
sin α =

cv

(a) (b)

s direction

r direction

α
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Δz
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the flow is steady. Thus, Eq. (10.5) simplifies to Forces are shown in Fig. 10.5.

Summing of forces in the streamwise direction gives

(10.6)

Figure 10.4b shows that Equation (10.6) becomes

(10.7)

Next, apply the energy equation (7.29) to the control volume shown in Fig. 10.4. Recognize

that hp = ht = 0, V1 = V2, and Thus, the energy equation reduces to

(10.8)

Combine Eqs. (10.7) and (10.8) and replace  by L. Also, introduce a new symbol  to

represent head loss in pipe.

(10.9)

Rearrange the right side of Eq. (10.9). 

(10.10)

Define a new �-group called the friction factor f that gives the ratio of wall shear stress ( )

to kinetic pressure 

(10.11)

In the technical literature, the friction factor is identified by several different labels that

are synonymous: friction factor, Darcy friction factor, Darcy-Weisbach friction factor, and

the resistance coefficient. There is also another coefficient called the Fanning friction factor,

Figure 10.5

Force diagram.
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often used by chemical engineers, which is related to the Darcy-Weisbach friction factor by a

factor of 4.

This text uses only the Darcy-Weisbach friction factor. Combining Eqs. (10.10) and (10.11)

gives the Darcey-Weisbach equation:

(10.12)

To use the Darcy-Weisbach equation, the flow should be fully developed and steady. The

Darcy-Weisbach equation is used for either laminar flow or turbulent flow and for either

round pipes or nonround conduits such as a rectangular duct.

The Darcy-Weisbach equation shows that head loss depends on the friction factor, the

pipe-length-to-diameter ratio, and the mean velocity squared. The key to using the Darcy-

Weisbach equation is calculating a value of the friction factor f. This topic is addressed in the

next sections of this text.

Stress Distributions in Pipe Flow

This section derives equations for the stress distributions on a plane that is oriented normal to

stream lines. These equations, which apply to both laminar and turbulent flow, provide

insights about the nature of the flow. Also, these equations are used for subsequent

derivations.

In pipe flow the pressure acting on a plane that is normal to the direction of flow is hy-

drostatic. This means that the pressure distribution varies linearly as shown in Fig. 10.6. The

reason that the pressure distribution is hydrostatic can be explained by using Euler’s equation

(see p. 87).

To derive an equation for the shear-stress variation, consider flow of a Newtonian fluid

in a round tube that is inclined at an angle � with respect to the horizontal as shown in Fig.

10.7. Assume that the flow is fully developed, steady, and laminar. Define a cylindrical con-

trol volume of length  and radius r.
Apply the momentum equation in the s direction. The net momentum efflux is zero be-

cause the flow is fully developed; that is, the velocity distribution at the inlet is the same as

the velocity distribution at the exit. The momentum accumulation is also zero because the

flow is steady. The momentum equation (6.5) simplifies to force equilibrium.

(10.13)

Analyze each term in Eq. (10.13) using the force diagram shown in Fig. 10.8:

 (10.14)
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Let and let as shown in Fig. 10.4b. Next, divide Eq. (10.14) by

A�L :

(10.15)

Equation (10.15) shows that the shear-stress distribution varies linearly with r as shown

in Fig. 10.9. Notice that the shear stress is zero at the centerline, it reaches a maximum value

of  at the wall, and the variation is linear in between. This linear shear stress variation ap-

plies to both laminar and turbulent flow. 

Figure 10.6

For fully developed flow 

in a pipe, the pressure 

distribution on an area 

normal to streamlines is 

hydrostatic. 

Figure 10.7

Sketch for derivation of 

an equation for shear 

stress.

Figure 10.8

Force diagram 

corresponding to the 

control volume defined in 

Fig. 10.6. 

Figure 10.9

In fully developed flow 

(laminar or turbulent), 

the shear-stress 

distribution on an area 

that is normal to 

streamlines is linear.
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Laminar Flow in a Round Tube 

This section describes laminar flow and derives relevant equations. Laminar flow is

important for flow in small conduits called microchannels, for lubrication flow, and for

analyzing other flows in which viscous forces are dominant. Also, knowledge of laminar

flow provides a foundation for the study of advanced topics.

Laminar flow is a flow regime in which fluid motion is smooth, the flow occurs in lay-

ers (laminae), and the mixing between layers occurs by molecular diffusion, a process that is

much slower than turbulent mixing. According to Eq. (10.1), laminar flow occurs when

Laminar flow in a round tube is called Poiseuille flow or Hagen-Poiseuille flow
in honor of pioneering researchers who studied low-speed flows in the 1840s.

Velocity Profile
To derive an equation for the velocity profile in laminar flow, begin by relating stress to rate-

of-strain using Eq. (2.6)

where y is the distance from the pipe wall. Change variables by letting where  r0 is

pipe radius and r is the radial coordinate. Next, use the chain rule of calculus:

(10.16)

Substitute Eq. (10.16) into Eq. (10.15).

(10.17)

In Eq. (10.17), the left side of the equation is a function of radius r, and the right side is a

function of axial location s. This can be true if and only if each side of Eq. (10.17) is equal to

a constant. Thus, 

(10.18)

where  is the change in piezometric head over a length of conduit. Combine Eqs.

(10.17) and (10.18):

(10.19)

Integrate Eq. (10.19):

(10.20)

10.5

Re 2000.≤

� �
dV

dy
-------�

y r0 r,–�

� �
dV

dy
------- �

dV

dr
-------

dr

dy
------ �

dV

dr
-------–� � �

2�
r

-------–
Vd

rd
------

d

sd
----- p 	z+( )�

constant
d

sd
----- p 	z+( ) Δ p 	z+( )

ΔL
------------------------

	Δh

ΔL
----------� � �

Δh ΔL

Vd

rd
------

r

2�
-------

	Δh

ΔL
----------–�

V
r

2

4�
-------

	Δh

ΔL
----------– C+�



10.5 LAMINAR FLOW IN A ROUND TUBE 325

To evaluate the constant of integration C in Eq. (10.20), apply the no-slip condition, which

states that the velocity of the fluid at the wall is zero. Thus,

Solve for C and substitute the result into Eq. (10.20):

(10.21)

The maximum velocity occurs at 

(10.22)

Combine Eqs. (10.21) and (10.22):

(10.23)

Equation (10.23) shows that velocity varies as radius squared meaning that the ve-

locity distribution in laminar flow is parabolic as plotted in Fig. 10.10.

Discharge and Mean Velocity V
To derive an equation for discharge Q, introduce the velocity profile from Eq. (10.23) into the

flow rate equation (5.8).

(10.24)

Integrate Eq. (10.24):

(10.25)

To derive an equation for mean velocity, apply and use Eq. (10.25).

(10.26)

Figure 10.10

The velocity profile in 
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parabolic.
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Comparing Eqs. (10.26) and (10.22) reveals that Next, substitute for r0 in

Eq. (10.26). The final result is an equation for mean velocity in a round tube. 

(10.27)

Head Loss and Friction Factor f
To derive an equation for head loss in a round tube, assume fully developed flow in the

pipe shown in Fig. 10.11. Apply the energy equation (7.29) from section 1 to 2 and sim-

plify to give

(10.28)

Let hL hf and then Eq. (10.28) becomes

(10.29)

Expand Eq. (10.27). 

(10.30)

Reorganize Eq. (10.30) and replace �L with L.

(10.31)

Comparing Eqs. (10.29) and (10.31) gives an equation for head loss in a pipe.

(10.32)

Key assumptions on Eq. (10.32) are (a) laminar flow, (b) fully developed flow, (c) steady

flow, and (d) Newtonian fluid.

Equation (10.32) shows that head loss in laminar flow varies linearly with velocity. Also,

head loss is influenced by viscosity, pipe length, specific weight, and pipe diameter squared.

To derive an equation for the friction factor f, combine Eq. (10.32) with the Darcy-

Weisbach equation (10.12).

(10.33)

or (10.34)

Equation (10.34) shows that the friction factor for laminar flow depends only on Reynolds

number. Example 10.2 illustrates how to calculate head loss. 
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Turbulent Flow and the Moody Diagram

This section describes the characteristics of turbulent flow, presents equations for calculating

the friction factor f, and presents a famous graph called the Moody diagram. This information

is important because most flows in conduits are turbulent.

Qualitative Description of Turbulent Flow
Turbulent flow is a flow regime in which the movement of fluid particles is chaotic, eddying,

and unsteady, with significant movement of particles in directions transverse to the flow

direction. Because of the chaotic motion of fluid particles, turbulent flow produces high lev-

els of mixing and has a velocity profile that is more uniform or flatter than the corresponding

laminar velocity profile. According to Eq. (10.1), turbulent flow occurs when 

EXAMPLE 10.2   HEAD LOSS FOR LAMINAR FLOW

Oil (S 0.85) with a kinematic viscosity of 

flows in a 15 cm pipe at a rate of 0.020 m3 s.

What is the head loss per 100 m length of pipe?

Problem Definition

Situation:

1. Oil is flowing in a pipe at a flow rate of 

2. Pipe diameter is  

Find: Head loss (in meters) for a pipe length of 100 m.

Assumptions: Fully developed, steady flow. 

Properties: Oil:

Plan

1. Calculate the mean velocity using the flow rate equation (5.8). 

2. Calculate the Reynolds number using Eq. (10.2). 

3. Check whether the flow is laminar or turbulent using Eq. 

(10.1).

4. Calculate head loss using Eq. (10.32).

Solution

1. Mean velocity

2. Reynolds number

3. Since Re 2000, the flow is laminar. 

4. Head loss (laminar flow).

Review

Tip! An alternative way to calculate head loss for laminar 

flow is to use the Darcy-Weisbach equation (10.12) as 

follows:
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Engineers and scientists model turbulent flow by using an empirical approach. This is

because the complex nature of turbulent flow has prevented researchers from establishing a

mathematical solution of general utility. Still, the empirical information has been used

successfully and extensively in system design. Over the years, researchers have proposed

many equations for shear stress and head loss in turbulent pipe flow. The empirical equations

that have proven to be the most reliable and accurate for engineering use are presented in the

next section.

Equations for the Velocity Distribution
The time-average velocity distribution is often described using an equation called the power-

law formula.

(10.35)

where umax is velocity in the center of the pipe, r0 is the pipe radius, and m is an empirically

determined variable that depends on Re as shown in Table 10.2. Notice in Table 10.2 that the

velocity in the center of the pipe is typically about 20% higher than the mean velocity V.

While Eq. (10.35) provides an accurate representation of the velocity profile, it does not pre-

dict an accurate value of wall shear stress.

An alternative approach to Eq. (10.35) is to use the turbulent boundary-layer equations

presented in Chapter 9. The most significant of these equations, called the logarithmic velo-

city distribution, is given by Eq. (9.29) and repeated here:

(10.36)

where the shear velocity, is given by 

Equations for the Friction Factor, f
To derive an equation for f in turbulent flow, substitute the log law in Eq. (10.36) into the def-

inition of mean velocity given by Eq. (5.8):

After integration, algebra, and tweaking the constants to better fit experimental data, the result is

 (10.37)

Table 10.2 EXPONENTS FOR POWER-LAW EQUATION AND

RATIO OF MEAN TO MAXIMUM VELOCITY

Re 4 103 2.3 104 1.1 105 1.1 106 3.2 106

m

1.26 1.24 1.22 1.18 1.16

SOURCE: Schlichting (2). Used with permission of the McGraw-Hill Companies.
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Equation (10.37), first derived by Prandtl in 1935, gives the resistance coefficient for turbu-

lent flow in tubes that have smooth walls. The details of the derivation of Eq. (10.37) are pre-

sented by White (21). To determine the influence of roughness on the walls, Nikuradse (4),

one of Prandtl’s graduate students, glued uniform-sized grains of sand to the inner walls of a

tube and then measured pressure drops and flow rates.

Nikuradse’s data, Fig. 10.12, shows the friction factor f plotted as function of Reynolds

number for various sizes of sand grains. To characterize the size of sand grains, Nikuradse

used a variable called the sand roughness height with the symbol ks. The �-group, is

given the name relative roughness.

In laminar flow, the data in Fig. 10.12 show that wall roughness does not influence f. In
particular, notice how the data corresponding to various values of collapse into a single

blue line that is labeled “laminar flow.”

In turbulent flow, the data in Fig. 10.12 show that wall roughness has a major impact on

f. When then values of f are about 0.04. As the relative roughness drops to

0.002, values of f decrease by a factor of about 3. Eventually wall roughness does not matter,

and the value of f can be predicted by assuming that the tube has a smooth wall. This latter

case corresponds to the blue curve in Fig. 10.12 that is labeled “smooth wall tube.” The ef-

fects of roughness are summarized by White (5) and presented in Table 10.3. These regions

are also labeled in Fig. 10.12.

Moody Diagram
Colebrook (6) advanced Nikarudse’s work by acquiring data for commercial pipes and

then developing an empirical equation, called the Colebrook-White formula, for the

friction factor. Moody (3) used the Colebrook-White formula to generate a design chart

similar to that shown in Fig. 10.13. This chart is now known as the Moody diagram for com-

mercial pipes.

Figure 10.12

Resistance coefficient f 

versus Re for sand-

roughened pipe. [After 

Nikuradse (4)].
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In the Moody diagram, Fig. 10.13, the variable ks denotes the equivalent sand rough-

ness. That is, a pipe that has the same resistance characteristics at high Re values as a sand-

roughened pipe is said to have a roughness equivalent to that of the sand-roughened pipe. Ta-

ble 10.4 gives the equivalent sand roughness for various kinds of pipes. This table can be

used to calculate the relative roughness for a given pipe diameter, which, in turn, is used in

Fig. 10.13, to find the friction factor.

In the Moody diagram, Fig. 10.13, the abscissa is the Reynolds number Re, and the or-

dinate is the resistance coefficient f. Each blue curve is for a constant relative roughness

and the values of are given on the right at the end of each curve. To find f, given

Re and one goes to the right to find the correct relative roughness curve. Then one

looks at the bottom of the chart to find the given value of Re and, with this value of Re,

moves vertically upward until the given curve is reached. Finally, from this point one

moves horizontally to the left scale to read the value of f. If the curve for the given value of

is not plotted in Fig. 10.13, then one simply finds the proper position on the graph by

interpolation between the curves that bracket the given 

Table 10.3 EFFECTS OF WALL ROUGHNESS

Type of Flow Parameter Ranges Influence of Parameters on f

Laminar Flow NA
f depends on Reynolds number
f is independent of wall roughness 

Turbulent Flow, Smooth Tube
f depends on Reynolds number
f is independent of wall roughness 

Transitional Turbulent Flow
f depends on Reynolds number
f depends on wall roughness 

Fully Rough Turbulent Flow
f is independent of Reynolds number
f depends on wall roughness 

Table 10.4 EQUIVALENT SAND-GRAIN ROUGHNESS, (kS), FOR VARIOUS PIPE MATERIALS

Boundary Material ks, Millimeters ks, Inches

Glass, plastic Smooth Smooth

Copper or brass tubing 0.0015 6 10–5

Wrought iron, steel 0.046 0.002

Asphalted cast iron 0.12 0.005

Galvanized iron 0.15 0.006

Cast iron 0.26 0.010

Concrete 0.3 to 3.0 0.012–0.12

Riveted steel 0.9–9 0.035–0.35

Rubber pipe (straight) 0.025 0.001

Re 2000� ks D⁄( )

Re 3000�
ks

D
---- Re 10� ks D⁄( )

Re 3000� 10
ks

D
---- Re 1000�� ks D⁄( )

Re 3000�
ks

D
---- Re 1000� ks D⁄( )

×

ks D⁄ , ks D⁄
ks D⁄ ,

ks D⁄

ks D⁄
ks D⁄ ks D⁄ .
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To provide a more convenient solution to some types of problems, the top of the Moody

diagram presents a scale based on the parameter Re f 1/2. This parameter is useful when hf and

are known but the velocity V is not. Using the Darcy-Weisbach equation given in Eq.

(10.12) and the definition of Reynolds number, one can show that

(10.38)

In the Moody diagram, Fig. 10.13, curves of constant Re f1/2 are plotted using heavy black lines

that slant from the left to right. For example, when Re f 1/2 105 and then

f 0.029. When using computers to carry out pipe-flow calculations, it is much more conve-

nient to have an equation for the friction factor as a function of Reynolds number and relative

roughness. By using the Colebrook-White formula, Swamee and Jain (7) developed an explicit

equation for friction factor, namely

(10.39)

It is reported that this equation predicts friction factors that differ by less than 3% from those

on the Moody diagram for 4 103 Re 108 and 10–5 2 10–2.

Figure 10.13
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versus Re. Reprinted 
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Solving Turbulent Flow Problems

This section describes how to solve problems that involve turbulent flow* in a pipe,

emphasizing how to classify problems as case 1, 2, or 3. Classification is important because

cases 2 and 3 usually require either an iterative approach or they require computer programs

that can solve coupled nonlinear equations. Some useful computer programs include TK

Solver, EES, MathCAD, and MatLab.

To recognize problems that require iterative approaches or computer solutions, engi-

neers classify problems into three cases based on the goal of the problem and based on what

information is known.

Case 1 is when the goal is to find the head loss, given the pipe length, pipe diameter,

and flow rate. This problem is straightforward because it can be solved using algebra; see Ex-

ample 10.3.

Case 2 is when the goal is to find the flow rate, given the head loss (or pressure drop),

the pipe length, and the pipe diameter. This problem usually requires an iterative approach or

solver program; see Examples 10.4 and 10.5.

Case 3 is when the goal is to find the pipe diameter, given the flow rate, length of pipe,

and head loss (or pressure drop). This problem usually requires an iterative approach or a

solver program; see Example 10.6.

There are several approaches that sometimes eliminate the need for an iterative ap-

proach. For case 2, an iterative approach can sometimes be eliminated by using an explicit

equation developed by Swamee and Jain (7):

(10.40)

Using Eq. (10.40) is equivalent to using the top of the Moody diagram, which presents a scale

for Re f 1/2. For case 3, one can sometimes use an explicit equation developed by Swamee and

Jain (7) and modified by Streeter and Wylie (8):

(10.41)

Example 10.3 shows an example of a case 1 problem. 

* Note that laminar flow problems can be solved using algebra because Eq. (10.32) is linear in V. Thus, there

is no need to use the iterative approaches described in this section. 
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Example 10.4 shows an example of a case 2 problem. Notice that the solution involved appli-

cation of the scale on the top of the Moody diagram; thereby avoiding an iterative solution. 

EXAMPLE 10.3   HEAD LOSS IN A PIPE (CASE 1)

Water (T 20°C) flows at a rate of 0.05 m3 s in a 20 cm 

asphalted cast-iron pipe. What is the head loss per kilometer 

of pipe?

Problem Definition

Situation: Water is flowing in a pipe.

Find: Head loss (in meters) for L 1000 m.

Assumptions: Fully developed flow. 

Properties: Water (20°C), Table A.5: 

Sketch:

Plan

Since this is a case 1 problem (head loss is the goal), the 

solution is straightforward.

1. Calculate the mean velocity using the flow rate equation 
(5.8).

2. Calculate the Reynolds number using Eq. (10.2).

3. Calculate the relative roughness and then look up f on the 

Moody diagram. 

4. Find head loss by applying the Darcy-Weisbach equation 

(10.12).

Solution

1. Mean velocity

2. Reynolds number

3. Resistance coefficient

• Equivalent sand roughness (Table 10.4): 

• Relative roughness: 

• Look up f on the Moody diagram for  

and

4. Darcy-Weisbach equation

EXAMPLE 10.4   FLOW RATE IN A PIPE (CASE 2)

The head loss per kilometer of 20 cm asphalted cast-iron pipe 

is 12.2 m. What is the flow rate of water through the pipe?

Problem Definition

Situation: This is the same situation as Example 10.3 except 
that the head loss is now specified and the discharge is 
unknown.

Find: Discharge (m3 s) in the pipe. 

Plan

This is a case 2 problem because flow rate is the goal. 

However, a direct (i.e., noniterative) solution is possible 

because head loss is specified. The strategy will be to use the 

horizontal scale on the top of the Moody diagram. 

1. Calculate the parameter on the top of the Moody diagram.

2. Using the Moody diagram, find the friction factor f.

3. Calculate mean velocity using the Darcy-Weisbach 

equation (10.12).

4. Find discharge using the flow rate equation (5.8).
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When case 2 problems require iteration, there are several methods that can be used to find a

solution. One of the easiest ways is a method called “successive substitution,” which is illus-

trated by Example 10.5.

Solution

1. Compute the parameter 

2. Determine resistance coefficient.

• Relative roughness: 

• Look up f on the Moody diagram for 

and

3. Find V using the Darcy-Weisbach equation.

4. Use flow rate equation to find discharge. 

Review

Validation. The calculated flow rate matches the value from 

Example 10.3. This is expected because the data are the same. 

EXAMPLE 10.5   FLOW RATE IN A PIPE (CASE 2)

Water (T 20°C) flows from a tank through a 50 cm 

diameter steel pipe. Determine the discharge of water.

Problem Definition

Situation: Water is draining from a tank through a steel pipe. 

Find: Discharge (m3 s) for the system.

Assumptions:

1. Flow is fully developed. 

2. Include only the head loss in the pipe. 

Properties: 

1. Water (20°C), Table A.5: 

2. Steel pipe, Table 10.4, equivalent sand roughness: 

Relative roughness is 

Plan

This is a case 2 problem because flow rate is the goal. An 

iterative solution is used because V is unknown, so there is no 

direct way to use the Moody diagram. 

1. Apply the energy equation from section 1 to section 2. 

2. First trial. Guess a value of f and then solve for V. 
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In a case 3 problem, derive an equation for diameter D and then use the method of successive

substitution to find a solution. Iterative approaches, as illustrated in Example 10.6, can em-

ploy a spreadsheet program to perform the calculations. 

3. Second trial. Using V from the first trial, calculate a new 

value of f.

4. Convergence. If the value of f is constant within a few 

percent between trials, then stop. Otherwise, continue with 
more iterations.

5. Calculate flow rate using the flow rate equation (5.8).

Solution

1. Energy equation (reservoir surface to outlet)

or

(1)

2. First trial (iteration 1)

• Guess a value of f 0.020.

• Use eq. (1) to calculate 

• Use  to calculate Re 4.43 106.

• Use Re 4.43 106 and on the 
Moody diagram to find that f 0.012.

• Use eq. (1) with  to calculate 

3. Second trial (iteration 2)

• Use to calculate Re 5.35 106.

• Use Re 5.35 106 and on the 
Moody diagram to find that f 0.012.

4. Convergence. The value of f 0.012 is unchanged 
between the first and second trials. Therefore, there is no 
need for more iterations.

5. Flow rate

EXAMPLE 10.6   FINDING PIPE DIAMETER (CASE 3)

What size of asphalted cast-iron pipe is required to carry 

water (60°F) at a discharge of 3 cfs and with a head loss of 4 

ft per 1000 ft of pipe?

Problem Definition

Situation: Water is flowing in a asphalted cast-iron pipe. 

Find: Pipe diameter (in ft) so that head loss is 4 ft per 1000 ft 
of pipe length.

Assumptions: Fully developed flow. 

Properties: 

1. Water (60°F), Table A.5: 

2. Asphalted cast-iron pipe, Table 10.4, equivalent sand 

roughness:  

Plan

Since this is a case 3 problem (pipe diameter is the goal), use 

an iterative approach. 

1. Derive an equation for pipe diameter by using the Darcy-
Weisbach equation.

2. For iteration 1, guess f, solve for pipe diameter, and then 

recalculate f.

3. To complete the problem, build a table in a spreadsheet 

program.

Solution

1. Develop an equation to use for iteration. 

• Darcy-Weisbach equation
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Combined Head Loss

Previous sections have described how to calculate head loss in pipes. This section completes

the story by describing how to calculate head loss in components. This knowledge is

essential for modeling and design of systems.

The Minor Loss Coefficient, K
When fluid flows through a component such as a partially open value or a bend in a pipe, vis-

cous effects cause the flowing fluid to lose mechanical energy. For example, Fig. 10.14

shows flow through a “generic component.” At section 2, the head of the flow will be less

than at section 1. To characterize component head loss, engineers use a �-group called the

minor loss coefficient K

 (10.1)

where  is drop in piezometric head that is caused by a component,  is the pressure drop

that is caused by the component, and V is mean velocity. As shown in Eq. (10.1), the minor

loss coefficient has two useful interpretations:

• Solve for pipe diameter

(1)

2. Iteration 1

• Guess f 0.015.

• Solve for diameter using eq. (1):

• Find parameters needed for calculating f :

• Calculate f using Eq. (10.39): f 0.0178.

3. In the table below, the first row contains the values from 
iteration 1. The value of f 0.0178 from iteration 1 is 
used for the initial value for iteration 2. Notice how the 
solution has converged by iteration 3. 
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Thus, the head loss across a single component or transition is where K is

the minor loss coefficient for that component or transition.

Most values of K are found by experiment. For example, consider the setup shown in

Fig. 10.14. To find K, flow rate is measured and mean velocity is calculated using

Pressure and elevation measurements are used to calculate the change in pie-

zometric head.

(10.2)

Then, values of V and are used in Eq. (10.1) to calculate K. The next section presets typi-

cal data for K.

Data for the Minor Loss Coefficient

This section presents K data and relates these data to flow separation and wall shear stress.

This information is used for nearly all system modeling.

Pipe inlet. Near the entrance to a pipe when the entrance is rounded, flow is developing

as shown in Fig. 10.1 and the wall shear stress is higher than that found in fully developed

flow. Alternatively, if the pipe inlet is abrupt, or sharp-edged, as in Fig. 10.15, separation oc-

curs just downstream of the entrance. Hence the streamlines converge and then diverge with

consequent turbulence and relatively high head loss. The loss coefficient for the abrupt inlet

is approximately 0.5. Other values of head loss are summarized in Table 10.5.

Figure 10.14

Flow through a generic

component.

Figure 10.15

Flow at a sharp-edged 

inlet.

Table 10.5 LOSS COEFFICIENTS FOR VARIOUS TRANSITIONS AND FITTINGS

Description Sketch Additional Data K Source

Pipe entrance
0.0
0.1

>0.2

Ke

0.50
0.12
0.03

(10)†

Contraction

0.00
0.20
0.40
0.60
0.80
0.90

KC

0.08
0.08
0.07
0.06
0.06
0.06

KC

0.50
0.49
0.42
0.27
0.20
0.10

(10)

(Continued)

Component
Component

2

1

Flow

hL K V
2

2g( )⁄( ),�

V Q A⁄( ).�

Δh h2 h1–
p2
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p1

	
----- z1+–� �

Δh

hL KeV2 2g⁄�
d

r

V

r d⁄

hL KCV2
2

2g⁄� θD1

V2

D2 D2 D1⁄ � 60°� � 180°�
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Flow in an elbow. In an elbow (90° smooth bend), considerable head loss is produced

by secondary flows and by separation that occurs near the inside of the bend and downstream

of the midsection as shown in Fig. 10.16.

The loss coefficient for an elbow at high Reynolds numbers depends primarily on the

shape of the elbow. If it is a very short-radius elbow, the loss coefficient is quite high. For

larger-radius elbows, the coefficient decreases until a minimum value is found at an

value of about 4 (see Table 10.3). However, for still larger values of an increase in

loss coefficient occurs because, for larger values, the elbow itself is significantly longer

than elbows with small values. The greater length creates an additional head loss.

Description Sketch Additional Data K Source

Expansion

0.00
0.20
0.40
0.60
0.80

KE

0.30
0.25
0.15
0.10

KE

1.00
0.87
0.70
0.41
0.15

(9)

90° miter bend Without 
vanes

(15)

With vanes (15)

90° smooth bend

1
2
4
6
8

10

Kb 0.35
0.19
0.16
0.21
0.28
0.32

(16)
and
(9)

Threaded pipe fittings Globe valve—wide open

Angle valve—wide open

Gate valve—wide open

Gate valve—half open

Return bend

Tee

Straight-through flow

Side-outlet flow

90° elbow

45° elbow

(15)

†Reprinted by permission of the American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, Georgia,

from the 1981 ASHRAE Handbook—Fundamentals.

hL KEV1
2

2g⁄� θ

D1V1

D2

D1 D2⁄ � 20°� � 180°�

Vanes
Kb 1.1�

Kb 0.2�

r

d

r d⁄

�

K 10.0�

K 5.0�

K 0.2�

K 5.6�

Kb 2.2�

Kt 0.4�

Kt 1.8�

Kb 0.9�

Kb 0.4�

r d⁄ r d⁄ ,

r d⁄
r d⁄
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Other components. The loss coefficients for a number of other fittings and flow transi-

tions are given in Table 10.5. This table is representative of engineering practice. For more

extensive tables, see references (10–15).

In Table 10.5, the K was found by experiment, so one must be careful to ensure that Re

values in the application correspond to Re values of the data.

Combined Head Loss Equation
The total head loss is given by Eq. (10.4), which is repeated here:

(10.3)

To develop an equation for the combined head loss, substitute Eqs. (10.12) and (10.1) in Eq.

(10.3):

(10.4)

Equation (10.4) is called the combined head loss equation. To apply this equation, follow the

same approaches that were used for solving pipe problems. That is, classify the flow as case

1, 2, or 3 and apply the usual equations: the energy, Darcy-Weisbach, and flow rate equa-

tions. Example 10.7 illustrates this approach for a case 1 problem. 

Figure 10.16

Flow pattern in an 

elbow.

EXAMPLE 10.7   PIPE SYSTEM WITH COMBINED 

HEAD LOSS

If oil (  S 0.9) flows from the upper to 

the lower reservoir at a rate of 0.028 m3 s in the 15 cm 

smooth pipe, what is the elevation of the oil surface in the 

upper reservoir? 

Problem Definition

Situation: Oil is flowing from a upper reservoir to a lower 
reservoir. 

Find: Elevation (in meters) of the free surface of the upper 
reservoir.

Properties: 

1. Oil:  

2. Minor head loss coefficients, Table 10.5; 

Separation zone

Total head loss{ } Pipe head loss{ } Component head loss{ }+�
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� K
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entrance Ke 0.5;� � bend Kb 0.19;� �

outlet KE 1.0.� �
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Sketch:

Plan

This is a case 1 problem because flow rate and pipe 

dimensions are known. Thus, the solution is straightforward. 

1. Apply the energy equation [Eq. (7.29)] from 1 to 2.

2. Apply the combined head loss equation (10.45).

3. Develop an equation for  by combining results from 

steps 1 and 2.

4. Calculate the resistance coefficient f.

5. Solve for z1 using the equation from step 3. 

Solution

1. Energy equation and term-by-term analysis

Interpretation: Change in elevation head is balanced by the 

total head loss.

2. Combined head loss equation

3. Combine eqs. (1) and (2).

4. Resistance coefficient

• Flow rate equation (5.8)

• Reynolds number

Thus, flow is turbulent.

• Swamee-Jain equation (10.39)

5. Calculate z1 using (3):

Review

1. Notice: There is a big difference between pipe and 
component head loss:

Thus pipe losses � component losses for this problem.

2. Tip! When pipe head loss is dominant, make simple 

estimates of K because these estimates will not impact the 
prediction very much. 
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Nonround Conduits

Previous sections have considered round pipes. This section extends this information by

describing how to account for conduits that are square, triangular, or any nonround shape.

This information is important for applications such as sizing ventilation ducts in buildings

and for modeling flow in open channels.

When a conduit has a section area that is noncircular, then engineers modify the Darcy-

Weisbach equation, Eq. (10.12), to use hydraulic diameter Dh in place of diameter.

(10.5)

Equation (10.5) is derived using the same approach as Eq. (10.12), and the hydraulic diame-

ter that emerges from this derivation is

(10.6)

where the “wetted perimeter” is that portion of the perimeter that is physically touching the

fluid. The wetted perimeter of a rectangular duct of dimension  is  Thus, the

hydraulic diameter of this duct is:

Using Eq. (10.6), the hydraulic diameter of a round pipe is the pipe’s diameter D. When Eq.

(10.5) is used to calculate head loss, the resistance coefficient f is found using a Reynolds

number based on hydraulic diameter. Use of hydraulic diameter is an approximation. Accord-

ing to White (21), this approximation introduces an uncertainty of 40% for laminar flow and

15% for turbulent flow.

(10.7)

In addition to hydraulic diameter, engineers also use hydraulic radius, which is defined as

(10.8)

Notice that the ratio of Rh to Dh is 1 4 instead of 1 2. While this ratio is not logical, it is the

convention used in the literature and is useful to remember. Chapter 15, which focuses on

open-channel flow, will present examples of hydraulic radius.

To model flow in a nonround conduit, the approaches of the previous sections are fol-

lowed with the only difference being the use of hydraulic diameter in place of diameter. This

is illustrated by Example 10.8. 

10.9
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Pumps and Systems of Pipes

Previous sections have presented information for modeling flow in a single round pipe. This

section extends this information by describing how to model flow in a network of pipes and

how to incorporate performance data for a centrifugal pump. These topics are important

because pumps and pipe networks are common.

EXAMPLE 10.8   PRESSURE DROP IN AN

HVAC DUCT

Air (T 20°C and p 101 kPa absolute) flows at a rate of 

2.5 in a horizontal, commercial steel, HVAC duct. 

(Note that HVAC is an acronym for heating, ventilating, and 

air conditioning.) What is the pressure drop in inches of water 

per 50 m of duct?

Problem Definition

Situation: Air is flowing through a duct.

Find: Pressure drop (inch H2O) in a length of 50 m.

Sketch:

Assumptions:

1. Fully developed flow, meaning that and the 
velocity head terms in the energy equation cancel out.

2. No sources of component head loss.

Properties: 

1. Air (20°C, 1 atm), Table A.2:  

2. Steel pipe, Table 10.4: 

Plan

This is a case 1 problem because flow rate and duct 

dimensions are known. Thus, the solution is straightforward.

1. Derive an equation for pressure drop by using the energy 
equation (7.29). 

2. Calculate parameters needed to find head loss.

3. Calculate head loss by using the Darcy-Weisbach equation 

(10.12).

4. Calculate pressure drop  by combining steps 1, 2, 

and 3. 

Solution

1. Energy equation (after term-by-term analysis)

2. Intermediate calculations

• Flow rate equation

• Hydraulic diameter

• Reynolds number

Thus, flow is turbulent.

• Relative roughness

• Resistance coefficient (Moody diagram): 

3. Darcy-Weisbach equation

4. Pressure drop (from step 1)

� �
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Modeling a Centrifugal Pump
As shown in Fig. 10.17, a centrifugal pump is a machine that uses a rotating set of blades

situated within a housing to add energy to a flowing fluid. The amount of energy that is

added is represented by the head of the pump hp, and the rate at which work is done on

the flowing fluid is 

To model a pump in a system, engineers commonly use a graphical solution involv-

ing the energy equation given in Eq. (7.29) and data from the pump manufacturer. To il-

lustrate this approach, consider flow of water in the system of Fig. 10.18a. The energy

equation applied from the reservoir water surface to the outlet stream is:

For a system with one size of pipe, this simplifies to

(10.9)

Hence, for any given discharge, a certain head hp must be supplied to maintain that flow.

Thus, construct a head-versus-discharge curve, as shown in Fig. 10.18b. Such a curve is

called the system curve. Now, a given centrifugal pump has a head-versus-discharge curve

that is characteristic of that pump at a given pump speed. This curve is called a pump curve.

A pump curve can be acquired from a pump manufacturer, or it can be measured. A typical

pump curve is shown in Fig. 10.18b.

Figure 10.18b reveals that, as the discharge increases in a pipe, the head required for

flow also increases. However, the head that is produced by the pump decreases as the dis-

charge increases. Consequently, the two curves intersect, and the operating point is at the

point of intersection—that point where the head produced by the pump is just the amount

needed to overcome the head loss in the pipe.

 To incorporate performance data for a pump, use the energy equation to derive a sys-

tem curve. Then acquire a pump curve from a manufacturer or other source and plot the two

curves together. The point of intersection shows where the pump will operate. This process is

illustrated in Example 10.9.  

Figure 10.18

(a) Pump and pipe 

combination.

(b) Pump and system 

curves.

Figure 10.17

A centrifugal pump drives

flow with a rotating impellor. 

Flow in

Flow out
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EXAMPLE 10.9   FINDING A SYSTEM 

OPERATING POINT

Problem Definition

Situation:

1. A pump has the head-versus-discharge curve shown in 
Fig. 10.18b.

2. The friction factor is f 0.015.

Find: Discharge (m3 s) in the system. 

Plan

1. Develop an equation for the system curve by applying the 
energy equation. 

2. Plot the given pump curve and the system curve on the 

same graph.

3. Find discharge Q by finding the intersection of the system 

and pump curve. 

Solution

Energy equation

Here Ke 0.5, Kb 0.35, and KE 1.0. Hence

Now make a table of Q versus hp (see below) to give values to 

produce a system curve that will be plotted with the pump 

curve. When the system curve is plotted on the same graph as 

the pump curve, it is seen (Fig. 10.19b) that the operating 

condition occurs at  

Sketch:
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Pipes in Parallel
Consider a pipe that branches into two parallel pipes and then rejoins, as shown in Fig.

10.19. A problem involving this configuration might be to determine the division of flow in

each pipe, given the total flow rate.

No matter which pipe is involved, the pressure difference between the two junction

points is the same. Also, the elevation difference between the two junction points is the same.

Because it follows that hL between the two junction points

is the same in both of the pipes of the parallel pipe system. Thus,

Then

If f1 and f2 are known, the division of flow can be easily determined. However, some trial-

and-error analysis may be required if f1 and f2 are in the range where they are functions of the

Reynolds number.

Pipe Networks
The most common pipe networks are the water distribution systems for municipalities. These

systems have one or more sources (discharges of water into the system) and numerous loads:

one for each household and commercial establishment. For purposes of simplification, the

loads are usually lumped throughout the system. Figure 10.20 shows a simplified distribution

system with two sources and seven loads.  

Figure 10.19

Flow in parallel pipes.

Figure 10.20

Pipe network.
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The engineer is often engaged to design the original system or to recommend an eco-

nomical expansion to the network. An expansion may involve additional housing or commer-

cial developments, or it may be to handle increased loads within the existing area.

In the design of such a system, the engineer will have to estimate the future loads for

the system and will need to have sources (wells or direct pumping from streams or lakes) to

satisfy the loads. Also, the layout of the pipe network must be made (usually parallel to

streets), and pipe sizes will have to be determined. The object of the design is to arrive at a

network of pipes that will deliver the design flow at the design pressure for minimum cost.

The cost will include first costs (materials and construction) as well as maintenance and oper-

ating costs. The design process usually involves a number of iterations on pipe sizes and lay-

outs before the optimum design (minimum cost) is achieved.

So far as the fluid mechanics of the problem are concerned, the engineer must deter-

mine pressures throughout the network for various conditions—that is, for various combina-

tions of pipe sizes, sources, and loads. The solution of a problem for a given layout and a

given set of sources and loads requires that two conditions be satisfied:

1. The continuity equation must be satisfied. That is, the flow into a junction of the net-

work must equal the flow out of the junction. This must be satisfied for all junctions.

2. The head loss between any two junctions must be the same regardless of the path in the

series of pipes taken to get from one junction point to the other. This requirement results be-

cause pressure must be continuous throughout the network (pressure cannot have two values

at a given point). This condition leads to the conclusion that the algebraic sum of head losses

around a given loop must be equal to zero. Here the sign (positive or negative) for the head

loss in a given pipe is given by the sense of the flow with respect to the loop, that is, whether

the flow has a clockwise or counterclockwise direction.

Only a few years ago, these solutions were made by trial-and-error hand computation,

but modern applications using digital computers have made the older methods obsolete. Even

with these advances, however, the engineer charged with the design or analysis of such a sys-

tem must understand the basic fluid mechanics of the system to be able to interpret the results

properly and to make good engineering decisions based on the results. Therefore, an under-

standing of the original method of solution by Hardy Cross (17) may help you to gain this ba-

sic insight. The Hardy Cross method is as follows.

The engineer first distributes the flow throughout the network so that loads at various

nodes are satisfied. In the process of distributing the flow through the pipes of the network,

the engineer must be certain that continuity is satisfied at all junctions (flow into a junction

equals flow out of the junction), thus satisfying requirement 1. The first guess at the flow dis-

tribution obviously will not satisfy requirement 2 regarding head loss; therefore, corrections

are applied. For each loop of the network, a discharge correction is applied to yield a zero net

head loss around the loop. For example, consider the isolated loop in Fig. 10.21. In this loop,

the loss of head in the clockwise direction will be given by

(10.10)

The loss of head for the loop in the counterclockwise direction is

(10.11)

hLc� hLAB
hLBC

+�

k� Qc

n
�

hLcc� kQcc

n

cc
��
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For a solution, the clockwise and counterclockwise head losses have to be equal, or

As noted, the first guess for flow in the network will undoubtedly be in error; therefore,

a correction in discharge, �Q, will have to be applied to satisfy the head loss requirement. If

the clockwise head loss is greater than the counterclockwise head loss, �Q will have to be

applied in the counterclockwise direction. That is, subtract �Q from the clockwise flows and

add it to the counterclockwise flows:

(10.12)

Expand the summation on either side of Eq. (10.12) and include only two terms of the

expansion:

Solve for �Q:

(10.13)

Thus if �Q as computed from Eq. (10.13) is positive, the correction is applied in a counter-

clockwise sense (add �Q to counterclockwise flows and subtract it from clockwise flows).

A different �Q is computed for each loop of the network and applied to the pipes.

Some pipes will have two �Qs applied because they will be common to two loops. The first

set of corrections usually will not yield the final desired result because the solution is ap-

proached only by successive approximations. Thus the corrections are applied successively

until the corrections are negligible. Experience has shown that for most loop configurations,

applying �Q as computed by Eq. (10.13) produces too large a correction. Fewer trials are re-

quired to solve for Qs if approximately 0.6 of the computed �Q is used.

More information on methods of solution of pipe networks is available in references

(18) and (19). A search of the Internet under “pipe networks” yields information on software

available from various sources. 

Figure 10.21

A typical loop of a pipe 

network.
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EXAMPLE 10.10   DISCHARGE IN A PIPING 

NETWORK

A simple pipe network with water flow consists of three 

valves and a junction as shown in the figure. The piezometric 

head at points 1 and 2 is 1 ft and reduces to zero at point 4. 

There is a wide-open globe valve in line A, a gate valve half 

open in line B, and a wide-open angle valve in line C. The 

pipe diameter in all lines is 2 inches. Find the flow rate in 

each line. Assume that the head loss in each line is due only 

to the valves. 

Problem Definition

Situation:

1. Water flows through a network of pipes.

2.

3.

4. Pipe diameter (all pipes) is 2 12 ft. 

Find: Flow rate (in cfs) in each pipe.

Assumptions: Head loss is due to valves only.

Sketch:

Plan

1. Let hL,1�3 hL,2�3.

2. Let hL,2�4 1 ft.

3. Solve equations using the Hardy Cross approach.

Solution

The piezometric heads at points 1 and 2 are equal, so

hL,1�3 hL, 3�2 0

The head loss between points 2 and 4 is 1 ft, so

hL, 2�3 hL, 3�4 0

Continuity must be satisfied at point 3, so

The head loss through a valve is given by

where KV is the loss coefficient. For a 2-inch pipe, the head 

loss becomes

where hL is in feet and Q is in cfs.

The head loss equation between points 1 and 2 expressed in 

term of discharge is

or

where KA is the loss coefficient for the wide-open globe valve 

and KB is the loss coefficient for the half-open 

gate valve The head loss equation between 

points 2 and 4 is

or

where KC is the loss coefficient for the wide-open angle valve 

The two head loss equations and the continuity 

equation comprise three equations for QA, QB, and QC.

However, the equations are nonlinear and require 

linearization and solution by iteration (Hardy Cross 

approach). The discharge is written as

where Q0 is the starting value and �Q is the change. Then

where the (�Q)2 term is neglected. The equations in terms of 

�Q become

h1 h2 1 ft.� �

h4 0 ft.�

⁄

1

3
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wide open
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2
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�
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+ �
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Summary

A conduit is any pipe, tube, or duct that is filled with a flowing fluid. This flow can be

laminar or turbulent depending on Reynolds number (Re). The guideline used in this text is

Near an entrance, flow is developing, which means that the velocity profile and wall shear

stress are changing with distance from the entrance. Once the flow becomes fully developed,

the velocity distribution is constant (uniform flow) and the wall shear stress has a constant

value.

In fully developed flow, head loss is given by a famous equation called the

Darcy-Weisbach equation:

where f is the resistance coefficient, L is the pipe length, D is the diameter, and V is the mean

velocity. For laminar flow, the Hagen-Poiseuille theory is used to develop an equation for

head loss

which can be expressed in matrix form as

The procedure begins by selecting values for Q0,A, Q0,B, and 

Q0,C. Assume Q0,A Q0,B and Q0,C 2Q0,A. Then from the 

head loss equation from points 2 to 4 

and Q0,A 0.0346 and Q0,C 0.0693. These values are 

substituted into the matrix equation to solve for the �Q’s. The 

discharges are corrected by �Q and 

substituted into the matrix equation again to yield new �Q’s. 

The iterations are continued until sufficient accuracy is 

obtained. The accuracy is judged by how close the column 

matrix on the right approaches zero. A table with the results 

of iterations for this example is shown below.

This solution technique is called the Newton-Raphson 

method for nonlinear systems of algebraic equations. It can 

be implemented easily on a computer. The solution procedure 

for more complex systems is the same.

2KAQ0,A 2KBQ0,B– 0

0 2KBQ0,B 2KCQ0,C
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QAΔ
QBΔ
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0

�
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2+ 0.0307�

KB 4KC+( )Q0,B

2
0.0307�

5.6 4+ 5×( )Q0,B

2
0.0307�

Q0,B 0.0346�

� �

Q0

new
� Q0

old +

Iteration

Initial 1 2 3 4

QA 0.0346 0.0328 0.0305 0.0293 0.0287

QB 0.0346 0.0393 0.0384 0.0394 0.0384

QC 0.0693 0.0721 0.0689 0.0687 0.0671
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Re 3000              turbulent flow≥
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D
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and an equation for the resistance coefficient

For turbulent flow, the resistance coefficient depends on the Reynolds number and the

relative roughness:

where ks is the equivalent sand grain roughness. Values for f can be obtained from the Moody

diagram or from empirical equations.

The total head loss in a conduit is given by

and K is the minor loss coefficient. Pipe head loss (first group of terms) represents the head

loss associated with fully developed flow in straight lengths of conduit. Component head loss

(second group of terms) represents the head loss associated with components such as valves,

elbows, bends, and transition sections. Values of K are tabulated in this text and in other engi-

neering references.

Noncircular pipes can be analyzed using the hydraulic diameter Dh or the hydraulic ra-

dius (Rh), which are defined as

To find the operating point of a centrifugal pump in a system, the standard approach is

a graphical solution. One plots a system curve that is derived using the energy equation, and

one plots the head versus flow rate curve of the centrifugal pump. The intersection of these

two curves gives the operating point of the system.

The analysis of pipe networks is based on the continuity equation being satisfied at

each junction and the head loss between any two junctions being independent of pipe path

between the two junctions. A series of equations based on these principles are solved itera-

tively to obtain the flow rate in each pipe and the pressure at each junction in the network.
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Problems

Notes on Pipe Diameter for Chapter 10 Problems

When a pipe diameter is given using the label “NPS” or “nomi-

nal,” find the dimensions using Table 10.1 on p. 319. Otherwise,

assume the specified diameter is an inside diameter (ID). 

Classifying Flow

10.1 Kerosene (20°C) flows at a rate of 0.04 m3 s in a 25 cm di-

ameter pipe. Would you expect the flow to be laminar or turbu-

lent? Calculate the entrance length.

10.2 A compressor draws 0.3 m3 s of ambient air (20°C) in

from the outside through a round duct that is 10 m long and 150

mm in diameter. Determine the entrance length and establish

whether the flow is laminar or turbulent. 

10.3 Specify the diameter and length for a tube that carries SAE

10W-30 oil at 38°C. The design requires laminar flow, fully de-

veloped flow, and a discharge of 

Darcy-Weisbach Equation

10.4 ��� Using Section 10.3 and other resources, answer the

following questions. Strive for depth, clarity, and accuracy

while also combining sketches, words, and equations in ways

that enhance the effectiveness of your communication. 

a. What is pipe head loss? How is pipe head loss related to total

head loss?

b. What is the friction factor f ? How is f related to wall shear

stress?

c. What assumptions need to be satisfied to apply the Darcy-

Weisbach equation?

10.5 ��� For each case that follows, apply the Darcy-Weis-

bach equation from Eq. (10.12) to calculate the head loss in a

pipe. Apply the grid method to carry and cancel units.

a. Water flows at a rate of 20 gpm and a mean velocity of 180

ft min in a pipe of length 200 feet. For a resistance coeffi-

cient of  find the head loss in feet.

b. The head loss in a section of PVC pipe is 0.8 m, the resis-

tance coefficient is the length is 15 m and the

flow rate is 1 cfs. Find the pipe diameter in meters.

10.6 As shown, air (20°C) is flowing from a large tank, through

a horizontal pipe, and then discharging to ambient. The pipe

length is and the pipe is schedule 40 PVC with a nom-

inal diameter of 1 inch. The mean velocity in the pipe is 10 m s, and

Determine the pressure (in Pa) that needs to be main-

tained in the tank.

10.7 Water (15°C) flows through a garden hose (ID 18 mm)

with a mean velocity of 1.5 m s. Find the pressure drop for a

section of hose that is 20 meters long and situated horizontally.

Assume that 

10.8As shown, water (15°C) is flowing from a tank through a tube

and then discharging to ambient. The tube has an ID of 8 mm, a length

of  and the resistance coefficient is The water

⁄

⁄

Q 0.2 L/s.�

PROBLEM 10.6

⁄
f 0.02,�

f 0.012,�

L 50m,�
⁄

f 0.015.�

L

Tank

Air

�
⁄

f 0.012.�

L 6 m,� f 0.015.�
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level is  m. Find the exit velocity in m s. Find the discharge

in L s. Sketch the HGL and the EGL. Assume that the only head loss

occurs in the tube.  

10.9 Water flows in the pipe shown, and the manometer deflects

90 cm. What is f for the pipe if V 3 m s?

Flow in Pipes (Laminar Flow)

10.10 ��� Using Section 10.5 and other resources, answer the

questions that follow. Strive for depth, clarity, and accuracy

while also combining sketches, words, and equations in ways

that enhance the effectiveness of your communication. 

a. What are the main characteristics of laminar flow? 

b. What is the meaning of each variable that appears in Eq.

(10.27)?

c. In Eq. (10.33), what is the meaning of 

10.11 A fluid (� 10–2 N s m2; � 800 kg m3) flows with

a mean velocity of 4 cm s  in a 10 cm smooth pipe. 

a. What is the value of Reynolds number?

b. What is the magnitude of the maximum velocity in the pipe?

c. What is the magnitude of the friction factor f ?

d. What is the shear stress at the wall?

e. What is the shear stress at a radial distance of 25 mm from

the center of the pipe?

10.12 Water (15°C) flows in a horizontal schedule 40 pipe that has

a nominal diameter of 0.5 in. The Reynolds number is Re 1000.

Work in SI units. 

a. What is mass flow rate?

b. What is the magnitude of the friction factor f?

c. What is the head loss per meter of pipe length?

d. What is the pressure drop per meter of pipe length?

10.13 Flow of a liquid in a smooth 3 cm pipe yields a head loss

of 2 m per meter of pipe length when the mean velocity is

Calculate f and the Reynolds number. Prove that dou-

bling the flow rate will double the head loss. Assume fully de-

veloped flow. 

10.14 As shown, a round tube of diameter 0.5 mm and length 750

mm is connected to plenum. A fan produces a negative gage pres-

sure of –1.5 inch H2O in the plenum and draws air (20°C) into the

microchannel. What is the mean velocity of air in the microchan-

nel? Assume that the only head loss is in the tube.

10.15 Liquid is flowing in a pipe at a steady

rate, but the direction of flow is unknown. Is the liquid moving

upward or moving downward in the pipe? If the pipe diameter is

8 mm and the liquid viscosity is what is

the magnitude of the mean velocity in the pipe?

10.16 Oil (S 0.97, ) is pumped through a

nominal 1 in., schedule 80 pipe at the rate of 0.004 cfs. What is

the head loss per 100 ft of level pipe?

10.17 A liquid (� 1000 kg m3; � 10–1 N s 2 m2; v 10–4

m2 s) flows uniformly with a mean velocity of 1.5 m s in a pipe

with a diameter of 100 mm. Show that the flow is laminar. Also,

find the friction factor f and the head loss per meter of pipe length.

10.18 Kerosene (S 0.80 and T 68°F) flows from the tank

shown and through the 1 4 in.–diameter (ID) tube. Determine

the mean velocity in the tube and the discharge. Assume the

only head loss is in the tube.

PROBLEM 10.8
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10.19 Oil (S 0.94; ) is pumped through

a horizontal 5 cm pipe. Mean velocity is 0.5 m s. What is the

pressure drop per 10 m of pipe?

10.20 As shown, SAE 10W-30 oil is pumped through an 8 m

length of 1 cm–diameter drawn tubing at a discharge of

7.85 10–4 m3 s. The pipe is horizontal, and the pressures at

points 1 and 2 are equal. Find the power necessary to operate the

pump, assuming the pump has an efficiency of 100%. Properties

of SAE l0W-30 oil: kinematic viscosity 7.6 10–5 m2 s;

specific weight 8630 N m3.

10.21 Oil (S 0.9; � 10–2 lbf-s ft2;  0.0057 ft2 s) flows

downward in the pipe, which is 0.10 ft in diameter and has a

slope of 30° with the horizontal. Mean velocity is 2 ft s.What is

the pressure gradient (dp ds) along the pipe?

10.22 In the pipe system for a given discharge, the ratio of the

head loss in a given length of the 1 m pipe to the head loss in the

same length of the 2 m pipe is (a) 2, (b) 4, (c) 16, or (d) 32.

10.23 Glycerine (T 68°F) flows in a pipe with a 1 2 ft diam-

eter at a mean velocity of 2 ft s. Is the flow laminar or turbu-

lent? Plot the velocity distribution across the flow section.

10.24 Glycerine (T 20°C) flows through a funnel as shown.

Calculate the mean velocity of the glycerine exiting the tube.

Assume the only head loss is due to friction in the tube.

10.25 What nominal size of steel pipe should be used to carry 0.2

cfs of castor oil at 90°F a distance of 0.5 mi with an allow-

able pressure drop of 10 psi (� 0.085 lbf-s ft2)? Assume

S 0.85.

10.26 Velocity measurements are made in a 30 cm pipe. The ve-

locity at the center is found to be and the velocity dis-

tribution is observed to be parabolic. If the pressure drop is

found to be 1.9 kPa per 100 m of pipe, what is the kinematic vis-

cosity  of the fluid? Assume that the fluid’s specific gravity is

0.80.

10.27 The velocity of oil (S 0.8) through the 5 cm smooth pipe

is  Here L 12 m, z1 1 m, z2 2 m, and the manom-

eter deflection is 10 cm. Determine the flow direction, the resis-

tance coefficient f, whether the flow is laminar or turbulent, and

the viscosity of the oil.

10.28 The velocity of oil (S 0.8) through the 2 in. smooth

pipe is 5 Here L 30 ft, z1 2 ft, z2 4 ft, and the ma-

nometer deflection is 4 in. Determine the flow direction, the re-

sistance coefficient f, whether the flow is laminar or turbulent,

and the viscosity of the oil.

10.29 Glycerine at 20°C flows at 0.6 m s in the 2 cm commer-

cial steel pipe. Two piezometers are used as shown to measure

the piezometric head. The distance along the pipe between the

standpipes is 1 m. The inclination of the pipe is 20°. What is the

height difference �h between the glycerine in the two

standpipes?
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10.30 Water is pumped through a heat exchanger consisting of

tubes 5 mm in diameter and 5 m long. The velocity in each tube

is 12 cm s. The water temperature increases from 20°C at the

entrance to 30°C at the exit. Calculate the pressure difference

across the heat exchanger, neglecting entrance losses but ac-

counting for the effect of temperature change by using proper-

ties at average temperatures.

Flow in Pipes (Turbulent Flow)

10.31 Water (70°F) flows through a nominal 4 in., schedule 40,

PVC pipe at the rate of 2 cfs. What is the resistance coefficient

f ?

10.32 Water at 20°C flows through a 3 cm ID smooth brass tube

at a rate of 0.002 m3 s. What is f for this flow?

10.33 Water (10°C) flows through a 25 cm smooth pipe at a rate

of 0.05 m3 s. What is the resistance coefficient f ?

10.34 What is f for the flow of water at 10°C through a 10 cm

cast-iron pipe with a mean velocity of 4 m s? Also, apply Eq.

(10.36) to plot the velocity distribution for this flow.

10.35 A fluid (� 10–2 N s m2; � 800 kg m3) flows with a

mean velocity of 500 mm s in a 100 mm diameter smooth pipe.

Answer the following questions relating to the given flow con-

ditions.

a. What is the magnitude of the maximum velocity in the pipe?

b. What is the magnitude of the resistance coefficient f ?

c. What is the shear velocity?

d. What is the shear stress at a radial distance of 25 mm from

the center of the pipe?

e. If the discharge is doubled, will the head loss per length of

pipe also be doubled?

10.36 Water (20°C) flows in a 15 cm cast-iron pipe at a rate of

0.075 m3 s. For these conditions, determine or estimate the fol-

lowing:

a. Reynolds number

b. Friction factor f

c. Shear stress at the wall, �0

10.37 In a 4 in. uncoated cast-iron pipe, 0.02 cfs of water flows

at 60°F. Determine f from Fig. 10.13.

10.38 Determine the head loss in 900 ft of a concrete pipe

with a 6 in. diameter (ks 0.0002 ft) carrying 3.0 cfs of fluid.

The properties of the fluid are  3.33 10–3 ft2 s and � 1.5

slug ft3.

10.39 Points A and B are 1 km apart along a 15 cm new steel

pipe. Point B is 20 m higher than A. With a flow from A to B of

0.03 m3 s of crude oil (S 0.82) at 10°C (� 10–2 N s m2),

what pressure must be maintained at A if the pressure at B is to

be 300 kPa? 

10.40 A pipe can be used to measure the viscosity of a fluid. A

liquid flows in a 1 cm smooth pipe 1 m long with an average ve-

locity of 3 m s. A head loss of 50 cm is measured. Estimate the

kinematic viscosity.

10.41 For a 40 cm pipe, the resistance coefficient f was found to

be 0.06 when the mean velocity was 3 m s and the kinematic

viscosity was l0–5 m2 s. If the velocity were doubled, would

you expect the head loss per meter of length of pipe to double,

triple, or quadruple? 

10.42 Water (50°F) flows with a speed of 5 ft s through a hori-

zontal run of PVC pipe. The length of the pipe is 100 ft, and the

pipe is schedule 40 with a nominal diameter of 2.5 inches. Cal-

culate (a) the pressure drop in psi, (b) the head loss in feet, and

(c) the power in horsepower needed to overcome the head loss.

10.43Water (10°C) flows with a speed of 2 m s through a horizon-

tal run of PVC pipe. The length of the pipe is 50 m, and the pipe is

schedule 40 with a nominal diameter of 2.5 inches. Calculate (a) the

pressure drop in kilopascals, (b) the head loss in meters, and (c) the

power in watts needed to overcome the head loss.

10.44 Air flows in a 3 cm smooth tube at a rate of 0.015 m3 s. If

T 20°C and p 110 kPa absolute, what is the pressure drop

per meter of length of tube?

10.45 Points A and B are 3 mi apart along a 24 in. new cast-iron

pipe carrying water (T 50°F). Point A is 30 ft higher than B.

The pressure at B is 20 psi greater than that at A. Determine the

direction and rate of flow.

10.46 Air flows in a 1 in. smooth tube at a rate of 30 cfm. If

T 80°F and p 15 psia, what is the pressure drop per foot of

length of tube?

10.47 Water is pumped through a vertical 10 cm new steel pipe

to an elevated tank on the roof of a building. The pressure on the

discharge side of the pump is 1.6 MPa. What pressure can be

expected at a point in the pipe 80 m above the pump when the

flow is 0.02 m3 s? Assume T 20°C.
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10.48 A train travels through a tunnel as shown. The train and

tunnel are circular in cross section. Clearance is small, causing

all air (60°F) to be pushed from the front of the train and dis-

charged from the tunnel. The tunnel is 10 ft in diameter and is

concrete. The train speed is 50 fps. Assume the concrete is very

rough (ks 0.05 ft).

a. Determine the change in pressure between the front and rear

of the train that is due to pipe friction effects.

b. Sketch the energy and hydraulic grade lines for the train po-

sition shown.

c. What power is required to produce the air flow in the tunnel?

10.49 Water (60°F) is pumped from a reservoir to a large, pressur-

ized tank as shown. The steel pipe is 4 in. in diameter and 300 ft

long. The discharge is 1 cfs. The initial water levels in the tanks

are the same, but the pressure in tank B is 10 psig and tank A is

open to the atmosphere. The pump efficiency is 90%. Find the

power necessary to operate the pump for the given conditions. 

Flow in Pipes (Iterative Solutions)

10.50 ��� Using the information on page 332, classify each

problem given below as case 1, case 2, or case 3. For each of

your choices, state your rationale. 

a. Problem 10.49.

b. Problem 10.52.

c. Problem 10.55.

10.51 A plastic siphon hose with  and is

used to drain water (15°C) out a tank. Calculate the velocity in

the tube for the two situations given below. Use and

a. Assume the Bernoulli equation applies (neglect all head

loss).

b. Assume the component head loss is zero, and the pipe head

loss is nonzero.

10.52 A plastic siphon hose of length 7 m is used to drain water

(15°C) out of a tank. For a flow rate of 1.5 L s, what hose diam-

eter is needed? Use and Assume all head

loss occurs in the tube.

10.53 As shown, water (70°F) is draining from a tank through a

galvanized iron pipe. The pipe length is L 10 ft, the tank

depth is H 4 ft, and the pipe is 1 inch NPS schedule 40. Cal-

culate the velocity in the pipe and the flow rate. Neglect compo-

nent head loss.

10.54 As shown, water (15°C) is draining from a tank through a

galvanized iron pipe. The pipe length is L 2 m, the tank depth

is H 1 m, and the pipe is a 0.5 inch NPS schedule 40. Calcu-

late the velocity in the pipe. Neglect component head loss.

10.55 Air (40°C, 1 atm) will be transported in a straight horizon-

tal copper tube over a distance of 150 m at a rate of 0.1 m3 s. If

the pressure drop in the tube should not exceed 6 in H2O, what

is the minimum pipe diameter? 

10.56 A fluid with  10–6 m2 s and � 800 kg m3 flows

through the 8 cm galvanized iron pipe. Estimate the flow rate

for the conditions shown in the figure.

PROBLEM 10.48

PROBLEM 10.49

�

Air
(atmospheric

pressure)

Air
(atmospheric

pressure)Tunnel Train
50 ft/s

2500 ft

5000 ft

A B

D 1.2 cm� L 5.5 m�

H 3 m�
h 1 m.�

PROBLEMS 10.51, 10.52

PROBLEMS 10.53, 10.54

PROBLEM 10.56

⁄
H 5 m� h 0.5 m.�

Siphon hose 
diameter D

Water
(T = 15°C)

H

h

�
�

Pipe of diameter D

H

L

�
�

⁄

� ⁄ � ⁄

p = 150 kPa

p = 120 kPa
Pipe has a

slope of 1/10

30 m



356 FLOW IN CONDUITS

10.57 Determine the diameter of commercial steel pipe required

to convey 300 cfs of water at 60°F with a head loss of 1 ft per 1000

ft of pipe. Assume pipes are available in the even sizes when the

diameters are expressed in inches (that is, 10 in., 12 in., etc.).

10.58 A pipeline is to be designed to carry crude oil (S 0.93,

 10–5 m2 s) with a discharge of 0.10 m3 s and a head loss

per kilometer of 50 m. What diameter of steel pipe is needed?

What power output from a pump is required to maintain this

flow? Available pipe diameters are 20, 22, and 24 cm.

Flow in Systems (Combined Head Loss)

10.59 The sketch shows a test of an electrostatic air filter. The

pressure drop for the filter is 3 inches of water when the air-

speed is 10 m s. What is the minor loss coefficient for the fil-

ter? Assume air properties at 20°C.

10.60 If the flow of 0.10 m3 s of water is to be maintained in the

system shown, what power must be added to the water by the

pump? The pipe is made of steel and is 15 cm in diameter. 

10.61 Water will be siphoned through a 3 16 in.–diameter,

50 in.–long Tygon tube from a jug on an upside-down wastebasket

into a graduated cylinder as shown. The initial level of the water

in the jug is 21 in. above the table top. The graduated cylinder is

a 500 ml cylinder, and the water surface in the cylinder is 12 in.

above the table top when the cylinder is full. The bottom of the

cylinder is 1 2 in. above the table. The inside diameter of the jug

is 7 in. Calculate the time it will take to fill the cylinder from an

initial depth of 2 in. of water in the cylinder.   

10.62 Water flows from a tank through a 2.6 m length of gal-

vanized iron pipe 26 mm in diameter. At the end of the pipe is an

angle valve that is wide open. The tank is 2 m in diameter. Cal-

culate the time required for the level in the tank to change from

10 m to 2 m. Hint: Develop an equation for dh dt where h is the

level and t if time. Then solve this equation numerically.

10.63 A tank and piping system is shown. The galvanized pipe

diameter is 1.5 cm, and the total length of pipe is 10 m. The two

90° elbows are threaded fittings. The vertical distance from the

water surface to the pipe outlet is 5 m. The velocity of the water

in the tank is negligible. Find (a) the exit velocity of the water

and (b) the height (h) the water jet would rise on exiting the

pipe. The water temperature is 20°C. 

10.64 A pump is used to fill a tank from a reservoir as shown. The

head provided by the pump is given by hp h0(l  (Q2 ))

where h0 is 50 meters, Q is the discharge through the pump, and
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Qmax is 2 m3 s. Assume f 0.018 and the pipe diameter is 90 cm.

Initially the water level in the tank is the same as the level in the

reservoir. The cross-sectional area of the tank is 100 m2. How

long will it take to fill the tank to a height, h, of 40 m? 

10.65 A water turbine is connected to a reservoir as shown. The

flow rate in this system is 5 cfs. What power can be delivered by the

turbine if its efficiency is 80%? Assume a temperature of 70°F.

10.66 What power must the pump supply to the system to pump

the oil from the lower reservoir to the upper reservoir at a rate of

0.20 m3 s? Sketch the HGL and the EGL for the system.

10.67 A cast-iron pipe 1.0 ft in diameter and 200 ft long joins

two water (60°F) reservoirs. The upper reservoir has a water-

surface elevation of 100 ft, and the lower on has a water-surface

elevation of 40 ft. The pipe exits from the side of the upper res-

ervoir at an elevation of 70 ft and enters the lower reservoir at

an elevation of 30 ft. There are two wide-open gate valves in

the pipe. Draw the EGL and the HGL for the system, and deter-

mine the discharge in the pipe.

10.68 An engineer is making an estimate of hydroelectric power

for a home owner. This owner has a small stream 

that is located at an elevation above the

owner’s residence. The owner is proposing to divert the stream

and operate a water turbine connected to an electric generator to

supply electrical power to the residence. The maximum accept-

able head loss in the penstock (a penstock is a conduit that sup-

plies a turbine) is 3 ft. The penstock has a length of 87 ft. If the

penstock is going to be fabricated from commercial-grade, plas-

tic pipe, find the minimum diameter that can be used. Neglect

component head losses. Assume that pipes are available in even

sizes—that is, 2 in., 4 in., 6 in., etc.  

10.69 The water-surface elevation in a reservoir is 120 ft. A

straight pipe 100 ft long and 6 in. in diameter conveys water

from the reservoir to an open drain. The pipe entrance (it is

abrupt) is at elevation 100 ft, and the pipe outlet is at elevation

70 ft. At the outlet the water discharges freely into the air. The

water temperature is 50°F. If the pipe is asphalted cast iron,

what will be the discharge rate in the pipe? Consider all head

losses. Also draw the HGL and the EGL for this system.

10.70 A heat exchanger is being designed as a component of a

geothermal power system in which heat is transferred from the

geothermal brine to a “clean” fluid in a closed-loop power cy-

cle. The heat exchanger, a shell-and-tube type, consists of 100

galvanized-iron tubes 2 cm in diameter and 5 m long, as shown.

The temperature of the fluid is 200°C, the density is 860 kg m3,

and the viscosity is 1.35 l0–4 N s m2. The total mass flow

rate through the exchanger is 50 kg s.

a. Calculate the power required to operate the heat exchanger,

neglecting entrance and outlet losses.

b. After continued use, 2 mm of scale develops on the inside sur-

faces of the tubes. This scale has an equivalent roughness of

0.5 mm. Calculate the power required under these conditions. 

10.71 The heat exchanger shown consists of 20 m of drawn tub-

ing 2 cm in diameter with 19 return bends. The flow rate is

3 l0–4 m3 s. Water enters at 20°C and exits at 80°C. The ele-

vation difference between the entrance and the exit is 0.8 m.

Calculate the pump power required to operate the heat ex-

changer if the pressure at 1 equals the pressure at 2. Use the vis-

cosity corresponding to the average temperature in the heat

exchanger. 
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10.72 A heat exchanger consists of a closed system with a series

of parallel tubes connected by 180° elbows as shown in the fig-

ure. There are a total of 14 return elbows. The pipe diameter is 2

cm, and the total pipe length is 10 m. The head loss coefficient

for each return elbow is 2.2. The tube is copper. Water with an

average temperature of 40°C flows through the system with a

mean velocity of 10 m s. Find the power required to operate the

pump if the pump is 80% efficient. 

10.73 A heat exchanger consists of 15 m of copper tubing with

an internal diameter of 15 mm. There are 14 return elbows in

the system with a loss coefficient of 2.2 for each elbow. The

pump in the system has a pump curve given by

where hp0 is head provided by the pump at zero discharge and Qmax

is 10–3 m3 s. Water at 40°C flows through the system. Find the sys-

tem operating point for values of hp0 of 2 m, 10 m, and 20 m. 

10.74 Gasoline (T 50°F) is pumped from the gas tank of an

automobile to the carburetor through a 1 4 in. fuel line of drawn

tubing 10 ft long. The line has five 90° smooth bends with an r d

of 6. The gasoline discharges through a 1 32 in. jet in the carbu-

retor to a pressure of 14 psia. The pressure in the tank is 14.7 psia.

The pump is 80% efficient. What power must be supplied to the

pump if the automobile is consuming fuel at the rate of 0.12 gpm?

Obtain gasoline properties from Figs. A.2 and A.3.

10.75 Find the loss coefficient K of the partially closed valve

that is required to reduce the discharge to 50% of the flow with

the valve wide open as shown.

10.76 The pressure at a water main is 300 kPa gage. What

size of pipe is needed to carry water from the main at a rate

of 0.025 m3 s to a factory that is 160 m from the main? As-

sume that galvanized-steel pipe is to be used and that the pres-

sure required at the factory is 60 kPa gage at a point 10 m above

the main connection. 

10.77 The 10 cm galvanized-steel pipe is 1000 m long and dis-

charges water into the atmosphere. The pipeline has an open

globe valve and four threaded elbows; h1 3 m and h2 15 m.

What is the discharge, and what is the pressure at A, the mid-

point of the line? 

10.78 Water is pumped at a rate of 25 m3 s from the reservoir

and out through the pipe, which has a diameter of 1.50 m. What

power must be supplied to the water to effect this discharge?
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10.79 Both pipes shown have an equivalent sand roughness ks of

0.10 mm and a discharge of 0.1 m3 s. Also, D1 15 cm, L1 50

m, D2 30 cm, and L2 160 m. Determine the difference in the

water-surface elevation between the two reservoirs. 

10.80 Liquid discharges from a tank through the piping system

shown. There is a venturi section at A and a sudden contraction

at B. The liquid discharges to the atmosphere. Sketch the energy

and hydraulic gradelines. Where might cavitation occur? 

10.81 The steel pipe shown carries water from the main pipe A

to the reservoir and is 2 in. in diameter and 240 ft long. What

must be the pressure in pipe A to provide a flow of 50 gpm? 

10.82 If the water surface elevation in reservoir B is 110 m, what

must be the water surface elevation in reservoir A if a flow of

0.03 m3 s is to occur in the cast-iron pipe? Draw the HGL and

the EGL, including relative slopes and changes in slope.

Nonround Conduits

10.83 Air at 60°F and atmospheric pressure flows in a horizon-

tal duct with a cross section corresponding to an equilateral tri-

angle (all sides equal). The duct is 100 ft long, and the

dimension of a side is 6 in. The duct is constructed of galva-

nized iron (ks 0.0005 ft). The mean velocity in the duct is 12

ft s. What is the pressure drop over the 100 ft length? 

10.84 A cold-air duct 100 cm by 15 cm in cross section is 100 m

long and made of galvanized iron. This duct is to carry air at a

rate of 6 m3 s at a temperature of 15°C and atmospheric pres-

sure. What is the power loss in the duct? 

10.85 Air (20°C) flows with a speed of 10 m s through a hori-

zontal rectangular air-conditioning duct. The duct is 20 m long

and has a cross section of 4 by 10 in. (102 by 254 mm). Calculate
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(a) the pressure drop in inches of water and (b) the power in watts

needed to overcome head loss. Assume the roughness of the duct

is ks 0.004 mm. Neglect component head losses.

10.86 An air-conditioning system is designed to have a duct

with a rectangular cross section 1 ft by 2 ft, as shown. During

construction, a truck driver backed into the duct and made it a

trapezoidal section, as shown. The contractor, behind schedule,

installed it anyway. For the same pressure drop along the pipe,

what will be the ratio of the velocity in the trapezoidal duct to

that in the rectangular duct? Assume the Darcy-Weisbach resis-

tance coefficient is the same for both ducts. 

Modeling Pumps in Systems

10.87 What power must be supplied by the pump to the flow if

water (T 20°C) is pumped through the 300 mm steel pipe

from the lower tank to the upper one at a rate of 0.314 m3 s?

10.88 If the pump for Fig. 10.18b is installed in the system of

Prob. 10.87, what will be the rate of discharge of water from the

lower tank to the upper one?

10.89 A pump that has the characteristic curve shown in the ac-

companying graph is to be installed as shown. What will be the

discharge of water in the system?

10.90 If the liquid of Prob. 10.89 is a superliquid (zero head loss

occurs with the flow of this liquid), then what will be the pump-

ing rate, assuming that the pump curve is the same?

Pipes in Parallel and in Networks

10.91 A pipe system consists of a gate valve, wide open

(Kv 0.2), in line A and a globe valve, wide open (Kv 10),

in line B. The cross-sectional area of pipe A is half of the

cross-sectional area of pipe B. The head loss due to the junction,

elbows, and pipe friction are negligible compared with the head

loss through the valves. Find the ratio of the discharge in line B

to that in line A.

10.92 A flow is divided into two branches as shown. A gate

valve, half open, is installed in line A, and a globe valve, fully

open, is installed in line B. The head loss due to friction in each

branch is negligible compared with the head loss across the

valves. Find the ratio of the velocity in line A to that in line B

(include elbow losses for threaded pipe fittings).

10.93 In the parallel system shown, pipe 1 has a length of 1000 m

and is 50 cm in diameter. Pipe 2 is 1500 m long and 40 cm in di-

ameter. The pipe is commercial steel. What is the division of the

flow of water at 10°C if the total discharge is to be 1.2 m3 s?

10.94 Pipes 1 and 2 are the same kind (cast-iron pipe), but pipe

2 is four times as long as pipe 1. They are the same diameter (1

ft). If the discharge of water in pipe 2 is 1 cfs, then what will be

the discharge in pipe 1? Assume the same value of f in both

pipes.

10.95 Water flows from left to right in this parallel pipe system.

The pipe having the greatest velocity is (a) pipe A, (b) pipe B, or

(c) pipe C. 
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10.96 Two pipes are connected in parallel. One pipe is twice the

diameter of the other and three times as long. Assume that f in

the larger pipe is 0.010 and f in the smaller one is 0.014. Deter-

mine the ratio of the discharges in the two pipes.

10.97 With a total flow of 14 cfs, determine the division of flow

and the head loss from A to B.

10.98 The pipes shown in the system are all concrete. With a

flow of 25 cfs of water, find the head loss and the division of

flow in the pipes from A to B. Assume f 0.030 for all pipes. 

10.99 A parallel pipe system is set up as shown. Flow occurs

from A to B. To augment the flow, a pump having the character-

istics shown in Fig. 10.15 is installed at point C. For a total dis-

charge of 0.60 m3 s, what will be the division of flow between

the pipes and what will be the head loss between A and B? As-

sume commercial steel pipe. 

10.100 For the given source and loads shown, how will the flow

be distributed in the simple network, and what will be the pres-

sures at the load points if the pressure at the source is 60 psi?

Assume horizontal pipes and f 0.012 for all pipes.  

10.101 Frequently in the design of pump systems, a bypass line

will be installed in parallel to the pump so that some of the fluid

can recirculate as shown. The bypass valve then controls the

flow rate in the system. Assume that the head-versus-discharge

curve for the pump is given by hp 100 100Q, where hp is in

meters and Q is in m3 s. The bypass line is 10 cm in diameter.

Assume the only head loss is that due to the valve, which has a

head-loss coefficient of 0.2. The discharge leaving the system is

0.2 m3 s. Find the discharge through the pump and bypass line.
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C H A P T E R

Drag and Lift

Previous chapters have described various forces that are caused by fluids. This list includes

hydrostatic force on a panel, buoyant force on a submerged object, and shear force on a flat

plate. This chapter expands this list by describing lift and drag forces.

When a body moves through a stationary fluid or when a fluid flows past a body, the fluid

exerts a resultant force. The component of this resultant force that is parallel to the free-stream

velocity is called the drag force. Similarly, the lift force is the component of the resultant force

that is perpendicular to the free stream. For example, as air flows over a kite it creates a resultant

force that can be resolved in lift and drag components as shown in Fig. 11.1. By definition, lift

and drag forces are limited to those forces produced by a flowing fluid. 

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Describe lift and drag.

• Describe form drag and friction drag.

• Relate lift and drag to pressure and shear-stress distributions.

• Explain the significance and meaning of vortex shedding, streamlining, and terminal velocity.

• Relate drag to flow separation.

Procedural Knowledge

• Find the coefficient of drag and calculate the drag force.

• Find the coefficient of lift and calculate the lift force.

Applications (Typical Examples)

• For objects moving through a fluid (e.g., automobile, bird), determine power requirements.

• For structures (e.g., bridge, sign, tower), determine wind loads.

• For falling objects (e.g., pollen spore, parachute), calculate terminal velocity.

• For a wing, determine the lift force.

Figure 11.1

(a) A kite. 

(b) Forces acting on the 

kite due to the air flowing 

over the kite.

Lift force is the component of 
force perpendicular to the free stream.

Drag force is the component of
force parallel to the free stream.

Free stream 

(a) (b)

FL

FD
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Relating Lift and Drag to Stress Distributions

This section explains how lift and drag forces are related to stress distributions. This section

also introduces the concepts of form and friction drag. These ideas are fundamental to

understanding of lift and drag.

Integrating a Stress Distribution to Yield Force
Lift and drag forces are related to the stress distribution on a body through integration. For

example, consider the stress acting on the airfoil shown in Fig. 11.2. As shown, there is a

pressure distribution and a shear-stress distribution. To relate stress to force, select a differen-

tial area as shown in Fig. 11.3. The magnitude of the pressure force is and the

magnitude of the viscous force is .* The differential lift force is normal to the

free-stream direction

and the differential drag is parallel to the free-stream direction

Integration over the surface of the airfoil gives lift force  and drag force 

(11.1)

(11.2)

Equations (11.1) and (11.2) show that the lift and drag forces are related to the stress distribu-

tions through integration. 

* The sign convention on � is such that a clockwise sense of � dA on the surface of the foil signifies a pos-

itive sign for �.

Figure 11.2

Pressure and shear 

stress acting on an 

airfoil.

11.1

dFp p dA,�
dFv � dA�

dFL p A �sind– � A �cosd–�

FDd p A �cosd– � A �sind+�

FL( ) FD( ):

FL p � � �cos–sin–( ) Ad��

FD p � � �sin+cos–( ) Ad��

Negative gage pressure (vacuum)

Shear stress

Positive gage pressure
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Form Drag and Friction Drag
Notice that Eq. (11.2) can be written as the sum of two integrals.

(11.3)

Form drag is the portion of the total drag force that is associated with the pressure distribu-

tion. Friction drag is the portion of the total drag force that is associated with the viscous

shear-stress distribution. The drag force on any body is the sum of form drag and friction

drag. In words, Eq. (11.3) can be written as

(11.4)

Calculating Drag Force

This section introduces the drag force equation, the coefficient of drag, and presents data for

two-dimensional bodies. This information is used to calculate drag force on objects.

Drag Force Equation
The drag force FD on a body is found by using the drag force equation:

(11.5)

Figure 11.3

Pressure and viscous 

forces acting on a 

differential element of 

area.

–  dAcosτ

τ

τ

dAsinτ

V0

FD

FL

dFv = dA

dFp = p dA

dA

–p dAcos

–p dAsin

θ

θ

θ

θ

θ

FD p �cos–( ) Ad� � �sin( ) Ad�+�

form drag friction drag

total drag force( ) form drag( ) friction drag( )+�

11.2

FD CD A
�V0

2

2
-----------�
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where CD is called the coefficient of drag, A is a reference area of the body, � is the fluid den-

sity, and V0 is the free-stream velocity measured relative to the body.

The reference area A depends on the type of body. One common reference area, called

projected area and given the symbol Ap, is the silhouetted area that would be seen by a per-

son looking at the body from the direction of flow. For example, the projected area of a plate

normal to the flow is b�, and the projected area of a cylinder with its axis normal to the flow

is d�. Other geometries use different reference areas; for example, the reference area for an

airplane wing is the planform area, which is the area observed when the wing is viewed from

above.

The coefficient of drag CD is a parameter that characterizes the drag force associated

with a given body shape. For example, an airplane might have and a baseball

might have The coefficient of drag is a �-group that is defined by 

(11.6)

Values of the coefficient of drag CD are usually found by experiment. For example,

drag force FD can be measured using a force balance in a wind tunnel. Then CD can be calcu-

lated using Eq. (11.6). For this calculation, speed of the air in the wind tunnel V0 can be mea-

sured using a Pitot-static tube or similar device, and air density can be calculated by applying

the ideal gas law using measured values of temperature and pressure.

Equation (11.5) shows that drag force is related to four variables. Drag is related to

the shape of an object because shape is characterized by the value of CD. Drag is related

to the size of the object because size is characterized by the reference area. Drag is related to

the density of ambient fluid. Finally, drag is related to the speed of the fluid squared. This

means that if the wind velocity doubles and CD is constant, then the wind load on a building

goes up by a factor of four.

Coefficient of Drag (Two-Dimensional Bodies)
This section presents CD data and describes how CD varies with the Reynolds number for ob-

jects that can be classified as two-dimensional. A two-dimensional body is a body with a uni-

form section area and a flow pattern that is independent of the ends of the body. Examples of

two-dimensional bodies are shown in Fig. 11.4. In the aerodynamics literature, CD values for

two-dimensional bodies are called sectional drag coefficients. Two-dimensional bodies can

be visualized as objects that are infinitely long in the direction normal to the flow.

The sectional drag coefficient can be used to estimate CD for real objects. For example,

CD for a cylinder with a length to diameter ratio of 20 (e.g., ) approaches the sec-

tional drag coefficient because the end effects have an insignificant contribution to the total

drag force. Alternatively, the sectional drag coefficient would be inaccurate for a cylinder

with a small L D ratio (e.g., ) because the end effects would be important.

As shown in Fig. 11.4, the Reynolds number sometimes, but not always, influences the

sectional drag coefficient. The value of CD for the flat plate and square rod are independent

of Re. The sharp edges of these bodies produces flow separation, and the drag force is due

to the pressure distribution (form drag) and not on the shear-stress distribution (friction drag,

which depends on Re). Alternatively, CD for the cylinder and the streamlined strut show

strong Re dependence because both form and friction drag are significant.

CD 0.03,�
CD 0.4.�

CD

FD

A �V0

2
2⁄( )

---------------------------� drag force( )
reference area( ) kinetic pressure( )

---------------------------------------------------------------------------------�

L D⁄ 20≥

⁄ L D⁄ 1≈
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 To calculate drag force on an object, find a suitable coefficient of drag and then apply

the drag force equation. This approach is illustrated by Example 11.1.

Figure 11.4

Coefficient of drag 

versus Reynolds number 

for two-dimensional 

bodies. [Data sources: 

Bullivant (1), DeFoe (2), 

Goett and Bullivant (3), 

Jacobs (4), Jones (5), 

and Lindsey (6).]

EXAMPLE 11.1   DRAG FORCE ON A CYLINDER

A vertical cylinder that is 30 m high and 30 cm in diameter 

is being used to support a television transmitting antenna. 

Find the drag force acting on the cylinder and the bending 

moment at its base. The wind speed is 35 m s, the air 

pressure is 1 atm, and temperature is 20°C.

Problem Definition

Situation: Wind is blowing across a tall cylinder.

Find:

1. Drag force (in N) on the cylinder.

2. Bending moment (in ) acting at the base of the 
cylinder. 

Assumptions:

1. Wind speed is steady.

2. Effects associated with the ends of the cylinder are 
negligible because 

3. Neglect drag force on the antenna because the frontal area 
is much less than the frontal area of the cylinder.

4. The line of action of the drag force is at an elevation of 15 m, 
halfway up to the cylinder.

Properties: Air (20°C), Table A.5: and
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Discussion of CD for a Circular Cylinder

Drag Regimes

The coefficient of drag CD , as shown in Fig. 11.4, can be described in terms of three regimes.

Regime I (Re < 103). In this regime, CD depends on both form drag and friction drag. As

shown, CD decreases with increasing Re.

Regime II (103 < Re < 105 ). In this regime, CD has a nearly constant value. The reason is

that form drag, which is associated with the pressure distribution, is the dominant cause of drag.

Over this range of Reynolds numbers, the flow pattern around the cylinder remains virtually un-

changed, thereby producing very similar pressure distributions. This characteristic, the con-

stancy of CD at high values of Re, is representative of most bodies that have angular form.

Regime III (105 < Re < 5 � 105 ). In this regime, CD decreases by about 500%, a re-

markable change! This change occurs because the boundary layer on the circular cylin-

der changes. For Reynolds numbers less than 105, the boundary layer is laminar, and

separation occurs about midway between the upstream side and downstream side of the

cylinder (Fig. 11.5). Hence the entire downstream half of the cylinder is exposed to a rel-

atively low pressure, which in turn produces a relatively high value for CD. When the

Reynolds number is increased to about 105, the boundary layer becomes turbulent, which

causes higher-velocity fluid to be mixed into the region close to the wall of the cylinder.

As a consequence of the presence of this high-velocity, high-momentum fluid in the

boundary layer, the flow proceeds farther downstream along the surface of the cylinder

against the adverse pressure before separation occurs (Fig. 11.6). This change in separa-

tion produces a much smaller zone of low pressure and the lower value of CD.

Surface Roughness

Surface roughness has a major influence on drag. For example, if the surface of the cylinder

is slightly roughened upstream of the midsection, the boundary layer will be forced to be-

come turbulent at lower Reynolds numbers than those for a smooth cylinder surface. The same

Sketch:

Plan

1. Calculate the Reynolds number.

2. Find coefficient of drag using Fig. 11.4.

3. Calculate drag force using Eq. (11.5).

4. Calculate bending moment using 

Solution

1. Reynolds number

2. From Fig. 11.4, the coefficient of drag is CD 0.20.

3. Drag force

4. Moment at the base

Cylinder, D = 0.3 m

Air

T = 20°C
 p = 1.0 atm

V0 = 35 m/s

Antenna

L = 30 m

M FD L 2⁄� .�

Re
V0d�

�
------------

35 m s⁄ 0.30 m× 1.20 kg m
3⁄×

1.81 10
5–
 N · s m

2⁄×
------------------------------------------------------------------------------ 7.0 10

5×� � �

�

FD

CDAp�V0

2

2
-----------------------�

0.2( ) 30 m( ) 0.3 m( ) 1.20 kg m
3⁄( ) 35

2
m

2
s

2⁄( )
2

-----------------------------------------------------------------------------------------------------------------�

1323 N�

M FD

L

2
--- 1323 N( ) 30

2
------ m 19,800 N · m� � �
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trend can also be produced by creating abnormal turbulence in the approach flow. The effects of

roughness are shown in Fig. 11.7 for cylinders that were roughened with sand grains of size k.

A small to medium size of roughness on a cylinder triggers an early

onset of reduction of CD. However, when the relative roughness is quite large

the characteristic dip in CD is absent. 

Figure 11.5

Flow pattern around a 

cylinder for 

103< Re < 105.

Figure 11.6

Flow pattern around a 

cylinder for

Re > 5 � 105.

Figure 11.7

Effects of roughness on 

CD for a cylinder. [After 

Miller, et al. (7).]
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Drag of Axisymmetric and 3D Bodies

Section 11.2 described drag for two-dimensional bodies. Drag on other body shapes is

presented in this section. This section also describes power and rolling resistance.

Drag Data
An object is classified as an axisymmetric body when the flow direction is parallel to an axis

of symmetry of the body and the resulting flow is also symmetric about his axis. Examples of

axisymmetric bodies include a sphere, bullet, and javelin. When flow is not aligned with an axis

of symmetry, the flow field is three-dimensional (3D), and the body is classified as a three-

dimensional or 3D body. Examples of 3D bodies include a tree, a building, and an automobile. 

The principles that apply to two-dimensional flow over a body also apply to axisym-

metric flows. For example, at very low values of the Reynolds number, the coefficient of

drag is given by exact equations relating CD and Re. At high values of Re, the coefficient of

drag becomes constant for angular bodies, whereas rather abrupt changes in CD occur for

rounded bodies. All of these characteristics can be seen in Fig. 11.8, where CD is plotted

against Re for several axisymmetric bodies. 

Figure 11.8

Coefficient of drag 

versus Reynolds number 

for axisymmetric bodies. 

[Data sources: Abbott 

(9), Brevoort and Joyner 

(10), Freeman (11), and 

Rouse (12).] 
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The drag coefficient of a sphere is of special interest because many applications involve the

drag of spherical or near-spherical objects, such as particles and droplets. Also, the drag of a sphere

is often used as a standard of comparison for other shapes. For Reynolds numbers less than 0.5, the

flow around the sphere is laminar and amenable to analytical solutions. An exact solution by Stokes

yielded the following equation, which is called Stokes’s equation, for the drag of a sphere:

(11.7)

Note that the drag for this laminar flow condition varies directly with the first power of V0. This

is characteristic of all laminar flow processes. For completely turbulent flow, the drag is a func-

tion of the velocity to the second power. When the drag force given by Eq. (11.7) is substituted

into Eq. (11.6), the result is the drag coefficient corresponding to Stokes’s equation:

(11.8)

Thus for flow past a sphere, when Re 0.5, one may use the direct relation for CD given in Eq.

(11.8).

Several correlations for the drag coefficient of a sphere are available (13). One such

correlation has been proposed by Clift and Gauvin (14):

(11.9)

which deviates from the standard drag curve* by –4% to 6% for Reynolds numbers up to

3 105. Note that as the Reynolds number approaches zero, this correlation reduces to the

equation for Stokes flow.

Values for CD for other axisymmetric and 3D bodies at high Reynolds numbers

(Re 104) are given in Table 11.1. Extensive data on the drag of various shapes is available

in Hoerner (15). 

* The standard drag curve represents the best fit of the cumulative data that have been obtained for drag

coefficient of a sphere.

Table 11.1 APPROXIMATE CD VALUES FOR VARIOUS BODIES 

Type of Body Length Ratio Re CD

Rectangular plate 1
5
10
20
∞

104

104

104

104

104

1.18
1.20
1.30
1.50
1.98

Circular cylinder with 
axis parallel to flow

0
(disk)

0.5
1
2
4
8

104

104

104

104

104

104

1.17
1.15
0.90
0.85
0.87
0.99

Square rod ∞ 104 2.00
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To find the drag force on an object, find or estimate the coefficient of drag and then ap-

ply the drag force equation. This approach is illustrated by Example 11.2. 

Type of Body Length Ratio Re CD

Square rod ∞ 104 1.50

Triangular cylinder ∞ 104 1.39

Semicircular shell ∞ 104 1.20

Semicircular shell ∞ 104 2.30

Hemispherical shell 104 0.39

Hemispherical shell 104 1.40

Cube 104 1.10

Cube 104 0.81

Cone—60° vertex 104 0.49

Parachute 3 107 1.20

SOURCES: Brevoort and Joyner (10), Lindsey (6), Morrison (16), Roberson et al. (17), Rouse (12), and Scher

and Gale (18).

EXAMPLE 11.2   DRAG ON A SPHERE

What is the drag of a 12 mm sphere that drops at a rate of 

in oil 

Problem Definition

Situation:

1. A sphere is falling in oil.

2. Speed of the sphere is 

Find: Drag force (in newtons) on the sphere.

Assumptions: Sphere is moving at a steady speed
(terminal velocity).

Properties: 

Oil:

Plan

1. Calculate the Reynolds number.

2. Find the coefficient of drag using Fig. 11.8.

3. Calculate drag force using Eq. (11.5). 

�

60° �

�

�

�

�

�

�

�

≈ ×

8 cm s⁄ � 10
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 N s m

2⁄ S 0.85�,⋅�( )?

d 0.012 m�( )
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� 10
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2⁄ S 0.85 �,�,⋅� 850 kg/m
3
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Power and Rolling Resistance
When power is involved in a problem, the power equation from Chapter 7 is applied. For ex-

ample, consider a car moving at a steady speed on a level road. Because the car in not accel-

erating, the horizontal forces are balanced as shown in Fig. 11.9. Force equilibrium gives

The driving force (FDrive ) is the frictional force between the driving wheels and the

road. The drag force is the resistance of the air on the car. The rolling resistance is the fric-

tional force that occurs when an object such as a ball or tire rolls. It is related to the deforma-

tion and types of the materials that are in contact. For example, a rubber tire on asphalt will

have a larger rolling resistance than a steel train wheel on a steel rail. The rolling resistance is

calculated using

(11.10)

where Cr is the coefficient of rolling resistance and N is the normal force.

The power required to move the car shown in Fig. 11.9 at a constant speed is given by

Eq. (7.2a)

(11.11)

Thus, when power is involved in a problem, apply the equation while concurrently

using a free-body diagram to determine the appropriate force. This approach is illustrated in

Example 11.3.

Solution

1. Reynolds number

2. Coefficient of drag (from Fig. 11.8) is 

3. Drag force

Figure 11.9

Horizontal forces acting 

on car that is moving at 

a steady speed. 
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Terminal Velocity

Another common application of the drag force equation is finding the steady-state speed of a

body that is falling through a fluid. When a body is dropped, it accelerates under the action of

gravity. As the speed of the falling body increases, the drag increases until the upward force

(drag) equals the net downward force (weight minus buoyant force). Once the forces are

balanced, the body moves at a constant speed called the terminal velocity, which is identified

as the maximum velocity attained by a falling body.

EXAMPLE 11.3   SPEED OF A BICYCLE RIDER

A bicyclist of mass 70 km supplies 300 watts of power while 

riding into a 3 m s head wind. The frontal area of the cyclist 

and bicycle together is 3.9 ft2 0.362 m2, the drag 

coefficient is 0.88, and the coefficient of rolling resistance is 

0.007. Determine the speed Vc of the cyclist. Express your 

answer in mph and in m s.

Problem Definition

Situation: A bicycle rider is cycling into a head wind of 

magnitude

Find: Speed (m s and mph) of the rider.

Sketch:

Assumptions:

1. The path is level, with no hills.

2. Mechanical losses in the bike gear train are zero.

Properties: Air (20°C, 1 atm), Table A.2: 

Plan

1. Relate bike speed (Vc ) to power using Eq. (11.11).

2. Calculate rolling resistance.

3. Develop an equation for drag force using Eq. (11.5).

4. Combine steps 1 to 3.

5. Solve for Vc.

Solution

1. Power equation

• The power from the bike rider is being used to over-
come drag and rolling resistance. Thus,

2. Rolling resistance

3. Drag force

• V0 speed of the air relative to the bike rider

• Drag force

4. Combine results:

5. Since the equation is cubic, use a 
spreadsheet program as shown. In 
this spreadsheet, let Vc vary and 
then search for the value of Vc that 
causes the right side of the 
equation to equal 300. The result is

⁄
�

⁄

Vw 3 m/s.�

⁄

Cyclist

Vc + Vw

Cr = 0.007

m = 70 kg
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CD = 0.88
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3
.�

P FD Fr+( )Vc�

Fr CrN Crmg 0.007 70 kg( ) 9.81 m/s
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�V0

2

2
----------- 0.88 0.362 m
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2
-------------------------------------------------------------------� �

Vc 3 m/s+( )2×

0.1911 Vc 3 m s⁄+( )2
�
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300.0
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To find terminal velocity, balance the forces acting on the object, and then solve the re-

sulting equation. In general this process is iterative as illustrated by Example 11.4.

EXAMPLE 11.4   TERMINAL VELOCITY OF A 

SPHERE IN WATER

A 20 mm plastic sphere (S 1.3) is dropped in water. 

Determine its terminal velocity. Assume 

Problem Definition

Situation: A smooth sphere (D 0.02 m, S 1.3) is falling 

in water.

Find: Terminal velocity (m s) of the sphere.

Properties: Water (20°C), Table A.5, v
� and 	

Plan

This problem requires an iterative solution because the 

terminal velocity equation is implicit.

1. Apply force equilibrium.

2. Develop an equation for terminal velocity.

3. To solve the terminal velocity equation, set up a procedure 
for iteration.

4. To implement the iterative solution, build a table in a 
spreadsheet program.

Solution

1. Force equilibrium

• Sketch a free-body diagram.

• Apply force equilibrium (vertical direction):

2. Terminal velocity equation

• Analyze terms in the equilibrium equation:

• Solve for V0

3. Iteration 1

• Initial guess: 

• Calculate Re:

• Calculate CD using Eq. (11.9):

• Find new value of V0 (use equation from step 2):

4. Iterative solution

• As shown, use a spread sheet program to build a table. 
The first row shows the results of iteration 1.

• The terminal velocity from iteration 1 
is used as the initial velocity for itera-

tion 2.

• The iteration process is repeated until the terminal ve-
locity reaches a constant value of No-
tice that convergence is reached in two iterations.
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Vortex Shedding

This section introduces vortex shedding, which is important for two reasons: It can be used to

enhance heat transfer and mixing, and it can cause unwanted vibrations and failures of structures.

Flow past a bluff body generally produces a series of vortices that are shed alternatively

from each side, thereby producing a series of alternating vortices in the wake. This phenome-

non is call vortex shedding. Vortex shedding for a cylinder occurs for  Re � 50 and gives the

flow pattern sketched in Fig. 11.10. In this figure, a vortex is in the process of formation near

the top of the cylinder. Below and to the right of the first vortex is another vortex, which was

formed and shed a short time before. Thus the flow process in the wake of a cylinder involves

the formation and shedding of vortices alternately from one side and then the other. This al-

ternate formation and shedding of vortices creates a cyclic change in pressure with conse-

quent periodicity in side thrust on the cylinder. Vortex shedding was the primary cause of

failure of the Tacoma Narrows suspension bridge in the state of Washington in 1940.

Experiments reveal that the frequency of shedding can be represented by plotting Strouhal

number (St) as a function of Reynolds number. The Strouhal number is a �-group defined as

(11.12)

where n is the frequency of shedding of vortices from one side of the cylinder, in Hz, d is the

diameter of the cylinder, and V0 is the free-stream velocity. The Strouhal number for vortex

shedding from a circular cylinder is given in Fig. 11.11. Other cylindrical and two-dimen-

sional bodies also shed vortices. Consequently, the engineer should always be alert to vibra-

tion problems when designing structures that are exposed to wind or water flow.

Figure 11.10

Formation of a vortex 

behind a cylinder.

Figure 11.11

Strouhal number versus 

Reynolds number for

flow past a circular 

cylinder. [After Jones (5) 

and Roshko (8)]
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Reducing Drag by Streamlining

An engineer can design a body shape to minimize the drag force. This process is called

streamlining and is often focused on reducing form drag. The reason for focusing on form

drag is that drag on most bluff objects (e.g., a cylindrical body at Re 1000) is

predominantly due to the pressure variation associated with flow separation. In this case,

streamlining involves modifying the body shape to reduce or eliminate separation. The

impacts of streamlining can be dramatic. For example, Fig. 11.4 shows that CD for the

streamlined shape is about 1/6 of CD for the circular cylinder when Re 5 105.

While streamlining reduces form drag, friction drag is typically increased. This is be-

cause there is more surface area on a streamlined body as compared to a nonstreamlined

body. Consequently, when a body is streamlined the optimum condition results when the sum

of form drag and friction drag is minimum.

Streamlining to produce minimum drag at high Reynolds numbers will probably not

produce minimum drag at very low Reynolds numbers. For example, at Re 1, the major-

ity of the drag of a cylinder is friction drag. Hence, if the cylinder is streamlined, the friction

drag will likely be magnified, and CD will increase.

Another advantage of streamlining at high Reynolds numbers is that vortex shedding is

eliminated. Example 11.5 shows how to estimate the impact of streamlining by using a ratio

of CD values. 

EXAMPLE 11.5    COMPARING DRAG ON BLUFF 

AND STREAMLINED SHAPES

Compare the drag of the cylinder of Example 11.1 with the 

drag of the streamlined shape shown in Fig. 11.4. Assume 

that both shapes have the same projected area.

Problem Definition

Situation: The cylinder from Example 11.1 is being 
compared to a streamlined shape.

Find: Ratio of drag force on the streamlined body to drag 
force on the cylinder.

Assumptions:

1. The cylinder and the streamlined body have the same 
projected area.

2. Both objects are two-dimensional bodies (neglect end 
effects).

Plan

1. Retrieve Re and CD from Example 11.1.

2. Find the coefficient of drag for the streamlined shape 
using Fig. 11.4.

3. Calculate the ratio of drag forces using Eq. (11.4).

Solution

1. From Example 11.1, Re 7 105 and 
CD (cylinder) 0.2.

2. Using this Re and Fig. 11.4 gives CD (streamlined
shape) 0.034.

3. Drag force ratio (derived from Eq. 11.4) is

Review

Notice that streamlining provided nearly a sixfold reduction 

in drag!

11.6
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Drag in Compressible Flow

So far, this chapter has described drag for flows with constant density. This section describes

drag when the density of a gas is changing due to pressure variations. These types of flow are

called compressible flows. This information is important for modeling of projectiles such as

bullets and rockets.

In steady flow, the influence of compressibility depends on the ratio of fluid velocity to

the speed of sound. This ratio is a �-group called the Mach number. 

The variation of drag coefficient with Mach number for three axisymmetric bodies is

shown in Fig. 11.12. In each case, the drag coefficient increases only slightly with the Mach

number at low Mach numbers and then increases sharply as transonic flow ( ) is ap-

proached. Note that the rapid increase in drag coefficient occurs at a higher Mach number

(closer to unity) if the body is slender with a pointed nose. The drag coefficient reaches a

maximum at a Mach number somewhat larger than unity and then decreases as the Mach

number is further increased.

The slight increase in drag coefficient with low Mach numbers is attributed to an in-

crease in form drag due to compressibility effects on the pressure distribution. However, as

the flow velocity is increased, the maximum velocity on the body finally becomes sonic. The

Mach number of the free-stream flow at which sonic flow first appears on the body is called

the critical Mach number. Further increases in flow velocity result in local regions of super-

sonic flow which lead to wave drag due to shock wave formation and an apprecia-

ble increase in drag coefficient.

The critical Mach number for a sphere is approximately 0.6. Note in Fig. 11.12 that the

drag coefficient begins to rise sharply at about this Mach number. The critical Mach number

for the pointed body is larger, and, correspondingly, the rise in drag coefficient occurs at a

Mach number closer to unity.

The drag coefficient data for the sphere shown in Fig. 11.12 are for a Reynolds number

of the order of 104. The data for the sphere shown in Fig. 11.8, on the other hand, are for very

low Mach numbers. The question then arises about the general variation of the drag coefficient

Figure 11.12

Drag characteristics of 

projectile, sphere, and 

cylinder with 

compressibility effects. 

[After Rouse (12)]
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of a sphere with both Mach number and Reynolds number. Information of this nature is often

needed to predict the trajectory of a body through the upper atmosphere or to model the motion

of a nanoparticle.

A contour plot of the drag coefficient of a sphere versus both Reynolds and Mach num-

bers based on available data (19) is shown in Fig. 11.13. Notice the CD-versus-Re curve from

Fig. 11.8 in the M 0 plane. Correspondingly, notice the CD-versus-M curve from Fig.

11.12 in the Re 104 plane. At low Reynolds numbers CD decreases with increasing Mach

number, whereas at high Reynolds numbers the opposite trend is observed. Using this figure,

the engineer can determine the drag coefficient of a sphere at any combination of Re and M.

Of course, corresponding CD contour plots can be generated for any body, provided the data

are available.

Theory of Lift

This section introduces circulation, the basic cause of lift, as well as the coefficient of lift. 

Circulation
Circulation, a characteristic of a flow field, gives a measure of the average rate of rotation of

fluid particles that are situated in an area that is bounded by a closed curve. Circulation is de-

fined by the path integral as shown in Fig. 11.14. Along any differential segment of the path,

the velocity can be resolved into components that are tangent and normal to the path. Signify

the tangential component of velocity as VL. Integrate VL dL around the curve; the resulting

Figure 11.13

Contour plot of the drag 

coefficient of the sphere 

versus Reynolds and 

Mach numbers.
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quantity is called circulation, which is represented by the Greek letter � (capital gamma).

Hence

 (11.13)

Sign convention dictates that in applying Eq. (11.13), one uses tangential velocity vectors

that have a counterclockwise sense around the curve as negative and take those that have a

clockwise direction as having a positive contribution.* For example, consider finding the cir-

culation for an irrotational vortex. The tangential velocity at any radius is where a posi-

tive C means a clockwise rotation. Therefore, if circulation is evaluated about a curve with

radius r, the differential circulation is

(11.14)

Integrate this around the entire circle:

(11.15)

One way to induce circulation physically is to rotate a cylinder about its axis. Fig.

11.15a shows the flow pattern produced by such action. The velocity of the fluid next to the

surface of the cylinder is equal to the velocity of the cylinder surface itself because of

the no-slip condition that must prevail between the fluid and solid. At some distance from the

cylinder, however, the velocity decreases with r, much like it does for the irrotational vortex.

The next section shows how circulation produces lift.

Combination of Circulation and Uniform Flow around a Cylinder
Superpose the velocity field produced for uniform flow around a cylinder, Fig. 11.15b, onto a

velocity field with circulation around a cylinder, Fig. 11.15a. Observe that the velocity is re-

inforced on the top side of the cylinder and reduced on the other side (Fig. 11.15c). Also ob-

serve that the stagnation points have both moved toward the low-velocity side of the cylinder.

Consistent with the Bernoulli equation (assuming irrotational flow throughout), the pressure

on the high-velocity side is lower than the pressure on the low-velocity side. Hence a pres-

sure differential exists that causes a side thrust, or lift, on the cylinder. According to ideal

flow theory, the lift per unit length of an infinitely long cylinder is given by 

where FL is the lift on the segment of length �. For this ideal irrotational flow there is

Figure 11.14

Concept of circulation.

* The sign convention is the opposite of that for the mathematical definition of a line integral.
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no drag on the cylinder. For the real-flow case, separation and viscous stresses do produce

drag, and the same viscous effects will reduce the lift somewhat. Even so, the lift is sig-

nificant when flow occurs past a rotating body or when a body is translating and rotat-

ing through a fluid. Hence the reason for the “curve” on a pitched baseball or the “drop”

on a Ping-Pong ball is a fore spin. This phenomenon of lift produced by rotation of a

solid body is called the Magnus effect after a nineteenth-century German scientist who

made early studies of the lift on rotating bodies. A paper by Mehta (28) offers an inter-

esting account of the motion of rotating sports balls.

Coefficients of lift and drag for the rotating cylinder with end plates are shown in Fig.

11.16. In this figure, the parameter is the ratio of cylinder surface speed to the free-

stream velocity, where r is the radius of the cylinder and � is the angular speed in radians per

second. The corresponding curves for the rotating sphere are given in Fig. 11.17.

Coefficient of Lift
The coefficient of lift is a parameter that characterizes the lift that is associated with a body.

For example, a wing at a high angle of attack will have a high coefficient of lift, and a wing

that has a zero angle of attack will have a low or zero coefficient of lift. The coefficient of lift

is defined using a �-group:

(11.16)

To calculate lift force, engineers use the lift equation:

(11.17)

where the reference area for a rotating cylinder or sphere is the projected area Ap.

Figure 11.15
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(b) Uniform flow. 
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Figure 11.16

Coefficients of lift and 

drag as functions of 

 for a rotating 

cylinder. [After Rouse 

(12).]

Figure 11.17

Coefficients of lift and 

drag for a rotating 

sphere. [After Barkla et 

al. (20). Reprinted with 

the permission of 

Cambridge University 

Press.]

EXAMPLE 11.6   LIFT ON A ROTATING SPHERE

A Ping-Pong ball is moving at 10 m s in air and is spinning 

at 100 revolutions per second in the clockwise direction. The 

diameter of the ball is 3 cm. Calculate the lift and drag force 

and indicate the direction of the lift (up or down). The density 

of air is 1.2 kg m3.

Problem Definition

Situation: A Ping-Pong ball is moving horizontally and 
rotating.

Sketch:
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Lift and Drag on Airfoils

This section presents information on how to calculate lift and drag on wing-like objects.

Some typical applications include calculating the takeoff weight of an airplane, determining

the size of wings needed, and estimating power requirements to overcome drag force.

Lift of an Airfoil
An airfoil is a body designed to produce lift from the movement of fluid around it. Specifi-

cally, lift is a result of circulation in the flow produced by the airfoil. To see this, consider

flow of an ideal flow (nonviscous and incompressible) past an airfoil as shown in Fig.

11.18a. Here, as for irrotational flow past a cylinder, the lift and drag are zero. There is a

stagnation point on the bottom side near the leading edge, and another on the top side near

the trailing edge of the foil. In the real flow (viscous fluid) case, the flow pattern around the

upstream half of the foil is plausible. However, the flow pattern in the region of the trailing

edge, as shown in Fig. 11.18a, cannot occur. A stagnation point on the upper side of the foil

indicates that fluid must flow from the lower side around the trailing edge and then toward

the stagnation point. Such a flow pattern implies an infinite acceleration of the fluid particles

as they turn the corner around the trailing edge of the wing. This is a physical impossibility,

and as we have seen in previous sections of the text, separation occurs at the sharp edge. As a

consequence of the separation, the upstream stagnation point moves to the trailing edge. Flow

from both the top and bottom sides of the airfoil in the vicinity of the trailing edge then

leaves the airfoil smoothly and essentially parallel to these surfaces at the trailing edge (Fig.

11.18b).

Find:

1. Drag force (in newtons) on the ball.

2. Lift force (in newtons) on the ball.

3. The direction of lift (up or down?).

Properties: Air: � 1.2 kg m3.

Plan

1. Calculate the value of 

2. Use the value of to look up the coefficients of lift 
and drag on Fig. 11.7.

3. Calculate lift force using Eq. (11.17).

4. Calculate drag force using Eq. (11.5).

Solution

The rotation rate in is

The rotational parameter is

From Fig. 11.17, the lift coefficient is approximately 0.26, 

and the drag coefficient is 0.64. The lift force is

 The drag force is
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To bring theory into line with the physically observed phenomenon, it was hypothe-

sized that a circulation around the airfoil must be induced in just the right amount so that the

downstream stagnation point is moved all the way back to the trailing edge of the airfoil, thus

allowing the flow to leave the airfoil smoothly at the trailing edge. This is called the Kutta
condition (21), named after a pioneer in aerodynamic theory. When analyses are made with

this simple assumption concerning the magnitude of the circulation, very good agreement oc-

curs between theory and experiment for the flow pattern and the pressure distribution, as well

as for the lift on a two-dimensional airfoil section (no end effects). Ideal flow theory then

shows that the magnitude of the circulation required to maintain the rear stagnation point at

the trailing edge (the Kutta condition) of a symmetric airfoil with a small angle of attack is

given by

(11.18)

where � is the circulation, c is the chord length of the airfoil, and � is the angle of attack of

the chord of the airfoil with the free-stream direction (see Fig. 11.19 for a definition sketch).

Like that for the cylinder, the lift per unit length for an infinitely long wing is

The planform area for the length segment � is �c. Hence the lift on segment � is

(11.19)

For an airfoil the coefficient of lift is

(11.20)

Figure 11.18

Patterns of flow around an 

airfoil.

(a) Ideal flow—no 

circulation. 

(b) Real flow—circulation.

Figure 11.19
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where the reference area S is the planform area of the wing—that is, the area seen from the

plan view. On combining Eqs. (11.18) and (11.19) and identifying S as the area associated

with length segment �, one finds that CL for irrotational flow past a two-dimensional airfoil is

given by

(11.21)

Equations (11.19) and (11.21) are the theoretical lift equations for an infinitely long air-

foil at a small angle of attack. Flow separation near the leading edge of the airfoil produces

deviations (high drag and low lift) from the ideal flow predictions at high angles of attack.

Hence experimental wind-tunnel tests are always made to evaluate the performance of a

given type of airfoil section. For example, the experimentally determined values of lift coef-

ficient versus � for two NACA airfoils are shown in Fig. 11.20. Note in this figure that the

coefficient of lift increases with the angle of attack, �, to a maximum value and then de-

creases with further increase in �. This condition, where CL starts to decrease with a further

increase in �, is called stall. Stall occurs because of the onset of separation over the top of the

airfoil, which changes the pressure distribution in such a way as not only to decrease lift but

also to increase drag. Data for many other airfoil sections are given by Abbott and Von

Doenhoff (22).

Airfoils of Finite Length—Effect on Drag and Lift
The drag of a two-dimensional foil at a low angle of attack (no end effects) is primarily vis-

cous drag. However, wings of finite length also have an added drag and a reduced lift associ-

ated with vortices generated at the wing tips. These vortices occur because the high pressure

below the wing and the low pressure on top cause fluid to circulate around the end of the

wing from the high-pressure zone to the low-pressure zone, as shown in Fig. 11.21. This in-

duced flow has the effect of adding a downward component of velocity, w, to the approach

velocity V0. Hence, the “effective” free-stream velocity is now at an angle ( ) to the

direction of the original free-stream velocity, and the resultant force is tilted back as shown in

Fig. 11.22. Thus the effective lift is smaller than the lift for the infinitely long wing because

the effective angle of incidence is smaller.  This resultant force has a component parallel to

Figure 11.20

Values of CL for two 

NACA airfoil sections. 

[After Abbott and Van 

Doenhoff (22).]
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V0 that is called the induced drag and is given by FL�. Prandtl (23) showed that the induced

velocity w for an elliptical spanwise lift distribution is given by the following equation:

(11.22)

where b is the total length (or span) of the finite wing. Hence

(11.23)

From Eq. (11.23) it can be easily shown that the coefficient of induced drag, CDi, is given by

(11.24)

which happens to represent the minimum induced drag for any wing planform. Here the ratio

 is called the aspect ratio ! of the wing, and S is the planform area of the wing. Thus,

for a given wing section (constant CL and constant chord c), longer wings (larger aspect ra-

tios) have smaller induced-drag coefficients. The induced drag is a significant portion of the

total drag of an airplane at low velocities and must be given careful consideration in airplane

design. Aircraft (such as gliders) and even birds (such as the albatross and gull) that are re-

quired to be airborne for long periods of time with minimum energy expenditure are noted

for their long, slender wings. Such a wing is more efficient because the induced drag is small.

To illustrate the effect of finite span, look at Fig. 11.23, which shows CL and CD versus � for

wings with several aspect ratios. 

Figure 11.21
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The total drag of a rectangular wing is computed by

(11.25)

where CD0 is the coefficient of form drag of the wing section and CDi is the coefficient of in-

duced drag. 

Figure 11.23

Coefficients of lift and 

drag for three wings with 

aspect ratios of 3, 5, and 

7. [After Prandtl (23).]

EXAMPLE 11.7   WING AREA FOR AN AIRPLANE

An airplane with a weight of 10,000 lbf is flying at  600 ft s 

at 36,000 ft, where the pressure is 3.3 psia and the 

temperature is –67°F. The lift coefficient is 0.2. The span of 

the wing is 54 ft. Calculate the wing area (in ft2) and the 

minimum induced drag.

Problem Definition

Situation:

1. An airplane (W 10,000 lbf) is traveling at V0 600 ft s.

2. Coefficient of lift is CL 0.2.

3. Wing span is b 54 ft.

Find:

1. Required wing area (in ft2).

2. Minimum value of induced drag (in N).

Properties: Atmosphere (36,000 ft): T –67°F, 

p 3.3 psia.

Plan

1. Apply the idea gas law to calculate density of air.

2. Apply force equilibrium to derive an equation for the the 
required wing area.

3. Calculate induced drag using Eq. (11.24) with CD0 0.

Solution

Ideal gas law
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A graph showing CL and CD versus � is given in Fig. 11.24. Note in this graph that CD

is separated into the induced-drag coefficient CDi and the form drag coefficient CD0.

For steady flight, the lift force is equal to the weight,

so

The minimum induced drag coefficient is

The induced drag is

Figure 11.24
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aspect ratio of 5. [After 

Prandtl (23).]
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Lift and Drag on Road Vehicles

Early in the development of cars, aerodynamic drag was a minor factor in performance

because normal highway speeds were quite low. Thus in the 1920s, coefficients of drag for

cars were around 0.80. As highway speeds increased and the science of metal forming

became more advanced, cars took on a less angular shape, so that by the 1940s drag

coefficients were 0.70 and lower. In the 1970s the average CD for U.S. cars was

approximately 0.55. In the early 1980s the average CD for American cars dropped to 0.45,

and currently auto manufacturers are giving even more attention to reducing drag in

designing their cars. All major U.S., Japanese, and European automobile companies now

have models with CDs of about 0.33, and some companies even report CDs as low as 0.29 on

EXAMPLE 11.8   TAKEOFF CHARACTERISTICS 

OF AN AIRPLANE

A light plane (weight 10 kN) has a wingspan of 10 m and a 

chord length of 1.5 m. If the lift characteristics of the wing are 

like those given in Fig. 11.23, what must be the angle of 

attack for a takeoff speed of 140 km h? What is the stall 

speed? Assume two passengers at 800 N each and standard 

atmospheric conditions.

Problem Definition

Situation:

1. An airplane (W 10 kN) with two passengers W 1.6
kN is taking off.

2. Wing span is b 10 m, and chord length is c 1.5 m.

3. Lift coefficient information is given by Fig. 11.23.

4. Takeoff speed is V0 140 km h.

Find:

1. Angle of attack (in degrees).

2. Stall speed (in km h).

Assumptions:

1. Ground effects can be neglected.

2. Standard atmospheric conditions prevail.

Properties: Air: � 1.2 kg m3.

Plan

1. Find the lift by applying force equilibrium.

2. Calculate the coefficient of lift using Eq. (11.20).

3. Find the angle of attack � from Fig. 11.23.

4. Read the maximum angle of attack from Fig. 11.23, and 
then calculate the correspoding stall speed using the lift 
force equation (11.17).

Solution

Force equilibrium (y direction), so lift weight 11.6 kN. 

Thus,

The aspect ratio is

From Fig. 11.23, the angle of attack is

From Fig. 11.23, stall will occur when

Applying the lift force force equation gives

Review

Notice that the stall speed (119 km/h) is less than the takeoff 

speed (140 km h).
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new models. European manufacturers were the leaders in the streamlining of cars because

European gasoline prices (including tax) have been, for a number of years, about three times

those in the United States. Table 11.2 shows the CD for a 1932 Fiat and for other, more

contemporary car models.

Great strides have been made in reducing the drag coefficients for passenger cars. However,

significant future progress will be very hard to achieve. One of the most streamlined cars was the

“Bluebird,” which set a world land-speed record in 1938. Its CD was 0.16. The minimum CD of

well-streamlined racing cars is about 0.20. Thus, lowering the CD for passenger cars below 0.30

will require exceptional design and workmanship. For example, the underside of most cars is

aerodynamically very rough (axles, wheels, muffler, fuel tank, shock absorbers, and so on). One

way to smooth the underside is to add a panel to the bottom of the car. But then clearance may

become a problem, and adequate dissipation of heat from the muffler may be hard to achieve.

Other basic features of the automobile that contribute to drag but are not very amenable to drag-

reduction modifications are interior airflow systems for engine cooling, wheels, exterior features

such as rear-view mirrors and antennas, and other surface protrusions. The reader is directed to

two books on road-vehicle aerodynamics, (24) and (25), which address all aspects of the drag and

lift of road vehicles in considerably more detail than is possible here.

Table 11.2 COEFFICIENTS OF DRAG FOR CARS

Make and Model Profile CD

1932 Fiat Balillo 0.60

Volkswagen “Bug” 0.46

Plymouth Voyager 0.36

Toyota Paseo 0.31

Dodge Intrepid 0.31

Ford Taurus 0.30

Mercedes-Benz E320 0.29

Ford Probe V (concept car) 0.14

GM Sunraycer
(experimental solar vehicle)

0.12
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To produce low-drag vehicles, the basic teardrop shape is an idealized starting point.

This shape can be altered to accommodate the necessary functional features of the vehicle.

For example, the rear end of the teardrop shape must be lopped off to yield an overall vehicle

length that will be manageable in traffic and will fit in our garages. Also, the shape should be

wider than its height. Wind-tunnel tests are always helpful in producing the most efficient de-

sign. One such test was done on a scale model of a typical notchback sedan. Wind-tunnel

test results for such a sedan are shown in Fig. 11.25. Here the centerline pressure distribution

(distribution of CP) for the conventional sedan is shown by a solid line and that for a sedan

with a 68 mm rear-deck lip is shown by a dashed line. Clearly the rear-deck lip causes the

pressure on the rear of the car to increase (CP  is less negative), thereby reducing the drag on

the car itself. It also decreases the lift, thereby improving traction. Of course, the lip itself

produces some drag, and these tests show that the optimum lip height for greatest overall

drag reduction is about 20 mm.

Research and development programs to reduce the drag of automobiles continue. As an

entry in the PNGV (Partnership for a New Generation of Vehicles), General Motors (26) has

exhibited a vehicle with a drag coefficient as low as 0.163, which is approximately one-half

that of the typical midsize sedan. These automobiles will have a rear engine to eliminate the

exhaust system underneath the vehicle, and allow a flat underbody. Cooling air for the engine

is drawn in through inlets on the rear fenders and exhausted out the rear, reducing the drag

due to the wake. The protruding rear-view mirrors are also removed to reduce the drag. The

cumulative effect of these design modifications is a sizable reduction in aerodynamic drag.

The drag of trucks can be reduced by installing vanes near the corners of the truck body

to deflect the flow of air more sharply around the corner, thereby reducing the degree of sep-

aration. This in turn creates a higher pressure on the rear surfaces of the truck, which reduces

the drag of the truck.

One of the desired features in racing cars is the generation of negative lift to improve

the stability and traction at high speeds. One idea (27) is to generate negative gage pressure

underneath the car by installing a ground-effect pod. This is an airfoil section mounted across

the bottom of the car that produces a venturi effect in the channel between the airfoil section

and the road surface. The design of ground-effect vehicles involves optimizing design param-

eters to avoid separation and possible increase in drag. Another scheme to generate negative

lift is the use of vanes as shown in Fig. 11.26. Sometimes “gurneys” are mounted on these

vanes to reduce separation effects. Gurneys are small ribs mounted on the upper surface of

the vanes near the trailing edge to induce local separation, reduce the separation on the lower

surface of the vane, and increase the magnitude of the negative lift. As the speed of racing

cars continues to increase, automobile aerodynamics will play an ever-increasing role in trac-

tion, stability, and control.  

Figure 11.25

Effect of rear-deck lip on 

model surface. Pressure 

coefficients are plotted 

normal to the surface. [After 
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Summary

A body immersed in a flowing fluid is subjected to pressure and shear-stress distributions.

When the stress distributions are integrated, the resulant force is resolved into lift and drag. By

definition, the drag force is parallel to the free-stream velocity and the lift force is perpendicular.

The drag force on a body is evaluated using

Figure 11.26

Racing car with 

negative-lift devices.

EXAMPLE 11.9   NEGATIVE LIFT ON A 

RACE CAR

The rear vane installed on the racing car of Fig. 11.26 is at an 

angle of attack of 8° and has characteristics like those given in 

Fig. 11.23. Estimate the downward thrust (negative lift) and 

drag from the vane that is 1.5 m long and has a chord length of 

250 mm. Assume the racing car travels at a speed of 270 

km h on a track where normal atmospheric pressure and a 

temperature of 30°C prevail.

Problem Definition

Situation:

1. A racing car experiences downward lift from a rear 
mounted vane.

2. Vane overall length is and chord length is 

3. Car speed is 

Find:

1. Downward lift force from vane (in newtons).

2. Drag force from vane (in newtons).

Properties: Air:

Plan

1. Find the coefficient of lift CL and the coefficient of drag 
CD from Fig. 11.23.

2. Calculate the downward thrust using the lift force equation 
(11.17).

3. Calculate the drag using the drag force equation (11.5).

Solution

1. The aspect ratio is

From Fig. 11.23, the lift and drag coefficients are

and

2. Lift force equation

3. Drag force equation

Front vane

Rear vane
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where CD is a the drag coefficient, V0 is the relative speed between the body and free-stream

velocity, and A is the reference area. The drag coefficient is typically a function of Reynolds

number based on the relative speed and a characteristic dimension of the body. Values of the

drag coefficient for various shapes are determined analytically or experimentally and are

published as equations or in tabular or graphical format. The drag force is the combination of

two effects, form drag and skin friction drag. Form drag is due to pressure forces acting on

the body, whereas skin friction is due to shear stress on the body surface.

The drag coefficient of a sphere for Reynolds numbers less than 0.5 is

For bluff bodies in high–Reynolds number flows, the drag force is primarily form drag

and results from the reduced pressure in the body’s wake. For streamlined bodies the form

drag is reduced, and skin friction drag plays a more important role. The drag coefficients of

cylinders and spheres show a marked decrease at Reynolds numbers near 105. This effect is

attributed to the flow in the boundary layer changing from laminar to turbulent, moving the

separation point downstream, reducing the wake region, and decreasing the form drag. The

Reynolds number where the drag coefficient decreases is the critical Reynolds number, and

the phenomenon is known as the critical Reynolds number effect.

Cylinders and bluff bodies in a cross-flow produce vortex shedding in which vortices

are released alternately from each side of the body. The frequency of vortex shedding is

given by the Strouhal number

where n is the rate at which vortices are shed (Hz) from one side and d is the cross-stream di-

mension of the body.

Increasing the Mach number of flow past a body increases the drag coefficient. The free-

stream Mach number where sonic flow first occurs on a body is the critical Mach number.

The lift force on a body is quantified by

where CL is the lift coefficient and A is the reference area. The values for the lift coefficient

for various bodies are obtained by analysis or experiment.

The lift on an airfoil is due to the circulation produced by the airfoil on the surrounding

fluid. This circulatory motion causes a change in the momentum of the fluid and a lift on the

airfoil. The lift coefficient for a symmetric two-dimensional wing (no tip effect) is

where � is the angle of attack (expressed in radians) and the reference angle is the product of

the chord and a unit length of wing. As the angle of attack increases, the airfoil stalls and the

lift coefficient decreases. A wing of finite span produces trailing vortices that reduce the an-

gle of attack and produce an induced drag. The drag coefficient corresponding to the mini-

mum induced drag is

where b is the wing span and S is the planform area of the wing.
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Problems

Relating Pressure Distribution and CD

11.1 A hypothetical pressure coefficient variation over a long

(length normal to the page) plate is shown. What is the coeffi-

cient of drag for the plate in this orientation and with the given

pressure distribution? Assume that the reference area is the sur-

face area (one side) of the plate.

11.2 Flow is occurring past the square rod. The pressure coeffi-

cient values are as shown. From which direction do you think

the flow is coming? (a) SW direction, (b) SE direction, (c) NW

direction, or (d) NE direction.

11.3 The hypothetical pressure distribution on a rod of triangular

(equilateral) cross section is shown, where flow is from left to

right. That is, Cp is maximum and equal to 1.0 at the leading

edge and decreases linearly to zero at the trailing edges. The

pressure coefficient on the downstream face is constant with a

value of –0.5. Neglecting skin friction drag, find CD for the

rod.

11.4 The pressure distribution on a rod having a triangular

(equilateral) cross section is shown, where flow is from left to

right. What is CD for the rod?

⁄

+ PROBLEM 11.1

Plate
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–1.0
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+1.0
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30°
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Drag Calculations

11.5 ��� Apply the grid method to each situation that follows.

a. Use Eq. (11.5) to predict the drag force in newtons for a au-

tomobile that is traveling at on a summer day.

Assume that the frontal area is 2 m2, and the coefficient of

drag is 

b. Apply Eq. (11.5) to predict the the speed in mph of a bicycle

rider that is subject to a drag force of 5 lbf on a summer’s

day. Assume the frontal area of the rider is and

the coefficient of drag is 

11.6 ��� Using the first two sections in this chapter and using

other resources, answer the questions that follow. Strive for

depth, clarity, and accuracy. Also, strive for effective use of

sketches, words, and equations.

a. What are the four most important factors that influence the

drag force?

b. How are stress and drag related?

c. What is form drag? What is friction drag?

11.7 ��� Use information in sections 11.2 and 11.3 to find the

the coefficient of drag for each case described here.

a. A sphere is falling through water, Re 10,000.

b. Air is blowing normal to a very long circular cylinder, and

Re 7,000.

c. Wind is blowing normal to a billboard that is 20 ft wide by

10 ft high.

11.8 Estimate the wind force on a billboard 10 ft high and 30 ft

wide when a 50 mph wind (T 60°F) is blowing normal to it.

11.9 If Stokes’s law is considered valid below a Reynolds num-

ber of 0.5, what is the largest raindrop that will fall in accor-

dance with Stokes’s law?

11.10 Determine the drag of a 4 ft 8 ft sheet of plywood held at

a right angle to a stream of air (60°F, 1 atm) having a velocity of

45 mph.

11.11 Estimate the drag of a thin square plate (3 m by 2 m) when

it is towed through water (10°C). Assume a towing speed of

about 2 

a. The plate is oriented for minimum drag.

b. The plate is oriented for maximum drag.

11.12 A cooling tower, used for cooling recirculating water in a

modern steam power plant, is 350 ft high and 250 ft average di-

ameter. Estimate the drag on the cooling tower in a 200 mph

wind (T 60°F).

11.13 Estimate the wind force that would act on you if you were

standing on top of a tower in a 30 m s (115 ft s) wind on a day

when the temperature was 20°C (68°F) and the atmospheric

pressure was 96 kPa (14 psia).

11.14 As shown, wind is blowing on a 55-gallon drum. Estimate

the wind speed needed to tip the drum over. Work in SI units.

The drum weighs 48 lbm, the diameter is 22.5 in., and the height

is 34.5 in.
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11.15 What drag is produced when a disk 0.75 m in diameter is

submerged in water at 10°C and towed behind a boat at a speed

of 4 Assume orientation of the disk so that maximum

drag is produced.

11.16 A circular billboard having a diameter of 6 m is mounted

so as to be freely exposed to the wind. Estimate the total force

exerted on the structure by a wind that has a direction normal to

the structure and a speed of 30 Assume T 10°C and

p 101 kPa absolute.

11.17 Consider a large rock situated at the bottom of a river and

acted on by a strong current. Estimate a typical speed of the cur-

rent that will cause the rock to move downstream along the bot-

tom of the river. List and justify all your major assumptions.

Shown all calculations and work in SI units.

11.18 Compute the overturning moment exerted by a 35

wind on a smokestack that has a diameter of 2.5 m and a height

of 75 m. Assume that the air temperature is 20°C and that pa is

99 kPa absolute.

11.19 What is the moment in SI units at the bottom of a flagpole

35 m high and 10 cm in diameter in a 30  wind? The atmo-

spheric pressure is 100 kPa, and the temperature is 20°C.

11.20 A cylindrical anchor (vertical axis) made of concrete

(	 15 kN m3) is reeled in at a rate of 1.0 m s by a man in a

boat. If the anchor is 30 cm in diameter and 30 cm long, what

tension must be applied to the rope to pull it up at this rate? Ne-

glect the weight of the rope.

11.21 A Ping-Pong ball of mass 2.6 g and diameter 38 mm is sup-

ported by an air jet. The air is at a temperature of 18°C and a pres-

sure of 27 in-Hg. What is the minimum speed of the air jet?

11.22 Estimate the moment at ground level on a signpost sup-

porting a sign measuring 3 m by 2 m if the wind is normal to the

surface and has a speed of 40 m s and the center of the sign is 3

m above the ground. Neglect the wind load on the post itself.

Assume T 10°C and p 1 atm.

11.23 Windstorms sometimes blow empty boxcars off their

tracks. The dimensions of one type of boxcar are shown. What

minimum wind velocity normal to the side of the car would be

required to blow the car over?

11.24 A semiautomatic popcorn popper is shown. After the un-

popped corn is placed in screen S, the fan F blows air past the

heating coils C and then past the popcorn. When the corn pops,

its projected area increases; thus it is blown up and into a con-

tainer. Unpopped corn has a mass of about 0.15 g per kernel and

an average diameter of approximately 6 mm. When the corn

pops, its average diameter is about 18 mm. Within what range of

airspeeds in the chamber will the device operate properly?

11.25 Hoerner (15) presents data that show that fluttering flags

of moderate-weight fabric have a drag coefficient (based on the

flag area) of about 0.14. Thus the total drag is about 14 times the

skin friction drag alone. Design a flagpole that is 100 ft high and

is to fly an American flag 6 ft high. Make your own assump-

tions regarding other required data.

Power, Energy, and Rolling Resistance

11.26 How much power is required to move a spherical-shaped

submarine of diameter 1.5 m through sea water at a speed of 10

knots? Assume the submarine is fully submerged.

11.27 A dirigible flies at 25 ft s at an altitude where the specific

weight of the air is 0.07 lbf ft3 and the kinematic viscosity is

1.3 10–4 ft2 s. The dirigible has a length-to-diameter ratio of

5 and has a drag coefficient corresponding to the streamlined

body in Fig. 11.8. The diameter of the dirigible is 100 ft. What

is the power required to propel the dirigible at this speed?

11.28 Estimate the energy in joules and kcal (food calories) that

a runner supplies to overcome aerodynamic drag during a 10 km

race. The runner runs a 6:30 pace (i.e., each mile takes 6 min-

utes and 30 seconds). The product of frontal area and coefficient

of drag is CD A 8 ft2. (One “food calorie” is equivalent to

4186 J.) Assume an air density of 1.22 kg m3.
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11.29 A cylindrical rod of diameter d and length L is rotated in

still air about its midpoint in a horizontal plane. Assume the

drag force at each section of the rod can be calculated assuming

a two-dimensional flow with an oncoming velocity equal to the

relative velocity component normal to the rod. Assume CD is

constant along the rod.

a. Derive an expression for the average power needed to rotate

the rod.

b. Calculate the power for � 50 d 2 cm, L 1.5 m,

� 1.2 and CD 1.2.

11.30 Estimate the additional power (in hp) required for the truck

when it is carrying the rectangular sign at a speed of 30 m s over

that required when it is traveling at the same speed but is not car-

rying the sign. 

11.31 Estimate the added power (in hp) required for the car when the

cartop carrier is used and the car is driven at 100 km h in a 25 km h

head wind over that required when the carrier is not used in the

same conditions.

11.32 The resistance to motion of an automobile consists of roll-

ing resistance and aerodynamic drag. The weight of an automo-

bile is 3000 lbf, and it has a frontal area of 20 ft2. The drag

coefficient is 0.30, and the coefficient of rolling friction is 0.02.

Determine the percentage savings in gas mileage that one

achieves when one drives at 55 mph instead of 65 mph on a

level road. Assume an air temperature of 60°F.

11.33 A car coasts down a very long hill. The weight of the car

is 2500 lbf, and the slope of the grade is 6%. The rolling friction

coefficient is 0.01. The frontal area of the car is 20 ft2, and the

drag coefficient is 0.32. The density of the air is 0.002 slugs ft3.

Find the maximum coasting speed of the car in mph.

11.34 An automobile with a mass of 1000 kg is driven up a hill

where the slope is 3° (5.2% grade). The automobile is moving at

30 m s. The coefficient of rolling friction is 0.02, the drag coef-

ficient is 0.4, and the cross-sectional area is 4 m2. Find the

power (in kW) needed for this condition. The air density is 1.2

kg m3.

11.35 A bicyclist is coasting down a hill with a slope of 8° into a

head wind (measured with respect to the ground) of 5 m s. The

mass of the cyclist and bicycle is 80 kg, and the coefficient of

rolling friction is 0.02. The drag coefficient is 0.5, and the pro-

jected area is 0.5 m2. The air density is 1.2 kg m3. Find the

speed of the bicycle in meters per second.

11.36 A bicyclist is capable of delivering 275 W of power to the

wheels. How fast can the bicyclist travel in a 3 m s head wind

if his or her projected area is 0.5 m2, the drag coefficient is 0.3,

and the air density is 1.2 kg m3? Assume the rolling resistance is

negligible.

11.37 Assume that the horsepower of the engine in the original

1932 Fiat Balillo (see Table 11.2) was 40 bhp (brake horsepower)

and that the maximum speed at sea level was 60 mph. Also as-

sume that the projected area of the automobile is 30 ft2. Assume

that the automobile is now fitted with a modern 220 bhp motor

with a weight equal to the weight of the original motor; thus the

rolling resistance is unchanged. What is the maximum speed of

the “souped up” Balillo at sea level?

11.38 One way to reduce the drag of a blunt object is to install

vanes to suppress the amount of separation. Such a procedure

was used on model trucks in a wind-tunnel study by Kirsch and

Bettes. For tests on a van-type truck, they noted that without

vanes the CD was 0.78. However, when vanes were installed

around the top and side leading edges of the truck body (see the

figure), a 25% reduction in CD was achieved. For a truck with a

projected area of 8.36 m2, what reduction in drag force will be

effected by installation of the vanes when the truck travels at

100 km h? Assume standard atmospheric pressure and a tem-

perature of 20°C.
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11.39 For the truck of Prob. 11.38, assume that the total resis-

tance is given by R FD C, where FD is the air drag and C is

the resistance due to bearing friction. If C is constant at 350 N for

the given truck, what fuel-savings percentage will be effected by the

installation of the vanes when the truck travels at 100 km h?

Terminal Velocity

11.40 ��� Suppose you are designing an object to fall through

seawater with a terminal velocity of exactly 1 m s. What vari-

ables will have the most influence on the terminal velocity? List

these variables and justify your decisions.

11.41 As shown a 20 cm diameter parachute supporting a mass

of 10 g is falling through air (20°C). Assume a coefficient of

drag of CD 1.4 and estimate the terminal velocity V0. Use a

projected area of   

11.42 Consider a small air bubble (approximately 4 mm diame-

ter) rising in a very tall column of liquid. Will the bubble accel-

erate or decelerate as it moves upward in the liquid? Will the

drag of the bubble be largely skin friction or form drag?

Explain.

11.43 Determine the terminal velocity in water (T 10°C) of a

10 cm ball that weighs 20 N in air.

11.44 This cube is weighted so that it will fall with one edge

down as shown. The cube weighs 19.8 N in air. What will be its

terminal velocity in water?

11.45 A spherical rock weighs 30 N in air and 5 N in water. Esti-

mate its terminal velocity as it falls in water (20°C).

11.46 A spherical balloon 2 m in diameter that is used for mete-

orological observations is filled with helium at standard condi-

tions. The empty weight of the balloon is 3 N. What velocity of

ascent will it attain under standard atmospheric conditions?

11.47 A sphere 2 cm in diameter rises in oil at a velocity of

1.5 cm s. What is the specific weight of the sphere if the oil den-

sity is 900 kg m3 and the dynamic viscosity is 

11.48 Estimate the terminal velocity of a 1.5 mm plastic sphere

in oil. The oil has a specific gravity of 0.95 and a kinematic vis-

cosity of 10–4 m2 s. The plastic has a specific gravity of 1.07.

The volume of a sphere is given by 

11.49 A 120 lbf (534 N) skydiver is free-falling at an altitude

of 6500 ft (1980 m). Estimate the terminal velocity in mph for

minimum and maximum drag conditions. At maximum drag

conditions, the product of frontal area and coefficient of drag is

CD A 8 ft2 (0.743 m2). At minimum drag conditions,

CD A 1 ft2 (0.0929 m2). Assume the pressure and temperature

at sea level are 14.7 psia (101 kPa) and 60°F (15°C). To calcu-

late air properties, use the lapse rate for the U.S. standard atmo-

sphere (see Chapter 3).

11.50 What is the terminal velocity of a 0.5 cm hailstone in air

that has an atmospheric pressure of 96 kPa absolute and a tem-

perature of 0°C? Assume that the hailstone has a specific weight

of 6 kN m3.

11.51 A drag chute is used to decelerate an airplane after touch-

down. The chute has a diameter of 12 ft and is deployed when

the aircraft is moving at 200 ft s. The mass of the aircraft is

20,000 lbm, and the density of the air is 0.075 lbm ft3. Find the

initial deceleration of the aircraft due to the chute.

11.52 A paratrooper and parachute weigh 900 N. What rate of

descent will they have if the parachute is 7 m in diameter and

the air has a density of 1.20 kg m3?

11.53 If a balloon weighs 0.15 N (empty) and is inflated with

helium to a diameter of 50 cm, what will be its terminal velocity

in air (standard atmospheric conditions)? The helium is at stan-

dard conditions.

11.54 A 2 cm plastic ball with a specific gravity of 1.2 is re-

leased from rest in water at 20°C. Find the time and distance

needed to achieve 99% of the terminal velocity. Write out the

equation of motion by equating the mass times acceleration to

the buoyant force, weight, and drag force and solve by develop-

ing a computer program or using available software. Use Eq.

(11.9) for the drag coefficient. [Hint: The equation of motion

can be expressed in the form
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where �b is the density of the ball and �w is the density of the

water. This form avoids the problem of the drag coefficient ap-

proaching infinity when the velocity approaches zero because

CD Re 24 approaches unity as the Reynolds number approaches

zero. An “if-statement” is needed to avoid a singularity in Eq.

(11.9) when the Reynolds number is zero.]

Lift Force

11.55 ��� From the following list, select one topic that is inter-

esting to you. Then, use references such as the Internet to research

your topic and prepare one page of written documentation that

you could use to present your topic to your peers.

a. Explain how an airplane works.

b. Describe the aerodynamics of a flying bird.

c. Explain how a propellor produces thrust.

d. Explain how a kite flies.

11.56 ��� Apply the grid method to each situation below.

a. Use Eq. (11.17) to predict the lift force in newtons for a spin-

ning baseball. Use a coefficient of lift of The

speed of the baseball is 90 mph. Calculate area using

where the radius of a baseball is As-

sume a hot summer day.

b. Use Eq. (11.17) to predict the size of wing in mm2 needed

for a model aircraft that has a mass of 570 g. Wing size is

specified by giving the wing area (A) as veiwed by an ob-

server looking down on the wing. Assume the airplane is

traveling at 80 mph on a hot summer day. Use a coefficient

of lift of Assume straight and level flight so lift

force balances weight.

11.57 ��� Using Section 11.8 and other resources, answer the

following questions. Strive for depth, clarity, and accuracy.

Also, strive for effective use of sketches, words, and equations.

a. What is circulation? Why is it important?

b. What is lift force?

c. What variables influence the magnitude of the lift force?

11.58 As shown, a glider traveling at a constant velocity will

move along a straight glide path that has an angle � with respect

to the horizontal. The angle �, also called the glide ratio, is

given by Use basic principles to prove the above

statement.  

11.59 The baseball is thrown from west to east with a spin about

its vertical axis as shown. Under these conditions it will “break”

toward the (a) north, (b) south, or (c) neither.

11.60 A sphere of diameter 100 mm, rotating at a rate of

286 rpm, is situated in a stream of water (15°C) that has a veloc-

ity of 1.5 m s. Determine the lift force (in newtons) on the ro-

tating sphere.

11.61 Analyses of pitched baseballs indicate that CL of a rotat-

ing baseball is approximately three times that shown in Fig.

11.17. This greater CL is due to the added circulation caused by

the seams of the ball. What is the lift of a ball pitched at a

speed of 85 mph and with a spin rate of 35 rps? Also, how much

will the ball be deflected from its original path by the time it

gets to the plate as a result of the lift force? Note: The mound-

to-plate distance is 60 ft, the weight of the baseball is 5 oz, and

the circumference is 9 in. Assume standard atmospheric condi-

tions, and assume that the axis of rotation is vertical.

11.62 An airplane wing having the characteristics shown in Fig.

11.23 is to be designed to lift 2000 lbf when the airplane is

cruising at 200 ft s with an angle of attack of 3°. If the chord

length is to be 4 ft, what span of wing is required? Assume

� 0.0024 slugs ft3.

11.63 A boat of the hydrofoil type has a lifting vane with an as-

pect ratio of 4 that has the characteristics shown in Fig. 11.23. If

the angle of attack is 4° and the weight of the boat is 5 tons,

what foil dimensions are needed to support the boat at a velocity

of 60 fps?

11.64 One wing (wing A) is identical (same cross section) to an-

other wing (wing B) except that wing B is twice as long as wing

A. Then for a given wind speed past both wings and with the

same angle of attack, one would expect the total lift of wing B

to be (a) the same as that of wing A, (b) less than that of wing

A, (c) double that of wing A, or (d) more than double that of

wing A.

11.65 What happens to the value of the induced drag coefficient

for an aircraft that increases speed in level flight? (a) it in-

creases, (b) it decreases, (c) it does not change.

11.66 The total drag coefficient for an airplane wing is 

where is the form drag coefficient, CL is the

lift coefficient and ! is the aspect ratio of the wing. The power is

given by P FDV 1 2CD�V 3S. For level flight the lift is

equal to the weight, so W S 1 2�CLV
2, where W S is called

the “wing loading.” Find an expression for V for which the power

is a minimum in terms of VMinPower and

find the V for minimum power when � 1 kg m3, ! 10,

W S  600 N m2, and CD 0.02.

11.67 The airstream affected by the wing of an airplane can be

considered to be a cylinder (stream tube) with a diameter equal

to the wing span, b. Far downstream from the wing, the tube is-
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deflected through an angle � from the original direction. Apply

the momentum equation to the stream tube between sections 1

and 2 and find the lift of the wing as a function of b, �, V, and �.

Relating the lift to the lift coefficient, find � as a function of b,

CL, and wing area, S. Using the relation for induced drag,

FDi FL� 2, show that where ! is the wing

aspect ratio.

11.68 The landing speed of an airplane is 8 m s faster than its

stalling speed. The lift coefficient at landing speed is 1.2, and

the maximum lift coefficient (stall condition) is 1.4. Calculate

both the landing speed and the stalling speed.

11.69 An airplane has a rectangular-planform wing that has an

elliptical spanwise lift distribution. The airplane has a mass of

1200 kg, a wing area of 20 m2, and a wingspan of 14 m, and it is

flying at 60 m s at 3000 m altitude in a standard atmosphere. If

the form drag coefficient is 0.01, calculate the total drag on the

wing and the power (P FDV) necessary to overcome the drag. 

11.70 The figure shows the relative pressure distribution for a

Göttingen 387-FB lifting vane (19) when the angle of attack is

8°. If such a vane with a 20 cm chord were used as a hydrofoil at

a depth of 70 cm, at what speed in 10°C fresh water would cavi-

tation begin? Also, estimate the lift per unit of length of foil at

this speed.

11.71 Consider the distribution of Cp as given for the wing section

in Prob. 11.70. For this distribution of Cp, the lift coefficient CL

will fall within which range of values: (a) 0 CL 1.0; (b)

1.01 CL 2.0; (c) 2.01 CL 3.0; (d) 3.0 CL?

11.72 The total drag coefficient for a wing with an elliptical lift

distribution is where ! is the aspect ratio.

Derive an expression for CL that corresponds to minimum

CD CL (maximum CL CD) and the corresponding CL CD.

11.73 A glider at 1,000 m altitude has a mass of 200 kg and a

wing area of 20 m2. The glide angle is l.7°, and the air density is

1.2 kg m3. If the lift coefficient of the glider is 0.8, how many

minutes will it take to reach sea level on a calm day?

11.74 The wing loading on an airplane is defined as the aircraft

weight divided by the wing area. An airplane with a wing load-

ing of 2000 N m2 has the aerodynamic characteristics given

by Fig. 11.24. Under cruise conditions the lift coefficient is 0.3.

If the wing area is 10 m2, find the drag force.

11.75 An ultralight airplane has a wing with an aspect ratio of 5

and with lift and drag coefficients corresponding to Fig. 11.23.

The planform area of the wing is 200 ft2. The weight of the air-

plane and pilot is 400 lbf. The airplane flies at 50 ft s in air with

a density of 0.002 slugs ft3. Find the angle of attack and the

drag force on the wing.

11.76 Your objective is to design a human-powered aircraft us-

ing the characteristics of the wing in Fig. 11.23. The pilot

weighs 130 pounds and is capable of outputting 1 2 horse-

power (225 ft-lbf s) of continuous power. The aircraft without

the wing has a weight of 40 lbf, and the wing can be designed

with a weight of 0.12 lbf per square foot of wing area. The drag

consists of the drag of the structure plus the drag of the wing.

The drag coefficient of the structure, CD0 is 0.05, so that the to-

tal drag on the craft will be

where CD is the drag coefficient from Fig. 11.23. The power re-

quired is equal to FDV0. The air density is 0.00238 slugs ft3.

Assess whether the airfoil is adequate and, if it is, find the opti-

mum design (wing area and aspect ratio). 
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C H A P T E R

Compressible Flow

The compressibility effects in gas flows become significant when the Mach number exceeds

0.3. The performance of high-speed aircraft, the flow in rocket nozzles, and the re-entry me-

chanics of spacecraft require inclusion of compressible flow effects. The purpose of this chapter

is to introduce the basic concepts for compressible flow and demonstrate their applications.

Wave Propagation in Compressible Fluids

Wave propagation in a fluid is the mechanism through which the presence of boundaries is

communicated to the flowing fluid. In a liquid the propagation speed of the pressure wave is

much higher than the flow velocities, so the flow has adequate time to adjust to a change in

boundary shape. Gas flows, on the other hand, can achieve speeds that are comparable to and

even exceed the speed at which pressure disturbances are propagated. In this situation, with

compressible fluids, the propagation speed is an important parameter and must be

incorporated into the flow analysis. In this section it will be shown how the speed of an

infinitesimal pressure disturbance can be evaluated and what its significance is to flow of a

compressible fluid.

Speed of Sound
Everyone has had the experience during a thunderstorm of seeing lightning flash and hearing

the accompanying thunder an instant later. Obviously, the sound was produced by the lightning,

so the sound wave must have traveled at a finite speed. If the air were totally incompressible

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Explain the propagation of a sound wave.

• Explain the significance of the Mach number.

• Describe a normal shock wave.

• Describe how flow properties vary through a Laval nozzle.

Procedural Knowledge

• Calculate the speed of sound and Mach number.

• Calculate property change across normal shock wave.

• Determine Mach number in a Laval nozzle.

Typical Applications

• In Laval nozzles, calculate the mass flow rates and Mach number.

• In truncated nozzles, calculate flow rate.

12.1
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(if that were possible), the sound of thunder and the lightening flash would be simultaneous,

because all disturbances propagate at infinite speed through incompressible media.* It is anal-

ogous to striking one end of a bar of incompressible material and recording instantaneously the

response at the other end. Actually, all materials are compressible to some degree and propagate

disturbances at finite speeds.

The speed of sound is defined as the rate at which an infinitesimal disturbance (pressure

pulse) propagates in a medium with respect to the frame of reference of that medium. Actual

sound waves, comprised of pressure disturbances of finite amplitude, such that the ear can

detect them, travel only slightly faster than the “speed of sound.” In Chapter 6 it was found

that the speed at which a pressure wave travels through a fluid depends on the bulk modulus

of the fluid and its density. The analysis was performed by considering the unsteady flow

within a control volume as the wave passed through the control volume. Here the equation

for the speed of sound is developed assuming the control volume moves with the wave,

thereby analyzing a steady-flow problem.

Consider a small section of a pressure wave as it propagates at velocity c through a me-

dium, as depicted in Fig. 12.1. As the wave travels through the gas at pressure p and density

�, it produces infinitesimal changes of �p, ��, and �V. These changes must be related

through the laws of conservation of mass and momentum. Select a control surface around the

wave and let the control volume travel with the wave. The velocities, pressures, and densities

relative to the control volume (which is assumed to be very thin) are shown in Fig. 12.2. Con-

servation of mass in a steady flow requires that the net mass flux across the control surface be

zero. Thus

(12.1)

where A is the cross-sectional area of the control volume. Neglecting products of higher-or-

der terms (���V ) and dividing by the area reduces the conservation-of-mass equation to 

(12.2)

The momentum equation for a non-accelerating steady flow,

(12.3)

applied to the control volume containing the pressure wave gives

(12.4)

where the direction to the right is defined as positive. The momentum equation reduces to

(12.5)

Figure 12.1

Section view of a sound 

wave.

Figure 12.2

Flow relative to the

sound wave.

* Actually, the thunder would be heard before the lightning was seen, because light also travels at a finite,

though very high, speed! However, this would violate one of the basic tenets of relativity theory. No medium

can be completely incompressible and propagate disturbances exceeding the speed of light.
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Substituting the expression for �V obtained from Eq. (12.2) into Eq. (12.5) gives

(12.6)

which shows how the speed of propagation is related to the pressure and density change

across the wave. It is immediately obvious from this equation that if the flow were ideally

incompressible, the propagation speed would be infinite, which confirms the argu-

ment presented earlier.

Equation (12.6) provides an expression for the speed of a general pressure wave. The

sound wave is a special type of pressure wave. By definition, a sound wave produces only in-

finitesimal changes in pressure and density, so it can be regarded as a reversible process.

There is also negligibly small heat transfer, so one can assume the process is adiabatic. A re-

versible, adiabatic process is an isentropic process; thus the resulting expression for the speed

of sound is

(12.7)

This equation is valid for the speed of sound in any substance. However, for many substances

the relationship between p and � at constant entropy is not very well known.

To reiterate, the speed of sound is the speed at which an infinitesimal pressure distur-

bance travels through a fluid. Waves of finite strength (finite pressure change across the

wave) travel faster than sound waves. Sound speed is the minimum speed at which a pressure

wave can propagate through a fluid.

For an isentropic process in an ideal gas, the following relationship exists between

pressure and density (1) 

(12.8)

where k is the ratio of specific heats; that is, the ratio of specific heat at constant pressure to

that at constant volume.

(12.9)

The values of k for some commonly used gases are given in Table A.2. Taking the derivative

of Eq. (12.8) to obtain results in

(12.10)

However, from the ideal gas law,

so the speed of sound is given by

(12.11)

Thus the speed of sound in an ideal gas varies with the square root of the temperature.

Using this equation to predict sound speeds in real gases at standard conditions gives re-

sults very near the measured values. Of course, if the state of the gas is far removed from

ideal conditions (high pressures, low temperatures), then using Eq. (12.11) is not valid. 
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Example 12.1 illustrates the calculation of sound speed for a given temperature. 

It is possible to demonstrate, in a very simple way, the significance of sound in a com-

pressible flow. Consider the airfoil traveling at speed V in Fig. 12.3. As this airfoil travels

through the fluid, the pressure disturbance generated by the airfoil’s motion propagates as a

wave at sonic speed ahead of the airfoil. These pressure disturbances travel a considerable

distance ahead of the airfoil before being attenuated by the viscosity of the fluid, and they

“warn” the upstream fluid that the airfoil is coming. In turn, the fluid particles begin to move

apart in such a way that there is a smooth flow over the airfoil by the time it arrives. If a pres-

sure disturbance created by the airfoil is essentially attenuated in time �t, then the fluid at a

distance ahead is alerted to prepare for the airfoil’s impending arrival.

What happens as the speed of the airfoil is increased? Obviously, the relative velocity

is reduced, and the upstream fluid has less time to prepare for the airfoil’s arrival. The

flow field is modified by smaller streamline curvatures, and the form drag on the airfoil is

increased. If the airfoil speed increases to the speed of sound or greater, the fluid has no

warning whatsoever that the airfoil is coming and cannot prepare for its arrival. Nature, at

this point, resolves the problem by creating a shock wave that stands off the leading edge,

as shown in Fig. 12.4. As the fluid passes through the shock wave near the leading edge, it is

decelerated to a speed less than sonic speed and therefore has time to divide and flow around

the airfoil. Shock waves will be treated in more detail in Section 12.3.

EXAMPLE 12.1    SPEED OF SOUND 

CALCULATION

Problem Definition

Find: The speed of sound in air at 15°C

Assumptions: Air is an ideal gas.

Properties: Table A.2: R 287 J kg K, and k 1.4.

Plan

Apply the speed of sound equation, Eq. (12.11), with 

T 288 K.

Solution

Review

Hint: The absolute temperature must always be used in speed 

of sound equation.

Figure 12.3

Propagation of a sound 

wave by an airfoil.
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Another approach to appreciating the significance of sound propagation in a compress-

ible fluid is to consider a point source of sound moving in a quiescent fluid, as shown in Fig.

12.5. The sound source is moving at a speed less than the local sound speed in Fig. 12.5a and

faster than the local sound speed in Fig. 12.5b. At time t 0 a sound pulse is generated and

propagates radially outward at the local speed of sound. At time t1 the sound source has

moved a distance Vt1, and the circle representing the sound wave emitted at t 0 has a ra-

dius of ct1. The sound source emits a new sound wave at t1 that propagates radially outward.

At time t2 the sound source has moved to Vt2, and the sound waves have moved outward as

shown.

When the sound source moves at a speed less than the speed of sound, the sound waves

form a family of nonintersecting eccentric circles, as shown in Fig. 12.5a. For an observer

stationed at A the frequency of the sound pulses would appear higher than the emitted fre-

quency because the sound source is moving toward the observer. In fact, the observer at A
will detect a frequency of 

where f0 is the emitting frequency of the moving sound source. This change in frequency is

known as the Doppler effect.
When the sound source moves faster than the local sound speed, the sound waves inter-

sect and form the locus of a cone with a half-angle of

The observer at A will not detect the sound source until it has passed. In fact, only an ob-

server within the cone is aware of the moving sound source.

Figure 12.4

Standing shock wave in 

front of an airfoil.

Figure 12.5

Sound field generated by 

a moving point source of 

sound.

(a) Speed of sound 

source less than local 

sound source.

(b) Speed of sound 

source greater than local 

sound force.

Shock wave

Shock wave

A t t1t2

ct

Vt

t = 0

A t t1t2
ct

Vt

t = 0

(a) V < c (b) V > c

θ

�

�

f f0 1 V c⁄–( )⁄�
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In view of the physical arguments given, it is apparent that an important parameter

relating to sound propagation and compressibility effects is the ratio V c. This parameter,

already introduced in Chapter 1, was first proposed by Ernst Mach, an Austrian scientist, and

bears his name. The Mach number is defined as

(12.12)

The conical wave surface depicted in Fig. 12.5b is known as a Mach wave and the conical

half-angle as the Mach angle.

Besides the qualitative argument presented for the Mach number, it is also recalled

from Chapter 8 that the Mach number is the ratio of the inertial to elastic forces acting on the

fluid. If the Mach number is small, the inertial forces are ineffective in compressing the fluid,

and the fluid can be regarded as incompressible.

Compressible flows are characterized by their Mach number regimes as follows:

Flows with Mach numbers exceeding 5 are sometimes referred to as hypersonic. Air-

planes designed to travel near sonic speeds and faster are equipped with Mach meters because

of the significance of the Mach number with respect to aircraft performance.

Evaluation of the Mach number of an airplane flying at altitude is demonstrated in

Example 12.2.

EXAMPLE 12.2   MACH-NUMBER CALCULATION

An F-16 fighter is flying at an altitude of 13 km with a speed 

of 470 m s. Assume a U.S. standard atmosphere and 

calculate the Mach number of the aircraft.

Problem Definition

Situation: Aircraft flying at 470 m s at an altitude of 13 km.

Find: The Mach number of the aircraft.

Assumptions: Temperature varies as U.S. standard atmo-
sphere.

Properties: From Table A.2: Rair 287 J kg K,

and k 1.4.

Plan

1. Find temperature at 13 km using Eq. (3.13).

2. Calculate the speed of sound. 

3. Calculate the Mach number.

Solution

1. Temperature at 13 km

2. Speed of sound

3. Mach number

Review

The aircraft is flying at supersonic speed.

⁄

M
V

c
---�

M 1 subsonic flow�

M 1 transonic flow≈
M 1 supersonic flow�

⁄

⁄

� ⁄
�

T T0 �z–�

T 296 5.87 K/km 13 km 220 K�×–�

c kRT 1.4 287 220×× 297 m/s� � �

M
V

c
---

470 m/s

297 m/s
------------------- 1.58� � �
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Mach Number Relationships

In this section it will be shown how fluid properties vary the Mach number in compressible

flows. Consider a control volume bounded by two streamlines in a steady compressible flow,

as shown in Fig. 12.6. Applying the energy equation, Eq. (7.20), to this control volume,

realizing that the shaft work is zero, gives

(12.13)

As pointed out in Chapter 4, the elevation terms (z1 and z2) can usually be neglected for gas-

eous flows. If the flow is adiabatic the energy equation reduces to

(12.14)

From the principle of continuity, the mass flow rate is constant, so

(12.15)

Since positions 1 and 2 are arbitrary points on the same streamline, one can say that

(12.16)

The constant in this expression is called the total enthalpy, ht. It is the enthalpy that would

arise if the flow velocity were brought to zero in a adiabatic process. Thus the energy equa-

tion along a streamline under adiabatic conditions is

(12.17)

If ht is the same for all streamlines, the flow is homenergic.

It is instructive at this point to compare Eq. (12.17) with the Bernoulli equation.

Expressing the specific enthalpy as the sum of the specific internal energy and Eq.

(12.17) becomes

Figure 12.6
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If the fluid is incompressible and there is no heat transfer, the specific internal energy is con-

stant and the equation reduces to the Bernoulli equation (excluding the pressure due to eleva-

tion change).

Temperature
The enthalpy of an ideal gas can be written as

(12.18)

where cp is the specific heat at constant pressure. Substituting this relation into Eq. (12.17) and

dividing by cpT, results in

(12.19)

where Tt is the total temperature. From thermodynamics (1) it is known for an ideal gas that

(12.20)

or

Therefore (12.21)

Substituting this expression for cp back into Eq. (12.19) and realizing that kRT is the speed

of sound squared results in the total temperature equation

(12.22)

The temperature T is called the static temperature—the temperature that would be

registered by a thermometer moving with the flowing fluid. Total temperature is analo-

gous to total enthalpy in that it is the temperature that would arise if the velocity were

brought to zero adiabatically. If the flow is adiabatic, the total temperature is constant

along a streamline. If not, the total temperature varies according to the amount of thermal

energy transferred.

Example 12.3 illustrates the evaluation of the total temperature on an aircraft’s surface.

EXAMPLE 12.3   TOTAL TEMPERATURE 

CALCULATION

An aircraft is flying at M 1.6 at an altitude where the 

atmospheric temperature is –50°C. The temperature on the 

aircraft’s surface is approximately the total temperature. 

Estimate the surface temperature, taking k 1.4.

Problem Definition

Situation: Aircraft flying at M 1.6 with static temperature 

of –50°C.

Find: Total temperature.

Plan

This problem can be visualized as the aircraft being stationary 

and an airstream with a static temperature of –50°C flowing

past the aircraft at a Mach number of 1.6. 

1. Convert the local static temperature to degrees K. 

2. Use total temperature equation, Eq. (12.22).

Solution

1. Static temperature in absolute temperature units

2. Total temperature

h cpT�

1
V

2

2cpT
------------+

Tt

T
----�

cp cv– R�

k 1– R

cv

----
kR

cp

------� �

cp
kR

k 1–
-----------�

Tt T 1
k 1–

2
-----------M

2+�

�

�

�

T 273 50– 223 K� �

Tt 223 1 0.2 1.6( )2+[ ] 337 K or 64°C� �
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If the flow is isentropic, thermodynamics shows that the following relationship for pressure

and temperature of an ideal gas between two points on a streamline is valid (1):

(12.23)

Isentropic flow means that there is no heat transfer, so the total temperature is constant along

the streamline. Therefore

(12.24)

Solving for the ratio T1 T2 and substituting into Eq. (12.23) shows that the pressure variation

with the Mach number is given by

(12.25)

In the ideal gas law used to derive Eq. (12.23), absolute pressures must always be used in cal-

culations with these equations.

The total pressure in a compressible flow is given by

(12.26)

which is the pressure that would result if the flow were decelerated to zero speed reversibly

and adiabatically. Unlike total temperature, total pressure may not be constant along stream-

lines in adiabatic flows. For example, it will be shown that flow through a shock wave,

although adiabatic, is not reversible and, therefore, not isentropic. The total pressure varia-

tion along a streamline in an adiabatic flow can be obtained by substituting Eqs. (12.26)

and (12.24) into Eq. (12.25) to give

(12.27)

Unless the flow is also reversible and Eq. (12.23) is applicable, the total pressures at points 1

and 2 will not be equal. However, if the flow is isentropic, total pressure is constant along

streamlines.

Density
Analogous to the total pressure, the total density in a compressible flow is given by

(12.28)

where � is the local or static density. If the flow is isentropic, then �t is a constant along

streamlines and Eq. (12.28) can be used to determine the variation of gas density with the

Mach number.

In literature dealing with compressible flows, one often finds reference to “stagnation”

conditions—that is, “stagnation temperature” and “stagnation pressure.” By definition, stag-
nation refers to the conditions that exist at a point in the flow where the velocity is zero,
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regardless of whether or not the zero velocity has been achieved by an adiabatic, or revers-

ible, process. For example, if one were to insert a Pitot-static tube into a compressible flow,

strictly speaking one would measure stagnation pressure, not total pressure, since the deceler-

ation of the flow would not be reversible. In practice, however, the difference between stag-

nation and total pressure is insignificant.

Kinetic Pressure
The kinetic pressure, is often used, as seen in Chapter 11, to calculate aerody-

namic forces with the use of appropriate coefficients. It can also be related to the Mach num-

ber. Using the ideal gas law to replace � gives

(12.29)

Then using the equation for the speed of sound, Eq. (12.11), results in

(12.30)

where p must always be an absolute pressure since it derives from the ideal gas law.

The use of the equation for kinetic pressure to evaluate the drag force is shown in

Example 12.4.

The Bernoulli equation is not valid for compressible flows. Consider what would

happen if one decided to measure the Mach number of a high-speed air flow with a Pitot-

static tube, assuming that the Bernoulli equation was valid. Assume a total pressure of 180

kPa and a static pressure of 100 kPa were measured. By the Bernoulli equation, the kinetic

pressure is equal to the difference between the total and static pressures, so

Solving for the Mach number,

EXAMPLE 12.4   DRAG FORCE ON A SPHERE

The drag coefficient for a sphere at a Mach number of 0.7 is 

0.95. Determine the drag force on a sphere 10 mm in diameter 

in air if p 101 kPa.

Problem Definition

Situation: A sphere is moving at a Mach number of 0.7 in air. 

Find: The drag force (in newtons) on the sphere.

Properties: From Table A.2, kair 1.4.

Plan

The drag force on a sphere is 

1. Calculate the kinetic pressure q from Eq. (12.30).

2. Calculate the drag force. 

Solution

1. Kinetic pressure

2. Drag force:
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and substituting in the measured values, one obtains

The correct approach is to relate the total and static pressures in a compressible flow using

Eq. (12.26). Solving that equation for the Mach number gives

(12.31)

and substituting in the measured values yields

Thus applying the Bernoulli equation would have led one to say that the flow was supersonic,

whereas the flow was actually subsonic. In the limit of low velocities ( ), Eq.

(12.31) reduces to the expression derived using the Bernoulli equation, which is indeed valid

for very low (M " 1) Mach numbers.

It is instructive to see how the pressure coefficient at the stagnation (total pressure) con-

dition varies with Mach number. The pressure coefficient is defined by

Using Eq. (12.30) for the kinetic pressure enables one to express Cp as a function of the Mach

number and the ratio of specific heats.

The variation of Cp with Mach number is shown in Fig. 12.7. At a Mach number of zero, the

pressure coefficient is unity, which corresponds to incompressible flow. The pressure coeffi-

cient begins to depart significantly from unity at a number of about 0.3. From this observa-

tion it is inferred that compressibility effects in the flow field are unimportant for Mach

numbers less than 0.3.

Figure 12.7
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Normal Shock Waves

Normal shock waves are wave fronts normal to the flow across which a supersonic flow is

decelerated to a subsonic flow with an attendant increase in static temperature, pressure, and

density. The normal shock wave is analogous to the water hammer introduced in Chapter 6. The

purpose of this section is to develop relations for property changes across normal shock waves.

Change in Flow Properties Across a Normal Shock Wave

The most straightforward way to analyze a normal shock wave is to draw a control surface

around the wave, as shown in Fig. 12.8, and write down the continuity, momentum, and

energy equations. 

The net mass flux into the control volume is zero because the flow is steady. Therefore

(12.32)

where A is the cross-sectional area of the control volume. Equating the net pressure

forces acting on the control surface to the net efflux of momentum from the control

volume gives

(12.33)

The energy equation can be expressed simply as

(12.34)

because the temperature gradients on the control surface are assumed negligible and thus

heat transfer is neglected (adiabatic).

Using the equation for the speed of sound, Eq. (12.11), and the ideal gas law, the con-

tinuity equation can be rewritten to include the Mach number as follows:

(12.35)

The Mach number can be introduced into the momentum equation in the following way:

(12.36)

Rearranging Eq. (12.36) for the static-pressure ratio across the shock wave results in

(12.37)

As will be shown later, the Mach number of a normal shock wave is always greater than unity up-

stream and less than unity downstream, so the static pressure always increases across a shock wave.
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Rewriting the energy equation in terms of the temperature and Mach number, as done in Eq.

(12.22), by utilizing the fact that  yields the static temperature ratio across the shock

wave.

(12.38)

Substituting Eqs. (12.37) and (12.38) into Eq. (12.35) gives the following relationship for the

Mach numbers upstream and downstream of a normal shock wave:

(12.39)

Solving this equation for M2 as a function of M1, results in two solutions. One solution is triv-

ial, which corresponds to no shock wave in the control volume. The other solution

gives the Mach number downstream of the shock wave:

(12.40)

Note: Because of the symmetry of Eq. (12.39), one can also use Eq. (12.40) to solve for M1

given M2 by simply interchanging the subscripts on the Mach numbers.

Setting in Eq. (12.40) results in M2 also being equal to unity. Equations (12.38)

and (12.39) also show that there would be no pressure or temperature increase across such a

wave. In fact, the wave corresponding to is the sound wave across which, by defini-

tion, pressure and temperature changes are infinitesimal. Thus the sound wave represents a

degenerate normal shock wave.

Example 12.5 demonstrates how to calculate properties downstream of a normal shock

wave given the upstream Mach number.

 The changes in flow properties across a shock wave are presented in Table A.1 for a

gas, such as air, for which k 1.4.

A shock wave is an adiabatic process in which no shaft work is done. Thus for ideal

gases the total temperature (and total enthalpy) is unchanged across the wave. The total pres-

sure, however, does change across a shock wave. The total pressure upstream of the wave in

Example 12.5 is

The total pressure downstream of the same wave is

Thus the total pressure decreases through the wave, which occurs because the flow through

the shock wave is not an isentropic process. Total pressure remains constant along stream-

lines only in isentropic flow. Values for the ratio of total pressure across a normal shock wave

are also provided in Table A.1.
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Existence of Shock Waves Only in Supersonic Flows
Refer back to Eq. (12.40), which gives the Mach number downstream of a normal shock
wave. If one were to substitute a value for M1 less than unity, it is easy to see that a value for

M2 would be larger than unity. For example, if M1 0.5 in air, then

Is it possible to have a shock wave in a subsonic flow across which the Mach number be-

comes supersonic? In this case the total pressure would also increase across the wave; that is,

The only way to determine whether such a solution is possible is to invoke the second

law of thermodynamics, which states that for any process the entropy of the universe must re-

main unchanged or increase.

EXAMPLE 12.5   PROPERTY CHANGES ACROSS 

NORMAL SHOCK WAVE

A normal shock wave occurs in air flowing at a Mach number 

of 1.6. The static pressure and temperature of the air upstream 

of the shock wave are 100 kPa absolute and 15°C. Determine

the Mach number, pressure, and temperature downstream of 

the shock wave.

Problem Definition

Situation: The Mach number upstream of a normal shock 
wave in air is 1.6. 

Find: The downstream Mach number, pressure, and 
temperature.

Sketch:

Properties: From table A.2, k 1.4.

Plan

1. Use Eq. (12.40) to calculate M2.

2. Use Eq. (12.37) to calculate p2.
Convert upstream temperature to degrees Kelvin and use Eq. 

(12.38) to find T2.

Solution

1. Downstream Mach number

2. Downstream pressure

3. Downstream temperature

Review

Note that absolute values for the pressure and temperature 

have to be used in the equations for property changes across 

shock waves.
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(12.41)

Because the shock wave is an adiabatic process, there is no change in the entropy of the sur-

roundings; thus the entropy of the system must remain unchanged or increase.

(12.42)

The entropy change of an ideal gas between pressures p1 and p2 and temperatures T1 and T2 is

given by (1)

(12.43)

Using the relationship between cp and R, Eq. (12.21), one can express the entropy change as

(12.44)

Note that the quantity in the square brackets is simply the total pressure ratio as given by Eq.

(12.27). Therefore the entropy change across a shock wave can be rewritten as

(12.45)

A shock wave across which the Mach number changes from subsonic to supersonic would

give rise to a total pressure ratio less than unity and a corresponding decrease in entropy,

which violates the second law of thermodynamics. Therefore shock waves can exist only in su-

personic flow.

The total pressure ratio approaches unity for which conforms with the defi-

nition that sound waves are isentropic Example 12.6 demonstrates the increase in

entropy across a normal shock wave.

More examples of shock waves will be given in the next section. This section is con-

cluded by qualitatively discussing other features of shock waves.

Besides the normal shock waves studied here, there are oblique shock waves that are

inclined with respect to the flow direction. Look once again at the shock wave structure in

front of a blunt body, as depicted qualitatively in Fig. 12.9. The portion of the shock wave

immediately in front of the body behaves like a normal shock wave. As the shock wave

bends in the free-stream direction, oblique shock waves result. The same relationships de-

rived earlier for the normal shock waves are valid for the velocity components normal to ob-

lique waves. The oblique shock waves continue to bend in the downstream direction until

the Mach number of the velocity component normal to the wave is unity. Then the oblique

shock has degenerated into a so-called Mach wave across which changes in flow properties

are infinitesimal.

The familiar sonic booms are the result of weak oblique shock waves that reach ground

level. One can appreciate the damage that would ensue from stronger oblique shock waves if

aircraft were permitted to travel at supersonic speeds near ground level.
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Isentropic Compressible Flow 

Through a Duct with Varying Area

With the flow of incompressible fluids through a venturi configuration, as the flow

approaches the throat (smallest area), the velocity increases and the pressure decreases; then as

the area again increases, the velocity decreases. The same velocity-area relationship is not always

found for compressible flows. The purpose of this section is to show the dependence of flow

properties on changes in cross-sectional area with compressible flow in variable area ducts.

EXAMPLE 12.6   ENTROPY INCREASE ACROSS 

SHOCK WAVE

A normal shock wave occurs in air flowing at a Mach number 

of 1.5. Find the change in entropy across the wave.

Problem Definition

Situation: A normal shock wave in air with upstream Mach 
number of 1.5.

Find: The change in entropy (in J kg K) across the wave.

Properties: From Table A.2, Rair 287 J kg K, and k 1.4.

Plan

1. Calculate downstream Mach number using Eq. (12.40).

2. Calculate pressure ratio across wave using Eq. (12.37).

3. Calculate temperature across the wave using Eq. (12.38).

4. Calculate entropy change using Eq. (12.44).

Solution

1. Downstream Mach number

2. Pressure ratio

3. Temperature ratio

4. Entropy change

Figure 12.9

Shock wave structure in 

front of a blunt body.
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Dependence of the Mach Number on Area Variation
Consider the duct of varying area shown in Fig. 12.10. It is assumed that the flow is isentropic

and that the flow properties at each section are uniform. This type of analysis, in which the flow

properties are assumed to be uniform at each section yet in which the cross-sectional area

is allowed to vary (nonuniform), is classified as “quasi one-dimensional.”

The mass flow through the duct is given by

(12.46)

where A is the duct’s cross-sectional area. Since the mass flow is constant along the duct, 

(12.47)

which can be written as*

(12.48)

The flow is assumed to be inviscid, so Euler’s equation, Eq. (4.8), is valid. For steady flow

Making use of Eq. (12.7), which relates dp d� to the speed of sound in an isentropic flow, gives

(12.49)

Using this relationship to eliminate � in Eq. (12.48) results in

(12.50a)

which can be written in an alternate form as 

(12.50b)

This equation, although simple, leads to the following important, far-reaching conclusions.

Figure 12.10

Duct with variable area.

* This step can easily be seen by first taking the logarithm of Eq. (12.46):
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Subsonic Flow
For subsonic flow, M2 1 is negative so which means that a decreasing area

leads to an increasing velocity, and, correspondingly, an increasing area leads to a decreasing

velocity. This velocity area relationship parallels the trend for incompressible flows.

Supersonic Flow
For supersonic flow, M2 1 is positive so which means that a decreasing area

leads to a decreasing velocity, and an increasing area leads to an increasing velocity. Thus the

velocity at the minimum area of a duct with supersonic compressible flow is a minimum.

This is the principle underlying the operation of diffusers on jet engines for supersonic air-

craft, as shown in Fig. 12.11. The purpose of the diffuser is to decelerate the flow so that there is

sufficient time for combustion in the chamber. Then the diverging nozzle accelerates the flow

again to achieve a larger kinetic energy of the exhaust gases and an increased engine thrust.

Transonic Flow (M 1)
Stations along a duct corresponding to dA dx 0 represent either a local minimum or a lo-

cal maximum in the duct’s cross-sectional area, as illustrated in Fig. 12.12. If at these sta-

tions the flow were either subsonic (M 1) or supersonic (M 1), then by Eq. (12.50a)

dV dx 0, so the flow velocity would have either a maximum or a minimum value. In par-

ticular, if the flow were supersonic through the duct of Fig. 12.l2a, then the velocity would be

a minimum at the throat; if subsonic, a maximum.

Now, what happens if the Mach number is unity? Equation (12.50a) states that if the

Mach number is unity and dA dx is not equal to zero, the velocity gradient dV dx is

infinite—a physically impossible situation. Therefore, dA dx must be zero where the Mach

number is unity in order for a finite, physically  reasonable velocity gradient to exist.*

Figure 12.11

Engine for supersonic 

aircraft.

Figure 12.12

Duct contours for which 

dA dx is zero.

* Actually, the velocity gradient is indeterminate because the numerator and denominator are both zero. It

can be shown by application of L’Hôpital’s rule, however, that the velocity gradient is finite.
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The argument can be taken one step further here to show that sonic flow can occur

only at a minimum area. Consider Fig. 12.12a. If the flow is initially subsonic, the con-

verging duct accelerates the flow toward a sonic velocity. If the flow is initially super-

sonic, the converging duct decelerates the flow toward a sonic velocity. Using this same

reasoning, one can prove that sonic flow is impossible in the duct depicted in Fig. 12.12b.

If the flow is initially supersonic, the diverging duct increases the Mach number even

more. If the flow is initially subsonic, the diverging duct decreases the Mach number; thus

sonic flow cannot be achieved at a maximum area. Hence the Mach number in a duct of

varying cross-sectional area can be unity only at a local area minimum (throat). This does

not imply, however, that the Mach number must always be unity at a local area minimum.

Laval Nozzle
The Laval nozzle is a duct of varying area that produces supersonic flow. The nozzle is

named after its inventor, de Laval (1845–1913), a Swedish engineer. According to the fore-

going discussion, the nozzle must consist of a converging section to accelerate the subsonic

flow, a throat section for transonic flow, and a diverging section to further accelerate the

supersonic flow. Thus the shape of the Laval nozzle is as shown in Fig. 12.13.

One very important application of the Laval nozzle is the supersonic wind tunnel,

which has been an indispensable tool in the development of supersonic aircraft. Basically, the

supersonic wind tunnel, as illustrated in Fig. 12.14, consists of a high-pressure source of gas,

a Laval nozzle to produce supersonic flow, and a test section. The high-pressure source may

be from a large pressure tank, which is connected to the Laval nozzle through a regulator

valve to maintain a constant upstream pressure, or from a pumping system that provides a

continuous high-pressure supply of gas.

The equations relating to the compressible flow through a Laval nozzle have already

been developed. Since the mass flow rate is the same at every cross section,

and the constant is usually evaluated corresponding to those conditions that exist when the

Mach number is unity. Thus

(12.51)

where the asterisk signifies conditions wherein the Mach number is equal to unity. Rearrang-

ing Eq. (12.51) gives

However, the velocity is the product of the Mach number and the local speed of sound. Therefore

(12.52)

By definition so

(12.53)
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Because the flow in a Laval nozzle is assumed to be isentropic, the total temperature

and total pressure (and total density) are constant throughout the nozzle. From Eq.

(12.28),

and from Eq. (12.24)

Substituting these expressions into Eq. (12.53) yields the following relationship for area ra-
tio as a function of Mach number in a variable area duct:

(12.54)

This equation is valid, of course, for all Mach numbers—subsonic, transonic, and super-

sonic. The area ratio is the ratio of the area at the station where the Mach number is

M to the area where M is equal to unity. Many supersonic wind tunnels are designed to

maintain the same test-section area and to vary the Mach number by varying the throat

area.

Example 12.7 illustrates the use of the Mach-number–area ratio expression to size the

test section of a supersonic wind tunnel.

Example 12.7 demonstrates that it is a straightforward task to calculate the area ratio

given the Mach number and ratio of specific heats. However, in practice, one usually knows

the area ratio and wishes to determine the Mach number. It is not possible to solve Eq.

(12.54) for the Mach number as an explicit function of the area ratio. For this reason, com-

pressible-flow tables have been developed that allow one to obtain the Mach number easily

given the area ratio (as shown in Table A.1).

Figure 12.13

Laval nozzle.

Figure 12.14

Wind tunnel.
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EXAMPLE 12.7   TEST SECTION SIZE IN 

SUPERSONIC WIND TUNNEL

Suppose a supersonic wind tunnel is being designed to 

operate with air at a Mach number of 3. If the throat area is 10 

cm2, what must the cross-sectional area of the test section be?

Problem Definition

Situation: Design of supersonic wind tunnel with air for 
Mach number 3 in test section.

Find: The cross-sectional area (in cm2) of test section.

Sketch:

Properties: From Table A.2, kair 1.4.

Plan

1. Use Eq. (12.54), which gives area ratio with respect to the 
throat section.

2. Calculate area of test section.

Solution

1. Area ratio

2. Cross-sectional area of test section

EXAMPLE 12.8   FLOW PROPERTIES IN 

SUPERSONIC WIND TUNNEL

The test section of a supersonic wind tunnel using air has an 

area ratio of 10. The absolute total pressure and temperature 

are 4 MPa and 350 K. Find the Mach number, pressure, 

Problem Definition

Situation: Supersonic wind tunnel has an area ratio of 10 at 
test section.

Find: The Mach number, pressure, temperature, and velocity 
at test section.

Sketch:

Properties: From Table A.2, kair 1.4, Rair 287 J kg K.

Plan

1. Use Table A.1 and interpolate to find the Mach number at 
test section.

2. Use Table A.1 to find the pressure and temperature ratios 
at test section.

3. Evaluate the pressure and temperature in test section.

4. Calculate the speed of sound using Eq. (12.11).

5. Find the velocity using V Mc.

Solution

1. From Table A.1 

Interpolating between the two points gives M 3.91 at 

2. Interpolation using Table A.1 to find the pressure and 
temperature ratios:

A* = 10 cm2

M = 3
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Consider again Table A.1. This table has been developed for a gas, such as air, for

which k 1.4. The symbols that head each column are defined at the beginning of the table.

Tables for both subsonic and supersonic flow are provided. Example 12.8 shows how to use

the tables to find flow properties at a given area ratio.

Mass Flow Rate Through a Laval Nozzle
An important consideration in the design of a supersonic wind tunnel is size. A large wind

tunnel requires a large mass flow rate, which, in turn, requires a large pumping system for a

continuous-flow tunnel or a large tank for sufficient run time in an intermittent tunnel. The

purpose of this section is to develop an equation for the mass flow rate.

The easiest station at which to calculate the mass flow rate is the throat, because there

the Mach number is unity.

It is more convenient, however, to express the mass flow in terms of total conditions. The local

density and static temperature at sonic velocity are related to the total density and temperature by

which, when substituted into the foregoing equation, give

(12.55)

Usually, the total pressure and temperature are known. Using the ideal gas law to eliminate �t ,

yields the expression for critical mass flow rate

(12.56)

For gases with a ratio of specific heats of 1.4,

(12.57)

Solution

3. In the test section

4. Speed of sound

5. Velocity

Review

Notice that the temperature of air in the test section is only 86 

K, or –187°C. At this temperature, the water vapor in the air 

can condense out, creating fog in the tunnel and 

compromising tunnel utility. 
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For gases with k 1.67,

(12.58)

Example 12.9 illustrates how to calculate mass flow rate in a supersonic wind tunnel

given the conditions in the test section.

Classification of Nozzle Flow by Exit Conditions
Nozzles are classified by the conditions at the nozzle exit. Consider the Laval nozzle de-

picted in Fig. 12.15 with the corresponding pressure and Mach-number distributions plotted

beneath it. The pressure at the nozzle entrance is very near the total pressure, because the Mach

EXAMPLE 12.9   MASS FLOW RATE IN 

SUPERSONIC WIND TUNNEL

A supersonic wind tunnel with a square test section 15 cm by 

15 cm is being designed to operate at a Mach number of 3 

using air. The static temperature and pressure in the test 

section are –20°C and 50 kPa abs, respectively. Calculate the 

mass flow rate.

Problem Definition

Situation: A Mach-3 supersonic wind tunnel has 15 cm by 15 
cm test section.

Find: Mass flow rate (kg s) in tunnel.

Properties: From Table A.2, kair 1.4 and Rair 287 J kg K.

Sketch:

Plan

1. Use Eq. (12.54) to find area ratio and calculate throat area.

2. Use Eq. (12.22) to find total temperature.

3. Use Eq. (12.26) to find total pressure.

4. Use Eq. (12.56) to find the mass flow rate.

Solution

1. Area ratio

Throat area

2. Total temperature

3. Total pressure

4. Mass flow rate

Review

1. An alternate way to do this problem is to calculate the 
density in the test section using the ideal gas law, calculate 
the speed of sound with the speed of sound equation, find 
the air speed using the Mach number, and finally 
determine the mass flow rate with 

2. A pump capable of moving air at this rate against a 1.8 
MPa pressure would require over 6000 kW of power 
input. Such a system would be large and costly to build 
and to operate.
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number is small. As the area decreases toward the throat, the Mach number increases and the

pressure decreases. The static-to-total-pressure ratio at the throat, where conditions are sonic,

is called the critical pressure ratio. It has a value of

which for air with k 1.4 is

It is called a critical pressure ratio because to achieve sonic flow with air in a nozzle, it is nec-

essary that the exit pressure be equal to or less than 0.528 times the total pressure. The pressure

continues to decrease until it reaches the exit pressure corresponding to the nozzle-exit area ra-

tio. Similarly, the Mach number monotonically increases with distance down the nozzle.

The nature of the exit flow from the nozzle depends on the difference between the exit

pressure, pe, and the back pressure (the pressure to which the nozzle exhausts). If the exit

pressure is higher than the back pressure, an expansion wave exists at the nozzle exit, as

shown in Fig. 12.16a. These waves, which will not be studied here, effect a turning and fur-

ther acceleration of the flow to achieve the back pressure. As one watches the exhaust of a

rocket motor as it rises through the ever-decreasing pressure of higher altitudes, one can see

the plume fan out as the flow turns more in response to the lower back pressure. A nozzle for

which the exit pressure is larger than the back pressure is called an underexpanded nozzle be-

cause the flow could have expanded further.

If the exit pressure is less than the back pressure, shock waves occur. If the exit pres-

sure is only slightly less than the back pressure, then pressure equalization can be obtained by

oblique shock waves at the nozzle exit, as shown in Fig. 12.16b.

Figure 12.15

Distribution of static 

pressure and Mach 

number in a Laval nozzle.

Figure 12.16

Conditions at a nozzle 

exit. (a) Expansion 

waves. (b) Oblique shock 

waves. (c) Normal shock 

wave.
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If, however, the difference between back pressure and exit pressure is larger than

can be accommodated by oblique shock waves, a normal shock wave will occur in the

nozzle, as shown in Fig. 12.16c. A pressure jump occurs across the normal shock wave.

The flow becomes subsonic and decelerates in the remaining portion of the diverging

section in such a way that the exit pressure is equal to the back pressure. As the back

pressure is further increased, the shock wave moves toward the throat region until, fi-

nally, there is no region of supersonic flow. A nozzle in which the exit pressure corre-

sponding to the exit area ratio of the nozzle is less than the back pressure is called an

overexpanded nozzle. Any flow that exits from a duct (or pipe) subsonically must always

exit at the local back pressure.

A nozzle with supersonic flow in which the exit pressure is equal to the back pressure is

ideally expanded.

The assessment of the nozzle exit conditions is provided by Example 12.10.

Example 12.11 illustrates how to calculate the static pressure at the exit of a Laval noz-

zle with overexpanded flow.

EXAMPLE 12.10    NOZZLE EXIT CONDITION

The total pressure in a nozzle with an area ratio of 4 

is 1.3 MPa. Air is flowing through the nozzle. If the back 

pressure is 100 kPa, is the nozzle overexpanded, ideally 

expanded, or underexpanded?

Problem Definition

Situation: Air flows through a nozzle with exit area ratio
of 4. 

Find: The state of the exit condition (ideally expanded, 
overexpanded or underexpanded). 

Sketch:

Plan

1. Interpolate Table A.1 to find Mach number corresponding 
to exit area ratio.

2. Calculate exit pressure using Eq. (12.26).

3. Compare exit pressure with back pressure to determine 
exit condition.

Solution

1. Interpolation for Mach number from Table A.1.

M 2.94 at A A* 4.0.

2. Exit pressure

3. Because the nozzle is overexpanded.

Review

Because the nozzle is overexpanded, there will be a shock 

wave structure inside the nozzle to achieve pressure 

equilibration at the nozzle exit.
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EXAMPLE 12.11    SHOCK WAVE IN LAVAL 

NOZZLE

The Laval nozzle shown in the figure has an expansion ratio 

of 4 (exit area throat area). Air flows through the nozzle, and 

a normal shock wave occurs where the area ratio is 2. The 

total pressure upstream of the shock is 1 MPa. Determine the 

static pressure at the exit.

Situation: Air flows in Laval nozzle with an exit area ratio 
 of 4 and normal shock at 

Find: Static pressure (in kPa) at exit.

Properties: kair 1.4.

Sketch:

Plan

This problem will require the identification of a “virtual 

nozzle” shown in the sketch. The virtual nozzle is an 

expanding nozzle with subsonic flow and with a Mach 

number equal to the downstream Mach number behind the 

normal shock wave.

1. From Table A.1, interpolate to find the Mach number for 

2. Using the same table, find the Mach number downstream 
of shock and total pressure ratio across shock. 

3. Calculate total pressure downstream of shock wave.

4. Treat the problem as flow in virtual subsonic nozzle with 
Mach number equal to the Mach number behind the wave 
with new total pressure. Calculate exit area ratio of virtual 
nozzle.

5. Use subsonic flow table to find subsonic Mach number at 
exit.

6. Use total pressure equation to calculate static pressure at 
exit.

Solution

1. From interpolation of the supersonic-flow part of Table 
A.1,

at and .

2. From the same entry in the table,

3. Total pressure downstream of the shock wave

4. From the subsonic part of Table A.1,

at

5. Exit area ratio of virtual nozzle

where As is cross-sectional area at the shock wave.

6. From subsonic part of Table A.1,

at

Exit pressure from Eq. (12.26)
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Mass Flow Through a Truncated Nozzle
The truncated nozzle is a Laval nozzle cut off at the throat, as shown in Fig. 12.17. The noz-

zle exits to a back pressure pb. This type of nozzle is important to engineers because of its fre-

quent use as a flow-metering device for compressible flows. The purpose of this section is to

develop an equation for mass flow through a truncated nozzle.

To calculate the mass flow, one must first determine whether the flow at the exit is

sonic or subsonic. Of course, the flow at the exit could never be supersonic, since the nozzle

area does not diverge. First calculate the value of the critical pressure ratio:

which, for air, is 0.528. Then evaluate the ratio of back pressure to total pressure, pb pt, and

compare it with the critical pressure ratio:

  1. If pb pt the exit pressure is higher than or equal to the back pressure, so the

exit flow must be sonic. Pressure equilibration is achieved after exit by a series of ex-

pansion waves. The mass flow is calculated using Eq. (12.56), where is the area at

the truncated station.

  2. If pb pt the flow exits subsonically. In this case the exit pressure is equal to

the back pressure. One must first determine the Mach number at the exit by using Eq.

(12.31):

Then, using this value for Mach number, one calculates the static temperature and

speed of sound at the exit:

The gas density at the nozzle exit is determined by using the ideal gas law with the exit

temperature and back pressure:

Finally, the mass flow is given by

where Ae is the area at the truncated section.

Example 12.12 shows how to calculate mass flow in a truncated nozzle.
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Further information and other topic areas in compressible flow can be found in other

sources, such as Anderson (2) and Shapiro (3).

Summary

The speed of sound is the speed at which an infinitesimal pressure disturbance travels

through a fluid. The speed of sound in an ideal gas is

where k is the ratio of specific heats, R is the gas constant, and T is the absolute temperature.

The Mach number is defined as

EXAMPLE 12.12   MASS FLOW IN TRUNCATED 

NOZZLE

Air exhausts through a truncated nozzle 3 cm in diameter from 

a reservoir at a pressure of 160 kPa and a temperature of 80°C. 

Calculate the mass flow rate if the back pressure is 100 kPa. 

Problem Definition

Situation: Air flows through 3 cm diameter truncated nozzle. 

Find: Mass flow rate (in kg s) through nozzle.

Properties: From Table A.2, kair 1.4.

Sketch:

Plan

1. Determine exit condition by comparing exit pressure with 
back pressure. If pb pt exit flow is sonic. If 
pb pt exit flow is subsonic.

2. Calculate mass flow according to exit condition.

Solution

1. Ratio of exit pressure to total pressure

pb pt 100 160 0.625

Because 0.625 is larger than the critical pressure ratio for 

air (0.528), the flow at the nozzle exit must be subsonic. 

2. Mach number at exit. From total pressure equation, 
Eq. (12.26),

Static temperature at exit. From total temperature 

equation, Eq. (12.22),

Static density at exit. From ideal gas law,

Speed of sound at the exit from speed-of-sound equation, 

Eq. (12.11),

Mass flow rate.

Review

Had pb pt been less than 0.528, then Eq. (12.56) would have 

been used to calculate the mass flow rate. 
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Compressible flows are classified as

In general, if the Mach number is less than 0.3, a steady flow can be regarded as incom-

pressible.

For an adiabatic flow (no heat transfer), the temperature varies along a streamline ac-

cording to

where Tt, the total temperature, is the temperature attained if the flow is decelerated to zero

velocity. If the flow is isentropic, the pressure varies along a streamline as

where pt is the total pressure, the pressure achieved if the flow is decelerated to zero velocity

isentropically.

A normal shock wave is a narrow region where a supersonic flow is decelerated to a

subsonic flow with an attendant rise in pressure, temperature, and density. The total tempera-

ture does not change through a shock wave, but the total pressure decreases. The shock wave

is a nonisentropic process and can only occur in supersonic flows.

A Laval nozzle is a duct with a converging and expanding area that is used to accelerate

a compressible fluid to supersonic speeds. Sonic flow can occur only at the nozzle throat

(minimum area). The ratio of the area at a location in the nozzle to the throat area, is a

function of the local Mach number and the ratio of specific heats. The flow rate through a La-

val nozzle is given by

A Laval nozzle is classified by comparing the pressure at the exit, pe, for supersonic

flow in the nozzle with the back (ambient) pressure, pb.

Shock waves occur in overexpanded nozzles, yielding a subsonic flow at the exit.

A truncated nozzle is a Laval nozzle terminated at the throat typically used for mass

flow measurement. 
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Problems

Speed of Sound and Mach Number

12.1 ��� Find from available sources the Mach number at

which modern day airliners fly at altitude. Discuss whether it is

possible to have regions of supersonic flow on the aircraft.

12.2 ��� The speed of sound in air is 340 m s. What is this

speed in miles per hour? 

12.3 ��� It takes 3 seconds between seeing lightning and

hearing the thunder, how far away (miles) is the storm (T

50°F)?

12.4 ��� From available sources, find the orbital velocity of a

satellite circling the earth. If the satellite entered the earth’s at-

mosphere at this speed and the air temperature were –60°C,

what would the Mach number be? Classify the flow.

12.5 How fast (in meters per second) will a sound wave travel in

methane at 0°C?

12.6 Calculate the speed of sound in helium at 60°C.

12.7 Calculate the speed of sound in hydrogen at 68°F.

12.8 How much faster will a sound wave propagate in helium

than in nitrogen if the temperature of both gases is 20°C?

12.9 Determine what the equation for the speed of sound in an

ideal gas would be if the sound wave were an isothermal

process.

12.10 The relationship between pressure and density for the

propagation of a sound wave through a fluid is

where p0 and �0 are the reference pressure and density (con-

stants) and Ev is the bulk modulus of elasticity. Determine the

equation for the speed of a sound wave in terms of Ev and �.

Calculate the sound speed for water with � 1000 kg m3 and

Ev 2.20 GN m2.

12.11 A supersonic aircraft is flying at Mach 1.5 through air at

–30°C. What temperature could be expected on exposed aircraft

surfaces?

12.12 What is the temperature on the nose of a supersonic

fighter flying at Mach 2 through air at 273 K?

12.13 A high-performance aircraft is flying at a Mach number of

1.8 at an altitude of 10,000 m, where the temperature is –44°C

and the pressure is 30.5 kPa. How fast is the aircraft traveling in

kilometers per hour?

a. The total temperature is an estimate of surface temperature on the

aircraft. What is the total temperature under these conditions?

b. If the aircraft slows down, at what speed (kilometers per

hour) will the Mach number be unity?

12.14 An airplane travels at 800 km h at sea level where the

temperature is 15°C. How fast would the airplane be flying at

the same Mach number at an altitude where the temperature was

–40°C?

12.15 An airplane flies at a Mach number of 0.95 at a l0,000 m

altitude, where the static temperature is –44°C and the pres-

sure is 30 kPa absolute. The lift coefficient of the wing is 0.05.

Determine the wing loading (lift force wing area).

Mach-Number Relationships

12.16 ��� Early passenger aircraft used to fly at a cruising

speed of 250 mph at 15,000 ft altitude. Did the designers of

these aircraft have to be concerned about compressible flow

effects? Explain.

12.17 ��� A total heat tube inserted in the flow of a compress-

ible fluid measures the stagnation pressure. Explain the differ-

ence between the total and stagnation pressure.

12.18 An object is immersed in an airflow with a static pres-

sure of 200 kPa absolute, a static temperature of 20°C, and a ve-

locity of 250 m s. What are the pressure and temperature at the

stagnation point?

12.19 An airflow at M 0.75 passes through a conduit with a

cross-sectional area of 50 cm2. The total absolute pressure is

360 kPa, and the total temperature is 10°C. Calculate the mass

flow rate through the conduit.

12.20 Oxygen flows from a reservoir in which the temperature

is 200°C and the pressure is 300 kPa absolute. Assuming isen-

tropic flow, calculate the velocity, pressure, and temperature

when the Mach number is 0.9.

12.21 One problem in creating high-Mach-number flows is con-

densation of the oxygen component in the air when the tempera-

ture reaches 50 K. If the temperature of the reservoir is 300 K

and the flow is isentropic, at what Mach number will condensa-

tion of oxygen occur?

12.22 Hydrogen flows from a reservoir where the temperature is

20°C and the pressure is 500 kPa absolute to a section 2 cm in

diameter where the velocity is 250 m s. Assuming isentropic

flow, calculate the temperature, pressure, Mach number, and

mass flow rate at the 2 cm section.

12.23 The total pressure in a Mach-2.5 wind tunnel operating

with air is 600 kPa absolute. A sphere 2 cm in diameter, posi-

tioned in the wind tunnel, has a drag coefficient of 0.95. Calcu-

late the drag of the sphere.

12.24 Using Eq. (12.26), develop an expression for the pressure

coefficient at stagnation conditions—that is, Cp (pt p)

[(1 2)�V 2]—in terms of Mach number and ratio of specific

heats, Cp f(k, M). Evaluate Cp at M 0, 2, and 4 for k 1.4.

What would its value be for incompressible flow?

12.25 For low velocities, the total pressure is only slightly larger

than the static pressure. Thus one can write 

where # is a small positive number (# " 1). Using this approxi-

mation, show that as  Eq. (12.31) reduces to
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Normal Shock Waves

12.26 ��� Which of the following statements are true? (a)

Shock waves only occur in supersonic flows. (b) The static

pressure increases across a normal shock wave. (c) The Mach

number downstream of a normal shock wave can be supersonic.

12.27 ��� Can normal shock waves occur in subsonic flows?

Explain your answer. 

12.28 A normal shock wave exists in a 500 m s stream of nitro-

gen having a static temperature of –50°C and a static pressure of

70 kPa. Calculate the Mach number, pressure, and temperature

downstream of the wave and the entropy increase across the

wave.

12.29 A normal shock wave exists in a Mach 2 stream of air

having a static temperature and pressure of 45°F and 30 psia.

Calculate the Mach number, pressure, and temperature down-

stream of the shock wave.

12.30 A Pitot-static tube is used to measure the Mach number

on a supersonic aircraft. The tube, because of its bluntness, cre-

ates a normal shock wave as shown. The absolute total pressure

downstream of the shock wave is 150 kPa. The static pres-

sure of the free stream ahead of the shock wave (p1) is 40 kPa

and is sensed by the static pressure tap on the probe. Determine

the Mach number (M1) graphically.

12.31 A shock wave occurs in a methane stream in which the

Mach number is 3, the static pressure is 100 kPa absolute, and

the static temperature is 20°C. Determine the downstream Mach

number, static pressure, static temperature, and density.

12.32 The Mach number downstream of a shock wave in helium

is 0.9, and the static temperature is 100°C. Calculate the veloc-

ity upstream of the wave.

12.33 Show that the lowest Mach number possible downstream

of a normal shock wave is

and that the largest density ratio possible is

What are the limiting values of M2 and �2 �1 for air?

12.34 Show that the Mach number downstream of a weak wave

(M 1) is approximated by

[Hint: Let where # " 1, and expand Eq. (12.40) in

terms of #.] Compare values for M2 obtained using this equation

with values for M2 from Table A.1 for M1 1, 1.05, 1.1, and 1.2.

Mass Flow in Truncated Nozzle

12.35 ��� What is meant by “back pressure”?

12.36 Develop a computer program for calculating the mass

flow in a truncated nozzle. The input to the program would be

total pressure, total temperature, back pressure, ratio of specific

heats, gas constant, and nozzle diameter. Run the program and

compare the results with Example 12.12. Run the program for

back pressures of 80, 90, 110, 120, and 130 kPa and make a ta-

ble for the variation of mass flow rate with back pressure. What

trends do you observe?

This program will be useful for Probs. 12.37, 12.38, 12.40,

and 12.41.

12.37 The truncated nozzle shown in the figure is used to meter

the mass flow of air in a pipe. The area of the nozzle is 3 cm2.

The total pressure and total temperature measured upstream of

the nozzle in the pipe are 300 kPa absolute and 20°C. The pres-

sure downstream of the nozzle (back pressure) is 90 kPa abso-

lute. Calculate the mass flow rate.

12.38 The truncated nozzle shown in Prob. 12.37 is used to

monitor the mass flow rate of methane. The area of the nozzle is

3 cm2, and the area of the pipe is 12 cm2. The upstream total

pressure and total temperature are 150 kPa absolute and 30°C.

The back pressure is 100 kPa.

a. Calculate the mass flow rate of methane.

b. Calculate the mass flow rate assuming the Bernoulli equa-

tion is valid, with the density being the density of the gas at

the nozzle exit.

12.39 A truncated nozzle with an exit area of 5 cm2 is used to

measure a mass flow of air of 0.30 kg s. The static temperature

of the air at the exit is 10°C, and the back pressure is 100 kPa.

Determine the total pressure.

12.40 A truncated nozzle with a 10 cm2 exit area is supplied

from a helium reservoir in which the absolute pressure is first

130 kPa and then 350 kPa. The temperature in the reservoir is

28°C, and the back pressure is 100 kPa. Calculate the mass flow

rate of helium for the two reservoir pressures.

12.41 A sampling probe is used to draw gas samples from a

gas stream for analysis. In sampling, it is important that the
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velocity entering the probe equal the velocity of the gas stream

(isokinetic condition). Consider the sampling probe shown,

which has a truncated nozzle inside it to control the mass flow

rate. The probe has an inlet diameter of 4 mm and a truncated

nozzle diameter of 2 mm. The probe is in a hot-air stream with

a static temperature of 600°C, a static pressure of 100 kPa ab-

solute, and a velocity of 60 m s. Calculate the pressure re-

quired in the probe (back pressure) to maintain the isokinetic

sampling condition.

12.42 Truncated nozzles are often used for flow-metering de-

vices. Assume that you have to design a truncated nozzle, or a

series of truncated nozzles, to measure the performance of an air

compressor. The compressor is rated at 100 scfm (standard cubic

feet per minute) at 120 psig. (A standard cubic foot is the vol-

ume the air would occupy at atmospheric conditions.) A per-

formance curve for the compressor would be a plot of flow

rate versus supply pressure. Explain how you would carry out

the test program. 

Flow in Laval Nozzles

12.43 ��� Sketch how the Mach number and velocity vary

through a Laval nozzle from the entrance to the exit? How is the

velocity variation different from a venturi configuration? 

12.44 ��� When a Laval nozzle has expansion ratio of 4, what

does that mean? 

12.45 Develop a computer program that requires the Mach num-

ber and ratio of specific heats as input and prints out the area ra-

tio, the ratio of static to total pressure, the ratio of static to total

temperature, the ratio of density to total density, and the ratio of

pressure before and after a shock wave. Run the program for a

Mach number of 2 and a ratio of specific heats of 1.4, and com-

pare with results in Table A.1. Then run the program for the

same Mach number with ratios of specific heats of 1.3 (carbon

dioxide) and 1.67 (helium).

This program will be useful for Probs. 12.47, 12.48, 12.51,

12.55, 12.56, 12.58, and 12.59.

12.46 Develop a computer program that, given the area ratio, ra-

tio of specific heats, and flow condition (subsonic or super-

sonic) as input, provides the Mach number. This will require

some numerical root-finding scheme. Run the program for an

area ratio of 5 and ratio of specific heats of 1.4. Compare the re-

sults with those in Table A.1. Then run the program for the same

area ratio but with the ratios of specific heats of 1.67 (helium)

and 1.31 (methane).

This program will be useful for Probs. 12.49, 12.50, and

12.53–12.59.

12.47 A wind tunnel using air is designed to have a Mach num-

ber of 3, a static pressure of 1.5 psia, and a static temperature of

–10°F in the test section. Determine the area ratio of the nozzle

required and the reservoir conditions that must be maintained if

air is to be used.

12.48 A Laval nozzle is to be designed to operate supersonically

and expand ideally to an absolute pressure of 30 kPa. If the stag-

nation pressure in the nozzle is 1 MPa, calculate the nozzle area

ratio required. Determine the nozzle throat area for a mass flow

of 5 kg s and a stagnation temperature of 550 K. Assume that

the gas is nitrogen.

12.49 A rocket nozzle with an area ratio of 4 is operating at a to-

tal absolute pressure of 1.3 MPa and exhausting to an atmo-

sphere with an absolute pressure of 30 kPa. Determine whether

the nozzle is overexpanded, underexpanded, or ideally ex-

panded. Assume k 1.4.

12.50 Repeat Prob. 12.49 for a nozzle with the same area ratio

but with a ratio of specific heats of 1.2. Classify the nozzle flow.

12.51 A Laval nozzle with an exit area ratio of 1.688 exhausts

air from a large reservoir into ambient conditions at p 100

kPa.

a. Show that the reservoir pressure must be 782.5 kPa to

achieve ideally expanded exit conditions at M 2.

b. What are the static temperature and pressure at the throat if

the reservoir temperature is 17°C with the pressure as in (a)?

c. If the reservoir pressure were lowered to 700 kPa, what

would be the exit condition (overexpanded, ideally ex-

panded, underexpanded, subsonic flow in entire nozzle)?

d. What reservoir pressure would cause a normal shock to form

at the exit?

12.52 Determine the Mach number and area ratio at which the

dynamic pressure is maximized in a Laval nozzle with air.

[Hint: Express q in terms of p and M, and use Eq. (12.26) for p.

Differentiate with respect to M and equate to zero.]

12.53 A rocket motor operates at an altitude where the atmo-

spheric pressure is 30 kPa. The expansion ratio of the nozzle is

4 (exit area throat area). The chamber pressure of the motor

(total pressure) is 1.2 MPa, and the chamber temperature (total

temperature) is 3000°C. The ratio of the specific heats of the ex-

haust gas is 1.2, and the gas constant is 400 J kg K. The throat

area of the rocket nozzle is 100 cm2.

a. Determine the Mach number, density, pressure, and velocity

at the nozzle exit.

b. Determine the mass flow rate.

c. Calculate the thrust of the rocket using
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d. What would the chamber pressure of the rocket have to be to

have an ideally expanded nozzle? Calculate the rocket thrust

under this condition.

12.54 A rocket motor is being designed to operate at sea level,

where the pressure is 100 kPa absolute. The chamber pressure

(total pressure) is 2.0 MPa, and the chamber temperature (total

temperature) is 3300 K. The throat area of the nozzle is 10 cm2.

The ratio of the specific heats (k) of the exhaust gas is 1.2, and

the gas constant is 400 J kg K.

a. Determine the nozzle expansion ratio that is required to

achieve an ideally expanded nozzle, and determine the noz-

zle thrust under these conditions (see Prob. 12.53 for the

thrust equation).

b. Determine the thrust that would be obtained if the expansion

ratio were reduced by 10% to achieve an underexpanded

nozzle.

12.55 Air flows through a Laval nozzle with an expansion ratio

of 4. The total pressure of the air entering the nozzle is 200 kPa,

and the back pressure is 100 kPa. Determine the area ratio at

which the shock wave occurs in the expansion section of the

nozzle. (Hint: This problem can be solved graphically by calcu-

lating the exit pressure corresponding to different shock wave

locations and finding the location where the exit pressure is

equal to the back pressure.)

12.56 A rocket nozzle has the configuration shown. The diame-

ter of the throat is 4 cm, and the exit diameter is 8 cm. The half-

angle of the expansion cone is 15°. Gases with a specific heat

ratio of 1.2 flow into the nozzle with a total pressure of 250 kPa.

The back pressure is 100 kPa. First, using an iterative or graphi-

cal method, determine the area ratio at which the shock occurs.

Then determine the shock wave’s distance from the throat in

centimeters.

12.57 A normal shock wave occurs in a nozzle at an area ratio of

5. Determine the entropy increase if the gas is hydrogen.

12.58 Consider airflow in the variable-area channel shown in

the figure. Determine the Mach number, static pressure, and

stagnation pressure at station 3. Assume isentropic flow except

for normal shock waves.

12.59 Determine the back pressure necessary for the shock wave

to position itself as shown in the figure. The fluid is air.

12.60 Design a supersonic wind tunnel that achieves a Mach

number of 1.5 in a test section 5 cm by 5 cm. The tunnel is to be

attached to a vacuum tank as shown in the figure. After the tank

is evacuated, the valve is opened and atmospheric air is drawn

through the tunnel into the tank. The tunnel should operate for

30 seconds before the pressure rises to the point in the tank that

supersonic flow is no longer achievable. Do a preliminary de-

sign of this system including details such as nozzle dimensions,

configuration, and tank size.   
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C H A P T E R

Flow Measurements

Measurement techniques are important because fluid mechanics relies heavily on experi-

ments. Thus, Chapter 3 described instruments for measuring pressure including the piezome-

ter, the manometer, the Bourdon-tube gage, and the pressure transducer. Chapter 4 describes

the Pitot-static tube and the Pitot tube. This chapter builds on this knowledge by introducing

additional ways to measure flow rate, pressure, and velocity. Also, this chapter describes

how to estimate the uncertainty of a measurement.

Measuring Velocity and Pressure

Stagnation (Pitot) Tube

The stagnation tube, also called the Pitot tube, is shown in Fig. 13.1a. A Pitot tube measures

stagnation pressure with an open tube that is aligned parallel with the velocity direction and

then senses pressure in the tube using a pressure gage or transducer.

When the stagnation tube was introduced in Chapter 4, viscous effects were not dis-

cussed. Viscous effects are noteable because they can influence the accuracy of a measure-

ment. The effects of viscosity, from reference (1), are shown in Fig. 13.2. This shows the

pressure coefficient Cp plotted as a function of the Reynolds number. Viscous effects are im-

portant when 

The pattern of flow that occurs when 

an air jet is discharged into quiescent 

air is revealed in this photo. (Courtesy 

Cecilia D. Richards.)

SIGNIFICANT LEARNING OUTCOMES

Contextual Knowledge

• Sketch common measuring instruments.

• Explain the operating principles of common measuring instruments.

• List the advantages and disadvantages of common measuring 

instruments (common measurment instruments include the hot-wire 

anemometer, orifice meter, laser-Doppler anemometer venturi meter, 

rotameter, and the weir).

Procedural Knowledge

• Calculate flow rate for an orifice meter, a venturi meter, or a weir.

• Calculate flow rate by integrating velocity distribution data.

• For a weir or an orifice meter, estimate uncertainty using the RMS 

method.

13.1

Cp 1.0.�
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In Fig. 13.2 it is seen that when the Reynolds number for the circular stagnation tube is

greater than 60, the error in measured velocity is less than 1%. For boundary-layer measure-

ments a stagnation tube with a flattened end can be used. By flattening the end of the tube, the

velocity measurement can be taken nearer the boundary than if a circular tube were used. For

these flattened tubes, the pressure coefficient remains near unity for a Reynolds number as low

as 30. See reference (15) for more information on flattened-end stagnation tubes.

Static Tube
A static tube, as shown in Fig. 13.1b, is an instrument for measuring static pressure. Static

pressure is the pressure in a fluid that is stationary or in a fluid that is flowing. When the fluid

is flowing, the static pressure must be measured in a way that does not disturb the pressure.

Thus, in the design of the static tube, as shown in Fig. 13.3, the placement of the holes along

the probe is critical because the rounded nose on the tube causes some decrease of pressure

along the tube and the downstream stem causes an increase in pressure in front of it. Hence

the location for sensing the static pressure must be at the point where these two effects cancel

each other. Experiments reveal that the optimum location is at a point approximately six di-

ameters downstream of the front of the tube and eight diameters upstream from the stem.  

Figure 13.1
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Pitot-Static Tube
The Pitot-static tube, Fig. 13.1c, measures velocity by using concentric tubes to measure static

pressure and dynamic pressure. Application of the Pitot-static tube is presented in Chapter 4.

Yaw Meters
A yaw meter, Fig. 13.4, is an instrument for measuring velocity by using multiple pressure

ports to determine the magnitude and direction of fluid velocity. The first two yaw meters in

Fig. 13.4 can be used for two-dimensional flow, where flow direction in only one plane needs

to be found. The third yaw meter in Fig. 13.4 is used for determining flow direction in three di-

mensions. In all these devices, the tube is turned until the pressure on symmetrically opposite

openings is equal. This pressure is sensed by a differential pressure gage or manometer con-

nected to the openings in the yaw meter. The flow direction is sensed when a null reading is

indicated on the differential gage. The velocity magnitude is found by using equations that

depend on the type of yaw meter that is used.

The Vane or Propeller Anemometer
The term anemometer originally meant an instrument that was used to measure the velocity

of the wind. However, anemometer now means an instrument that is used to measure fluid

velocity, because anemometers are used in water, air, nitrogen, blood, and many other fluids.

See (18) for an overview of the many types of anemometers. 

Figure 13.4
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The vane anemometer (Fig. 13.5a) and the propeller anemometer (Fig. 13.5b) measure

velocity by using vanes typical of a fan or propeller, respectively. These blades rotate with a

speed of rotation that depends on the wind speed. Typically, an electronic circuit converts the

rotational speed into a velocity reading. On some older instruments the rotor drives a low-

friction gear train that, in turn, drives a pointer that indicates feet on a dial. Thus if the ane-

mometer is held in an airstream for 1 min and the pointer indicates a 300 ft change on the

scale, the average airspeed is 300 ft min.

Cup Anemometer
Instead of using vanes, the cup anemometer, in Fig. 13.6, is a device that uses the drag on

cup-shaped objects to spin a rotor around a central axis. Since the rotational speed of the ro-

tor is related to drag force, the frequency of rotation is related to the fluid velocity by appro-

priate calibration data. A typical rotor comprises three to five hemispherical or conical cups.

In addition to applications in air, engineers use a cup anemometer to measure the velocity in

streams and rivers.

Hot-wire and Hot-film Anemometers
The hot-wire anemometer (HWA), Fig. 13.7, is an instrument for measuring velocity by sens-

ing the heat transfer from a heated wire. As velocity increases, more energy is needed to keep

the wire hot and the corresponding changes in electrical characteristics can be used to deter-

mine the velocity of the fluid that is passing by the wire.

The HWA has advantages over other instruments. The HWA is well suited for measur-

ing velocity fluctuations that occur in turbulent flow, whereas instruments such as the Pitot-

static tube are only suitable for measuring velocity that either is steady or changes slowly

with time. The sensing element of the HWA is quite small, allowing the HWA to be used in

locations such as the boundary layer, where the velocity is varying in a region that is small in

size. Many other instruments are too large for recording velocity in a region that is geometri-

cally small. Another advantage of the HWA is that it is sensitive to low-velocity flows, a

characteristic lacking in the Pitot tube and other instruments. The main disadvantages of the

HWA are its delicate nature (the sensor wire is easily broken), its relatively high cost, and its

need for an experienced user.

The basic principle of the hot-wire anemometer is described as follows: A wire of very

small diameter—the sensing element of the hot-wire anemometer—is welded to supports as

Figure 13.5
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Vanes

Housing

(a) (b)

⁄

Figure 13.6

Cup anemometer. 



13.1 MEASURING VELOCITY AND PRESSURE 439

shown in Fig. 13.7. In operation the wire either is heated by a fixed flow of electric current

(the constant-current anemometer) or is maintained at a constant temperature by adjusting

the current (the constant-temperature anemometer).

A flow of fluid past the hot wire causes the wire to cool because of convective heat trans-

fer. In the constant-current anemometer, the cooling of the wire causes its resistance to change,

and a corresponding voltage change occurs across the wire. Because the rate of cooling is a

function of the speed of flow past the heated wire, the voltage across the wire is correlated with

the flow velocity. The more popular type of anemometer, the constant-temperature ane-

mometer, operates by varying the current in such a manner as to keep the resistance (and

temperature) constant. The flow of current is correlated with the speed of the flow: the higher

the speed, the greater the current needed to maintain a constant temperature. Typically, the

wires are 1 mm to 2 mm in length and heated to 150°C. The wires may be 10 �m or less in

diameter; the time response improves with the smaller wire. The lag of the wire’s response to

a change in velocity (thermal inertia) can be compensated for more easily, using modern

electronic circuitry, in constant-temperature anemometers than in constant-current anemome-

ters. The signal from the hot wire is processed electronically to give the desired information,

such as mean velocity or the root-mean-square of the velocity fluctuation.

To illustrate the versatility of these instruments, note that the hot-wire anemometer can mea-

sure accurately gas flow velocities from 30 cm s to 150 m s; it can measure fluctuating velocities

with frequencies up to 100,000 Hz; and it has been used satisfactorily for both gases and liquids.

The single hot wire mounted normal to the mean flow direction measures the fluctuat-

ing component of velocity in the mean flow direction. Other probe configurations and elec-

tronic circuitry can be used to measure other components of velocity.

For velocity measurements in liquids or dusty gases, where wire breakage is a problem,

the hot-film anemometer is more suitable. This anemometer consists of a thin conducting

metal film (less than 0.1 �m thick) mounted on a ceramic support, which may be 50 �m in

diameter. The hot film operates in the same fashion as the hot wire. Recently, the split film

has been introduced. It consists of two semicylindrical films mounted on the same cylindrical

support and electrically insulated from each other. The split film provides both speed and di-

rectional information.

For more detailed information on the hot-wire and hot-film anemometers, see King and

Brater (2) and Lomas (3).

Laser-Doppler Anemometer
The laser-Doppler anemometer (LDA) is an instrument for measuring velocity by using the

Doppler shift that occurs when a particle in a flow scatters light from crossed laser beams.

Advantages of the LDA are (a) the flow field is not disturbed by the presence of a probe, and

(b) it provides excellent spatial resolution. Disadvantages of the LDA include cost, complex-

ity, the need for a transparent fluid, and requirement for particle seeding.

There are several different configurations for the LDA. The dual-beam mode, Fig. 13.8,

splits a laser beam into two parallel beams and then uses a converging lens to cause the two

beams to cross. The point where beams cross is called the measuring volume, which might

best be described as an ellipsoid that is typically 0.3 mm in diameter and 2 mm long, illustrat-

ing the excellent spatial resolution achievable. The interference of the two beams generates a

series of light and dark fringes in the measuring volume perpendicular to the plane of the two

Figure 13.7
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beams. As a particle passes through the fringe pattern, light is scattered and a portion of the

scattered light passes through the collecting lens toward the photodetector. A typical signal

obtained from the photodetector is shown in the figure.

It can be shown from optics theory that the spacing between the fringes is given by

(13.1)

where � is the wavelength of the laser beam and � is the half-angle between the crossing

beams. By suitable electronic circuitry, the frequency of the signal ( f ) is measured, so the

velocity is given by

(13.2)

The operation of the laser-Doppler anemometer depends on the presence of particles to

scatter the light. These particles need to move at the same velocity as the fluid. Thus the par-

ticles need to be small relative to the size of flow patterns, and they need to have a density

near that of the ambient fluid. In liquid flows, impurities of the fluid can serve as scattering

centers. In water flows, adding a few drops of milk is common. In gaseous flows, it is com-

mon to “seed” the flow with small particles. Smoke is often used for this seeding.

Laser-Doppler anemometers that provide two or three velocity components of a particle

traveling through the measuring volume are now available. This is accomplished by using

laser-beam pairs of different colors (wavelengths). The measuring volumes for each color are

positioned at the same physical location but oriented differently to measure a different com-

ponent. The signal-processing system can discriminate the signals from each color and

thereby provide component velocities.

Another recent technological advance in laser-Doppler anemometry is the use of fiber

optics. The fiber optics transmit the laser beams from the laser to a probe that contains optical

elements to cross the beams and generate a measuring volume. Thus measurements at different

locations can be made by moving the probe and without moving the laser. For more applica-

tions of the laser-Doppler technique see Durst (4).

Marker Methods
The marker method for determining velocity involves particles that are placed in the stream.

By analyzing the motion of these particles, one can deduce the velocity of the flow itself. Of

course, this requires that the markers follow virtually the same path as the surrounding fluid

elements. It means, then, that the marker must have nearly the same density as the fluid or

that it must be so small that its motion relative to the fluid is negligible. Thus for water flow

Figure 13.8
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it is common to use colored droplets from a liquid mixture that has nearly the same density as

the water. For example, Macagno (6) used a mixture of n-butyl phthalate and xylene with a

bit of white paint to yield a mixture that had the same density as water and could be photo-

graphed effectively. Solid particles, such as plastic beads, that have densities near that of the

liquid being studied can also be used as markers.

Hydrogen bubbles have also been used for markers in water flow. Here an electrode

placed in flowing water causes small bubbles to be formed and swept downstream, thus re-

vealing the motion of the fluid. The wire must be very small so that the resulting bubbles do

not have a significant rise velocity with respect to the water. By pulsing the current through

the electrode, it is possible to add a time frame to the visualization technique, thus making it

a useful tool for velocity measurements. Figure 13.9 shows patches of tiny hydrogen bubbles

that were released with a pulsing action from noninsulated segments of a wire located to the

left of the picture. Flow is from left to right, and the necked-down section of the flow passage

has higher water velocity. Therefore, the patches are longer in that region. Next to the walls

the patches of bubbles are shorter, indicating less distance traveled per unit of time. Other de-

tails concerning the marker methods of flow visualization are described by Macagno (6).

A relatively new marker method is particle image velocimetry (PIV), which provides a mea-

surement of the velocity field. In PIV, the marker or seeding particles may be minuscule spheres

of aluminum, glass, or polystyrene. Or they may be oil droplets, oxygen bubbles (liquids only),

or smoke particles (gases only). The seeding particles are illuminated in order to produce a pho-

tographic record of their motion. In particular, a sheet of light passing through a cross section of

the flow is pulsed on twice, and the scattered light from the particles is recorded by a camera. The

first pulse of light records the position of each particle at time t, and the second pulse of light

records the position at time t �t. Thus, the displacement �r of each particle is recorded on the

photograph. Dividing �r by �t yields the velocity of each particle. Because PIV uses a sheet of

light, the method provides a simultaneous measurement of velocity at locations throughout a cross

section of the flow. Hence, PIV is identified as a whole-field technique. Other velocity measure-

ments, the LDA method, for example, are limited to measurements at one location.

PIV measurement of the velocity field for flow over a backward-facing step is

shown in Fig. 13.10. This experiment was carried out in water using 15 �m–diameter,

silver-coated hollow spheres as seeding particles. Notice that the PIV method provided data

over the cross section of the flow. Although the data shown in Fig. 13.10 are qualitative, nu-

merical values of the velocity at each location are also available.

The PIV method is typically performed using digital hardware and computers. For

example, images may be recorded with a digital camera. Each resulting digital image is eval-

uated with software that calculates the velocity at points throughout the image. This evaluation

Figure 13.9
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proceeds by dividing the image into small sub-areas called “interrogation areas.” Within a given

interrogation area, the displacement vector (�r) of each particle is found by using statistical tech-

niques (auto- and cross-correlation). After processing, the PIV data are typically available on a

computer screen. Additional information on PIV systems is provided by Raffel et al. (7).

Smoke is often used as a marker in flow measurement. One technique is to suspend a wire

vertically across the flow field and allow oil to flow down the wire. The oil tends to accumulate

in droplets along the wire. Applying a voltage to the wire vaporizes the oil, creating streaks from

the droplets. Figure 13.11 is an example of a flow pattern revealed by such a method. Smoke

generators that provide smoke by heating oils are also commercially available. It is also pos-

sible to position a thin sheet of laser light through the smoke field to obtain an improved spatial

definition of the flow field indicated by the smoke. Another technique is to introduce titanium

tetrachloride (TiC14) in a dried-air flow, which reacts with the water vapor in the ambient air

to produce micron-sized titanium oxide particles, which serve as tracers. The flow pattern ob-

tained for an upward-flowing air jet using this technique in conjunction with a laser light sheet

Figure 13.10
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is shown in the photograph at the beginning of this chapter (p. 435). This jet is subjected to an

acoustic field, which enhances the vortex shedding pattern observed in the jet.

Measuring Flow Rate (Discharge)

Measuring flow rate is important in research, design, testing, and in many commercial

applications.

Direct Measurement of Volume or Weight
For liquids, a simple and accurate method is to collect a sample of the flowing fluid over a given

period of time �t. Then the sample is weighed, and the average weight rate of flow is �W �t,
where �W is the weight of the sample. The volume of a sample can also be measured (usually

in a calibrated tank), and from this the average volume rate of flow is calculated as �V �t,
where �V is the volume of the sample. This method has several disadvantages: It cannot be used

for an unsteady flow, and it is not always possible to collect a sample.

Integrating a Measured Velocity Distribution
Flow rate can be found by measuring a velocity distribution and then integrating using

the volume flow rate equation (5.8):

For example, one can divide a rectangular conduit into sub-areas and then measure ve-

locity at the center of each sub-area as shown in Fig. 13.12. Then flow rate is deter-

mined by

(13.3)

where N is the number of sub-areas. When the flow area occurs in a round pipe, then

the sub-area is a ring as shown by Example 13.1.

EXAMPLE 13.1   DISCHARGE FROM 

VELOCITY DATA

The data given in the table are for a velocity traverse of air flow 

in a pipe 100 cm in diameter. What is the volume rate of flow 

in cubic meters per second?

13.2
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Calibrated Orifice Meter
An orifice meter is an instrument for measuring flow rate by using a carefully designed plate

with a round opening and situating this device in a pipe, as shown in Fig. 13.13. Flow rate is

found by measuring the pressure drop across the orifice and then using an equation to cal-

culate the appropriate flow rate. One common application of the orifice meter is metering

of natural gas in pipelines. Because large quantities of natural gas are measured and the as-

sociated costs are high, accuracy is very important. This section describes the main ideas

associated with orifice meters. Details about using orifice meters are presented in standards

such as reference (10).

Flow through a sharp-edged orifice is shown in Fig. 13.13. Note that the streamlines

continue to converge a short distance downstream of the plane of the orifice. Hence the

minimum-flow area is actually smaller than the area of the orifice. To relate the minimum-

EXAMPLE 13.2   

Situation:

1. Air is flowing in a round pipe 

2. Velocity in m s is known as a function of radius (see table).

Find: Volume flow rate (in m3 s) in the pipe.

Assumptions: The velocity distribution is symmetric around
the centerline of the pipe.

Plan

1. Develop an equation for a round pipe by applying Eq. (13.3).

2. Find discharge by using a spreadsheet program.

Solution

The flow rate is given by

The area is shown in the 

sketch above. Visualize this area as a strip of length and 

width Then The flow rate equation 

becomes

To perform the sum, use a spreadsheet as shown. To see how 

the table is set up, consider the row The area is

which is given in the sixth column. The last column gives

Discharge is found by summing the last column. As shown

To check the validity of the calculation, sum the column labeled 

and check to ensure that this value equals the radius of the 

pipe. As shown, this sum is 0.5 m. Similarly, the pipe area of 

should be produced by summing the column labeled As 

shown, this is the case. 
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flow area, often called the contracted area of the jet, or vena contracta, to the area of the

orifice Ao, one uses the contraction coefficient, which is defined as

Then, for a circular orifice,

Because dj and d2 are identical, Cc (d2 d)2. At low values of the Reynolds number, Cc is a

function of the Reynolds number. However, at high values of the Reynolds number, Cc is

only a function of the geometry of the orifice. For d D ratios less than 0.3, Cc has a value of

approximately 0.62. However, as d D is increased to 0.8, Cc increases to a value of 0.72.

To derive the orifice equation, consider the situation shown in Fig. 13.13. Apply the

Bernoulli equation between section 1 and section 2:

V1 is eliminated by means of the continuity equation V1A1 V2A2. Then solving for V2 gives

(13.4a)

However, A2 CcAo and h p 	 z, so Eq. (13.4a) reduces to

(13.4b)

Figure 13.13

Flow through a sharp-

edged pipe orifice.
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Our primary objective is to obtain an expression for discharge in terms of h1, h2, and the geo-

metric characteristics of the orifice. The discharge is given by V2 A2. Hence, multiply both

sides of Eq. (13.4b) by A2 Cc Ao, to give the desired result:

(13.5)

Equation (13.5) is the discharge equation for the flow of an incompressible inviscid fluid

through an orifice. However, it is valid only at relatively high Reynolds numbers. For low

and moderate values of the Reynolds number, viscous effects are significant, and an addi-

tional coefficient called the coefficient of velocity, Cv , must be applied to the discharge equa-

tion to relate the ideal to the actual flow.* Thus for viscous flow through an orifice, we have

the following discharge equation:

The product CvCc is called the discharge coefficient, Cd, and the combination 

is called the flow coefficient, K. Thus, Q KAo  where

(13.6)

If �h is defined as h1 h2, then the final form of the orifice equation reduces to

(13.7a)

If a differential pressure transducer is connected across the orifice, it will sense a piezo-

metric pressure change that is equivalent to 	�h, so the orifice equation becomes

(13.7b)

Experimentally determined values of K as a function of d D and Reynolds number based on

orifice size are given in Fig. 13.14. If Q is given, Red is equal to 4Q � dv. Then K is obtained

from Fig. 13.14 (using the vertical lines and the bottom scale), and �h is computed from

Eq. (13.7a), or �pz can be computed from Eq. (13.7b). However, one is often confronted

with the problem of determining the discharge Q when a certain value of �h or a certain

value of �pz is given. When Q is to be determined, there is no direct way to obtain K by en-

tering Fig. 13.14 with Re, because Re is a function of the flow rate, which is still unknown.

Hence another scale, which does not involve Q, is constructed on the graph of Fig. 13.14.

The variables for this scale are obtained in the following manner: Because Red 4Q � dv
and Q K(�d2 4)  write Red in terms of �h:

* At low Reynolds numbers the coefficient of velocity may be quite small; however, at Reynolds numbers

above l05, Cv typically has a value close to 0.98. See Lienhard (8) for Cv analyses.
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or

Thus the slanted dashed lines and the top scale are used in Fig. 13.14 when �h is known and

the flow rate is to be determined. If a certain value of �p is given, one can apply Fig. 13.14

by using �pz � in place of g�h in the parameter at the top of Fig. 13.14.

The literature on orifice flow contains numerous discussions concerning the optimum

placement of pressure taps on both the upstream side and the downstream side of an orifice.

The data given in Fig. 13.14 are for “corner taps.” That is, on the upstream side the pressure

readings were taken immediately upstream of the orifice plate (at the corner of the orifice

plate and the pipe wall), and the downstream tap was at a similar downstream location. How-

ever, pressure data from flange taps (1 in. upstream and 1 in. downstream) and from the taps

shown in Fig. 13.13 all yield virtually the same values for K—the differences are no greater

than the deviations involved in reading Fig. 13.14. For more precise values of K with specific

types of taps, see the ASME report on fluid meters (10).

Figure 13.14

Flow coefficient K and 

Red K versus the 

Reynolds number for 

orifices, nozzles, and 

venturi meters. [After 
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granted by 

Instrumentation & 

Control Systems 

magazine, formerly 

Instruments magazine.]
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Head Loss for Orifices
Some head loss occurs between the upstream side of the orifice and the vena contracta. How-

ever, this head loss is very small compared with the head loss that occurs downstream of the

vena contracta. This downstream portion of the head loss is like that for an abrupt expansion.

Neglecting all head loss except that due to the expansion of the flow, gives

(13.8)

where V2 is the velocity at the vena contracta and V1 is the velocity in the pipe. It can be shown

that the ratio of this expansion loss, hL, to the change in head across the orifice, �h, is given as

(13.9)

Table 13.1 shows how the ratio increases with increasing values of V2 V1. It is obvious that

an orifice is very inefficient from the standpoint of energy conservation. Examples 13.2 and

13.3 illustrate how to make calculations when orifice meters are used.

 TABLE 13.1 RELATIVE HEAD LOSS FOR ORIFICES

1 2 4 6 8 10

0 0.33 0.60 0.71 0.78 0.82

EXAMPLE 13.3   ANALYSIS OF AN 

ORIFICE METER

A 15 cm orifice is located in a horizontal 24 cm water pipe, and 

a water-mercury manometer is connected to either side of the 

orifice. When the deflection on the manometer is 25 cm, what 

is the discharge in the system, and what head loss is produced 

by the orifice? Assume the water temperature is 20°C.

Problem Definition

Situation:

1. Water flows through an orifice in a pipe 

2. A mercury-water manometer is used to measure pressure drop. 

Find:

1. Discharge (in m3 s) in pipe.

2. Head loss (in meters) produced by the orifice.

Properties: 

1. Water (20°C), Table A.5: 

2. Mercury (20°C), Table A.4:  

Sketch:

Plan

1. Calculate using the manometer equation 
(3.18).

2. Find the flow coefficient K using Fig. 13.14.

3. Find discharge Q using Eq. (13.7a).

4. Calculate the coefficient of contraction Cc using 
Eq. (13.6).

hL

V2 V1–( )2

2g
-------------------------�

hL

hΔ
--------

V2

V1

----- 1–

V2

V1

----- 1+

---------------�

⁄

V2 V1 →⁄
hL hΔ →⁄

d 0.15 m�( )
D 0.24 m�( ).

⁄

 1 10 6–×  m
2
/s.�

S 13.6.�

l

Δl = 25 cm

1 2

Δh h1 h2–�
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5. Solve for the velocity V2 at the vena contracta.

6. Calculate head loss using Eq. (13.8).

Solution

1. Change in piezometric head

• Apply manometer equation from 1 to 2.

• Solve for 

2. Flow coefficient

• Calculate

• From Fig. 13.14 with d D 0.625, K 0.66
(interpolated).

3. Discharge

4. Coefficient of contraction Cc

Let K 0.66. The ratio (Ao A1)
2 (0.625)4 0.1526

and Cd CvCc. Assuming Cv 0.98 (see the footnote on 

page 446) and solving for Cc, gives Cc 0.633.

5. Velocity at the vena contracta

6. Head loss

EXAMPLE 13.4   MANOMETER DEFLECTION 

FOR AN ORIFICE METER

An air-water manometer is connected to either side of an 8 in. 

orifice in a 12 in. water pipe. If the maximum flow rate is 

2 cfs, what is the deflection on the manometer? The water 

temperature is 60°F.

Problem Definition

Situation:

1. Water flows through an orifice  in 
a pipe 

2. An air-water manometer is used to measure pressure drop.

Find: Deflection (in ft) of water in the manometer.

Sketch:

Properties: Water (60°F), Table A.5: 

Plan

1. Calculate Reynolds number.

2. Find the flow coefficient K from Fig. 13.14.

3. Solve for �h by using Eq. (13.7a).

4. Solve for �l by using the manometer equation (3.19)

Solution

1. Reynolds number.

2. Flow coefficient.

• Use Fig. 13.14. Interpolate for d D 8 12 0.667 
to find 

p1 	w l lΔ+( ) 	Hg l 	wl–Δ–+ p2�

Δh.
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	w

---------------------Δ l
	Hg

	w

-------- 1–Δ� � �
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The sharp-edged orifice can also be used to measure the mass flow rate of gases. The

discharge equation [Eq. (13.7b)] is multiplied by the upstream gas density and an empirical

factor to account for compressibility effects (10). The resulting equation is

(13.10)

where K, the flow coefficient, is found using Fig. 13.14 and Y is the compressibility factor

given by the empirical equation

(13.11)

In this case both the pressure difference across the orifice and the absolute pressure of

the gas are needed. One must remember when using the equation for the compressibility fac-

tor that the absolute pressure must be used.

3.  Change in piezometric head

• From Q solve for 

4. Manometer deflection

• The deflection is related to �h by

• Since 	w � 	air , �l �h 1.1 ft. 

EXAMPLE 13.5   MASS FLOW RATE OF 

NATURAL GAS

The mass flow rate of natural gas is to be measured using a sharp-

edged orifice. The upstream pressure of the gas is 101 kPa 

absolute, and the pressure difference across the orifice is 10 kPa. 

The upstream temperature of the methane is 15°C. The pipe 

diameter is 10 cm, and the orifice diameter is 7 cm. What is the 

mass flow rate?

Problem Definition

Situation:

1. Natural gas (methane) is flowing through a sharp-edged 
orifice.

2. Pipe diameter is Orifice diameter is 

3. Pressure difference across orifice is 10 kPa.

Find: Mass flow rate (in kg s).

Properties: Natural gas (15°C, 1 atm), Table A.2:

Plan

1. Find the flow coefficient K from Fig. 13.14.

2. Calculate the compressibility factor Y using Eq. (13.11).

3. Calculate the mass flow rate using Eq. (13.10).

Solution

1. Flow coefficient

• Calculate

• Using Fig. 13.14, 

2.  Compressibility factor

3. Mass flow rate of methane

� KAo 2gΔh, Δh:

hΔ Q
2

2gK
2
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The foregoing examples involved the determination of either Q or �h for a given size

of orifice. Another type of problem is determination of the diameter of the orifice for a given

Q and �h. For this type of problem a trial-and-error procedure is required. Because one

knows the approximate value of K, that is guessed first. Then the diameter is solved for, after

which a better value of K can be determined, and so on.

Venturi Meter
The venturi meter, Fig. 13.15, is an instrument for measuring flow rate by using measurements

of pressure across a converging-diverging flow passage. The main advantage of the venturi

meter as compared to the orifice meter is that the head loss for a venturi meter is much smaller.

The lower head loss results from streamlining the flow passage, as shown in Fig. 13.15. Such

streamlining eliminates any jet contraction beyond the smallest flow section. Consequently, the

coefficient of contraction has a value of unity, and the venturi equation is

(13.12)

(13.13)

where At is the throat area and �h is the difference in piezometric head between the venturi

entrance (pipe) and the throat. Note that the venturi equation is the same as the orifice equa-

tion. However, K for the venturi meter approaches unity at high values of the Reynolds num-

ber and small d D ratios. This trend can be seen in Fig. 13.14, where values of K for the

venturi meter are plotted along with similar data for the orifice.

Flow Nozzles
The flow nozzle, Fig. 13.16, is an instrument for measuring flow rate by using the pressure drop

across a nozzle that is typically placed inside a conduit. Similar to an orifice meter, design and

application of the flow nozzle is described by engineering standards (10). As compared to an

orifice meter, the flow nozzle is better in flows that cause wear (e.g., particle-laden flow). The

reason is that erosion of an orifice will produce more change in the pressure-drop versus flow-

rate relationship. Both the flow nozzle and orifice meter will produce about the same overall

head loss.

Figure 13.15

Typical venturi meter.
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Electromagnetic Flow Meter
All of the flow meters described so far require that some sort of obstruction be placed in the

flow. The obstruction may be the rotor of a vane anemometer or the reduced cross-section of

an orifice or venturi meter. A meter that neither obstructs the flow nor requires pressure taps,

which are subject to clogging, is the electromagnetic flow meter. Its basic principle is that a

conductor that moves in a magnetic field produces an electromotive force. Hence liquids

having a degree of conductivity generate a voltage between the electrodes, as in Fig. 13.17,

and this voltage is proportional to the velocity of flow in the conduit. It is interesting to note

that the basic principle of the electromagnetic flow meter was investigated by Faraday in

1832. However, practical application of the principle was not made until approximately a

century later, when it was used to measure blood flow. Recently, with the need for a meter to

EXAMPLE 13.6   FLOW RATE USING A 

VENTURI METER

The pressure difference between the taps of a horizontal 

venturi meter carrying water is 35 kPa. If d 20 cm and 

D 40 cm, what is the discharge of water at 10°C?

Problem Definition

Situation:

1. Water flows through a horizontal venturi meter.

2. Pipe diameter is D 0.40 m. Venturi throat diameter is 
d 0.2 m.

Find: Discharge (in m3 s).

Properties: Water (10°C), Table A.5: 

and

Plan

1. Compute

2. Find the flow coefficient K from Fig. 13.14.

3. Find discharge Q using Eq. (13.7a).

Solution

1. Change in piezometric head

2. Flow coefficient

• Calculate

• From Fig. 13.14, find that 

3. Discharge

Figure 13.16

Typical flow nozzle.
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measure the flow of liquid metal in nuclear reactors and with the advent of sophisticated elec-

tronic signal detection, this type of meter has found extensive commercial use.

The main advantages of the electromagnetic flow meter are that the output signal varies

linearly with the flow rate and that the meter causes no resistance to the flow. The major dis-

advantages are its high cost and its unsuitability for measuring gas flow.

For a summary of the theory and application of the electromagnetic flow meter, the

reader is referred to Shercliff (11). This reference also includes a comprehensive bibliogra-

phy on the subject.

Ultrasonic Flow Meter
Another form of nonintrusive flow meter that is used in diverse applications ranging from

blood flow measurement to open-channel flow is the ultrasonic flow meter. Basically, there

are two different modes of operation for ultrasonic flow meters. One mode involves measur-

ing the difference in travel time for a sound wave traveling upstream and downstream be-

tween two measuring stations. The difference in travel time is proportional to flow velocity.

The second mode of operation is based on the Doppler effect. When an ultrasonic beam is

projected into an inhomogeneous fluid, some acoustic energy is scattered back to the trans-

mitter at a different frequency (Doppler shift). The measured frequency difference is related

directly to the flow velocity.

Turbine Flow Meter
The turbine flow meter consists of a wheel with a set of curved vanes (blades) mounted in-

side a duct. The volume rate of flow through the meter is related to the rotational speed of the

wheel. This rotational rate is generally measured by a blade passing an electromagnetic

pickup mounted in the casing. The meter must be calibrated for the given flow conditions.

The turbine meter is versatile in that it can be used for either liquids or gases. It has an accu-

racy of better than 1% over a wide range of flow rates, and it operates with small head loss.

The turbine flow meter is used extensively in monitoring flow rates in fuel-supply systems.

Vortex Flow Meter
The vortex flow meter, shown in Fig. 13.18, measures flow rate by relating vortex shedding fre-

quency to flow rate. The vortices are shed from a sensor tube that is situated in the center of a pipe.

These vortices cause vibrations, which are sensed by piezoelectric crystals that are located inside

the sensor tube, and are converted to an electronic signal that is directly proportional to flow rate.

Figure 13.17

Electromagnetic flow 

meter.
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This vortex meter gives accurate and repeatable measurements with no moving parts. However,

the corresponding head loss is comparable to that from other obstruction-type meters.

Rotameter
The rotameter, Fig. 13.19, is an instrument for measuring flow rate by sensing the position of

an active element (weight) that is situated in a tapered tube. The equilibrium position of the

weight is related to the flow rate. Because the velocity is lower at the top of the tube (greater

flow section there) than at the bottom, the rotor seeks a neutral position where the drag on it

just balances its weight. Thus the rotor “rides” higher or lower in the tube depending on the

rate of flow. The weight is designed so that it spins, thus it stays in the center of the tube. A

calibrated scale on the side of the tube indicates the rate of flow. Although venturi and orifice

meters have better accuracy (approximately 1% of full scale) than the rotameter (approxi-

mately 5% of full scale), the rotameter offers other advantages, such as ease of use and low

cost.

Figure 13.18

Vortex flow meter.

Figure 13.19

Rotameter.
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Rectangular Weir
A weir, shown in Fig. 13.20, is an instrument for determining flow rate in liquids by measur-

ing the height of water relative to an obstruction in an open channel. The discharge over the

weir is a function of the weir geometry and of the head on the weir. Consider flow over the

weir in a rectangular channel, shown in Fig. 13.20. The head H on the weir is defined as the

vertical distance between the weir crest and the liquid surface taken far enough upstream of

the weir to avoid local free-surface curvature (see Fig. 13.20).

The discharge equation for the weir is derived by integrating V dA VL dh over the total

head on the weir. Here L is the length of the weir and V is the velocity at any given distance h
below the free surface. Neglecting streamline curvature and assuming negligible velocity of ap-

proach upstream of the weir, one obtains an expression for V by writing the Bernoulli equation

between a point upstream of the weir and a point in the plane of the weir (see Fig. 13.21). As-

suming the pressure in the plane of the weir is atmospheric, this equation is

 (13.14)

Figure 13.20

Definition sketch for 

sharp-crested weir.

(a) Plan view.

(b) Elevation view.

Figure 13.21
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Here the reference elevation is the elevation of the crest of the weir, and the reference pres-

sure is atmospheric pressure. Therefore p1 0, and Eq. (13.14) reduces to

Then and the discharge equation becomes

(13.15)

In the case of actual flow over a weir, the streamlines converge downstream of the plane

of the weir, and viscous effects are not entirely absent. Consequently, a discharge coefficient

Cd must be applied to the basic expression on the right-hand side of Eq. (13.15) to bring the the-

ory in line with the actual flow rate. Thus the rectangular weir equation is

(13.16)

For low-viscosity liquids, the flow coefficient K is primarily a function of the relative head

on the weir, H P. An empirically determined equation for K adapted from Kindsvater and

Carter (12) is

(13.17)

This is valid up to an H P value of 10 as long as the weir is well ventilated so that atmo-

spheric pressure prevails on both the top and the bottom of the weir nappe.

When the rectangular weir does not extend the entire distance across the channel, as in

Fig. 13.22, additional end contractions occur. Therefore, K will be smaller than for the weir

without end contractions. The reader is referred to King (13) for additional information on

flow coefficients for weirs.  

EXAMPLE 13.7   FLOW RATE FOR A 

RECTANGULAR WEIR

The head on a rectangular weir that is 60 cm high in a 

rectangular channel that is 1.3 m wide is measured to be 

21 cm. What is the discharge of water over the weir?

Problem Definition

Situation:

1. Water flows over a rectangular weir.

2. The weir has a height of and a width of 

3. Head on the weir is 

Find: Discharge (in m3 s).

Plan

1. Calculate the flow coefficient K using Eq. (13.17).

2. Calculate flow rate using the rectangular weir equation 
(13.16).

Solution

1. Flow coefficient

2. Discharge

�

V 2gh�

dQ 2gh Ldh,�

Q 2gh Ldh
0

H��

2

3
---L 2gH

3 2⁄
�

Q 2

3
---Cd 2gLH

3 2⁄
�

K 2gLH
3 2⁄

�

⁄

K 0.40 0.05
H

P
----+�

⁄

P 0.6 m�
L 1.3 m.�

H 0.21 m.�

⁄

K 0.40 0.05
H

P
----+ 0.40 0.05
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------+ 0.417� � �

Q K 2gLH
3 2⁄

0.417 2 9.81( ) 1.3( ) 0.21
3 2⁄( )� �

0.23 m
3

s⁄�
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Triangular Weir
A definition sketch for the triangular weir is shown in Fig. 13.23. The primary advantage of the

triangular weir is that it has a higher degree of accuracy over a much wider range of flow than does

the rectangular weir, because the average width of the flow section increases as the head increases.

The discharge equation for the triangular weir is derived in the same manner as that

for the rectangular weir. The differential discharge dQ V dA VL dh is integrated over the

total head on the weir to give

which integrates to

However, a coefficient of discharge must still be used with the basic equation. Hence

 (13.18)

Figure 13.22

Rectangular weir with 

end contractions.

(a) Plan view.

(b) Elevation view.

Figure 13.23

Definition sketch for the 
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Experimental results with water flow over weirs with � 60° and H 2 cm indicate that

Cd has a value of 0.58. Hence the triangular weir equation with these limitations is

(13.19)

More details about flow-measuring devices for incompressible flow can be found in

references (14) and (15).

Measurement in Compressible Flow

This section describes how to measure velocity, pressure, and flow rate in compressible

flows. Since fluid density is changing in these flows, the Bernoulli equation is invalid. Thus,

compressible flow theory from Chapter 12 will be applied to develop valid measurement

techniques.  

Pressure Measurements
Static-pressure measurements can be made using the conventional static-pressure taps of

a probe. However, if the boundary layer is disturbed by the presence of a shock wave in the

vicinity of the pressure tap, the reading may not give the correct static pressure. The effect of

the shock wave on the boundary layer is smaller if the boundary layer is turbulent. Therefore

an effort is sometimes made to trip the boundary layer and ensure a turbulent boundary layer

in the region of the pressure tap.

The stagnation pressure can be measured with a stagnation tube aligned with the local

velocity vector. If the flow is supersonic, however, a shock wave forms around the tip of the

probe, as shown in Fig. 13.24, and the stagnation pressure measured is that downstream of

the shock wave and not that of the free stream. The stagnation pressure in the free stream can

be calculated using the normal shock relationships, provided the free-stream Mach number is

known. See Chapter 12 for more details about normal shock waves.

Mach Number and Velocity Measurements
A Pitot-static tube can be used to measure Mach numbers in compressible flows. Taking the

measured stagnation pressure as the total pressure, one can calculate the Mach number in

subsonic flows from the total-to-static-pressure ratio according to Eq. (12.31):

EXAMPLE 13.8   FLOW RATE FOR A 

TRIANGULAR WEIR

The head on a 60° triangular weir is measured to be 43 cm. 

What is the flow of water over the weir?

Problem Definition

Situation:

1. Water flows over a 60° triangular weir.

2. Head on the weir is 

Find: Discharge (in m3 s).

Plan

Apply the triangular weir equation Eq. (13.19).

Solution

� �

Q 0.179 2gH
5 2⁄

�

H 0.43 m.�

⁄

Q 0.179 2gH
5 2⁄

0.179 2 9.81×× 0.43( )×
5 2⁄

� �

0.096 m
3

s⁄�

13.3

M > 1

Figure 13.24

Stagnation tube in 

supersonic flow.
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It is interesting to note here that one must measure the stagnation and static pressures sepa-

rately to determine the pressure ratio, whereas one needs only the pressure difference to cal-

culate the velocity of a flow.

If the flow is supersonic, then the indicated stagnation pressure is the pressure behind

the shock wave standing off the tip of the tube. By taking this pressure as the total pressure

downstream of a normal shock wave and the measured static pressure as the static pressure

upstream of the shock wave, one can determine the Mach number of the free stream

from the static-to-total-pressure ratio according to the expression

(13.20)

which is called the Rayleigh supersonic Pitot formula. Note, however, that M1 is an implicit

function of the pressure ratio and must be determined graphically or by some numerical pro-

cedure. Many normal-shock tables, such as those in reference (16), have tabulated

versus which enables one to find quite easily by interpolation.

Once the Mach number is determined, more information is needed to evaluate the ve-

locity—namely, the local speed of sound. This can be done by inserting a probe into the flow

to measure total temperature and then calculating the static temperature using Eq. (12.22):

The local speed of sound is then determined by Eq. (12.11):

and the velocity is calculated from

V M1c

The hot-wire anemometer can also be used to measure velocity in compressible flows,

provided it is calibrated to account for Mach-number effects.

Mass Flow Measurement
Measuring the flow rate of a compressible fluid using a truncated nozzle was discussed in

some detail in Chapter 12. Basically, the flow nozzle is a truncated nozzle located in a pipe,

so the equations developed in Chapter 12 can be used to determine the flow rate through the

flow nozzle. Strictly speaking, the flow rate so calculated should be multiplied by the dis-

charge coefficient. For the high Reynolds numbers characteristic of compressible flows,

however, the discharge coefficient can be taken as unity. If the flow at the throat of the flow

nozzle is sonic (i.e., Mach number at the throat is 1.0), it is conceivable that the complex flow

field existing downstream of the nozzle will make the reading from the downstream pressure

tap difficult to interpret. That is, there can be no assurance that the measured pressure is the

true back pressure. In such a case, it is advisable to use a venturi meter because the pressure

is measured directly at the throat.
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The mass flow rate of a compressible fluid through a venturi meter can easily be analyzed us-

ing the equations developed in Chapter 12. Consider the venturi meter shown in Fig. 13.25. Writing

the energy equation, Eq. (12.15), for the flow of an ideal gas between stations 1 and 2 gives

(13.21)

By conservation of mass, the velocity V1 can be expressed as

Substituting this result into Eq. (13.21), using the ideal-gas law to eliminate temperature, and

solving for V2 gives

(13.22)

Assuming that the flow is isentropic,

the equation for the velocity at the throat can be rewritten as

(13.23)

The mass flow is obtained by multiplying V2 by �2A2. This analysis, however, has been based

on a one-dimensional flow, and two-dimensional effects can be accounted for by the dis-

charge coefficient Cd. The final result is

(13.24)

This equation is valid for all flow conditions, subsonic or supersonic, provided no shock

waves occur between station 1 and station 2. It is good design practice to avoid supersonic

flows in the venturi meter in order to prevent the formation of shock waves and the attendant

total pressure losses. Also, the discharge coefficient can generally be taken as unity if no

shock waves occur between 1 and 2.

Figure 13.25

Venturi meter.
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Shock Wave Visualization
When studying supersonic flow in a wind tunnel, it is important to be able to locate and identify

the shock wave pattern. Unfortunately, shock waves cannot be seen with the naked eye, so the

application of some type of optical technique is necessary. There are three techniques by

which shock waves can be seen: the shadowgraph, the interferometer, and the schlieren sys-

tem. Each technique has its special application related to the type of information on density

variation that is desired. The schlieren technique, however, finds frequent use in shock wave

visualization.

An illustration of the essential features of the schlieren system is given in Fig. 13.26.

Light from the source s is collimated by lens L1 to produce a parallel light beam. The light

then passes through a second lens L2 and produces an image of the source at plane f. A third

lens L3 focuses the image on the display screen. A sharp edge, usually called the knife edge,
is positioned at plane f so as to block out a portion of the light.

EXAMPLE 13.9   FLOW RATE FOR AIR THROUGH 

A VENTURI METER (COMPRESSIBLE FLOW)

Calculate the mass flow rate of air (inlet static 

temperature 27°C) flowing through a venturi meter. The 

venturi throat is 1 cm in diameter (D2), and the pipe is 3 cm in 

diameter (D1). Upstream static pressure is 150 kPa, and throat 

pressure is 100 kPa.

Problem Definition

Situation:

1. Air flows through a venturi meter.

2. Pipe diameter is Venturi throat diameter is 

3. Upstream conditions: Static temperature is 27°C; static 
pressure is 150 kPa.

4. Pressure in throat 100 kPa.

Find: Mass flow rate (in kg s).

Properties: Air (27°C), Table A.2: and

Plan

1. Calculate density of air in the pipe (upstream) using the 
ideal gas law.

2. Calculate mass flow rate using Eq. (13.24).

Solution

1. Ideal gas law

2. Mass flow rate

Sketch:
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If a shock wave occurs in the test section, the light is refracted by the density change

across the wave. As illustrated by the dashed line in Fig. 13.26, the refracted ray escapes the

blocking effect of the knife edge, and the shock wave appears as a lighter region on the

screen. Of course, if the beam is refracted in the other direction, the knife edge blocks out

more light, and the shock wave appears as a darker region. The contrast can be increased by

intercepting more light with the knife edge.

Interferometry
The interferometer allows one to map contours of constant density and to measure the density

changes in the flow field. The underlying principle is the phase shift of a light beam on pass-

ing through media of different densities. The system now employed almost universally is the

Mach-Zender interferometer, shown in Fig. 13.27. Light from a common source is split into

two beams as it passes through the first half-silvered mirror. One beam passes through the

test section, the other through the reference section. The two beams are then recombined and

projected onto a screen or photographic plate. If the density in the test section and that in the

reference section are the same, there is no phase shift between the two beams, and the screen

is uniformly bright. However, a change of density in the test section changes the light speed

of the test section beam, and a phase shift is generated between the two beams. Upon recom-

bination of the beams, this phase shift gives rise to a series of dark and light bands on the

screen. Each band represents a uniform-density contour, and the change in density across

each band can be determined for a given system.

Figure 13.26

Schlieren system.

Figure 13.27

Schematic diagram of a 

Mach-Zender

interferometer.
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Accuracy of Measurements

When a parameter is measured, it is important to assess the accuracy of the measurement.

The resulting analysis, called an uncertainty analysis, provides an estimate of the upper and

lower bounds of the parameter. For example, if Q is a measured value of discharge,

uncertainty analysis provides an estimate of the uncertainty UQ in this measurement. The

measurement would then be reported as Q $ UQ.

Commonly, a parameter of interest is not directly measured but is calculated from other

variables. For example, discharge for an orifice meter is calculated using Eq. (13.7a). Such an

equation is called a data reduction equation. Consider a data reduction equation of the form

x f (y1, y2,  . . . , yn)

where x is the parameter of interest and y1 through yn are the independent variables. Then, the

uncertainty in x, which is written as Ux, is given by

(13.25)

where is the uncertainty in variable yi. Equation (13.25), known as the uncertainty equation,

is very useful for quantifying the accuracy of an experimental measurement, and for planning

experiments. Additional information about uncertainty analysis is provided by Coleman and

Steele (17).

EXAMPLE 13.10   UNCERTAINTY ESTIMATE 

FOR AN ORIFICE METER

For the orifice meter described in Example 13.2, estimate the 

uncertainty of the calculated discharge. Assume that 

uncertainty in K is 0.03, the uncertainty in diameter is 0.15 mm, 

and the uncertainty in measured head is 10 mm-Hg.

Problem Definition

Situation:

1. Water flows through an orifice in a pipe 

2. A mercury-water manometer is used to measure pressure drop.

Find: Uncertainty (in m3 s) for the calculated discharge Q.

Plan

1. Identify the data reduction equation (DRE).

2. Within the DRE, identify each variable that contributes to 
uncertainty.

3. Develop an equation for uncertainty by applying Eq. (13.25).

4. Calculate uncertainty by using the equation developed in 
step 3.

Sketch:

Solution

1. The data reduction equation is the orifice equation, 
Eq. (13.7a).
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Summary

There are many methods and instruments for measuring velocity, pressure, and flow rate:

• For velocity measurement: stagnation tube, Pitot tube, yaw meter, vane and cup ane-

mometers, hot-wire and hot-film anemometers, laser-Doppler anemometer, and particle

image velocimetry

• For pressure measurement: static tube, piezometer, differential manometer, Bourdon-tube

gage, and several types of pressure transducers

• For flow rate measurement: direct volume or weight measurement, velocity-area in-

tegration, orifice meter, flow nozzle, venturi meter, electromagnetic flow meter, ultrasonic

flow meter, turbine flow meter, vortex flow meter, rotameter, and weir

Flow rate or discharge for a flow meter that uses a restricted opening (i.e., an orifice,

flow nozzle, or venturi) is calculated using

where K is a flow coefficient that depends on Reynolds number and the type of flow meter, Ao is

the area of the opening, �h is the change in piezometric head across the flowmeter, and �pz is

drop in piezometric pressure across the flowmeter.

Discharge for a rectangular weir of length L is given by

2. Variables that cause uncertainty are K, d, g, and h. Neglect the 
influence of g.

3. Derive an equation for the uncertainty

Evaluate each partial derivative and then divide both sides of 

this equation by Q2:

4. Substitute values from Example 13.2:

Thus

Review

The primary source of uncertainty in the discharge is due to 

UK. The term Uh has a small effect, and Ud has a negligible 

effect.
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where K is the flow coefficient that depends on H P. The term H is the height of the water

above the crest of the weir, as measured upstream of the weir, and P is the height of the weir.

Discharge for a 60° triangular weir with H 2 cm is given by

When flow is compressible, instruments such as the stagnation tube, hot-wire anemometer,

Pitot tube, and flow nozzle may be used. However, equations correlating velocity and discharge

need to be altered to account for the effects of compressibility. To observe shock waves in com-

pressible flow, a schlieren technique or an interferometer may be used.

Uncertainty analysis provides a way to quantify the accuracy of a measurement. When

a parameter of interest x is evaluated using an equation of the form x f (y1, y2, . . . , yn),

where y1 through yn are the independent variables, the uncertainty in x is given by

where is the uncertainty in variable yi. This equation, known as the uncertainty equation,

is very useful for estimating uncertainty and for planning experiments.
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Problems

Overview

13.1 ��� List five different instruments or approaches that en-

gineers use to measure fluid velocity. For each instrument or ap-

proach, list two advantages and two disadvantages.

13.2 ��� List five different instruments or approaches that en-

gineers use to measure flow rate (discharge). For each instru-

ment or approach, list two advantages and two disadvantages.

Stagnation Tubes

13.3 ��� Consider measuring the speed of automobile by

building a stagnation tube from a drinking straw and then using

this device with a water-filled U-tube manometer.

a. Make a sketch that illustrates how you would propose mak-

ing this measurement.
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b. Determine the lowest velocity that could be measured. As-

sume that the lower limit is based on the resolution of the

manometer.

13.4 Without exceeding an error of 2.5%, what is the minimum

air velocity that can be obtained using a 1 mm circular stagna-

tion tube if the formula.

is used for computing the velocity? Assume standard atmo-

spheric conditions.

13.5 Without exceeding an error of 1%, what is the minimum

water velocity that can be obtained using a 1.5 mm circular

stagnation tube if the formula

is used for computing the velocity? Assume the water tempera-

ture is 20°C.

13.6A stagnation tube 2 mm in diameter is used to measure the ve-

locity in a stream of air as shown. What is the air velocity if the de-

flection on the air-water manometer is 1.0 mm? Air temperature

10°C, and p 1 atm.

13.7 If the velocity in an airstream (pa 98 kPa; T 10°C) is

12 m s, what deflection will be produced in an air-water ma-

nometer if the stagnation tube is 2 mm in diameter?

13.8 What would be the error in velocity determination if one

used a Cp value of 1.00 for a circular stagnation tube instead of

the true value? Assume the measurement is made with a stagna-

tion tube 2 mm in diameter that is measuring air (T 25°C,

p 1 atm) velocity for which the stagnation pressure reading is

5.00 Pa.

13.9 A velocity-measuring probe used frequently for measuring

stack gas velocities is shown. The probe consists of two tubes bent

away from and toward the flow direction and cut off on a plane

normal to the flow direction, as shown. Assume the pressure co-

efficient is 1.0 at A and –0.4 at B. The probe is inserted in a stack

where the temperature is 300°C and the pressure is 100 kPa ab-

solute. The gas constant of the stack gases is 410 J kg K. The

probe is connected to a water manometer, and a 1.0 cm deflection

is measured. Calculate the stack gas velocity.

Volume Flow Rate (Discharge)

13.10Water from a pipe is diverted into a tank for 4 min. If the weight

of diverted water is measured to be 10 kN, what is the discharge in

cubic meters per second? Assume the water temperature is 20°C.

13.11 Water from a test apparatus is diverted into a calibrated

volumetric tank for 5 min. If the volume of diverted water is

measured to be 80 m3, what is the discharge in cubic meters

per second, gallons per minute, and cubic feet per second?

13.12 A velocity traverse in a 24 cm oil pipe yields the data in the

table. What are the discharge, mean velocity, and ratio of maximum

to mean velocity? Does the flow appear to be laminar or turbulent? 

13.13 A velocity traverse inside a 16 in. circular air duct yields

the data in the table. What is the rate of flow in cubic feet per

second and cubic feet per minute? What is the ratio of Vmax to

Vmean? Does it appear that the flow is laminar or turbulent? If

p 14.3 psia and T 70°F, what is the mass flow rate?

PROBLEMS 13.6, 13.7

V 2 pstag �⁄Δ 2ghstag� �

V 2 pstag �⁄Δ 2ghstag� �
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Deflection

Stagnation tube
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PROBLEM 13.9

r (cm) V (m s) r (cm) V (m s)

0 8.7 7 5.8

1 8.6 8 4.9

2 8.4 9 3.8

3 8.2 10 2.5

4 7.7 10.5 1.9

5 7.2 11.0 1.4

6 6.5 11.5 0.7

y* V (ft s) y* V (ft s)

0.0 0 2.0 110

0.1 72 3.0 117

0.2 79 4.0 122

0.4 88 5.0 126

0.6 93 6.0 129

1.0 100 7.0 132

1.5 106 8.0 135

*Distance from pipe wall, in.

A

B

⁄ ⁄

� �

⁄ ⁄
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13.14 The asymmetry of the flow in stacks means that flow ve-

locity must be measured at several locations on the cross-flow

plane. Consider the cross section of the cylindrical stack shown.

The two access holes through which probes can be inserted are

separated by 90°. Velocities can be measured at the five points

shown (five-point method).

a. Determine the ratio rm D such that the areas of the five mea-

suring segments are equal.

b. Determine the ratio r D (probe location) that corresponds to

the centroid of the segment.

c. The data in the table are taken for a stack 2 m in diameter in

which the gas temperature is 300°C, the pressure is 110 kPa ab-

solute, and the gas constant is 400 J kg K. The data repre-

sent the deflection on a water manometer connected to a

Pitot-static tube located at the measuring stations. Calculate

the mass flow rate. 

13.15 Repeat Prob. 13.14 for the case in which three access

holes are separated by 60° and seven measuring points are

used. The diameter of the stack is 1.5 m, the gas temperature is

250°C, the pressure is 115 kPa absolute, and the gas constant

is 420 J kg K. The data in the following table represent the de-

flection of a water manometer connected to a Pitot-static tube at

the measuring stations. Calculate the mass flow rate.

13.16 Theory and experimental verification indicate that the

mean velocity along a vertical line in a wide stream is closely

approximated by the velocity at 0.6 depth. If the indicated ve-

locities at 0.6 depth in a river cross section are measured, what

is the discharge in the river?

Laser-Doppler Anemometers

13.17 ��� Literature Review. On the Internet, locate quality

resources relevant to the LDA. Skim these resources, and then

a. Write down five findings that are relevant to engineering

practice and interesting to you.

b. Write down two questions about LDAs that are interesting

and insightful.

13.18 A laser-Doppler anemometer (LDA) system is being used

to measure the velocity of air in a tube. The laser is an argon-ion

laser with a wavelength of 4880 angstroms. The angle between

the laser beams is 20°. The time interval is determined by mea-

suring the time between five spikes, as shown, on the signal

from the photodetector. The time interval between the five

spikes is 12 microseconds. Find the velocity.  

Orifice Meters

13.19 ��� On the Internet, locate quality knowledge resources

relevant to orifice meters. Skim these resources, and then

a. Write down five findings that are relevant to engineering

practice and interesting to you.

b. Write down two questions that are interesting, insightful, and

relevant to orifice meters.

13.20 For the jet and orifice shown, determine Cv, Cc, and Cd.

13.21 A fluid jet discharging from a 3 cm orifice has a diameter of

2.7 cm at its vena contracta. What is the coefficient of contraction?

13.22 Figure 13.13 is of a sharp-edged orifice. Note that the

metal surface immediately downstream of the leading edge

makes an acute angle with the metal of the upstream face of the

orifice. Do you think the orifice would operate the same (have

the same flow coefficient, K ) if that angle were 90°? Explain

how you came to your conclusion.

13.23 New orifices such as that shown in Fig. 13.13 will have

definite flow coefficients as given in Fig. 13.14. With age,

Station �h (cm)

1 1.2
2 1.1
3 1.1
4 0.9
5 1.05

PROBLEM 13.14

Station �h (mm)

1 8.2
2 8.6
3 8.2
4 8.9
5 8.0
6 8.5
7 8.4
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however, physical changes could occur to the orifice. Explain

what changes these might be and how (if at all) these physical

changes might affect the flow coefficients.

13.24 A 6 in. orifice is placed in a 10 in. pipe, and a mercury

manometer is connected to either side of the orifice. If the flow

rate of water (60°F) through this orifice is 4.5 cfs, what will be

the manometer deflection?

13.25 Determine the discharge of water through this 6 in. orifice

that is installed in a 12 in. pipe.

13.26 The flow coefficient values for orifices given in Fig.

13.14 were obtained by testing orifices in relatively smooth

pipes. If an orifice were used in a pipe that was very rough, do

you think you would get a valid indication of discharge by using

the flow coefficient of Fig. 13.14? Justify your conclusion.

13.27 Determine the discharge of water (T 60°F) through the

orifice shown if h 5 ft, D 6 in., and d 3 in.

13.28 A pressure transducer is connected across an orifice to

measure the flow rate of kerosene at 20°C. The pipe diameter

is 2 cm, and the ratio of orifice diameter to pipe diameter is 0.6.

The pressure differential as indicated by the transducer is 10

kPa. What is the mean velocity of the kerosene in the pipe?

13.29 The 10 cm orifice in the horizontal 30 cm pipe shown is the

same size as the orifice in the vertical pipe. The manometers are

mercury-water manometers, and water (T 20°C) is flowing in

the system. The gages are Bourdon-tube gages. The flow, at a rate

of 0.1 m3 s, is to the right in the horizontal pipe and therefore

downward in the vertical pipe. Is �p as indicated by gages A and

B the same as �p as indicated by gages D and E? Determine their

values. Is the deflection on manometer C the same as the deflec-

tion on manometer F? Determine the deflections.

13.30 A 15 cm plate orifice at the end of a 30 cm pipe is en-

larged to 20 cm. With the same pressure drop across the orifice

(approximately 50 kPa), what will be the percentage of increase

in discharge?

13.31 If water (20°C) is flowing through this 5 cm orifice, esti-

mate the rate of flow. 
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13.32 A pressure transducer is connected across an orifice as

shown. The pressure at the upstream pressure tap is p1, and the

pressure at the downstream tap is p2. The pressure at the trans-

ducer connected to the upstream tap is pT,1 and to the down-

stream pressure tap, pT,2. Show that the difference in piezometric

pressure defined as (p1 	z1) (p2 	z2) is equal to the pressure

difference across the transducer, pT,1  pT,2.

13.33 Water (T 50°F) is pumped at a rate of 20 cfs through

the system shown in the figure. What differential pressure will

occur across the orifice? What power must the pump supply to

the flow for the given conditions? Also, draw the HGL and the

EGL for the system. Assume f 0.015 for the pipe.

13.34 Determine the size of orifice required in a 15 cm pipe to

measure 0.03 m3 s of water with a deflection of 1 m on a mer-

cury-water manometer.

13.35 What is the discharge of gasoline (S 0.68) in a 10 cm

horizontal pipe if the differential pressure across a 6 cm orifice

in the pipe is 50 kPa?

13.36 What size orifice is required to produce a change in head of

6 m for a discharge of 2 m3 s of water in a pipe 1 m in diameter?

13.37 An orifice is to be designed to have a change in pressure

of 50 kPa across it (measured with a differential-pressure trans-

ducer) for a discharge of 3.0 m3 s of water in a pipe 1.2 m in di-

ameter. What diameter should the orifice have to yield the

desired results?

13.38 Hemicircular orifices such as the one shown are some-

times used to measure the flow rate of liquids that also transport

sediments. The opening at the bottom of the pipe allows free

passage of the sediment. Derive a formula for Q as a function of

�p, D, and other relevant variables associated with the problem.

Then, using that formula and guessing any unknown data, esti-

mate the water discharge through such an orifice when �p is

read as 80 kPa and flow is in a 30 cm pipe.

Venturi Meters

13.39 ��� What is the main advantage of a venturi meter ver-

sus an orifice meter? The main disadvantage?

13.40 Water flows through a venturi meter that has a 30 cm

throat. The venturi meter is in a 60 cm pipe. What deflection

will occur on a mercury-water manometer connected between

the upstream and throat sections if the discharge is 0.75 m3 s?

Assume T 20°C.

13.41 What is the throat diameter required for a venturi meter

in a 200 cm horizontal pipe carrying water with a discharge of

10 m3 s if the differential pressure between the throat and the

upstream section is to be limited to 200 kPa at this discharge?

13.42 Estimate the rate of flow of water through the venturi

meter shown.

13.43 When no flow occurs through the venturi meter, the indi-

cator on the differential-pressure gage is straight up and indi-

cates a �p of zero. When 5 cfs of water flows to the right, the

differential-pressure gage indicates �p 10 psi. If the flow is

now reversed and 5 cfs flow to the left through the venturi meter,

in which range would �p fall? (a) �p 10 psi, (b) 10

psi �p 0, (c) 0 �p 10 psi, or (d) �p 10 psi.

13.44 The pressure differential across this venturi meter is 100 kPa.

What is the discharge of water through it?
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13.45Engineers are calibrating a poorly designed venturi meter for

the flow of an incompressible liquid by relating the pressure differ-

ence between taps 1 and 2 to the discharge. By applying the Ber-

noulli equation and assuming a quasi–one-dimensional flow

(velocity uniform across every cross section), the engineers find that

where D and d are the duct diameters at stations 1 and 2. However,

they realize that the flow is not quasi–one-dimensional and

that the pressure at tap 2 is not equal to the average pressure in the

throat because of streamline curvature. Thus the engineers intro-

duce a correction factor K into the foregoing equation to yield

Q KQ0

Use your knowledge of pressure variation across curved stream-

lines to decide whether K is larger or smaller than unity, and

support your conclusion by presenting a rational argument.

13.46 The differential-pressure gage on the venturi meter shown

reads 6.2 psi, h 25 in., d 6 in., and D 12 in. What is the

discharge of water in the system? Assume T 50°F.

13.47 The differential-pressure gage on the venturi meter reads

45 kPa, d 20 cm, D 40 cm, and h 80 cm. What is the dis-

charge of gasoline (S 0.69; � 3 10–4 N  s m2) in the

system?

13.48 A flow nozzle has a throat diameter of 2 cm and a beta ra-

tio (d D) of 0.5. Water flows through the nozzle, creating a

pressure difference across the nozzle of 8 kPa. The viscosity of

the water is 10-6 m2 s, and the density is 1000 kg m3. Find the

discharge.

13.49 Water flows through an annular venturi consisting of a

body of revolution mounted inside a pipe. The pressure is mea-

sured at the minimum area and upstream of the body. The pipe

is 5 cm in diameter, and the body of revolution is 2.5 cm in di-

ameter. A head difference of 1 m is measured across the pres-

sure taps. Find the discharge in cubic meters per second.

Miscellaneous Measurement Techniques

13.50 What is the head loss in terms of  for the flow noz-

zle shown?

13.51 A vortex flow meter is used to measure the discharge in a

duct 5 cm in diameter. The diameter of the shedding element is

1 cm. The Strouhal number based on the shedding frequency

from one side of the element is 0.2. A signal frequency of 50 Hz

is measured by a pressure transducer mounted downstream of

the element. What is the discharge in the duct?

13.52 A rotameter operates by aerodynamic suspension of a

weight in a tapered tube. The scale on the side of the rotameter

is calibrated in scfm of air—that is, cubic feet per minute at
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standard conditions (p 1 atm and T 68°F). By considering

the balance of weight and aerodynamic force on the weight in-

side the tube, determine how the readings would be corrected

for nonstandard conditions. In other words, how would the actual

cubic feet per minute be calculated from the reading on the scale,

given the pressure, temperature, and gas constant of the gas enter-

ing the rotameter?

13.53 A rotameter is used to measure the flow rate of a gas with

a density of 1.0 kg m3. The scale on the rotameter indicates

5 liters s. However, the rotameter is calibrated for a gas with a

density of 1.2 kg m3. What is the actual flow rate of the gas (in

liters per second)?

13.54 One mode of operation of ultrasonic flow meters is to mea-

sure the travel times between two stations for a sound wave trav-

eling upstream and then downstream with the flow. The

downstream propagation speed with respect to the measuring sta-

tions is c V, where c is the sound speed and V is the flow veloc-

ity. Correspondingly, the upstream propagation speed is c V.

a. Derive an expression for the flow velocity in terms of the

distance between the two stations, L; the difference in travel

times, �t; and the sound speed.

b. The sound speed is typically much larger than V (c V).

With this approximation, express V in terms of L, c, and �t.

c. A 10 ms time difference is measured for waves traveling 20 m

in a gas where the speed of sound is 300 m s. Calculate the

flow velocity.

Weirs

13.55 ���What variables influence flow rate through a rectan-

gular weir?

13.56��� On the Internet locate quality resources relevant to

weirs, skim these resources, and write down five important findings.

13.57 Water flows over a rectangular weir that is 4 m wide and

30 cm high. If the head on the weir is 20 cm, what is the dis-

charge in cubic meters per second?

13.58 The head on a 60° triangular weir is 25 cm. What is the

discharge over the weir in cubic meters per second?

13.59 Water flows over two rectangular weirs. Weir A is 5 ft long

in a channel 10 ft wide; weir B is 5 ft long in a channel 5 ft

wide. Both weirs are 2 ft high. If the head on both weirs is 1.00 ft,

then one can conclude that (a) QA QB, (b) QA QB, or (c)

QA QB.

13.60 A 1 ft–high rectangular weir (weir 1) is installed in a 2 ft–wide

rectangular channel, and the head on the weir is observed for a dis-

charge of 10 cfs. Then the 1 ft weir is replaced by a 2 ft–high rect-

angular weir (weir 2), and the head on the weir is observed for

a discharge of 10 cfs. The ratio H1 H2 should be (a) equal to

1.00, (b) less than 1.00, or (c) greater than 1.00.

13.61 A 3 m–long rectangular weir is to be constructed in a 3 m–wide

rectangular channel, as shown (a). The maximum flow in the chan-

nel will be 4 m3 s. What should be the height P of the weir to yield

a depth of water of 2 m in the channel upstream of the weir? 

13.62 Consider the rectangular weir described in Prob. 13.61.

When the head is doubled, the discharge is (a) doubled, (b)

less than doubled, or (c) more than doubled.

13.63 A basin is 50 ft long, 2 ft wide, and 4 ft deep. A sharp-

crested rectangular weir is located at one end of the basin, and it

spans the width of the basin (the weir is 2 ft long). The crest of the

weir is 2 ft above the bottom of the basin. At a given instant water

in the basin is 3 ft deep; thus water is flowing over the weir and

out of the basin. Estimate the time it will take for the water in the

basin to go from the 3 ft depth to a depth of 2 ft 2 in.

13.64 Water at 50°F is piped from a reservoir to a channel like

that shown. The pipe from the reservoir to the channel is a 4 in.

steel pipe 100 ft in total length. There are two 90° bends,

r D 1, in the line, and the entrance and exit are sharp-edged.

The weir is 2 ft long. The elevation of the water surface in the

reservoir is 100 ft, and the elevation of the bottom of the
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channel is 70 ft. The crest of the weir is 3 ft above the bottom of

the channel. For steady flow conditions determine the water sur-

face elevation in the channel and the discharge in the system.

13.65 At one end of a rectangular tank 1 m wide is a sharp-

crested rectangular weir 1 m high. In the bottom of the tank is a

10 cm sharp-edged orifice. If 0.10 m3 s of water flows into the

tank and leaves the tank both through the orifice and over the

weir, what depth will the water in the tank attain?

13.66 What is the water discharge over a rectangular weir 3 ft

high and 10 ft long in a rectangular channel 10 ft wide if the

head on the weir is 1.5 ft?

13.67A reservoir is supplied with water at 60°F by a pipe with a ven-

turi meter as shown. The water leaves the reservoir through a trian-

gular weir with an included angle of 60°. The flow coefficient

of the venturi is unity, the area of the venturi throat is 12 in.2, and

the measured �p is 10 psi. Find the head, H, of the triangular weir.

13.68 At a particular instant water flows into the tank shown

through pipes A and B, and it flows out of the tank over the rect-

angular weir at C. The tank width and weir length (dimensions

normal to page) are 2 ft. Then, for the given conditions, is the

water level in the tank rising or falling? 

13.69 Water flows from the first reservoir to the second over a

rectangular weir with a width-to-head ratio of 3. The height P of

the weir is twice the head. The water from the second reservoir

flows over a 60° triangular weir to a third reservoir. The dis-

charge across both weirs is the same. Find the ratio of the head

on the rectangular weir to the head on the triangular weir.

13.70 Given the initial conditions of Prob. 13.69, tell, qualita-

tively and quantitatively, what will happen if the flow entering

the first reservoir is increased 50%.

13.71 A rectangular irrigation canal 3 m wide carries water with a

discharge of 6 m3 s. What height of rectangular weir installed

across the canal will raise the water surface to a level 2 m above

the canal floor?

13.72 The head on a 60° triangular weir is 1.5 ft. What is the

discharge of water over the weir?

13.73 An engineer is designing a triangular weir for measuring

the flow rate of a stream of water that has a discharge of 10 cfm.

The weir has an included angle of 45° and a coefficient of dis-

charge of 0.6. Find the head on the weir.

13.74 A pump is used to deliver water at 10°C from a well to a

tank. The bottom of the tank is 2 m above the water surface in

the well. The pipe is commercial steel 2.5 m long with a diame-

ter of 5 cm. The pump develops a head of 20 m. A triangular

weir with an included angle of 60° is located in a wall of the tank

with the bottom of the weir 1 m above the tank floor. Find the

level of the water in the tank above the floor of the tank. 

Measurements in Compressible Flow

13.75 A Pitot-static tube is used to measure the Mach number in

a compressible subsonic flow of air. The stagnation pressure is

140 kPa, and the static pressure is 100 kPa. The total tempera-

ture of the flow is 300 K. Determine the Mach number and the

flow velocity.

13.76 Use the normal shock wave relationships developed in

Chapter 12 to derive the Rayleigh supersonic Pitot formula.

13.77 The static and stagnation pressures measured by a Pitot-static

tube in a supersonic air flow are 54 kPa and 200 kPa, respectively.
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The total temperature is 350 K. Determine the Mach number

and the velocity of the free stream.

13.78 A venturi meter is used to measure the flow of helium in

a pipe. The pipe is 1 cm in diameter, and the throat diameter is

0.5 cm. The measured upstream and throat pressures are 120 kPa

and 80 kPa, respectively. The static temperature of the helium in

the pipe is 17°C. Determine the mass flow rate.

13.79 Hydrogen at atmospheric pressure and 15°C flows

through a sharp-edged orifice with a beta ratio, d D, of 0.5

in a 2 cm pipe. The pipe is horizontal, and the pressure

change across the orifice is 1 kPa. The flow coefficient is

0.62. Find the mass flow (in kilograms per second) through

the orifice.

13.80 A hole 0.2 in. in diameter is accidentally punctured in a

line carrying natural gas (methane). The pressure in the pipe is

50 psig, and the atmospheric pressure is 14 psia. The tempera-

ture in the line is 70°F. What is the rate at which the methane

leaks through the hole (in lbm s)? The hole can be treated as a

truncated nozzle.

Uncertainty Analysis

13.81 Consider the stagnation tube of Prob. 13.6. If the uncer-

tainty in the manometer measurement is 0.1 mm, calculate the ve-

locity and the uncertainty in the velocity. Assume that Cp 1.00,

�air 1.25 kg m3, and the only uncertainty is due to the mano-

meter measurement.

13.82 Consider the orifice meter in Prob. 13.25. Calculate the

flow rate and the uncertainty in the flow rate. Assume the fol-

lowing values of uncertainty: 0.03 in flow coefficient, 0.05 in.

in orifice diameter, and 0.5 in. in height of mercury.

13.83 Consider the weir in Prob. 13.66. Calculate the discharge

and the uncertainty in the discharge. Assume the uncertainty in

K is 5%, in H is 3 in., and in L is 1 in.

⁄

⁄
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C H A P T E R

Turbomachinery

Machines to move fluids or to extract power from moving fluids have been designed and

used by human beings since the beginning of recorded history. Ancient designs included

buckets attached to a rope to transport water from a well or river. In the third century B.C.,

Archimedes invented the screw pump, which the Romans later used in their water supply

systems. Water wheels were used in ancient China for grinding grain.

Fluid machines are used everywhere. They are the essential components of the automobiles

we drive, the supply systems for the water we drink, the power generation plants for the electricity

we use, and the air-conditioning and heating systems which provide the comfort we enjoy.

This chapter will introduce the concepts underlying various types of turbomachines and

show how different designs are best suited to specific applications.

Fluid machines are separated into two broad categories: positive-displacement ma-

chines and turbomachines. Positive-displacement machines operate by forcing fluid into or

out of a chamber. Examples include the bicycle tire pump, the gear pump, the peristaltic

pump, and the human heart. Turbomachines involve the flow of fluid through rotating blades

or rotors that remove or add energy to the fluid. Examples include propellers, fans, water

pumps, windmills, and compressors. Axial-flow turbomachines operate with the flow enter-

ing and leaving the machine in the direction that is parallel to the axis of rotation of blades. A

radial-flow machine can have the flow either entering or leaving the machine in the radial di-

rection which is normal to the axis of rotation.

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Explain the difference between a pump, compressor, and turbine.

• Distinguish between an axial and radial machine.

• Explain the meaning of head, power, and discharge coefficients.

• Explain the difference in application between axial and radial compressors.

• Explain the significance of specific speed.

• Explain the difference between an impulse and reaction turbine.

Procedural Knowledge

• Calculate thrust produced by a propeller.

• Calculate performance of axial fan.

• Calculate discharge, head, and power for a pump.

• Calculate power produced by a turbine.

Applications (Typical)

• Thrust of a propeller.

• Power required to operate fan.

• Selection of best pump for specific application.

• Power produced by impulse and reaction turbine.
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Table 14.1 provides a classification for turbomachinery. Power-absorbing machines re-

quire power to increase head (or pressure). A power-producing machine provides shaft power

at the expense of head (or pressure) loss. Pumps are associated with liquids whereas fans

(blowers) and compressors are associated with gases. Both gases and liquids produce power

through turbines. Oftentimes the gas turbine refers to an engine that has both a compressor

and turbine and produces power.

Propellers

A propeller is a fan that converts rotational motion into thrust. The design of a propeller is

based on the fundamental principles of airfoil theory. For example, consider a section of the

propeller in Fig. 14.1, and notice the analogy between the lifting vane and the propeller. This

propeller is rotating at an angular speed �, and the speed of advance of the airplane and

propeller is V0. Focusing on an elemental section of the propeller, Fig. 14.1c, it is noted that

the given section has a velocity with components V0 and Vt . Here Vt is tangential velocity,

Vt r�, resulting from the rotation of the propeller. Reversing and adding the velocity

vectors V0 and Vt yield the velocity of the air relative to the particular propeller section (Fig.

14.1d).

The angle � is given by

� arctan (14.1)

For a given forward speed and rotational rate, this angle is a minimum at the propeller tip

(r r0) and increases toward the hub as the radius decreases. The angle � is known as the

pitch angle. The local angle of attack of the elemental section is

� � � (14.2)

The propeller can be analyzed as a series of elemental sections (of width dr) producing lift

and drag, which provide the propeller thrust and create resistive torque. This torque multi-

plied by the rotational speed is the power input to the propeller.

The propeller is designed to produce thrust, and since the greatest contribution to thrust

comes from the lift force FL, the goal is to maximize lift and minimize drag, FD. For a given

shape of propeller section, the optimum angle of attack can be determined from data such as

Table 14.1 CATEGORIES OF TURBOMACHINERY

Power Absorbing Power Producing

Axial machines Axial pumps
Axial fans
Propellers
Axial compressors

Axial turbine (Kaplan)
Wind turbine
Gas turbine

Radial machines Centrifugal pump
Centrifugal fan
Centrifugal compressor

Impulse turbine (Pelton wheel)
Reaction turbine (Francis turbine)

14.1

�

�
V0

r�
------

�

� –
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are given in Fig. 11.23. Because the angle � increases with decreasing radius, the local pitch

angle has to change to achieve the optimum angle of attack. This is done by twisting the blade.

A dimensional analysis can be performed to determine the �-groups that characterize

the performance of a propeller. For a given propeller shape and pitch distribution, the thrust

of a propeller T, will depend on the propeller diameter D, the rotational speed n, the forward

speed V0, the fluid density �, and the fluid viscosity �.

T f (D,� ,V0 ,�,�) (14.3)

Performing a dimensional analysis using the methods presented in Chapter 8, results in

(14.4)

It is conventional practice to express the rotational rate, n, as revolutions per second (rps).

The �-group on the left is called the thrust coefficient,

(14.5)

The first �-group on the right is the advance ratio. The second group is a Reynolds number

based on the tip speed and diameter of the propeller. For most applications, the Reynolds

number is high, and experience shows that the thrust coefficient is unaffected by the Rey-

nolds number, so

(14.6)
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The angle � at the propeller tip is related to the advance ratio by

� arctan arctan (14.7)

As the advance ratio increases and � increases, the local angle of attack at the blade element

decreases, the lift increases, and the thrust coefficient goes down. This trend is illustrated in

Fig. 14.2, which shows the dimensionless performance curves for a typical propeller. Ulti-

mately, an advance ratio is reached where the thrust coefficient goes to zero.

Performing a dimensional analysis for the power, P, shows

(14.8)

The �-group on the left is the power coefficient,

(14.9)

As with the thrust coefficient, the power coefficient is not significantly influenced by the Rey-

nolds number at high Reynolds numbers, so CP reduces to a function of the advance ratio only

(14.10)

The functional relationship between CP and V0 nD for an actual propeller is also shown in

Fig. 14.2. Even though the thrust coefficient approaches zero for a given advance ratio, the

power coefficient shows little decrease because it still takes power to overcome the torque on

the propeller blade.

Figure 14.2
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The curves for CT and CP are evaluated from performance characteristics of a given

propeller operating at different values of V0 as shown in Fig. 14.3. Although the data for the

curves are obtained for a given propeller, the values for CT and CP, as a function of advance

ratio, can be applied to geometrically similar propellers of different sizes and angular

speeds.* Example 14.1 illustrates such an application.

Figure 14.3

Power and thrust of a 

propeller 2.90 m in 

diameter at a rotational 

speed of 1400 rpm. 

[After Weick (2).]

EXAMPLE 14.1   PROPELLER APPLICATION

A propeller having the characteristics shown in Fig. 14.2 is to 

be used to drive a swamp boat. If the propeller is to have a 

diameter of 2 m and a rotational speed of N 1200 rpm, what 

should be the thrust starting from rest? If the boat resistance 

(air and water) is given by the empirical equation 

where V0 is the boat speed in meters per 

second, FD is the drag, and � is the mass density of the water, 

what will be the maximum speed of the boat and what power 

will be required to drive the propeller? Assume 

and

Problem Definition

Situation: Propeller used to drive a swamp boat.

Find:

1. Thrust (in N) starting from rest.

2. Maximum speed (in m s) of swamp boat.

3. Power required (in kW) to operate propeller.

Sketch:

Properties: 

Plan

1. From Fig. 14.2, find thrust coefficient for zero advance ratio.

2. Calculate thrust using Eq. (14.5).

3. To calculate maximum speed, plot propeller thrust versus 
boat speed and on same graph plot resistance of swamp 
boat versus boat speed. The maximum speed is where the 
curves intersect.

* The speed of sound was not included in the dimensional analysis. However, the propeller performance is

reduced because the Mach number based on the propeller tip speed leads to shock waves and other

compressible-flow effects.
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The efficiency of a propeller is defined as the ratio of the power output—that is, thrust

times velocity of advance—to the power input. Hence the efficiency � is given as

or (14.11)

The variation of efficiency with advance ratio for a typical propeller is also shown in Fig.

14.2. The efficiency can be calculated directly from CT and CP performance curves. Note at

low advance ratios, the efficiency increases with advance ratio and then reaches a maximum

value before the decreasing thrust coefficient causes the efficiency to drop toward zero. The

maximum efficiency represents the best operating point for fuel efficiency.

Many propeller systems are designed to have variable pitch; that is, pitch angles can be

changed during propeller operation. Different efficiency curves corresponding to varying

pitch angle are shown in Fig. 14.4. The envelope for the maximum efficiency is also shown

in the figure. During operation of the aircraft, the pitch angle can be controlled to achieve

maximum efficiency corresponding to the propeller rpm and forward speed.

4. The maximum power will be when the boat speed is 
zero, so use Eq. (14.9) with CP for zero advance ratio 
from Fig. 14.2.

Solution

1. From Fig. 14.2, for 

2. Thrust

3. Table of thrust versus speed of swamp boat

Graph of propeller thrust and swamp boat drag versus 

speed

Curves intersect at V0 11 m s. Hence maximum 

speed of swamp boat is 11 m s.

4. At V0 nD 0, CP 0.014.

Review

In an actual application the calculated maximum power is 

somewhat misleading. The starting rotational rate of propeller 

need not be 1200 rpm but can be a lower value. After the boat 

is gaining speed the rotational rate can be increased to 

achieve maximum speed.
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The best source for propeller performance information is from propeller manufacturers.

There are many speciality manufacturers from everything from marine to aircraft applications.

Axial-Flow Pumps 

The axial flow pump acts much like a propeller enclosed in a housing as shown in Fig. 14.5.

The rotating element, the impeller, causes a pressure change between the upstream and

downstream sections of the pump. In practical applications, axial-flow machines are best

suited to deliver relatively low heads and high flow rates. Hence pumps used for dewatering

lowlands, such as those behind dikes, are almost always of the axial-flow type. Water

turbines in low-head dams (less than 30 m) where the flow rate and power production are

large are also generally of the axial type.

Head and Discharge Coefficients for Pumps
The thrust coefficient is defined as for use with propellers, and if the same variables

are applied to flow in an axial pump, the thrust can be expressed as or

(14.12)

Figure 14.4

Efficiency curves for 

variable-pitch propeller.

Figure 14.5

Axial-flow blower in a 

duct.
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A new parameter, called the head coefficient CH, is defined using the variables of Eq. (14.12), as

(14.13)

which is a �-group that relates head delivered to fan diameter and rotational speed.

The independent �-group relating to propeller operation is V0 nD; however, multiply-

ing the numerator and denominator by the diameter squared gives V0D
2 nD3, and V0D2 is

proportional to the discharge, Q. Thus the �-group for pump similarity studies is Q nD3

and is identified as the discharge coefficient CQ. The power coefficient used for pumps is

the same as the power coefficient used for propellers. Summarizing, the �-groups used in

the similarity analyses of pumps are

(14.14)

(14.15)

(14.16)

where CH and CP are functions of CQ for a given type of pump.

Figure 14.6 is a set of curves of CH and CP versus CQ for a typical axial-flow pump.

Also plotted on this graph is the efficiency of the pump as a function of CQ. The dimen-

sional curves (head and power versus Q for a constant speed of rotation) from which Fig.

14.6 was developed are shown in Fig. 14.7. Because curves like those shown in Fig. 14.6 or

Fig. 14.7 characterize pump performance, they are often called characteristic curves or

performance curves. These curves are obtained by experiment.

Figure 14.6

Dimensionless

performance curves for a 

typical axial-flow pump. 

[After Stepanoff (3).]
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There can be a problem with overload when operating axial-flow pumps. As seen in Fig.

14.6, when the pump flow is throttled below maximum-efficiency conditions, the required

power increases with decreasing flow, thus leading to the possibility of overloading at low-

flow conditions. For very large installations, special operating procedures are followed in order

to avoid such overloading. For instance, the valve in the bypass from the pump discharge back

to the pump inlet can be adjusted to maintain a constant flow through the pump. However, for

small-scale applications, it is often desirable to have complete flexibility in flow control with-

out the complexity of special operating procedures.

Performance curves are used to predict prototype operation from model tests or the ef-

fect of changing the speed of the pump. Example 14.2 shows how to use pump curves to cal-

culate discharge and power. 

Figure 14.7

Performance curves for

a typical axial-flow 

pump. [After Stepanoff 

(3).]

EXAMPLE 14.2   DISCHARGE AND POWER FOR 

AXIAL-FLOW PUMP

For the pump represented by Figs. 14.6 and 14.7, what 

discharge of water in cubic meters per second will occur 

when the pump is operating against a 2 m head and at a speed 

of 600 rpm? What power in kilowatts is required for these 

conditions?

Problem Definition

Situation: Axial flow pump with water.

Find:

1. Discharge (in m3 s).

2. Power (in kW).

Sketch:

Assumptions: Assume

Plan

1. Calculate CH.

2. From Fig. 14.6 find CQ and CP.

3. Use CQ to calculate discharge.

4. Use CP to calculate power.

Solution

1. Rotational rate is . 
D 35.6 cm.

2. From Fig. 14.6, CQ 0.40 and CP 0.72.
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Example 14.3 illustrates how to calculate head and power for an axial-flow pump. 

Fan Laws
The fan laws are used extensively by designers and practitioners involved with axial fans and

blowers. The fan laws are equations that provide the discharge, pressure rise, and power re-

quirements for a fan that operates at different speeds. The laws are based on the discharge,

head, and power coefficients being the same at any other state as at the reference state, o;

namely, Because the size and design of fan is un-

changed, the discharge at speed n is

(14.17a)

and the pressure rise is

(14.17b)

3. Discharge is 4. Power is

EXAMPLE 14.3   HEAD AND POWER FOR AXIAL-

FLOW PUMP

If a 30 cm axial-flow pump having the characteristics shown 

in Fig. 14.6 is operated at a speed of 800 rpm, what head �H

will be developed when the water-pumping rate is 0.127 

m3 s? What power is required for this operation?

Problem Definition

Situation: 30 cm axial flow pump with water.

1. Head (in meters) developed.

2. Power (in kW) required.

Sketch:

Assumptions: Water with 

Plan

1. Calculate the discharge coefficient, CQ.

2. From Fig. 14.6, read CH, and CP.

3. Use Eq. (14.14) to calculate head produced.

4. Use Eq. (14.15) to calculate power required.

Solution

1. Discharge coefficient is

2. From Fig. 14.6, CH 1.70 and CP 0.80.

3. Head produced is

4. Power required is
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and finally the power required is

(14.17c)

These fan laws cannot be applied between fans of different size and design. Of course, the

fan laws do not provide exact values because of design considerations and manufacturing tol-

erances, but they are very useful in estimating fan performance.

Radial-Flow Machines

Radial-flow machines are characterized by the radial flow of the fluid through the machine.

Radial-flow pumps and fans are better suited for larger heads at lower flow rates than axial

machines.

Centrifugal Pumps
A sketch of the centrifugal pump is shown in Fig. 14.8. Fluid from the inlet pipe enters the

pump through the eye of the impeller and then travels outward between the vanes of the im-

peller to its edge, where the fluid enters the casing of the pump and is then conducted to the

discharge pipe. The principle of the radial-flow pump is different from that of the axial-flow

pump in that the change in pressure results in large part from rotary action (pressure in-

creases outward like that in the rotating tank in Section 4.4 produced by the rotating impel-

ler). Additional pressure increase is produced in the radial-flow pump when the high velocity

of the flow leaving the impeller is reduced in the expanding section of the casing.

Although the basic designs are different for radial- and axial-flow pumps, it can be

shown that the same similarity parameters (CQ, CP, and CH) apply for both types. Thus the

methods that have already been discussed for relating size, speed, and discharge in axial-flow

machines also apply to radial-flow machines.

The major practical difference between axial- and radial-flow pumps so far as the user

is concerned is the difference in the performance characteristics of the two designs. The

dimensional performance curves for a typical radial-flow pump operating at a constant speed

Figure 14.8

Centrifugal pump.
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of rotation are shown in Fig. 14.9. The corresponding dimensionless performance curves for

the same pump are shown in Fig. 14.10. Note that the power required at shutoff flow is less

than that required for flow at maximum efficiency. Normally, the motor used to drive the

pump is chosen for conditions corresponding to maximum pump efficiency. Hence the flow

can be throttled between the limits of shutoff condition and normal operating conditions with

no chance of overloading the pump motor. In this latter case, a radial-flow pump offers a dis-

tinct advantage over axial flow pumps.

Radial-flow pumps are manufactured in sizes from 1 hp or less and heads of 50 or 60 ft

to thousands of horsepower and heads of several hundred feet. Figure 14.11 shows a cut-

away view of a single-suction, single-stage, horizontal-shaft radial pump. Fluid enters in the di-

rection of the rotating shaft and is accelerated outward by the rotating impeller. There are many

other configurations designed for specific applications.  

Figure 14.9

Performance curves for 

a typical centrifugal 

pump; D 37.1 cm. 

[After Daugherty and 

Franzini (4). Used with 

the permission of the 

McGraw-Hill

Companies.]

Figure 14.10

Dimensionless

performance curves for a 

typical centrifugal pump, 

from data given in Fig. 

14.9. [After Daugherty 

and Franzini (4).]
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Example 14.4 shows how to find the speed and discharge for a centrifugal pump

needed to provide a given head.  

Figure 14.11

Cutaway view of a 

single-suction, single-

stage, horizontal-shaft 

radial pump. Pump inlet, 

outlet, and impeller 

shown on photograph. 

(Courtesy of Ingersol 

Rand Co.)

EXAMPLE 14.4   SPEED AND DISCHARGE OF 

CENTRIFUGAL PUMP

A pump that has the characteristics given in Fig. 14.9 when 

operated at 2133.5 rpm is to be used to pump water at 

maximum efficiency under a head of 76 m. At what speed 

should the pump be operated, and what will the discharge be 

for these conditions?

Problem Definition

Situation: Centrifugal pump operated at 2133.5 rpm pumps 
water to head of 76 m at maximum efficiency.

Find:

1. Operational speed of pump (in rpm).

2. Discharge (in m3 s).

Assumptions: Assume pump is the same size as that corre-
sponding to Fig. 14.9 and water properties are the same.

Plan

The CH, CP, CQ, and � are the same for any pump with the 

same characteristics operating at maximum efficiency. Thus

where N represents the unknown speed. Also 

(CQ)N (CQ)2133.5 rpm.

1. Calculate speed using same head coefficient.

2. Calculate discharge using same discharge coefficient.

Solution

1. Speed calculation: From Fig. 14.9, at maximum efficiency 

2. Discharge calculation: From Fig. 14.9, at maximum 
efficiency Q 0.255 m3 s.
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Example 14.5 shows how to scale up data for a specific centrifugal pump to predict

performance.

Specific Speed 

From the discussion in preceding sections it was pointed out that axial-flow pumps are best

suited for high discharge and low head whereas radial machines perform better for low dis-

charge and high head. A tool for selecting the best pump is the value of a �-group called the

specific speed, ns. The specific speed is obtained by combining both CH and CQ in such a

manner that the diameter D is eliminated:

Thus specific speed relates different types of pumps without reference to their sizes.

 As shown in Fig. 14.12, when efficiencies of different types of pumps are plotted

against ns, it is seen that certain types of pumps have higher efficiencies for certain ranges of

ns. For low specific speeds, the radial-flow pump is more efficient whereas high specific

speeds favor axial flow machines. In the range between the completely axial-flow machine

and the completely radial-flow machine, there is a gradual change in impeller shape to ac-

commodate the particular flow conditions with maximum efficiency. The boundaries be-

tween axial, mixed, and radial machines are somewhat vague, but the value of the specific

speed provides some guidance as to which machine would be most suitable. The final choice

EXAMPLE 14.5   HEAD, DISCHARGE, AND 

POWER OF CENTRIFUGAL PUMP

The pump having the characteristics shown in Figs. 14.9 and 

14.10 is a model of a pump that was actually used in one of 

the pumping plants of the Colorado River Aqueduct [see 

Daugherty and Franzini (4)]. For a prototype that is 5.33 

times larger than the model and operates at a speed of 400 

rpm, what head, discharge, and power are to be expected at 

maximum efficiency?

Problem Definition

Situation: Pump 5.33 times larger than model and operates at 
400 rpm.

Find: At maximum efficiency,

1. Head (in meters).

2. Discharge (in m3 s).

3. Power (in kW).

Assumptions: Pumping water with 

Plan

1. Find CQ, CH, and CP at maximum efficiency from Fig. 14.10.

2. Evaluate speed in rps and calculate new diameter.

3. Use Eqs. (14.14) through (14.16) to calculate head, 
discharge, and power.

Solution

1. From Fig. 14.10 at maximum efficiency, CQ 0.12,
CH 5.2 and CP 0.69.

2. Speed in rps: n (400 60) rps 6.67 rps
D 0.371 5.33 1.98 m.

3. Pump performance

• Head
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• Power
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would depend on which pumps were commercially available as well as their purchase price,

operating cost, and reliability.

It should be noted that the specific speed traditionally used for pumps in the United

States is defined as Here the speed N is in revolutions per minute, Q is

in gallons per minute, and �H is in feet. This form is not dimensionless. Therefore its values

are much larger than those found for ns (the conversion factor is 17,200). Most texts and ref-

erences published before the introduction of the SI system of units use this traditional defini-

tion for specific speed.

Example 14.6 illustrates the use of specific speed to select a pump type.

Figure 14.12

Optimum efficiency and 

impeller design versus 

specific speed.

EXAMPLE 14.6    PUMP SELECTION USING 

SPECIFIC SPEED

What type of pump should be used to pump water at the rate 

of 10 cfs and under a head of 600 ft? Assume 

Problem Definition

Situation: Select pump to pump water at 10 cfs under head of 
600 ft.

Find: Type of pump for application.

Plan

1. Calculate specific speed.

2. Use Fig. 14.12 to select pump type. 

Solution

1. Rotational rate in rps

Specific speed

2. From Fig. 14.12 radial-flow pump is the best choice.
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Suction Limitations of Pumps

The pressure at the suction side of a pump is most important because there is the possibility that

cavitation may occur. As water flows past the impeller blades of a pump, local high-velocity

flow zones produce low relative pressures (Bernoulli effect), and if these pressures reach the

vapor pressure of the liquid, then cavitation will occur. For a given type of pump operating at

a given speed and a given discharge, there will be certain pressure at the suction side of the pump

below which cavitation will occur. Pump manufacturers in their testing procedures always

determine this limiting pressure and include it with their pump performance curves.

More specifically, the pressure that is significant is the difference in pressure between

the suction side of the pump and the vapor pressure of the liquid being pumped. Actually, in

practice, engineers express this difference in terms of pressure head, called the net positive
suction head, which is abbreviated NPSH. To calculate NPSH for a pump that is delivering a

given discharge, one first applies the energy equation from the reservoir from which water is

being pumped to the section of the intake pipe at the suction side of the pump. Then one sub-

tracts the vapor pressure head of the water to determine NPSH.

In Fig. 14.13, points 1 and 2 are the points between which the energy equation would

be written to evaluate NPSH.

A more general parameter for indicating susceptibility to cavitation is specific speed.

However, instead of using head produced (�H), one uses NPSH for the variable to the 3 4

power. This is

Here nss is called the suction specific speed. The more traditional suction specific speed used

in the United States is where N is in rpm, Q is in gallons per

minute (gpm), and NPSH is in feet. Analyses of data from pump tests show that the value of

the suction specific speed is a good indicator of whether cavitation may be expected. For ex-

ample, the Hydraulic Institute (5) indicates that the critical value of Nss is 8500. The reader is

directed to manufacturer’s data or the Hydraulic Institute for more details about critical

NPSH or Nss.

An analysis to find NPSH for a pump system is illustrated in Example 14.7.

Figure 14.13

Locations used to 

evaluate NPSH for a 

pump.
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A typical pump performance curve for a centrifugal pump that would be supplied by a

pump manufacturer is shown in Fig. 14.14. The solid lines labeled from 5 in. to 7 in. repre-

sent different impeller sizes that can be accommodated by the pump housing. These curves

give the head delivered as a function of discharge. The dashed lines represent the power

EXAMPLE 14.7   NET POSITIVE SUCTION HEAD

In Fig. 14.13 the pump delivers 2 cfs flow of 80°F water, and 

the intake pipe diameter is 8 in. The pump intake is located 

6 ft above the water surface level in the reservoir. The pump 

operates at 1750 rpm. What is the net positive suction head 

and the traditional suction specific speed for these 

conditions?

Problem Definition

Situation: Pump delivers 2 cfs flow of 80°F water.

Find:

1. Net positive suction head (NPSH).

2. Traditional suction specific speed (Nss).

Assumptions:

1. Atmospheric pressure is 14.7 psi.

2. Entrance loss coefficient 0.10.

3. Bend loss coefficient 0.20.

Properties: Table A.5, (Water at 80°F) 

and

Plan

The net positive suction head is the difference between 

pressure at pump inlet and the vapor pressure.

1. Determine the atmospheric pressure in head of water for 
reservoir surface.

2. Determine velocity in 8 in. pipe.

3. Apply the energy equation [Eq. (7.29)] between the 
reservoir and pump entrance.

4. Calculate NPSH.

5. Calculate Nss with 

Solution

1. Pressure head at reservoir

2. Velocity in pipe

3. Energy equation between points 1 and 2:

• Input values

• Head loss

• Head at pump entrance

4. Vapor pressure in feet of head

Net positive suction head

5. Traditional suction specific speed

Review

1. For a typical single-stage centrifugal pump with an intake 
diameter of 8 in. and pumping 2 cfs, the critical NPSH is 
normally about 10 ft; therefore, the pump of this example is 
operating well within the safe range with respect to cavitation 
susceptibility.

2. This value of Nss is much below the critical limit of 8500; 
therefore, it is in a safe operating range so far as cavitation 
is concerned.

�
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required by the pump for a given head and discharge. Lines of constant efficiency are also

shown. Obviously, when selecting an impeller one would like to have the operating point as

close as possible to the point of maximum efficiency. The NPSH value gives the minimum

head (absolute head) at the pump intake for which the pump will operate without cavitation.

Viscous Effects

In the foregoing sections, similarity parameters were developed to predict prototype results

from model tests, neglecting viscous effects. The latter assumption is not necessarily valid,

especially if the model is quite small. To minimize the viscous effects in modeling pumps,

the Hydraulic Institute standards (5) recommend that the size of the model be such that the

model impeller is not less than 30 cm in diameter. These same standards state that “the model

should have complete geometric similarity with the prototype, not only in the pump proper,

but also in the intake and discharge conduits.”

Even with complete geometric similarity, one can expect the model to be less efficient

than the prototype. An empirical formula proposed by Moody (7) is used for estimating pro-

totype efficiencies of radial- and mixed-flow pumps and turbines from model efficiencies.

That formula is

(14.18)

Here e1 is the efficiency of the model and e is the efficiency of the prototype.

Figure 14.14

Centrifugal pump 

performance curve. 

[After McQuiston and 

Parker (6). Used with 

permission of John Wiley 

and Sons.]
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Example 14.8 shows how to estimate the efficiency due to viscous effects.

Centrifugal Compressors

Centrifugal compressors are similar in design to centrifugal pumps. Because the density of

the air or gases used is much less than the density of a liquid, the compressor must rotate at

much higher speeds than the pump to effect a sizable pressure increase. If the compression

process were isentropic and the gases ideal, the power necessary to compress the gas from p1

to p2 would be

(14.19)

where Q1 is the volume flow rate into the compressor and k is the ratio of specific heats. The

power calculated using Eq. (14.19) is referred to as the theoretical adiabatic power. The effi-

ciency of a compressor with no water cooling is defined as the ratio of the theoretical adiabatic

power to the actual power required at the shaft. Ordinarily the efficiency improves with higher in-

let-volume flow rates, increasing from a typical value of 0.60 at 0.6 m3 s to 0.74 at 40 m3 s.

Higher efficiencies are obtainable with more expensive design refinements.

Example 14.9 shows how to calculate shaft power required to operate a compressor.

EXAMPLE 14.8   VISCOUS EFFECTS ON PUMP 

EFFICIENCY

A model having an impeller diameter of 45 cm is tested and 

found to have an efficiency of 85%. If a geometrically similar 

prototype has an impeller diameter of 1.80 m, estimate its 

efficiency when it is operating under conditions that are 

dynamically similar to those in the model test 

Problem Definition

Situation: Model with 45 cm impeller has 85% efficiency. 

Find: Efficiency of pump with 1.6 m impeller.

Assumptions: Efficiency difference due to viscous effects.

Plan

Use Eq. (14.18) to determine viscous effects.

Solution

Efficiency

or

EXAMPLE 14.9   CENTRIFUGAL COMPRESSOR

Determine the shaft power required to operate a compressor 

that compresses air at the rate of 1 m3 s from 100 kPa to 200 

kPa. The efficiency of the compressor is 65%.

Problem Definition

Situation: Compressor compresses air at 1 m3 s from 100 

kPa to 200 kPa.

Find: Required shaft power (in kW).

Sketch:

CQ ,model CQ ,prototype�( ).
e 1

1 e1–

D D1⁄( )1/5
------------------------- 1
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---------- 1�– 0.11 0.89�–�–�
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Ptheo
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Cooling is necessary for high-pressure compressors because of the high gas tempera-

tures resulting from the compression process. Cooling can be achieved through the use of

water jackets or intercoolers that cool the gases between stages. The efficiency of water-

cooled compressors is based on the power required to compress ideal gases isothermally, or

(14.20)

which is usually called the theoretical isothermal power. The efficiencies of water-cooled

compressors are generally lower than those of noncooled compressors. If a compressor is

cooled by water jackets, its efficiency characteristically ranges between 55% and 60%. The

use of intercoolers results in efficiencies from 60% to 65%.

Application to Fluid Systems
The selection of a pump, fan, or compressor for a specific application depends on the desired

flow rate. This process requires the acquisition or generation of a system curve for the flow

system of interest and a performance curve for the fluid machine. The intersection of these

two curves provides the operating point as discussed in Chapter 10.

As an example, consider using the centrifugal pump with the characteristics shown in

Fig. 14.14 to pump water at 60°F from a wall into a tank as shown in Fig. 14.15. A pumping

capacity of at least 80 gpm is required. Two hundred feet of standard schedule-40 2 inch gal-

vanized iron pipe are to be used. There is a check valve in the system as well as an open gate

valve. There is a 20 ft elevation between the well and the top of the fluid in the tank. Apply-

ing the energy equation developed in Chapter 7, the head required by the pump is

Properties: From Table A.2, 

Plan

1. Use Eq. (14.19) to calculate theoretical power.

2. Divide theoretical power by efficiency to find shaft 
(required) power.

Solution

1. Theoretical power

2. Shaft power

Figure 14.15

System for pumping water 
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where KL represents the head loss coefficients for the entrance, check valve, gate valve, and

sudden-expansion loss entering the tank. Using representative values for the loss coefficients

and evaluating the friction factor from the Moody diagram in Chapter 10 leads to

where Q is the flow rate in gpm. This is the system curve.

The result of plotting the system curve on the pump performance curves is shown in

Fig. 14.16. The locations where the lines cross are the operating points. One notes that a dis-

charge of just over 80 gpm is achieved with the 6.5 in. impeller. Also, referring back to Fig.

14.14, the efficiency at this point is about 62%. To ensure that the design requirements are

satisfied, the engineer may select the larger impeller, which has an operating point of 95 gpm.

If the pump is to be used in continuous operation and the efficiency is important to operating

costs, the engineer may choose to consider another pump that would have a higher efficiency

at the operation point. An engineer experienced in the design of pump systems would be very

familiar with the trade-offs for economy and performance and could make a design decision

relatively quickly.

In some systems it may be advantageous to use two pumps in series or in parallel. If two

pumps are used in series, the performance curve is the sum of the pump heads of the two ma-

chines at the same flow rate, as shown in Fig. 14.17a. This configuration would be desirable

Figure 14.16

System and pump 

performance curves for 

pumping application.

Figure 14.17

Pump performance 
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for a flow system with a steep system curve, as shown in the figure. If two pumps are connected

in parallel, the performance curve is obtained by adding the flow rates of the two pumps at the

same pump heads, as shown in Fig. 14.17b. This configuration would be advisable for flow sys-

tems with shallow system curves, as shown in the figure. The concepts presented here for

pumps also apply to fans and compressors.

Turbines

A turbine is defined as a machine that extracts energy from a moving fluid. Much of the basic

theory and most similarity parameters used for pumps also apply to turbines. However, there

are some differences in physical features and terminology. The details of the flow through the

impellers of radial-flow machines have not yet been considered. These topics will now be

addressed.

The two main categories of hydraulic machines are the impulse and reaction turbines.

In a reaction turbine, the water flow is used to rotate a turbine wheel or runner through the ac-

tion of vanes or blades attached to the wheel. When the blades are oriented like a propeller,

the flow is axial and the machine is called a Kaplan turbine. When the vanes are oriented like

an impeller in a centrifugal pump, the flow is radial and the machine is called a Francis
turbine. In an impulse turbine, the water accelerates through a nozzle and impinges on vanes

attached to the rim of the wheel. This machine is called a Pelton wheel.

Impulse Turbine
In the impulse turbine a jet of fluid issuing from a nozzle impinges on vanes of the turbine

wheel, or runner, thus producing power as the runner rotates (see Fig. 14.18). Figure 14.19

shows a runner for the Henry Borden hydroelectric plant in Brazil. The primary feature of the

impulse turbine with respect to fluid mechanics is the power production as the jet is deflected

Figure 14.18

Impulse turbine.
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by the moving vanes. When the momentum equation is applied to this deflected jet, it can be

shown [see Daugherty and Franzini (4)] for idealized conditions that the maximum power will

be developed when the vane speed is one-half of the initial jet speed. Under such conditions the

exiting jet speed will be zero—all of the kinetic energy of the jet will have been expended in

driving the vane. Thus if one applies the energy equation, Eq. (7.29), between the incoming jet

and the exiting fluid (assuming negligible head loss and negligible kinetic energy at exit), it is

found that the head given up to the turbine is and the power thus developed is

(14.21)

where Q is the discharge of the incoming jet, 	 is the specific weight of jet fluid, and

or the velocity head of the jet. Thus Eq. (14.21) reduces to

(14.22)

To obtain the torque on the turbine shaft, the angular-momentum equation (6.27) is ap-

plied to a control volume, as shown in Fig. 14.20. For steady flow

Figure 14.19
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Generally it is assumed that the exiting fluid has negligible angular momentum. The moment

acting on the system is the torque T acting on the shaft. Thus the angular-momentum equa-

tion reduces to

(14.23)

The mass flow rate across the control surface is �Q, so the torque is

The minus sign indicates that the torque applied to the system (to keep it rotating at constant

angular velocity) is in the clockwise direction. However, the torque applied by the system to

the shaft is in the counterclockwise direction, which is the direction of wheel rotation, so

(14.24)

The power developed by the turbine is T�, or

(14.25)

Furthermore, if the velocity of the turbine vanes is for maximum power, as

noted earlier, then which is the same as Eq. (14.22).

The calculation of torque for an impulse turbine is illustrated in Example 14.10.

Figure 14.20

Control-volume 

approach for the impulse 

turbine using the 

angular-momentum 

principle.

EXAMPLE 14.10   IMPULSE TURBINE

What power in kilowatts can be developed by the impulse 

turbine shown if the turbine efficiency is 85%? Assume that 

the resistance coefficient f of the penstock is 0.015 and the 

head loss in the nozzle itself is negligible. What will be the 

angular speed of the wheel, assuming ideal conditions 

(Vj 2Vbucket), and what torque will be exerted on the 

turbine shaft?

Problem Definition

Situation: Impulse turbine with 85% efficiency.

Find:

1. Power (in kW) developed by turbine.

2. Angular (in rpm) speed of wheel for maximum efficiency.

3. Torque (in ) on turbine shaft.

Assumptions:

1. There is no entrance loss.

2. Head loss in nozzle is negligible.

3. Water density is 1000 kg m3.

A

A

Vj Entering jet
Exiting jet

(nil velocity)

x z

y

r

Control
surface

Torque
on

shaft

T m· r– Vj�

T �QVjr–�

T �QVjr�

P �QVjr��

1 2⁄( )Vj

P �QVj

2
2⁄ ,�

�

kN m�

⁄



14.8 TURBINES 499

Reaction Turbine
In contrast to the impulse turbine, where a jet under atmospheric pressure impinges on only one

or two vanes at a time, flow in a reaction turbine is under pressure and reacts on all vanes of

the impeller turbine simultaneously. Also, this flow completely fills the chamber in which the

impeller is located (see Fig. 14.21). There is a drop in pressure from the outer radius of the im-

peller, r1, to the inner radius, r2. This is another point of difference with the impulse turbine,

Sketch:

Situation:

Plan

1. Apply energy equation, Eq. (7.29), to find nozzle velocity.

2. Use Eq. (14.22) for power.

3. For maximum efficiency, 

4. Calculate torque from 

Solution

1. Energy equation

• Values in energy equation

• Penstock-supply pipe velocity ratio

• Head loss

• Jet velocity

2. Gross power

Power delivered

3. Angular speed of wheel

Wheel speed

4. Torque
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in which the pressure is the same for the entering and exiting flows. The original form of the

reaction turbine, first extensively tested by J. B. Francis, had a completely radial-flow impeller

(Fig. 14.22). That is, the flow passing through the impeller had velocity components only in a

plane normal to the axis of the runner. However, more recent impeller designs, such as the mixed-

flow and axial-flow types, are still called reaction turbines.

Torque and Power Relations for the Reaction Turbine
As for the impulse turbine, the angular-momentum equation is used to develop formulas for

the torque and power for the reaction turbine. The segment of turbine runner shown in Fig.

14.22 depicts the flow conditions that occur for the entire runner. The guide vanes outside the

runner itself cause the fluid to have a tangential component of velocity around the entire cir-

cumference of the runner. Thus the fluid has an initial amount of angular momentum with re-

spect to the turbine axis when it approaches the turbine runner. As the fluid passes through

the passages of the runner, the runner vanes effect a change in the magnitude and direction of

its velocity. Thus the angular momentum of the fluid is changed, which produces a torque on

the runner. This torque drives the runner, which, in turn, generates power.

Figure 14.21
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reaction-turbine 

installation. (a) 

Elevation view. (b) Plan 

view, section A-A.
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To quantify the above, let V1 and �1 represent the incoming velocity and the angle of

the velocity vector with respect to a tangent to the runner, respectively. Similar terms at the

inner-runner radius are V2 and �2. Applying the angular-momentum equation for steady flow,

Eq. (6.27), to the control volume shown in Fig. 14.22 yields

(14.26)

The power from this turbine will be T�, or

(14.27)

Equation (14.27) shows that the power production is a function of the directions of the flow

velocities entering and leaving the impeller—that is, �1 and �2.

It is interesting to note that even though the pressure varies within the flow in a reaction

turbine, it does not enter into the expressions derived using the angular-momentum equation.

The reason it does not appear is that the chosen outer and inner control surfaces are concen-

tric with the axis about which the moments and angular momentum are evaluated. The pres-

sure forces acting on these surfaces all pass through the given axis; therefore they do not

produce moments about the given axis.

Vane Angles
It should be apparent that the head loss in a turbine will be less if the flow enters the runner

with a direction tangent to the runner vanes than if the flow approaches the vane with an an-

gle of attack. In the latter case, separation will occur with consequent head loss. Thus vanes

of an impeller designed for a given speed and discharge and with fixed guide vanes will have

a particular optimum blade angle �1. However, if the discharge is changed from the condition

of the original design, the guide vanes and impeller vane angles will not “match” the new

Figure 14.22
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flow condition. Most turbines for hydroelectric installations are made with movable guide

vanes on the inlet side to effect a better match at all flows. Thus �1 is increased or decreased

automatically through governor action to accommodate fluctuating power demands on the

turbine.

To relate the incoming-flow angle �1 and the vane angle �1, first assume that the flow

entering the impeller is tangent to the blades at the periphery of the impeller. Likewise, the

flow leaving the stationary guide vane is assumed to be tangent to the guide vane. To develop

the desired equations, consider both the radial and the tangential components of velocity at

the outer periphery of the wheel (r r1). It is easy to compute the radial velocity, given Q
and the geometry of the wheel, by the continuity equation:

(14.28)

where B is the height of the turbine blades. The tangential (tangent to the outer surface of the

runner) velocity of the incoming flow is

(14.29)

However, this tangential velocity is equal to the tangential component of the relative velocity

in the runner, plus the velocity of the runner itself, �r1. Thus the tangential ve-

locity, when viewed with respect to the runner motion, is

(14.30)

Now, eliminating between Eqs. (14.29) and (14.30) results in

(14.31)

Equation (14.31) can be rearranged to yield

(14.32)

Example 14.11 illustrates how to calculate the inlet blade angle to avoid separation.

EXAMPLE 14.11   FRANCIS TURBINE

A Francis turbine is to be operated at a speed of 600 rpm 

and with a discharge of 4.0 m3 s. If r1 0.60 m, 

�1 110°, and the blade height B is 10 cm, what should be 

the guide vane angle �1 for a nonseparating flow condition at 

the runner entrance?

Problem Definition

Situation: Francis turbine with speed of 600 rpm and 

discharge of 4.0 m3 s.

Find: Inlet guide vane angle, �1.

Plan

Use Eq. (14.32) for inlet guide angle.

Solution

Inlet guide vane angle

Radial velocity at inlet

�

Vr1

Q

2�r1B
----------------�

Vt1
Vr1

�1cot�

Vr1
cot �1,

Vt1
r1� Vr1

�1cot+�

Vt1

Vr1
�1cot r1� Vr1

�1cot+�

�1 arccot
r1�

Vr1

--------- �1cot+�

⁄ �
�

⁄

�1 arccot
r1�

Vr1

--------- �1cot+�

r1� 0.6 600 rpm 2� rad rev⁄ 1 60 min s⁄⁄×××�

37.7 m s⁄�

Vr1

Q

2�r1B
----------------

4.00 m
3

s⁄
2� 0.6 m 0.10 m××
--------------------------------------------------- 10.61 m s⁄� � �

 cot �1 110°( )cot� 0.364–�

�1 arccot
37.7

10.61
------------- 0.364– 17.4°��
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Specific Speed for Turbines
Because of the attention focused on the production of power by turbines, the specific speed

for turbines is defined in terms of power:

It should also be noted that large water turbines are innately more efficient than pumps. The

reason for this is that as the fluid leaves the impeller of a pump, it decelerates appreciably

over a relatively short distance. Also, because guide vanes are generally not used in the flow

passages with pumps, large local velocity gradients develop, which in turn cause intense mix-

ing and turbulence, thereby producing large head losses. In most turbine installations, the

flow that exits the turbine runner is gradually reduced in velocity through a gradually ex-

panding draft tube, thus producing a much smoother flow situation and less head loss than

for the pump. For additional details of hydropower turbines, see Daugherty and Franzini (4).

Gas Turbines
The conventional gas turbine consists of a compressor that pressurizes the air entering the

turbine and delivers it to a combustion chamber. The high-temperature, high-pressure gases

resulting from combustion in the combustion chamber expand through a turbine, which both

drives the compressor and delivers power. The theoretical efficiency (power delivered rate

of energy input) of a gas turbine depends on the pressure ratio between the combustion cham-

ber and the intake; the higher the pressure ratio, the higher the efficiency. The reader is di-

rected to Cohen et al. (8) for more detail.

Wind Turbines
Wind energy is discussed frequently as an alternative energy source. The application of wind

turbines* as potential sources for power becomes more attractive as utility power rates in-

crease and the concern over greenhouse gases grows. In many European countries, especially

northern Europe, the wind turbine is playing an ever-increasing role in power generation.

In essence, the wind turbine is just a reverse application of the process of introducing

energy into an airstream to derive a propulsive force. The wind turbine extracts energy from

the wind to produce power. There is one significant difference, however. The theoretical up-

per limit of efficiency of a propeller supplying energy to an airstream is 100%; that is, it is

theoretically possible, neglecting viscous and other effects, to convert all the energy supplied

to a propeller into energy of the airstream. This is not the case for a wind turbine.

A sketch of a horizontal-axis wind turbine is shown in Fig. 14.23. The wind blows

along the axis of the turbine. The area of the circle traced out by the rotating blades is the

capture area. The power associated with the wind passing through the capture area is

(14.33)

where � is the air density and V is the wind speed. In an analysis attributed to [Glauert/Betz

(9)], the theoretical maximum power attainable from a wind turbine is 16/27 or 59.3% of this

power or

(14.34)

* The word “wind turbine” is used to convey the idea of conversion of wind to electrical energy. A windmill

converts wind energy to mechanical energy.

ns
nP

1 2⁄

g
3 4⁄

	
1 2⁄

ht

5 4⁄
-------------------------------�

⁄

P �Q
V

2

2
----- �A

V
3

2
-----� �

Pmax

16

27
------

1

2
---�V

3
A�



504 TURBOMACHINERY

Other factors, such as swirl of the airstream and viscous effects, further reduce the power

achievable from a wind turbine.

The power output of any wind turbine is related to the wind speed through the wind-

turbine power curve. A typical curve is shown in Fig. 14.24. This curve can usually be ob-

tained from the manufacturer. The wind turbine is inoperative below the cut-in speed. After

cut-in, the power increases with wind speed reaching a maximum value, which is the rated

power output for the turbine. Engineering design and safety constraints impose an upper limit

on the rotational velocity and establish the cut-out speed. A braking system is used to prevent

operation of the wind turbine beyond this velocity.

The conventional horizontal-axis wind turbine has been the focus of most research and

design. Considerable effort has also been devoted to assessment of the Savonius rotor and the

Darrieus turbine, both of which are vertical-axis turbines, as shown in Fig. 14.25. The

Savonius rotor consists of two curved blades forming an S-shaped passage for the air flow.

The Darrieus turbine consists of two or three airfoils attached to a vertical shaft; the unit re-

sembles an egg beater. The advantage of vertical-axis turbines is that their operation is inde-

pendent of wind direction. The Darrieus wind turbine is considered superior in performance

but has a disadvantage in that it is not self-starting. Frequently, a Savonius rotor is mounted

on the axis of a Darrieus turbine to provide the starting torque.

For more information on wind turbines and wind turbine systems, refer to Wind Energy
Explained (10). Considerable information on wind turbines is also available from the

Internet.  

Figure 14.23
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Figure 14.24
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Summary

The thrust of a propeller is calculated using

where � is the fluid density, n is the rotational rate of the propeller, and D is the propeller di-

ameter. The thrust coefficient CT is a function of the advance ratio V0 nD. The efficiency of

a propeller is the ratio of the power delivered by the propeller to the power provided to the

propeller.

Figure 14.25

Wind trubine 

configurations.

(a) Savonius rotor. 

(b) Darrieus turbine.

EXAMPLE 14.12   CAPTURE AREA OF

WIND TURBINE

Calculate the minimum capture area necessary for a windmill 

that has to operate five 100-watt bulbs if the wind velocity is 

20 km h and the air density is 1.2 kg m3.

Problem Definition

Situation: A wind turbine produces of 500 watts.

Find: Capture area of windmill.

Plan

Use equation for maximum power of windmill.

Solution

Capture area for maximum power

Wind velocity in m s

Minimum capture area

Review

This area corresponds to a windmill diameter of 3.23 m or 

about 10.6 ft.

(a) Savonius rotor (b) Darrieus turbine
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An axial-flow pump, or blower, consists of an impeller, much like a propeller, mounted

in a housing. In a radial-flow, or centrifugal pump, on the other hand, fluid enters near the eye

of the impeller, passes through the vanes, and exits at the edge of the vanes. The head pro-

vided by a pump is quantified by the head coefficient, CH, defined as

where �H is the head across the pump. The head coefficient is a function of the discharge co-

efficient, which is

where Q is the discharge. Pump performance curves show head delivered, power required,

and efficiency as a function of discharge. The specific speed of a pump can be used to select

an appropriate pump for a given application. Axial-flow pumps are best suited for high-

discharge, low-head applications, whereas radial-flow pumps are best suited for low-

discharge, high-head applications.

Turbines convert the energy associated with a moving fluid to shaft work. The impulse

turbine consists of a liquid jet impinging on vanes of a turbine wheel or runner. A reaction

turbine consists of a series of rotating vanes where liquid enters from the outside and exits at

the center. The pressure on the vanes provides the torque for the power. Wind turbines consist

of the conventional horizontal-axis design, the Darrieus turbine, or Savonius rotor. The max-

imum power derivable from a wind turbine is

where A is the capture area of the wind turbine (projected area from direction of wind) and V0

is the wind speed.
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Problems

Propellers

14.1 ��� Explain why the thrust of a fixed-pitch propeller de-

creases with increasing forward speed.

14.2 ��� What limits the rotational speed of a propeller?

14.3 What thrust is obtained from a propeller 3 m in diameter

that has the characteristics given in Fig. 14.2 when the propeller
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is operated at an angular speed of 1400 rpm and an advance ve-

locity of zero? Assume � 1.05 kg m3.

14.4 What thrust is obtained from a propeller 3 m in diameter

that has the characteristics given in Fig. 14.2 when the propeller

is operated at an angular speed of 1400 rpm and an advance ve-

locity of 80 km h? What power is required to operate the pro-

peller under these conditions? Assume � 1.05 kg m3.

14.5 A propeller 8 ft in diameter has the characteristics shown in

Fig. 14.2. What thrust is produced by the propeller when it is

operating at an angular speed of 1000 rpm and a forward speed

of 25 mph? What power input is required under these operating

conditions? If the forward speed is reduced to zero, what is the

thrust? Assume � 0.0024 slugs ft3.

14.6 A propeller 8 ft in diameter, like the one for which charac-

teristics are given in Fig. 14.2, is to be used on a swamp boat

and is to operate at maximum efficiency when cruising. If the

cruising speed is to be 30 mph, what should the angular speed of

the propeller be? Assume 

14.7 For the propeller and conditions described in Prob. 14.6 deter-

mine the thrust and the power input.

14.8 A propeller is being selected for an airplane that will cruise

at 2000 m altitude, where the pressure is 60 kPa absolute and the

temperature is 10°C. The mass of the airplane is 1200 kg, and the

planform area of the wing is 10 m2. The lift-to-drag ratio is 30:1.

The lift coefficient is 0.4. The engine speed at cruise conditions

is 3000 rpm. The propeller is to operate at maximum efficiency,

which corresponds to a thrust coefficient of 0.025. Calculate the

diameter of the propeller and the speed of the aircraft.

14.9 If the tip speed of a propeller is to be kept below 0.9c,

where c is the speed of sound, what is the maximum allowable

angular speed of propellers having diameters of 2 m (6.56 ft),

3 m (9.84 ft), and 4 m (13.12 ft)? Take the speed of sound as

335 m s (1099 ft s).

14.10 A propeller 2 m in diameter, like the one for which char-

acteristics are given in Fig. 14.2, is to be used on a swamp boat

and is to operate at maximum efficiency when cruising. If the

cruising speed is to be 40 km h, what should the angular speed

of the propeller be?

14.11 For the propeller and conditions described in Prob. 14.10, de-

termine the thrust and the power input. Assume � 1.2 kg m3.

14.12 A propeller 2 m in diameter and like the one for which char-

acteristics are given in Fig. 14.2 is used on a swamp boat. If the

angular speed is 1000 rpm and if the boat and passengers have a

combined mass of 300 kg, estimate the initial acceleration of the

boat when starting from rest. Assume � 1.1 kg m3.

Axial Flow Pumps and Fans

14.13 ��� Axial-flow pumps are best suited for what condi-

tions of head produced and discharge?

14.14 ��� For an axial pump how does the head produced by

the pump and the power required to operate a pump vary with

flow rate through the pump?

14.15 If a pump having the characteristics shown in Fig. 14.6

has a diameter of 40 cm and is operated at a speed of 1000 rpm,

what will be the discharge when the head is 3 m?

14.16 The pump used in the system shown has the characteris-

tics given in Fig. 14.7. What discharge will occur under the con-

ditions shown, and what power is required?

14.17 If the conditions are the same as in Prob. 14.16 except that

the speed is increased to 900 rpm, what discharge will occur,

and what power is required for the operation?

14.18 For a pump having the characteristics given in Fig. 14.6

or 14.7, what water discharge and head will be produced at

maximum efficiency if the pump diameter is 20 in. and the an-

gular speed is 1100 rpm? What power is required under these

conditions?

14.19 A pump has the characteristics given by Fig. 14.6. What

discharge and head will be produced at maximum efficiency if

the pump size is 50 cm and the angular speed is 45 rps? What

power is required when pumping water at 10°C under these

conditions?

14.20 For a pump having the characteristics of Fig. 14.6, plot

the head-discharge curve if the pump is 14 in. in diameter and is

operated at a speed of 1000 rpm.

14.21 For a pump having the characteristics of Fig. 14.6, plot

the head-discharge curve if the pump diameter is 60 cm and the

speed is 690 rpm.

14.22 An axial-flow blower is used for a wind tunnel that has a

test section measuring 60 cm by 60 cm and is capable of air-

speeds up to 40 m s. If the blower is to operate at maximum ef-

ficiency at the highest speed and if the rotational speed of the

blower is 2000 rpm at this condition, what are the diameter of the

blower and the power required? Assume that the blower has the

characteristics shown in Fig. 14.6. Assume 

14.23 An axial-flow blower is used to air-condition an office

building that has a volume of 105 m3. It is decided that the air at

60°F in the building must be completely changed every 15 min.

Assume that the blower operates at 600 rpm at maximum ef-

ficiency and has the characteristics shown in Fig. 14.6.
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Calculate the diameter and power requirements for two blowers

operating in parallel.

14.24 An axial fan 2 m in diameter is used in a wind tunnel as

shown (test section 1.2 m in diameter; test section velocity of

60 m s). The rotational speed of the fan is 1800 rpm. Assume

the density of the air is constant at 1.2 kg m3. There are negli-

gible losses in the tunnel. The performance curve of the fan is

identical to that shown in Fig. 14.6. Calculate the power needed

to operate the fan.

Radial Flow Pumps

14.25 ��� The radial flow pump is best suited for what condi-

tions of head produced and discharge?

14.26 ��� A pump is used to pump water out of a reservoir.

What limits the depth for which the pump can draw water?

14.27 If a pump having the characteristics given in Fig. 14.9 is

doubled in size but halved in speed, what will be the head and

discharge at maximum efficiency?

14.28 A pump having the characteristics given in Fig. 14.9

pumps water at 20°C from a reservoir at an elevation of 366 m

to a reservoir at an elevation of 450 m through a 36 cm steel

pipe. If the pipe is 610 m long, what will be the discharge

through the pipe?

14.29 If a pump having the characteristics given in Fig. 14.9 or

14.10 is operated at a speed of 1600 rpm, what will be the dis-

charge when the head is 150 ft?

14.30 If a pump having the performance curve shown is oper-

ated at a speed of 1600 rpm, what will be the maximum possible

head developed?  

14.31 If a pump having the characteristics given in Fig. 14.9 is

operated at a speed of 30 rps, what will be the shutoff head?

14.32 If a pump having the characteristics given in Fig. 14.10 is

40 cm in diameter and is operated at a speed of 25 rps, what will

be the discharge when the head is 50 m?

14.33 A centrifugal pump 20 cm in diameter is used to pump

kerosene at a speed of 5000 rpm. Assume that the pump has the

characteristics shown in Fig. 14.10. Calculate the flow rate, the

pressure rise across the pump, and the power required if the

pump operates at maximum efficiency.

14.34 Plot the five performance curves from Fig. 14.14 for the

different impeller diameters in terms of the head and discharge

coefficients. Use impeller diameter for D.

Pump Selection

14.35 ��� What is the difference between a system curve and

a pump curve. Explain.

14.36 ��� The operating point for a pump system is estab-

lished by what condition?

14.37 ��� The value of the specific speed suggests the type of

pump to be used for a given application. A high specific speed

suggests the use of what kind of pump?

14.38 The pump curve for a given pump is represented by

where hp,pump is the head provided by the pump in feet and Q is the

discharge in gpm. The system curve for a pumping application is

where hp,sys is the head in feet required to operate the system

and Q is the discharge in gpm. Find the operating point (Q) for

(a) one pump, (b) two identical pumps connected in series, and

(c) two identical pumps connected in parallel.

14.39 What is the suction specific speed for the pump that is oper-

ating under the conditions given in Prob. 14.16? Is this a safe op-

eration with respect to susceptibility to cavitation?

14.40 What type of pump should be used to pump water at a rate

of 10 cfs and under a head of 30 ft? Assume N 1500 rpm.

14.41 For the most efficient operation, what type of pump

should be used to pump water at a rate of 0.30 m3 s and under a

head of 8 m? Assume n 25 rps.

14.42 What type of pump should be used to pump water at a rate

of 0.40 m3 s and under a head of 70 m? Assume N 1100 rpm.

14.43 An axial-flow pump is to be used to lift water against a head

(friction and static) of 15 ft. If the discharge is to be 5000 gpm,

what maximum speed in revolutions per minute is allowed if the

suction head is 5 ft?
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14.44 A pump is beeded to pump water at a rate of 1.0 m3 s

from the lower to the upper reservoir shown in the figure. What

type of pump would be best for this operation if the impeller

speed is to be 600 rpm?

Compressors

14.45 ��� The pressure rise associated with gases in a com-

pressor causes the gas temperature to increase as well. The ratio

of final temperature to initial temperature is less than the ratio of

final pressure to initial pressure. Will the final density be less or

greater than the initial density?

14.46 Methane flowing at the rate of 1 kg s is to be compressed

by a noncooled centrifugal compressor from 100 kPa to 150 kPa.

The temperature of the methane entering the compressor is 27°C.

The efficiency of the compressor is 70%. Calculate the shaft

power necessary to run the compressor.

14.47 A 12 kW (shaft output) motor is available to run a non-

cooled compressor for carbon dioxide. The pressure is to be in-

creased from 90 kPa to 140 kPa. If the compressor is 60%

efficient, calculate the volume flow rate into the compressor.

14.48 A water-cooled centrifugal compressor is used to com-

press air from 100 kPa to 400 kPa at the rate of 1 kg s. The

temperature of the inlet air is 15°C. The efficiency of the com-

pressor is 50%. Calculate the necessary shaft power.

Impulse Turbine

14.49 ��� An impulse turbine will produce no power if the

velocity of the jet striking the bucket is the same as the bucket

velocity. Explain.

14.50 A penstock 1 m in diameter and 10 km long carries water

at 10°C from a reservoir to an impulse turbine. If the turbine is

85% efficient, what power can be produced by the system if the

upstream reservoir elevation is 650 m above the turbine jet and the

jet diameter is 16.0 cm? Assume that f 0.016 and neglect head

losses in the nozzle. What should the diameter of the turbine

wheel be if it is to have an angular speed of 360 rpm? Assume

ideal conditions for the bucket design 

14.51 Consider an idealized bucket on an impulse turbine that

turns the water through 180°. Prove that the bucket speed

should be one-half the incoming jet speed for a maximum

power production. (Hint: Set up the momentum equation to

solve for the force on the bucket in terms of Vj and Vbucket; then

the power will be given by this force times Vbucket. You can use

your mathematical talent to complete the problem.)

14.52 Consider a single jet of water striking the buckets of the

impulse wheel as shown. Assume ideal conditions for power

generation [ and the jet is turned through 180°

of arc]. With the foregoing conditions, solve for the jet force on

the bucket and then solve for the power developed. Note that

this power is not the same as that given by Eq. (14.22)! Study

the figure to resolve the discrepancy.  

Reaction Turbine

14.53 ��� How does a reaction turbine differ from a centrifu-

gal pump?

14.54 ��� What is meant by the “runner” in a reaction turbine?

14.55 For a given Francis turbine, �1 60º, �2 90º, r1 5

m, r2 3 m, and B 1 m. The discharge is and the

rotational speed is 60 rpm. Assume T 10°C.

a. What should �1 be for a nonseparating flow condition at the

entrance to the runner.

b. What is the maximum attainable power with the conditions noted?

c. If you were to redesign the turbine blades of the runner, what

changes would you suggest to increase the power production if

the discharge and overall dimensions are to be kept the same?

14.56 A Francis turbine is to be operated at a speed of 60 rpm and

with a discharge of 3.0 m3 s. If r1 1.5 m, r2 1.20 m, B 30

cm, �1 85°, and �2 165°, what should �1 be for nonseparat-

ing flow to occur through the runner? What power and torque

should result with this operation? Assume T 10°C.

14.57A Francis turbine is to be operated at a speed of 120 rpm and with

a discharge of 113 m3 s. If r1 2.5 m, B 0.90 m, and �1 45°,

what should �1 be for nonseparating flow at the runner inlet?

14.58 Shown is a preliminary layout for a proposed small hydro-

electric project. The initial design calls for a discharge of 8 cfs

through the penstock and turbine. Assume 80% turbine efficiency.

For this setup, what power output could be expected from the

power plant? Draw the HGL and EGL for the system.
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Wind Turbine

14.59 ��� What determines the minimum and maximum wind

speeds at which a wind turbine can operate?

14.60 Calculate the maximum power derivable from a conven-

tional horizontal-axis wind turbine with a propeller 2.5 m in di-

ameter in a 50 km h wind whose density is 1.2 kg m3.

14.61 A wind “farm” consists of 20 Darrieus turbines, each 15 m

high. The total output from the turbines is to be 2 MW in a wind

of 20 m s and an air density of 1.2 kg m3. The Darrieus tur-

bine shown has the shape of an arc of a circle. Find the mini-

mum width, W, of the turbine needed to provide this power

output.

14.62 A windmill is connected directly to a mechanical pump that

is to pump water from a well 10 ft deep as shown. The windmill

is a conventional horizontal-axis type with a fan diameter of 10 ft.

The efficiency of the mechanical pump is 80%. The density of the

air is 0.07 lbm ft3. Assume the windmill delivers the maximum

power available. There is 20 ft of 2 inch galvanized pipe in the

system. What would the discharge of the pump be (in gallons per

minute) for a 30 mph wind? (1 cfm 7.48 gpm)

PROBLEM 14.58
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Flow in

Open Channels

An open channel is one in which a liquid flows with a free surface. A free surface means that

the liquid surface is exposed to the atmosphere. Examples of open channels are natural

creeks and rivers, artificial channels such as irrigation ditches and canals, and pipelines or

sewers flowing less than full. In most cases, water or waste-water is the flowing liquid.

Description of Open-Channel Flow

Flow in an open channel is described as uniform or nonuniform, as distinguished in Fig. 15.1.

As defined in Chapter 4, uniform flow means that the velocity is constant along a streamline,

which in open-channel flow means that depth and cross section are constant along the length

of a channel. The depth for uniform-flow conditions is called normal depth and is designated

by yn. For nonuniform flow, the velocity changes from section to section along the channel,

thus one observes changes in depth. The velocity change may be due to a change in channel

configuration, such as a bend, change in cross-sectional shape, or change in channel slope.

For example, Fig. 15.1 shows steady flow over a spillway of constant width, where the water

SIGNIFICANT LEARNING OUTCOMES

Conceptual Knowledge

• Describe differences between uniform flow, gradually varied flow, and rapidly varied flow.

• Describe critical depth, specific energy, supercritical flow, and subcritical flow.

• Describe what causes head loss in open-channel flow.

• Describe the factors used to classify surface profiles in gradually varied flow.

• Explain the conditions leading to a hydraulic jump.

Procedural Knowledge

• Apply Darcy-Weisbach and Manning’s equations to uniform flow.

• Find the best hydraulic section.

• Calculate the depth, velocity, and head loss in a hydraulic jump.

• Apply the Froude number to classify flow as critical, subcritical, or supercritical.

Typical Applications

• For a pipe that is half full, calculate the water depth and head loss.

• For a concrete channel, calculate the dimensions necessary to carry a desired flow rate.

• To dissipate energy in water exiting a hydroelectric dam, design a stilling basin with hydraulic jump.

15.1
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must flow progressively faster as it goes over the brink of the spillway (from A to B), caused

by the suddenly steeper slope. The faster velocity requires a smaller depth, in accordance

with conservation of mass (continuity). From reach B to C, the flow is uniform because the

velocity, and thus depth, are constant. After reach C the abrupt flattening of channel slope

requires the velocity to suddenly, and turbulently, slow down. Thus there is a deeper depth

downstream of C than in reach B to C.

The most complicated open-channel flow is unsteady nonuniform flow. An example of

this is a breaking wave on a sloping beach. Theory and analysis of unsteady nonuniform flow

are reserved for more advanced courses.

Dimensional Analysis in Open-Channel Flow
Open-channel flow results from gravity moving water from higher to lower elevations, and is

impeded by friction forces caused by the roughness of the channel. Thus the functional equa-

tion and dimensional anaysis as presented in Chapter 8 lead to two impor-

tant independent �-groups to characterize open-channel flow: the Froude number and the

Reynolds number. The Froude number is the ratio of inertial force to gravity force:

(15.1)

(15.2)

The Froude number is important if the gravitational force influences the direction of flow,

such as in flow over a spillway, or the formation of surface waves. However, it is unimportant

when gravity causes only a hydrostatic pressure distribution, such as in a closed conduit.

The use of Reynolds number for determining whether the flow in open channels will be

laminar or turbulent depends upon the hydraulic radius, given by

(15.3)

where A is the cross-sectional area of flow and P is the wetted perimeter. The characteristic

length Rh is analagous to diameter D in pipe flow. Recall that for pipe flow (Chapter 10), if

the Reynolds number is less than 2000, the flow will be laminar, and if it

is greater than about 3000, one can expect the flow to be turbulent. The Reynolds number

criterion for open-channel flow would be 2000 if one replaced D in the Reynolds number by

4Rh, where Rh is the hydraulic radius. For this definition of Reyholds number, laminar flow

would occur in open channels if 

Figure 15.1

Distingishing uniform 

and nonuniform flow. 

This example shows 

steady flow over a 

spillway, such as the 

emergency overflow 

channel of a dam.
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However, the standard convention in open-channel flow analysis is to define the

Reynolds number as

(15.4)

Therefore, in open channels, if the Reynolds number is less than 500, the flow is

laminar, and if Re is greater than about 750, one can expect to have turbulent flow.

A brief analysis of this turbulent criterion (see Example 15.1) will show that water

flow in channels will usually be turbulent unless the velocity and or the depth is

very small.

It should be noted that for rectangular channels (see Fig. 15.2), the hydraulic

radius is

(15.5)

Example 15.1 shows that for very wide, shallow channels the hydraulic radius ap-

proaches the depth y.

Most open-channel flow problems involve turbulent flow. If one calculates the

conditions needed to maintain laminar flow, as in Example 15.1, one sees that lami-

nar flow is uncommon.

EXAMPLE 15.1   CONDITIONS FOR LAMINAR 

OPEN-CHANNEL FLOW

Water (60°F) flows in a 10 ft–wide rectangular channel at a 

depth of 6 ft. What is the Reynolds number if the mean 

velocity is 0.1 ft s? With this velocity, at what maximum 

depth can one be assured of having laminar flow?

Problem Definition

Situation: Constant velocity in rectangular channel, so 
uniform flow.

Find:

1. Reynolds number for given mean velocity.

2. Maximum depth for which flow is laminar.

Properties: from Table A.5.

Plan

1. Calculate Reynolds number using Eq. (15.4)

2. Find the depth for which Re 500 using Eq. (15.5).

Solution

1. Reynolds number

where

Since flow is turbulent.

2. Depth for which Re 500.

For a rectangular channel,

Review

1. Note: Velocity or depth must be very small to yield 
laminar flow of water in an open channel.

2. Note: Depth and hydraulic radius are virtually the same 
when depth is very small relative to width.

y

y

B

Side view

End view

Figure 15.2
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Energy Equation for Steady Open-Channel Flow

To derive the energy equation for flow in an open channel, begin with Eq. (7.29) and let the

pump head and turbine head equal zero: Equation (7.29) becomes

(15.6)

Use Fig. 15.3 to show that

and

where S0 is the slope of the channel bottom, and y is the depth of flow. Assume the flow in

the channel is turbulent, so Equation (15.6) becomes

(15.7)

In addition to the foregoing assumptions, Eq. (15.7) also requires that the channel have a uni-

form cross section, and the flow be steady.

Steady Uniform Flow

Uniform flow requires that velocity be constant in the flow direction, so the shape of the

channel and the depth of fluid is the same from section to section. Consideration of the

foregoing slope equations shows that for uniform flow, the slope of the HGL will be the same

as the channel slope, because the velocity and depth are the same in both sections. The HGL,

Figure 15.3
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and thus the slope of the water surface, is controlled by head loss. If one restates the Darcy-

Weisbach equation introduced in Chapter 10 with D replaced by 4Rh, the head loss is

(15.8)

From Fig. 15.3, S0 [slope of HGL], which is a function of the head loss, so 

yielding the following equation for velocity:

(15.9)

To solve Eq. (15.9) for velocity, the friction factor f can be found from the Moody diagram

(Fig. 10.14) and can then be used to solve iteratively for the velocity for a given uniform-flow

condition. This is demonstrated in Example 15.2.

Rock-Bedded Channels
For rock-bedded channels such as those in some natural streams or unlined canals, the larger

rocks produce most of the resistance to flow, and essentially none of this resistance is due to

viscous effects. Thus, the friction factor is independent of the Reynolds number. This is

analagous to the fully rough region of the Moody diagram for pipe flow. For a rock-bedded

EXAMPLE 15.2   ESTIMATING Q FOR UNIFORM 

FLOW USING DARCY-WEISBACH EQUATION

Estimate the discharge of water that a concrete channel 10 ft 

wide can carry if the depth of flow is 6 ft and the slope of the 

channel is 0.0016.

Problem Definition

Situation: Uniform flow, concrete surface.

Find: Discharge in ft3 s.

Properties: Concrete, Table 10.4: ks 0.012–0.12 inches, or
0.001–0.01 ft.

Plan

1. Find channel velocity by relating channel slope to 
with Eq. (15.9).

• Use the Moody diagram to find f.

• Assume a roughness for first estimate of ks 4Rh to use 
with Reynolds number.

• Select a first estimate of f, which is opposite ks 4Rh on 
the Moody diagram

• Solve for V, first iteration.

• Calculate new Reynolds number with this value of V ;
check f against reasonable convergence criterion.

2. Calculate Q VA.

Solution

1. For Eq. (15.9), need to get a value for f.

2a. Assume ks 0.005 ft. Relative roughness is

2b. Use value of as a guide to estimate 

f 0.016.

2c. First iteration for V gives

2d. Recalculate Reynolds number.

Using this new value of Re, and with  

read f as 0.016. This value of f is the same as previous 

estimate—meets reasonable convergence criterion.

3. Compute Q.
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channel, Limerinos (1) has shown that the resistance coefficient f can be given in terms of the

size of rock in the stream bed as

(15.10)

where d84 is a measure of the rock size.* See Example 15.3

The Chezy Equation
Leaders in open-channel research have recommended the use of the methods already pre-

sented (involving the Reynolds number and relative roughness ks) for channel design (2).

However, many engineers continue to use two traditional methods, the Chezy equation and

the Manning equation.

As noted earlier, the depth in uniform flow, called normal depth, yn , is constant. Conse-

quently, is the slope S0 of the channel, and Eq. (15.8) can be written as

or (15.11)

where (15.12)

Since Q VA, the discharge in a channel is given by

(15.13)

This equation is known as the Chezy equation after a French engineer of that name. For

practical application, the coefficient C must be determined. One way to determine C is by

knowing an acceptable value of the friction factor f and using Eq. (15.2).

EXAMPLE 15.3   RESISTANCE COEFFICIENT 

FOR BOULDERS

Determine the value of the resistance coefficient, f, for a 

natural rock-bedded channel that is 100 ft wide and has an 

average depth of 4.3 ft. The d84 size of boulders in the stream 

bed is 0.72 ft.

Problem Definition

Situation: Boulders in natural channel bottom will control 
magnitude of f.

Find: Friction factor, f.

Plan

1. Simplify calculation of Rh for wide channel; take Rh to be 
depth.

2. Use Eq. (15.10) to find f on the basis of the d84 boulder size.

Solution

1. Rh is 4.3 ft.

2. Evaluate f.

* Most river-worn rocks are somewhat elliptical in shape. Limerinos (1) showed that the intermediate dimen-

sion d84 correlates best with f. The d84 refers to the size of rock (intermediate dimension) for which 84% of

the rocks in the random sample are smaller than the d84 size. Details for choosing the sample are given by

Wolman (3).
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The Manning Equation
The second, and more common, way to determine C in the SI system of units is given as:

(15.14)

where n is a resistance coefficient called Manning’s n, which has different values for different

types of boundary roughness. When this expression for C is inserted into Eq. (15.3), the

result is a common form of the discharge equation for uniform flow in open channels for SI

units, referred to as the Manning equation:

(15.15)

Table 15.1 gives values of n for various types of boundary surfaces. The major limitation

of this approach is that the viscous or relative-roughness effects are not present in the design

formula. Hence, application outside the range of normal-sized channels carrying water is not

recommended.

Manning Equation—Traditional System of Units
The form of the Manning equation depends on the system of units because Manning’s equa-

tion is not dimensionally homogeneous. In Eq. (15.15), notice that the primary dimensions on

the left side of the equation are and the primary dimensions on the right side are 

Table 15.1 TYPICAL VALUES OF ROUGHNESS COEFFICIENT, MANNING’S n

Lined Canals n

Cement plaster
Untreated gunite
Wood, planed
Wood, unplaned
Concrete, troweled
Concrete, wood forms, unfinished
Rubble in cement
Asphalt, smooth
Asphalt, rough
Corrugated metal

0.011
0.016
0.012
0.013
0.012
0.015
0.020
0.013
0.016
0.024

Unlined Canals

Earth, straight and uniform
Earth, winding and weedy banks
Cut in rock, straight and uniform
Cut in rock, jagged and irregular

0.023
0.035
0.030
0.045

Natural Channels

Gravel beds, straight
Gravel beds plus large boulders
Earth, straight, with some grass
Earth, winding, no vegetation
Earth, winding, weedy banks
Earth, very weedy and overgrown

0.025
0.040
0.026
0.030
0.050
0.080

C
Rh

1/6

n
---------�

Q
1.0

n
-------ARh

2/3
S0

1/2
�

L
3

T⁄ L
8 3⁄
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To convert the Manning equation from SI to traditional units, one must apply a factor

equal to 1.49 if the same value of n is used in the two systems. Thus in the traditional system

the discharge equation using Manning’s n is

(15.16)

In Example 15.4, a value for Manning’s n is calculated from known information about a

channel and compared to tabulated values for n in Table 15.1.

In Example 15.5 the Chezy equation for traditional units is used to compute discharge.

EXAMPLE 15.4   CALCULATING DISCHARGE 

AND MANNING’S n USING CHEZY EQUATION

If a channel with boulders has a slope of 0.0030, is 100 ft 

wide, has an average depth of 4.3 ft, and is known to have a 

friction factor of 0.130, what is the discharge in the channel 

and what is the numerical value of Manning’s n for this 

channel?

Problem Definition

Situation: Uniform flow, channel with known f.

Find:

1. Discharge, Q, in cfs.

2. Numerical value of Manning’s n for this channel with 
boulders.

Plan

1. Find velocity using Eq. (15.9) with known f . Estimate Rh

to be y, which is 4.3 ft.

2. Calculate discharge from Q VA.

3. Solve for Manning’s n using Chezy equation for 
traditional units (Eq. 15.16).

Solution

1. Velocity

2. Discharge

3. Manning’s n, using the traditional unit equation 
(Eq. 15.16)

Review

Note: This calculated value of n is within the range of typical 

values in Table 15.1 under the category of “Unlined Canals, 

Cut in rock.”

Note: This example and Example 15.3 show that f in the 

Darcy-Weisbach equation can be related to Manning’s n for 

uniform-flow conditions.

EXAMPLE 15.5   DISCHARGE USING CHEZY 

EQUATION

Using the Chezy equation with Manning’s n, compute the 

discharge in a concrete channel 10 ft wide if the depth of flow 

is 6 ft and the slope of the channel is 0.0016.

Problem Definition

Situation: Uniform flow, concrete channel, known geometry 
and depth.

Find: Discharge, Q.

Properties: n 0.015 for concrete channel (Table 15.1).

Plan

Use the Chezy equation for traditional units, Eq. (15.16).

Solution
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The two results (Examples 15.4 and 15.5) are within expected engineering accuracy for

this type of problem. For a more complete discussion of the historical development of Man-

ning’s equation and the choice of n values for use in design or analysis, refer to Yen (4) and

Chow (5).

Best Hydraulic Section for Uniform Flow
The best hydraulic section is the channel geometry that yields a minimum wetted perim-

eter for a given cross-sectional area. Therefore, it yields the least viscous energy loss

for a given area. Consider the quantity  in Manning’s equation given in Eqs.

(15.15 and 15.16), which is referred to as the section factor. Because the

section factor relating to uniform flow is given by Thus, for a channel of

given resistance and slope, the discharge will increase with increasing cross-sectional

area but decrease with increasing wetted perimeter P. For a given area, A, and a given

shape of channel—for example, rectangular cross section—there will be a certain ratio

of depth to width for which the section factor will be maximum. This ratio is the

best hydraulic section.
Example 15.6 shows that the best hydraulic section for a rectangular channel occurs when

It can be shown that the best hydraulic section for a trapezoidal channel is half a hexagon

as shown; for the circular section, it is the half circle with depth equal to radius; and for the tri-

angular section, it is a triangle with a vertex of 90° (Fig 15.4). Of all the various shapes, the half

circle has the best hydraulic section because it has the smallest peri-meter for a given area.

The best hydraulic section can be relevant to the cost of the channel. For example, if a

trapezoidal channel were to be excavated and if the water surface were to be at adjacent

ground level, the minimum amount of excavation (and excavation cost) would result if the

channel of best hydraulic section were used.

EXAMPLE 15.6   BEST HYDRAULIC SECTION 

FOR A RECTANGULAR CHANNEL

Determine the best hydraulic section for a rectangular 

channel with depth y and width B.

Problem Definition

Situation: Rectangular channel with depth y and width B.

Find: Best hydraulic section.

Plan

1. Set A By and P B 2y so that both are a function of y.

2. Let A be constant, and minimize P.

• Differentiate P with respect to y and set the derivative 
equal to zero.

• Express the result of minimizing P as a relation 
between y and B.

Solution

1. Relate A and P in terms of y.

2a.Minimize P.

2b.Express result in terms of y and B.

The best hydraulic section for a rectangular channel occurs when 

the depth is one-half the width of the channel, see Fig. 15.4.
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Uniform Flow in Culverts and Sewers
Sewers are conduits that carry sewage (liquid domestic, commercial, or industrial waste)

from households, businesses, and factories to sewage disposal sites. These conduits are often

circular in cross section, but elliptical and rectangular conduits are also used. The volume

rate of sewage varies throughout the day and season, but of course sewers are designed to

carry the maximum design discharge flowing full or nearly full. At discharges less than the

maximum, the sewers will operate as open channels.

Sewage usually consists of about 99% water and 1% solid waste. Because most sew-

age is so dilute, it is assumed that it has the same physical properties as water for purposes

of discharge computations. However, if the velocity in the sewer is too small, the solid par-

ticles may settle out and cause blockage of the flow. Therefore, sewers are usually de-

signed to have a minimum velocity of about 2 ft s (0.60 m s) at times when the sewer is

flowing full. This condition is met by choosing a slope on the sewer line to achieve the de-

sired velocity.

A culvert is a conduit placed under a fill such as a highway embankment. It is used to

convey stream-flow from the uphill side of the fill to the downhill side. Figure 15.5 shows

the essential features of a culvert. A culvert should be able to convey runoff from a design
storm without overtopping the fill and without erosion of the fill at either the upstream or

downstream end of the culvert. The design storm, for example, might be the maximum storm

that could be expected to occur once in 50 years at the particular site.

The flow in a culvert is a function of many variables, including cross-sectional shape

(circular or rectangular), slope, length, roughness, entrance design, and exit design. Flow in a

culvert may occur as an open channel throughout its length, it may occur as a completely full

pipe, or it may occur as a combination of both. The complete design and analysis of culverts

are beyond the scope of this text; therefore, only simple examples are included here (Exam-

ples 15.7 and 15.8). For more extensive treatment of culverts, please refer to Chow (5),

Henderson (6), and American Concrete Pipe Assoc. (7).

Figure 15.5

Culvert under a highway 

embankment.

EXAMPLE 15.7   SIZING A ROUND CONCRETE 

SEWER LINE

A sewer line is to be constructed of concrete pipe to be laid on 

a slope of 0.006. If n 0.013 and if the design discharge is

110 cfs, what size pipe (commercially available) should be 

selected for a full-flow condition? What will be the mean 

velocity in the sewer pipe for these conditions? (It should be 

noted that concrete pipe is readily available in commercial 

sizes of 8 in., 10 in., and 12 in. diameter and then in 3 in. 

increments up to 36 in. diameter. From 36 in. diameter up to 

144 in. the sizes are available in 6 in. increments.)

Problem Definition

Situation: Given slope, find Manning’s n, design discharge, 
traditional unit system.

Find: Pipe diameter large enough to carry design discharge 
and that allows  at full-flow condition.

Assumptions: Can only use a standard pipe size.

Plan

1. Use Chezy equation for traditional units, Eq. (15.16).

2. Solve for 

3. For pipe flowing full, relate A and P to diameter through Rh.

4. Solve for diameter, and use the next commerical size larger.

5. Check that velocity for full flow is greater than 2 ft s.

Roadway
Embankment

Culvert

⁄ ⁄

�
V 2 ft/s≥

AR
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Example 15.8 demonstrates the calculation of necessary slope given all sources of head

loss, and a required discharge.

Solution

1. Chezy equation for traditional units is

2. Solve for Note that units of are because 
A is in ft2 and Rh is in 

3. Relate A and P to diameter by relating to Rh.

For a pipe flowing full, and P �D, or

4. Solving for diameter yields D 3.98 ft 47.8 in. Use 
the next commercial size larger, which is 

5. Verify that velocity of full flow is greater than 2 ft s.

EXAMPLE 15.8   CULVERT DESIGN

A 54 in. diameter culvert laid under a highway embankment 

has a length of 200 ft and a slope of 0.01. This was designed 

to pass a 50-year flood flow of 225 cfs under full-flow 

conditions (figure below). For these conditions, what head H

is required? When the discharge is only 50 cfs, what will be 

the uniform flow depth in the culvert? Assume n 0.012.

Problem Definition

Situation: Culvert has been designed to carry 225 cfs with 
given dimensions.

Find:

1. The height H required between the two free surfaces when 
flowing full.

2. The uniform flow depth in the culvert when Q 50 cfs.

Assumptions: Uniform flow, so that pipe head loss hf can be

related to S0.

Sketch:

Plan

1. Use energy equation between the two end sections, 
accounting for head loss.

2. Document all sources of head loss.

3. Find pipe head loss hf using Eq. (15.17) and the fact that

4. Use continuity equation to find V, the uniform flow velocity, 
needed to calculate head loss.

5. Solve for H.

6. Solve for depth of flow, for Q 50, using Eq. (15.17) and 
pipe geometry relations for pipe flowing partly full.

Solution

1. Energy equation

Let points 1 and 2 be at the upstream and downstream
water surfaces, respectively.
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Steady Nonuniform Flow 

As stated in the beginning of this chapter, and shown in Fig. 15.1, all open-channel flows are

classified as either uniform or nonuniform. Recall that uniform flow has constant velocity along

a streamline, and thus has constant depth for a constant cross section. In steady nonuniform flow,

the depth and velocity change over distance (but not with time). For all such cases, the energy

equation as generally introduced in Section 15.2 is invoked to compare two cross sections.

However, for analysis of nonuniform flow, it is useful to distinguish whether the depth and

velocity change occurs over a short distance, referred to as rapidly varied flow, or over a long

reach of the channel, referred to as gradually varied flow (Fig.15.6). The head loss term is

different for these two cases. For rapidly varied flow, one can neglect the resistance of the channel

walls and bottom because it occurs over a short distance. For gradually varied flow, because of

the long distances involved, the surface resistance is a signficant variable in the energy balance.

2. Head losses occur at culvert entrance and exit, as well as 
over the length of pipe.

3. Pipe head loss is

4. Continuity equation yields

5. Solve for H.

6. Depth of flow for Q 50 cfs is

Values of A and Rh will depend upon geometry of partly
full pipe, as shown:

Area A if angle � is given in degrees

Wetted perimeter will be P �D(� 180°), so

Substituting these relations for A and Rh into the discharge
equation and solving for � yields � 70°. Therefore, y is
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Rapidly Varied Flow

Rapidly varied flow is analyzed with the energy equation presented previously for open-

channel flow, Eq. (15.7), with the additional assumptions that the channel bottom is horizon-

tal and the head loss is zero Therefore, Eq. (15.7) becomes

(15.17)

Specific Energy
The sum of the depth of flow and the velocity head is defined as the specific energy:

(15.18)

Note that specific energy has dimensions [L]; that is, it is an energy head. Equation (15.17)

states that the specific energy at section 1 is equal to the specific energy at section 2, or

The continuity equation between sections 1 and 2 is

(15.19)

Therefore, Eq. (15.17) can be expressed as

(15.20)

Because A1 and A2 are functions of the depths y1 and y2, respectively, the magnitude of the

specific energy at section 1 or 2 is solely a function of the depth at each section. If, for a

given channel and given discharge, one plots depth versus specific energy, a relationship

such as that shown in Fig. 15.7 is obtained. By studying Fig. 15.7 for a given value of spe-

Figure 15.7
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and specific energy.
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cific energy, one can see that the depth may be either large or small. This means that for the

small depth, the bulk of the energy of flow is in the form of kinetic energy—that is,

—whereas for a larger depth, most of the energy is in the form of potential

energy. Flow under a sluice gate (Fig. 15.8) is an example of flow in which two depths oc-

cur for a given value of specific energy. The large depth and low kinetic energy occur up-

stream of the gate; the low depth and large kinetic energy occur downstream. The depths as

used here are called alternate depths. That is, for a given value of E, the large depth is alter-

nate to the low depth, or vice versa. Returning to the flow under the sluice gate, one finds

that if the same rate of flow is maintained, but the gate is set with a larger opening, as in

Fig. 15.8b, the upstream depth will drop, and the downstream depth will rise. This results

in different alternate depths and a smaller value of specific energy than before. This is con-

sistent with the diagram in Fig. 15.7.

Finally, it can be seen in Fig. 15.7 that a point will be reached where the specific en-

ergy is minimum and only a single depth occurs. At this point, the flow is termed critical.
Thus one definition of critical flow is the flow that occurs when the specific energy is min-

imum for a given discharge. The flow for which the depth is less than critical (velocity is

greater than critical) is termed supercritical flow, and the flow for which the depth is

greater than critical (velocity is less than critical) is termed subcritical flow. Therefore, sub-

critical flow occurs upstream and supercritical flow occurs downstream of the sluice gate

in Fig. 15.8. It should be noted that some engineers refer to subcritical and supercritical

flow as tranquil and rapid flow, respectively. Other aspects of critical flow are shown in the

next section.

Figure 15.8

Flow under a sluice gate.

(a) Smaller gate opening.

(b) Larger gate opening.

Q
2

2gA
2( )⁄ � y

EGL
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Supercritical flow

Supercritical flow

(a)

(b)
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Characteristics of Critical Flow
Critical flow occurs when the specific energy is minimum for a given discharge. The depth for

this condition may be determined by solving for dE dy from and setting

dE dy equal to zero:

(15.21)

However, where T is the width of the channel at the water surface, as shown in

Fig. 15.9. Then Eq. (15.21), with will reduce to

(15.22)

or

(15.23)

If the hydraulic depth, D, is defined as

(15.24)

then Eq. (15.23) will yield a critical hydraulic depth Dc , given by

(15.25)

Dividing Eq. (15.25) by Dc and taking the square root yields

(15.26)

Note: is the Froude number. Therefore, it has been shown that the Froude number is

equal to unity when critical flow prevails.

If a channel is of rectangular cross section, then A T is the actual depth, and

so the condition for critical depth (Eq. 15.23) for a rectangular channel becomes

(15.27)

where q is the discharge per unit width of channel. 

Figure 15.9

Open-channel relations.
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Critical flow may also be examined in terms of how the discharge in a channel varies with

depth for a given specific energy. For example, consider flow in a rectangular channel where

or

If one considers a unit width of the channel and lets then the foregoing equation becomes

If one determines how q varies with y for a constant value of specific energy, one sees that

critical flow occurs when the discharge is maximum (see Fig. 15.10).

EXAMPLE 15.9   CRITICAL DEPTH IN 

A CHANNEL

Determine the critical depth in this trapezoidal channel for a 

discharge of 500 cfs. The width of the channel bottom is 

B 20 ft, and the sides slope upward at an angle of 45°.

Problem Definition

Situation: Trapezoidal channel with known geometry.

Find: Critical depth.

Sketch:

Plan

1. For critical flow, Eq. (15.22) must apply.

2. Relate this channel geometry to width T and area A in 
Eq. (15.22).

3. By iteration (choose y and compute A3 T), find y that will 
yield A3 T equal to 7764 ft2. This y will be critical depth yc.

Solution

1. Apply Eq. (15.22) or Eq. (15.23).

or

2. For Q 500 cfs,

For this channel, and 

3. Iterate to find yc.

Figure 15.10

Variation of q and y with 

constant specific energy.
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Originally, the term critical flow probably related to the unstable character of the flow for this

condition. Referring to Fig. 15.7, one can see that only a slight change in specific energy will cause

the depth to increase or decrease a significant amount; this is a very unstable condition. In fact, ob-

servations of critical flow in open channels show that the water surface consists of a series of stand-

ing waves. Because of the unstable nature of the depth in critical flow, designing canals so that

normal depth is either well above or well below critical depth is usually best. The flow in canals and

rivers is usually subcritical; however, the flow in steep chutes or over spillways is supercritical.

In this section, various characteristics of critical flow have been explored. The main

ones can be summarized as follows:

  1. Critical flow occurs when specific energy is minimum for a given discharge (Fig. 15.7).

  2. Critical flow occurs when the discharge is maximum for a given specific energy.

  3. Critical flow occurs when

  4. Critical flow occurs when Fr 1.

  5. For rectangular channels, critical depth is given as 

Common Occurrence of Critical Flow
Critical flow occurs when a liquid passes over a broad-crested weir (Fig. 15.11). The principle of

the broad-crested weir is illustrated by first considering a closed sluice gate that prevents water from

being discharged from the reservoir, as shown in Fig. 15.11a. If the gate is opened a small amount

(gate position - ), the flow upstream of the gate will be subcritical and the flow downstream will

be supercritical (as in the condition shown in Fig. 15.8). As the gate is opened further, a point is fi-

nally reached where the depths immediately upstream and downstream of the gate are the same. This

is the critical condition. At this gate opening and beyond, the gate has no influence on the flow; this

is the condition shown in Fig. 15.11b, the broad-crested weir. If the depth of flow over the

weir is measured, the rate of flow can easily be computed from Eq. (15.27):

or (15.28)

where L is the length of the weir crest normal to the flow direction.

Figure 15.11

Flow over a 

broad-crested weir. 

(a) Depth of flow 

controlled by sluice gate.

(b) Depth of flow is 

controlled by weir, and is yc.

A3

T
------

Q2

g
------�

�
yc q2 g⁄( )1/3.�

a′ a′

q gyc

3
�

Q L gyc

3
�

a'

a'

Water surface with
partly open gate

(a)

(b)

H

P

yc

EGL
Weir crest

Broad-
crested

weir

Broad-
crested

weir



528 FLOW IN OPEN CHANNELS

Because from Eq. (15.25), it can be shown that where E
is the total head above the crest hence Eq. (15.28) can be rewritten as

or (15.29)

For high weirs, the upstream velocity of approach is almost zero. Hence Eq. (15.29) can be

expressed as

(15.30)

If the height P of the broad-crested weir is relatively small, then the velocity of approach may

be significant, and the discharge produced will be greater than that given by Eq. (15.30).

Also, head loss will have some effect. To account for these effects, a discharge coefficient C
is defined as

(15.31)

Then (15.32)

where Q is the actual discharge over the weir. An analysis of experimental data by Raju (15)

shows that C varies with as shown in Fig. 15.12. The curve in Fig. 15.12 is for a

weir with a vertical upstream face and a sharp corner at the intersection of the upstream face

and the weir crest. If the upstream face is sloping at a 45° angle, the discharge coefficient

should be increased 10% over that given in Fig. 15.12. Rounding of the upstream corner will

also produce a coefficient of discharge as much as 3% greater.

Equation (15.32) reveals a definite relationship for Q as a function of the head, H. This

type of discharge-measuring device is in the broad class of discharge meters called critical-
flow flumes. Another very common critical-flow flume is the venturi flume, which was devel-

oped and calibrated by Parshall (8). Figure 15.13 shows the essential features of the venturi

flume. The discharge equation for the venturi flume is in the same form as Eq. (15.32), the

only difference being that the experimentally determined coefficient C will have a different

value from the C for the broad-crested weir. For more details on the venturi flume, you may

refer to Roberson et al. (9), Parshall (8), and Chow (5). The venturi flume is especially useful

for discharge measurement in irrigation systems because little head loss is required for its

use, and sediment is easily flushed through if the water happens to be silty.

Figure 15.12
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The depth also passes through a critical stage in channel flow where the slope changes

from a mild one to a steep one. A mild slope is defined as a slope for which the normal depth

yn is greater than yc. Likewise, a steep slope is one for which This condition is shown

in Fig. 15.14. Note that yc is the same for both slopes in the figure because yc is a function of

the discharge only. However, normal depth (uniform-flow depth) for the mild upstream channel

is greater than critical, whereas the normal depth for the steep downstream channel is less than

critical; hence it is obvious that the depth must pass through a critical stage. Experiments show

that critical depth occurs a very short distance upstream of the intersection of the two channels.

Another place where critical depth occurs is upstream of a free overfall at the end of a channel

with a mild slope Fig. 15.15. Critical depth will occur at a distance of 3yc to 4yc upstream of the brink.

Such occurrences of critical depth (at a break in grade or at a brink) are useful in computing surface

profiles because they provide a point for starting surface-profile calculations.*

Figure 15.13

Flow through a venturi 

flume.

Figure 15.14

Critical depth at a break 

in grade.

Figure 15.15

Critical depth at a free 

overfall.

* The procedure for making these computations starts on p. 541 (water surface profiles).
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Channel Transitions
Whenever a channel’s cross-sectional configuration (shape or dimension) changes along its length,

the change is termed a transition. Concepts previously presented are used to show how the flow

depth changes when the floor of a rectangular channel is increased in elevation or when the width

of the channel is decreased. In these developments negligible energy losses are assumed. First, the

case where the floor of the channel is raised (an upstep) is considered. Later in this section, con-

figurations of transitions used for subcritical flow from a rectangular to a trapezoidal channel are

presented.

Consider the rectangular channel shown in Fig. 15.16, where the floor rises an

amount �z. To help in evaluating depth changes, one can use a diagram of specific en-

ergy versus depth, which is similar to Fig. 15.7. This diagram is applied both at the sec-

tion upstream of the transition and at the section just downstream of the transition.

Because the discharge, Q, is the same at both sections, the same diagram is valid at both sec-

tions. As noted in Fig. 15.16, the depth of flow at section 1 can be either large (subcritical)

or small (supercritical) if the specific energy E1 is greater than that required for critical flow.

It can also be seen in Fig. 15.16 that when the upstream flow is subcritical, a decrease in

depth occurs in the region of the elevated channel bottom. This occurs because the spe-

cific energy at this section, E2, is less than that at section 1 by the amount �z. Therefore,

the specific-energy diagram indicates that y2 will be less than y1. In a similar manner it

can be seen that when the upstream flow is supercritical, the depth as well as the actual

water-surface elevation increases from section 1 to section 2. A further note should be

made about the effect on flow depth of a change in bottom-surface elevation. If the chan-

nel bottom at section 2 is at an elevation greater than that just sufficient to establish crit-

ical flow at section 2, then there is not enough head at section 1 to cause flow to occur

over the rise under steady-flow conditions. Instead, the water level upstream will rise un-

til it is just sufficient to reestablish steady flow.

When the channel bottom is kept at the same elevation but the channel is decreased in

width, then the discharge per unit of width between sections 1 and 2 increases, but the spe-

cific energy E remains constant. Thus when utilizing the diagram of q versus depth for the

given specific energy E, one notes that the depth in the restricted section increases if the up-

stream flow is supercritical and decreases if it is subcritical (see Fig. 15.17).

Figure 15.16
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The foregoing paragraphs describe gross effects for the simplest transitions. In practice,

it is more common to find transitions between a channel of one shape (rectangular cross sec-

tion, for example) and a channel having a different cross section (trapezoidal, for example).

A very simple transition between two such channels consists of two straight vertical walls

joining the two channels, as shown by half section in Fig. 15.18.

This type of transition can work, but it will produce excessive head loss because of the

abrupt change in cross section, and the ensuing separation that will occur. To reduce the head

losses, a more gradual type of transition is used. Figure 15.19 is a half section of a transition similar

to that of Fig. 15.18, but with the angle � much greater than 90°. This is called a wedge transition.

The warped-wall transition shown in Fig. 15.20 will yield even smoother flow than ei-

ther of the other two, and it will thus have less head loss. In the practical design and analysis

of transitions, engineers usually use the complete energy equation, including the kinetic en-

ergy factors �1 and �2 as well as a head loss term hL, to define velocity and water-surface

elevation through the transition. Analyses of transitions utilizing the one-dimensional form

of the energy equation are applicable only if the flow is subcritical. If the flow is supercriti-

cal, then a much more involved analysis is required. For more details on the design and anal-

ysis of transitions, you are referred to Hinds (10), Chow (5), U.S. Bureau of Reclamation

(11), and Rouse (12). 

Figure 15.17

Change in depth with 

change in channel width.

Figure 15.18

Simplest type of 

transition between a 

rectangular channel and 

a trapezoidal channel.

Figure 15.19
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Wave Celerity
Wave celerity is the velocity at which an infinitesimally small wave travels relative to the ve-

locity of the fluid. It can be used to characterize the velocity of waves in the ocean, or propa-

gation of a flood wave following a dam failure. A derivation of wave celerity, c, follows.

Consider a small solitary wave moving with velocity c in a calm body of liquid of small

depth (Fig. 15.21a). Because the velocity in the liquid changes with time, this is a condition

of unsteady flow. However, if one referred all velocities to a reference frame moving with the

wave, the shape of the wave would be fixed, and the flow would be steady. Then the flow is

amenable to analysis with the Bernoulli equation. The steady-flow condition is shown in

Fig. 15.21b. When the Bernoulli equation is written between a point on the surface of the un-

disturbed fluid and a point at the wave crest, the following equation results:

(15.33)

In Eq. (15.33), V is the velocity of the liquid in the section where the crest of the wave is

located. From the continuity equation, Hence

and (15.34)

When Eq. (15.34) is substituted into Eq. (15.33), it yields

(15.35)

Figure 15.20

Half section of a warped-

wall transition.

Figure 15.21

Solitary wave 

(exaggerated vertical 

scale).

(a) Unsteady flow. 

(b) Steady flow.
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Solving Eq. (15.35) for c after discarding terms with (�y)2, assuming an infinitesimally small

wave, yields the wave celerity equation

(15.36)

It has thus been shown that the speed of a small solitary wave is equal to the square root of

the product of the depth and g.

Hydraulic Jump

Occurrence of the Hydraulic Jump

An interesting and important case of rapidly varied flow is the hydraulic jump. A hydraulic
jump occurs when the flow is supercritical in an upstream section of a channel and is then forced

to become subcritical in a downstream section (the change in depth can be forced by a sill in

the downstream part of the channel or just by the prevailing depth in the stream further

downstream), resulting in an abrupt increase in depth, and considerable energy loss. Hydraulic

jumps (Fig. 15.22) are often considered in the design of open channels and spillways of dams. If

a channel is designed to carry water at supercritical velocities, the designer must be certain that

the flow will not become subcritical prematurely. If it did, overtopping of the channel walls would

undoubtedly occur, with consequent failure of the structure. Because the energy loss in the

hydraulic jump is initially not known, the energy equation is not a suitable tool for analysis of the

velocity-depth relationships. Because there is a significant difference in hydrostatatic head on

both sides of the equation causing opposing pressure forces, the momentum equation can be

applied to the problem, as developed in the following sections.

Derivation of Depth Relationships in Hydraulic Jumps
Consider flow as shown in Fig. 15.22. Here it is assumed that uniform flow occurs both up-

stream and downstream of the jump and that the resistance of the channel bottom over the rel-

atively short distance L is negligible. The derivation is for a horizontal channel, but experiments

show that the results of the derivation will apply to all channels of moderate slope

The derivation is started by applying the momentum equation in the x-direction

to the control volume shown in Fig. 15.23:

Figure 15.22

Definition sketch for the 

hydraulic jump.
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The forces are the hydrostatic forces on each end of the system; thus the following is

obtained:

or (15.37)

In Eq. (15.37), and are the pressures at the centroids of the respective areas A1 and A2.

A representative problem (e.g., Example 15.10) is to determine the downstream depth

y2 given the discharge and upstream depth. The left-hand side of Eq. (15.37) would be known

because V, A, and p are all functions of y and Q, and the right-hand side is a function of y2;

therefore, y2 can be determined.  

Figure 15.23

Control-volume analysis 

for the hydraulic jump.

EXAMPLE 15.10   DOWNSTREAM DEPTH IN 

HYDRAULIC JUMP 

Water flows in a trapezoidal channel at a rate of 300 cfs. The 

channel has a bottom width of 10 ft and side slopes of 

1 vertical to 1 horizontal. If a hydraulic jump is forced to occur 

where the upstream depth is 1.0 ft, what will be the downstream 

depth and velocity? What are the values of Fr1 and Fr2?

Problem Definition

Situation: Known upstream conditions, hydraulic jump is 
forced to occur (details not described).

Find:

1. Downstream depth and velocity.

2. Values of Fr1 and Fr2.

Sketch:

Properties: Water (50°F), Table A.5:

and

Plan

1. Find cross section, velocity, and hydraulic depth in the 
upstream section.

2. Find pressure in the upstream section to use for left-hand 
side of Eq. (15.37).

3. Use channel geometry information to solve for y2 in 
right-hand side of Eq. (15.37).

4. Use Eq. (15.2) to solve for the Froude number at both 
sections.

Solution

1. By inspection, for the upstream section, the cross-sectional 
flow area is 11 ft2.
Therefore, the mean velocity is V1 Q A1 27.3 ft s.

The hydraulic depth is D1 A1 T1 11 ft2 12 ft 0.9167 

ft.

V2

2

2

1

1

Control surface

Hydrostatic
pressure at
section

Hydrostatic
pressure at
section

V1

p1A1 p2 A2– �V2A2V2 �V1A1V1–�

p1A1 �QV1+ p2 A2 �QV2+�

p1 p2

45°
A1A A1B A1C

1 ft

10 ft

	 62.4 lbf ft
3⁄ ,� � 1.94 slugs ft

3⁄ .�

� ⁄ � ⁄
� ⁄ � ⁄ �
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Hydraulic Jump in Rectangular Channels
If one writes Eq. (15.37) for a unit width of a rectangular channel where 

and this will yield

(15.38a)

but so Eq. (15.38a) can be rewritten as

(15.39b)

The preceding equation can be further manipulated to yield

(15.40)

The term on the left-hand side of Eq. (15.40) will be recognized as twice Hence Eq.

(15.40) is written as

(15.41)

By use of the quadratic formula, it is easy to solve for y2 y1 in terms of the upstream Froude

number. This yields an equation for depth ratio across a hydraulic jump:

(15.42)

or (15.43)

2. The location of the centroid of the area A1 can be 
obtained by taking moments of the sub-areas about the 
water surface (see example sketch). 

Pressure

Therefore,

3. Using right-hand side of Eq. (15.37), solve for y2.

Using and material properties 

assumed earlier,

4. Froude numbers at both sections are

y( )

A1 y1 A1A 0.333×  ft A1B 0.500 ft A1C+× 0.333 ft×+�
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2
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The other solution of Eq. (15.41) gives a negative downstream depth, which is not physically

possible. Hence the downstream depth is expressed in terms of the upstream depth and the

upstream Froude number. In Eqs. (15.42) and (15.43), the depths y1 and y2 are said to be

conjugate or sequent (both terms are in common use) to each other, in contrast to the alter-

nate depths obtained from the energy equation. Numerous experiments show that the relation

represented by Eqs. (15.42) and (15.43) is valid over a wide range of Froude numbers. 

Although no theory has been developed to predict the length of a hydraulic jump, ex-

periments [see Chow (5)] show that the relative length of the jump, L y2, is approximately 6

for Fr1 ranging from 4 to 18.

Head Loss in a Hydraulic Jump
In addition to determining the geometric characteristics of the hydraulic jump, it is often de-

sirable to determine the head loss produced by it. This is obtained by comparing the specific

energy before the jump to that after the jump, the head loss being the difference between the

two specific energies. It can be shown that the head loss for a jump in a rectangular channel is

(15.44)

For more information on the hydraulic jump, see Chow (5). The following example shows

that Eq. (15.44) yields a magnitude that equals the difference between the specific energies at

the two ends of the hydraulic jump.

EXAMPLE 15.11   HEAD LOSS IN 

HYDRAULIC JUMP

Water flows in a rectangular channel at a depth of 30 cm with 

a velocity of 16 m s, as shown in the sketch that follows. If a 

downstream sill (not shown) forces a hydraulic jump, what 

will be the depth and velocity downstream of the jump? What 

head loss is produced by the jump?

Problem Definition

Situation: Channel is rectangular; upstream depth and 
velocity known.

Find:

1. Downstream depth and velocity.

2. Head loss produced by the jump.

Sketch:

Plan

1. In order to calculate hL using Eq. (15.44), must calculate y2

from the depth ratio equation (Eq. 15.43). This requires Fr1.

2. Check validity of head loss by comparing to 

Solution

1. Calculate Fr1, y2, V2, and hL from Eqs. (Eq. 15.43) and 
(15.44).

2. Compare the head loss to 

The value is the same, so 

⁄

hL

y2 y1–( )3

4y1y2

-----------------------�

⁄

30 cm V = 16 m/s
y2

E1 E2.–

Fr1
V

gy1

------------
16

9.81 0.30( )
------------------------------ 9.33� � �

y2

0.30

2
---------- 1 8 9.33( )2+ 1–[ ] 3.81 m� �

V2

q

y2
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16 m s⁄ ) 0.30 m )((

3.81m
----------------------------------------------- 1.26 m s⁄� � �

hL
3.81 0.30–( )3

4 0.30 ) 3.81 )((
------------------------------------ 9.46 m� �

E1 E2.–

hL 0.30
162

2 9.81×
------------------- 3.81

1.262

2 9.81×
-------------------+–+ 9.46 m� �

validity of hL equation is verified.
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Use of Hydraulic Jump on Downstream End of Dam Spillway
Previously it was shown that the transition from supercritical to subcritical flow produces a

hydraulic jump, and that the relative height of the jump (y2 yl) is a function of Fr1. Because

flow over the spillway of a dam invariably results in supercritical flow at the lower end of the

spillway, and because flow in the channel downstream of a spillway is usually subcritical, it

is obvious that a hydraulic jump must form near the base of the spillway (see Fig. 15.26). The

downstream portion of the spillway, called the spillway apron, must be designed so that the

hydraulic jump always forms on the concrete structure itself. If the hydraulic jump were al-

lowed to form beyond the concrete structure, as in Fig. 15.25, severe erosion of the foundation

material as a result of the high-velocity supercritical flow could undermine the dam and cause

its complete failure. One way to solve this problem might be to incorporate a long, sloping

apron into the design of the spillway, as shown in Fig. 15.26. A design like this would work

Figure 15.24

Spillway of dam and 

hydraulic jump.

Figure 15.25

Hydraulic jump 

occurring downstream of 

spillway apron.

Figure 15.26

Long sloping apron.

⁄

Spillway

Hydraulic jump

Apron

Possible undermining of
dam due to severe erosion

in this region

Apron

L
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very satisfactorily from the hydraulics point of view. For all combinations of Fr1 and water-

surface elevation in the downstream channel, the jump would always form on the sloping

apron. However, its main drawback is cost of construction. Construction costs will be re-

duced as the length, L, of the stilling basin is reduced. Much research has been devoted to the

design of stilling basins that will operate properly for all upstream and downstream condi-

tions and yet be relatively short to reduce construction cost. Research by the U.S. Bureau of

Reclamation (13) has resulted in sets of standard designs that can be used. These designs in-

clude sills, baffle piers, and chute blocks, as shown in Fig. 15.27.   

Naturally Occurring Hydraulic Jumps
Hydraulic jumps can occur naturally in creeks and rivers, providing spectacular stand-

ing waves, called rollers. Kayakers and white-water rafters must exercise considerable

skill when navigating hydraulic jumps because the significant energy loss that occurs

over a short distance can be dangerous, potentially engulfing the boat in turbulence. A

special case of hydraulic jump, referred to as a submerged hydraulic jump, can be

deadly to whitewater enthusiasts because it is not easy to see. A submerged hydraulic
jump occurs when the downstream depth predicted by conservation of momentum is ex-

ceeded by the tailwater elevation, and the jump cannot move upstream in response to

this disequilibrium because of a buried obstacle [see Valle and Pasternak (14)]. Thus,

the visual markers of a hydraulic jump, particularly the rolling waves depicted in Figs.

15.22 and 15.23, are hidden.

A surge, or tidal bore, is a moving hydraulic jump that may occur for a high tide entering

a bay or river mouth. Tides are generally low enough that the waves they produce are smooth

and nondestructive. However, in some parts of the world the tides are so high that their entry

into shallow bays or mouths of rivers causes a surge to form. Surges may be very hazardous to

small boats. The same analytical methods used for the jump can be used to solve for the speed

of the surge.

Gradually Varied Flow

For gradually varied flow, channel resistance is a significant factor in the flow process.

Therefore, the energy equation is invoked by comparing S0 and Sf .

Figure 15.27

Spillway with stilling 

basin Type III as 

recommended by the 

USBR (13).
Chute blocksSpillway

Baffle piers

End still

15.7
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Basic Differential Equation for Gradually Varied Flow
There are a number of cases of open-channel flow in which the change in water-surface pro-

file is so gradual that it is possible to integrate the relevant differential equation from one sec-

tion to another to obtain the desired change in depth. This may be either an analytical

integration or, more commonly, a numerical integration. In Section 15.2, the energy equation

was written between two sections of a channel �x distance apart. Because the only head loss

here is the channel resistance, the hL is given by �hf , and Eq. (15.7) becomes

(15.45)

The friction slope Sf is defined as the slope of the EGL, or Thus and

defining then

(15.46)

Therefore, Eq. (15.45) becomes

Dividing through by �x and taking the limit as �x approaches zero gives us

(15.47)

The second term is rewritten as so that Eq. (15.47) simplifies to

(15.48)

To put Eq. (15.48) in a more usable form, the denominator is expressed in terms of the

Froude number. This is accomplished by observing that

(15.49)

After differentiating the right side of Eq. (15.35), the equation becomes

But (top width), and (hydraulic depth); therefore,

or

Hence, when the expression for is substituted into Eq. (15.48), the result is

(15.50)
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This is the general differential equation for gradually varied flow. It is used to describe the

various types of water-surface profiles that occur in open channels. Note that, in the deriva-

tion of the equation, S0 and Sf were taken as positive when the channel and energy grade

lines, respectively, were sloping downward in the direction of flow. Also note that y is mea-

sured from the bottom of the channel. Therefore, if the slope of the water surface

is equal to the slope of the channel bottom, and is positive if the slope of the water

surface is less than the channel slope.

Introduction to Water-Surface Profiles
In the design of projects involving the flow in channels (rivers or irrigation canals, for example),

the engineer must often estimate the water-surface profile (elevation of the water surface along

the channel) for a given discharge. For example, when a dam is being designed for a river

project, the water-surface profile in the river upstream must be defined so that the project plan-

ners will know how much land to acquire to accommodate the upstream pool. The first step in

defining a water-surface profile is to locate a point or points along the channel where the depth

can be computed for a given discharge. For example, at a change in slope from mild to steep,

critical depth will occur just upstream of the break in grade (see Fig. 15.31). At that point one

can solve for yc with Eq. (15.22) or (15.27). Also, for flow over the spillway of a dam, there

will be a discharge equation for the spillway from which one can calculate the water-surface

elevation in the reservoir at the face of the dam. Such points where there is a unique relationship

between discharge and water-surface elevation are called controls. Once the water-surface el-

evations at these controls are determined, then the water-surface profile can be extended up-

stream or downstream from the control points to define the water-surface profile for the entire

channel. The completion of the profile is done by numerical integration. However, before this

integration is performed, it is usually helpful for the engineer to sketch in the profiles. To assist

in the process of sketching the possible profiles, the engineer can refer to different categories

of profiles (water-surface profiles have unique characteristics depending upon the relationship

between normal depth, critical depth, and the actual depth of flow in the channel). This initial

sketching of the profiles helps the engineer to scope the problem and to obtain a solution, or

solutions, in a minimum amount of time. The next section describes the various types of water-

surface profiles.

Types of Water-Surface Profiles
There are 12 different types of water-surface profiles for gradually varied flow in channels,

and these are shown schematically in Fig. 15.28. Each profile is identified by a letter and

number designator. For example, the first water-surface profile in column 1 of Fig. 15.28 is

identified as an M1 profile. The letter indicates the type of slope of the channel—that is,

whether the slope is mild (M), critical (C), steep (S), horizontal (H), or adverse (A). The

slope is defined as mild if the uniform flow depth, yn, is greater than the critical flow depth,

yc. Conversely, if yn is less than yc, the channel would be termed steep. Or if this

would be a channel with critical slope. The designation M, S, or C is determined by comput-

ing yn and yc for the given channel for a given discharge. Equations (15.11) through (15.15)

are used to compute yn, and Eq. (15.22) or (15.27) is used to compute yc. Figure 15.29 shows

the relationship between yn and yc for the H, M, S, C, and A designations. As the name im-

plies, a horizontal slope is one where the channel actually has a zero slope, and an adverse

slope is one where the slope of the channel is upward in the direction of flow. Normal depth

does not exist for these two cases (for example, water cannot flow at uniform depth in either

a horizontal channel or one with adverse slope); therefore, they are given the special designa-

tions H and A, respectively.

dy dx⁄ 0�
dy dx⁄

yn yc,�
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Figure 15.28

Classification of

water-surface profiles of 

gradually varied flow. 

[Adapted from Open

Channel Hydraulics by 

Chow (5). Copyright 

© 1959, McGraw-Hill 

Book Company, New 

York; used with 

permission of

McGraw-Hill Book 

Company.]
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The number designator for the type of profile relates to the position of the actual water

surface in relation to the position of the water surface for uniform and critical flow in the

channel. If the actual water surface is above that for uniform and critical flow 

then that condition is given a 1 designation; if the actual water surface is between

those for uniform and critical flow, then it is given a 2 designation; and if the actual water

surface lies below those for uniform and critical flow, then it is given a 3 designation. Figure

15.30 depicts these conditions for mild and steep slopes.

Figure 15.31 shows how different water-surface profiles can develop in certain field sit-

uations. More specifically, if one considers in detail the flow downstream of the sluice gate

(see Fig. 15.32), one can see that the discharge and slope are such that the normal depth is

greater than the critical depth; therefore the slope is termed mild. The actual depth of flow

shown in Fig. 15.32 is less than both yc and yn. Hence a type 3 water-surface profile exists.

The complete classification of the profile in Fig. 15.32, therefore, is a mild type 3 profile, or

simply an M3 profile. Using these designations, one would categorize the profile upstream of

the sluice gate as type M1.  

Figure 15.30

Number designator as a 

function of the location 

of the actual water 

surface in relation to yn

and yc.

Figure 15.31

Water-surface profiles 

associated with flow 

behind a dam, flow under 

a sluice gate, and flow in 

a channel with a change 

in grade.
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With the previous introduction to the classification of water-surface profiles, one can

refer to Eq. (15.50) to describe the shapes of the profiles. Again, for example, if one consid-

ers the M3 profile, it is known that Fr 1 because the flow is supercritical (y yc), and

that Sf S0 because the velocity is greater than normal velocity. Hence a head loss greater

than that for normal flow must exist. Inserting these relative values into Eq. (15.50) reveals

that both the numerator and the denominator are negative. Thus dy dx must be positive (the

depth increases in the direction of flow), and as critical depth is approached, the Froude num-

ber approaches unity. Hence the denominator of Eq. (15.50) approaches zero. Therefore, as

the depth approaches critical depth, What actually occurs in cases where the

critical depth is approached in supercritical flow is that a hydraulic jump forms and a discon-

tinuity in profile is thereby produced.

Certain general features of profiles, as shown in Fig. 15.28, are evident. First, as the depth

becomes very great, the velocity of flow approaches zero. Hence Fr 0 and Sf 0 and dy dx
approaches S0 because dy dx (S0 Sf)(1 Fr2). In other words, the depth increases at the

same rate at which the channel bottom drops away from the horizontal. Thus the water surface

approaches the horizontal. The profiles that show this tendency are types M1, S1, and C1. A

Figure 15.32

Water-surface profile, 

M3 type.

EXAMPLE 15.12   CLASSIFICATION OF 

WATER-SURFACE PROFILES

Classify the water-surface profile for the flow downstream of 

the sluice gate in Fig. 15.8 if the slope is horizontal, and that 

for the flow immediately downstream of the break in grade in 

Fig. 15.14.

Problem Definition

Situation: Nonuniform flow. Figures from which channel 
steepness and water surface steepness can be determined, and from 
which one can infer whether depth is more or less than critical depth.

Find: The water-surface profile classification for two 
different flow situations.

Plan

1. Select a number designator based upon the location of the 
actual water surface relative to yn and yc (see Fig. 15.30).

2. Select a letter designator to describe the steepness of the 
slopes, which can also be characterized by the relative size 
of yn and yc (see Fig. 15.29).

Solution

For Fig. 15.8

1. The actual depth is less than critical; thus the profile is 
type 3.

2. The channel is horizontal; hence the profile is designated 

For Fig. 15.14

1. The actual depth is greater than normal but less than critical, 
so the profile is type 2.

2. The uniform-flow depth (normal depth yn) is less than the 

critical depth; hence the slope is steep. Therefore the 

water-surface profile is designated 

M3 surface profile
yc

yn

type H3.

type S2.

� �
�

⁄
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physical example of the M1 type is the water-surface profile upstream of a dam, as shown in Fig.

15.31. The second general feature of several of the profiles is that those that approach normal

depth do so asymptotically. This is shown in the S2, S3, M1, and M2 profiles. Also note in Fig.

15.28 that profiles that approach critical depth are shown by dashed lines. This is done because

near critical depth either discontinuities develop (hydraulic jump), or the streamlines are very

curved (such as near a brink). These profiles cannot be accurately predicted by Eq. (15.50) be-

cause this equation is based on one-dimensional flow, which, in these regions, is invalid.

Quantitative Evaluation of the Water-Surface Profile
In practice, most water-surface profiles are generated by numerical integration, that is, by di-

viding the channel into short reaches and carrying the computation for water-surface eleva-

tion from one end of the reach to the other. For one method, called the direct step method,
the depth and velocity are known at a given section of the channel (one end of the reach), and

one arbitrarily chooses the depth at the other end of the reach. Then the length of the reach is

solved for. The applicable equation for quantitative evaluation of the water-surface profile is

the energy equation written for a finite reach of channel, �x:

or

or

(15.51)

The procedure for evaluation of a profile starts by ascertaining which type applies to

the given reach of channel (using the methods of the preceding subsection). Then, starting

from a known depth, one computes a finite value of �x for an arbitrarily chosen change in

depth. The process of computing �x, step by step, up (negative �x) or down (positive �x) the

channel is repeated until the full reach of channel has been covered. Usually small changes of

y are taken, so that the friction slope is approximated by the following equation:

(15.52)

Here V is the mean velocity in the reach, and Rh is the mean hydraulic radius. That is,

V (V1 V2) 2, and Rh (Rh1 Rh2) 2. It is obvious that a numerical approach of this type

is ideally suited for solution by computer. 

EXAMPLE 15.13   CLASSIFICATION AND 

NUMERICAL ANALYSIS

1. Water discharges from under a sluice gate into a horizontal 
rectangular channel at a rate of 1 m3 s per meter of width, 
as shown in the following sketch. What is the 
classification of the water-surface profile? Quantitatively 
evaluate the profile downstream of the gate and determine 
whether it will extend all the way to the abrupt drop 80 m 
downstream. Make the simplifying assumptions that the 
resistance factor f is equal to 0.02 and that the hydraulic 
radius Rh is equal to the depth y.

Problem Definition

Situation: Sluice gate with gradually increasing depth after 
water exits gate.

Find:

1. Classification of the downstream profile.

2. Whether increasing slope will increase all the way to a 
point of interest 80 m downstream.
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Summary

An open channel is one in which a liquid flows with a free surface. Steady open-channel flow

is classified as either uniform (constant velocity with distance) or nonuniform (varying velocity

with distance). For uniform open-channel flow, the head loss corresponds to the potential en-

ergy change associated with the slope of the channel. The discharge in an open channel is given

by the Manning equation:

where A is the flow area, S0 is the slope of the channel, and n is the resistance coefficient

(Manning’s n), which has been tabulated for different surfaces.

Assumptions:

1. Resistance factor f is equal to 0.02.

2. Hydraulic radius Rh is equal to the depth y.

Sketch:

Plan

1. Determine the letter designation of channel using 
Fig. 15.29.

2. For flow leaving sluice gate, determine critical depth yc,
and compare to actual depth of flow. Use this information 
to refine the classification.

3. Solve for depth versus distance using Eqs. (15.51) and 
(15.52).

Solution

1. Channel is horizontal, so letter designation is H.

2. Determine critical depth yc using Eq. (15.27).

Thus, the depth of flow from sluice gate is less than the 

critical depth. Therefore the water-surface profile is 

classified as

3. To determine depth versus distance along the channel, 
apply Eqs. (15.51) and (15.52), using a numerical 
approach. The results of the computation are given in the 
table shown on p. 547. From the numerical results one 
plots the profile shown in the accompanying figure, which 
shows that the
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Nonuniform flow in open channels is characterized as either rapidly varied flow or

gradually varied flow. In rapidly varied flow the channel resistance is negligible, and flow

changes (depth and velocity change) occur over relatively short distances.

The significant �-group is Froude number

where Dc is the hydraulic depth, A T. When the Froude number is equal to unity, the flow is

critical. Subcritical flow occurs when the Froude number is less than unity, and supercritical

when the Froude number is greater than unity.

A hydraulic jump usually occurs when the flow along the channel changes from super-

critical to subcritical. The governing equation for hydraulic jump in a horizontal, rectangular

channel is

The corresponding head loss in the hydraulic jump is

When the flow along the channel changes from subcritical to supercritical flow, the

head loss is assumed to be negligible, and the depth and velocity relationship is governed by

the change in elevation of the channel bottom and the specific energy, Typical

cases of this type of flow are

  1. Flow under a sluice gate

  2. An upstep in the channel bottom

  3. Reduction in width of the channel

For gradually varied flow the governing differential equation is

When this equation is integrated along the length of the channel the depth, y, is determined as

a function of distance, x, along the channel. This yields the water surface profile for the reach

of the channel.
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SOLUTION TO EXAMPLE 15.13

Section
Number

Downstream
of Gate

Depth
y, m

Velocity
at

Section

V, m s

Mean
Velocity

in Reach,

V 2

Mean
Hydraulic

Radius,

Distance
from Gate x,

m

1 (at gate) 0.1 10 . . . 100 . . . . . . . . . 0

. . . . . . 8.57 73.4 0.12 0.156 15.7

2 0.14 7.14 . . . 51.0 . . . . . . . . . 15.7

. . . . . . 6.35 40.3 0.16 0.064 15.3

3 0.18 5.56 . . . 30.9 . . . . . . . . . 31.0

. . . . . . 5.05 25.5 0.20 0.032 15.1

4 0.22 4.54 . . . 20.6 . . . . . . . . . 46.1

. . . . . . 4.19 17.6 0.24 0.019 13.4

5 0.26 3.85 . . . 14.8 . . . . . . . . . 59.5

. . . . . . 3.59 12.9 0.28 0.012 12.4

6 0.30 3.33 . . . 11.1 . . . . . . . . . 71.9

. . . . . . 3.13 9.8 0.32 0.008 10.9

7 0.34 2.94 . . . 8.6 . . . . . . . . . 82.8
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Problems

Describing Open-Channel Flow

15.1 ��� Why is the Reynolds number for onset of turbulence

given by in fully flowing pipes, and in

partly flowing pipes and other open channels?

15.2 ��� A rectangular open channel has a base of length 2b,

and the water is flowing with a depth of b.

a. Sketch this channel.

a. What is the hydraulic radius of this channel?

15.3 ��� Two channels have the same cross-sectional area,

but different geometry, as shown.

a. Which channel has the largest wetted perimeter?

b. Which channel has more contact between water and channelwall?

c. Which channel will have more energy loss to friction?

Uniform Open-Channel Flow

15.4Consider uniform flow of water in the two channels shown.

They both have the same slope, the same wall roughness, and the

same cross-sectional area. Then one can conclude that (a) QA QB,

(b) QA QB, or (c) QA QB.

15.5 This wood flume has a slope of 0.0015. What will be the

discharge of water in it for a depth of 1 m?  

15.6 Estimate the discharge in a rock-bedded stream (d84 30

cm) that has an average depth of 2.21 m, a slope of 0.0037, and

a width of 48 m. Assume ks d84.

15.7 Estimate the discharge of water (T 10°C) that flows 1.5

m deep in a long rectangular concrete channel that is 3 m wide

and is on a slope of 0.001.

15.8 A rectangular concrete channel is 12 ft wide and has uniform

water flow. If the channel drops 5 ft in a length of 8000 ft, what

is the discharge? Assume T 60°F. The depth of flow is 4 ft.

15.9 Consider channels of rectangular cross section carrying

100 cfs of water flow. The channels have a slope of 0.001. De-

termine the cross sectional areas required for widths of 2 ft, 4 ft,

6 ft, 8 ft, 10 ft, and 15 ft. Plot A versus y b, and see how the re-

sults compare with the accepted result for the best hydraulic

section.

15.10 A concrete sewer pipe 3 ft in diameter is laid so it has a

drop in elevation of 1.0 ft per 1000 ft of length. If sewage (as-

sume the properties are the same as those of water) flows at a

depth of 1.5 ft in the pipe, what will be the discharge?

15.11 Determine the discharge in a 5 ft–diameter concrete sewer

pipe on a slope of 0.001 that is carrying water at a depth of 4 ft.PROBLEMS 15.3, 15.4

Re 2000� Re 500�

�
� �

5 ft

10 ft

7.07 ft
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15.12 Water flows at a depth of 6 ft in the trapezoidal, concrete-

lined channel shown. If the channel slope is 1 ft in 2000 ft, what

is the average velocity and what is the discharge?  

15.13 What will be the depth of flow in a trapezoidal concrete-

lined channel that has a water discharge of 1000 cfs? The chan-

nel has a slope of 1 ft in 500 ft. The bottom width of the channel

is 10 ft, and the side slopes are 1 vertical to 1 horizontal.

15.14 What discharge of water will occur in a trapezoidal chan-

nel that has a bottom width of 10 ft and side slopes of 1 vertical

to 1 horizontal if the slope of the channel is 4 ft mi and the

depth is to be 5 ft? The channel will be lined with concrete.

15.15 A rectangular concrete channel 4 m wide on a slope of

0.004 is designed to carry a water (T 10°C) discharge of 25

m3 s. Estimate the uniform flow depth for these conditions.

The channel has a rectangular cross section.

15.16 A rectangular troweled concrete channel 12 ft wide with a

slope of 10 ft in 8000 ft is designed for a discharge of 500 cfs.

For a water temperature of 40°F, estimate the depth of flow.

15.17 A concrete-lined trapezoidal channel having a bottom

width of 10 ft and side slopes of 1 vertical to 2 horizontal is de-

signed to carry a flow of 3000 cfs. If the slope of the channel is

0.001, what will be the depth of flow in the channel?

15.18 Design a canal having a trapezoidal cross section to carry a

design discharge of irrigation water of 900 cfs. The slope of the

canal is to be 0.002. The canal is to be lined with concrete, and

it is to have the best hydraulic section for the design flow.

Nonuniform Open-Channel Flow

15.19 ��� How are head loss and slope related for nonuniform

flow, as compared to uniform flow?

15.20 ��� Is critical flow a desirable or undesirable flow con-

dition? Why?

15.21 Water flows at a depth of 4 in. with a velocity of 28 ft s

in a rectangular channel. Is the flow subcritical or supercritical?

What is the alternate depth?

15.22 The water discharge in a rectangular channel 16 ft wide is

900 cfs. If the depth of water is 3 ft, is the flow subcritical or

supercritical?

15.23 The discharge in a rectangular channel 18 ft wide is

420 cfs. If the water velocity is 9 ft s, is the flow subcritical

or supercritical?

15.24 Water flows at a rate of 12 m3 s in a rectangular channel 3

m wide. Determine the Froude number and the type of flow

(subcritical, critical, or supercritical) for depths of 30 cm, 1.0 m,

and 2.0 m. What is the critical depth?

15.25 For the discharge and channel of Prob. 15.24, what is the

alternate depth to the 30 cm depth? What is the specific energy

for these conditions?

15.26 Water flows at the critical depth with a velocity of 5 m s.

What is the depth of flow?

15.27 Water flows uniformly at a rate of 320 cfs in a rectangular

channel that is 12 ft wide and has a bottom slope of 0.005. If n is

0.014, is the flow subcritical or supercritical?

15.28 The discharge in a trapezoidal channel is 10 m3 s. The

bottom width of the channel is 3.0 m, and the side slopes are 1

vertical to 1 horizontal. If the depth of flow is 1.0 m, is the flow

supercritical or subcritical?

15.29 For the channel of Prob. 15.28, determine the critical

depth for a discharge of 20 m3 s.

15.30 A rectangular channel is 6 m wide, and the discharge of wa-

ter in it is 18 m3 s. Plot depth versus specific energy for these

conditions. Let specific energy range from Emin to E 7 m. What

are the alternate and sequent depths to the 30 cm depth?

15.31 A long rectangular channel that is 4 m wide and has a

mild slope ends in a free outfall. If the water depth at the brink

is 0.35 m, what is the discharge in the channel?

15.32 A rectangular channel that is 15 ft wide and has a mild

slope ends in a free outfall. If the water depth at the brink is

1.20 ft, what is the discharge in the channel?

15.33 A horizontal rectangular channel 14 ft wide carries a dis-

charge of water of 500 cfs. If the channel ends with a free out-

fall, what is the depth at the brink?

15.34 What discharge of water will occur over a 2 ft–high, broad-

crested weir that is 10 ft long if the head on the weir is 1.5 ft?

15.35 What discharge of water will occur over a 2 m–high,

broad-crested weir that is 5 m long if the head on the weir is

60 cm?

15.36 The crest of a high, broad-crested weir has an elevation of

100 m. If the weir is 10 m long and the discharge of water over

the weir is 25 m3 s, what is the water-surface elevation in the

reservoir upstream?

15.37 The crest of a high, broad-crested weir has an elevation of

300 ft. If the weir is 40 ft long and the discharge of water over

the weir is 1200 cfs, what is the water-surface elevation in the

reservoir upstream?

15.38 Water flows with a velocity of 3 m s and at a depth of

3 m in a rectangular channel. What is the change in depth and in

water-surface elevation produced by a gradual upward change

in bottom elevation (upstep) of 30 cm? What would be the depth

and elevation changes if there were a gradual downstep of 30 cm?

What is the maximum size of upstep that could exist before up-

stream depth changes would result?

15.39 Water flows with a velocity of 2 m s and at a depth of 3 m

in a rectangular channel. What is the change in depth and in

water-surface elevation produced by a gradual upward change

PROBLEM 15.12

10 ft

Water
T = 50°F 2

1

⁄

�
⁄

⁄

⁄

⁄

⁄

⁄

⁄

⁄
�

⁄

⁄

⁄



550 FLOW IN OPEN CHANNELS

in bottom elevation (upstep) of 60 cm? What would be the depth

and elevation changes if there were a gradual downstep of 15 cm?

What is the maximum size of upstep that could exist before up-

stream depth changes would result?

15.40 Assuming no energy loss, what is the maximum value of

�z that will permit the unit flow rate of 6 m2 s to pass over the

hump without increasing the upstream depth? Sketch carefully

the water-surface shape from section 1 to section 2. On the

sketch give values for �z, the depth, and the amount of rise or

fall in the water surface from section 1 to section 2.  

15.41 Water flows with a velocity of 3 m s in a rectangular

channel 3 m wide at a depth of 3 m. What is the change in depth

and in water-surface elevation produced when a gradual con-

traction in the channel to a width of 2.6 m takes place? Deter-

mine the greatest contraction allowable without altering the

specified upstream conditions.

15.42 Because of the increased size of ships, the phenome-

non called “ship squat” has produced serious problems in

harbors where the draft of vessels approaches the depth of

the ship channel. When a ship steams up a channel, the re-

sulting flow situation is analogous to open-channel flow in

which a constricting flow section exists (the ship reduces the

cross-sectional area of the channel). The problem may be an-

alyzed by referencing the water velocity to the ship and ap-

plying the energy equation. Thus, at the section of the

channel where the ship is located, the relative water velocity

in the channel will be greatest, and the water level in the

channel will be reduced as dictated by the energy equation.

Consequently, the ship itself will be at a lower elevation than

if it were stationary; this lowering is referred to as “ship

squat.” Estimate the squat of the fully loaded supertanker Bel-

lamya when it is steaming at 5 kt (1 kt 0.515 m s) in a

channel that is 35 m deep and 200 m wide. The draft of the

Bellamya when fully loaded is 29 m. Its width and length are 63 m

and 414 m, respectively.

15.43 A rectangular channel that is 10 ft wide is very smooth ex-

cept for a small reach that is roughened with angle irons attached

to the bottom. Water flows in the channel at a rate of 200 cfs and

at a depth of 1.0 ft upstream of the rough section. Assume friction-

less flow except over the roughened part, where the total drag of all

roughness (all of the angle irons) is assumed to be 2000 lbf. Deter-

mine the depth downstream of the roughness for the assumed

conditions.

15.44 Water flows from a reservoir into a steep rectangular

channel that is 4 m wide. The reservoir water surface is 3 m

above the channel bottom at the channel entrance. What dis-

charge will occur in the channel?

15.45 A small wave is produced in a pond that is 8 in. deep.

What is the speed of the wave in the pond?

15.46 A small wave in a pool of water having constant depth

travels at a speed of 1.5 m s. How deep is the water?

15.47 As waves in the ocean approach a sloping beach, they

curve so that they are nearly parallel to the beach when they fi-

nally break (see accompanying figure). Explain why the waves

curve like this. 

Hydraulic Jumps

15.48 The baffled ramp shown is used as an energy dissipator in a

two-dimensional open channel. For a discharge of 18 cfs per foot

of width, calculate the head lost, the power dissipated, and the hor-

izontal component of force exerted by the ramp on the water.

15.49The spillway shown has a discharge of 2.5 m3 s per meter of

width occurring over it. What depth y2 will exist downstream of the

hydraulic jump? Assume negligible energy loss over the spillway.

15.50 The flow of water downstream from a sluice gate in a hori-

zontal channel has a depth of 30 cm and a flow rate of 3.60 m3 m

of width. The sluice gate is 2 m wide. Could a hydraulic jump be

caused to form downstream of this section? If so, what would be

the depth downstream of the jump?  
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15.51 It is known that the discharge per unit width is 65 cfs ft

and that the height (H) of the hydraulic jump is 14 ft. What is

the depth y1?

15.52 Water flows in a channel at a depth of 40 cm and with a

velocity of 8 m s. An obstruction causes a hydraulic jump to

be formed. What is the depth of flow downstream of the jump?

15.53 Water flows in a trapezoidal channel at a depth of 40 cm

and with a velocity of 10 m s. An obstruction causes a hydrau-

lic jump to be formed. What is the depth of flow downstream of

the jump? The bottom width of the channel is 5 m, and the side

slopes are 1 vertical to 1 horizontal.

15.54 A hydraulic jump occurs in a wide rectangular channel. If

the depths upstream and downstream are 0.50 ft and 10 ft, respec-

tively, what is the discharge per foot of width of channel?

15.55The 20 ft–wide rectangular channel shown has three different

reaches. S0,1 0.01; S0,2 0.0004; S0,3 0.00317; Q 500 cfs;

n1 0.015; normal depth for reach 2 is 5.4 ft and that for reach 3 is

2.7 ft. Determine the critical depth and normal depth for reach 1 (use

Manning’s equation). Then classify the flow in each reach (super-

critical, subcritical, critical), and determine whether a hydraulic jump

could occur. In which reach(es) might it occur if it does occur ?  

15.56 Water flows from under the sluice gate as shown and con-

tinues on to a free overfall (also shown). Upstream from the

overfall the flow soon reaches a normal depth of 1.1 m. The pro-

file immediately downstream of the sluice gate is as it would be

if there were no influence from the part nearer the overfall. Will

a hydraulic jump form for these conditions? If so, locate its

position. If not, sketch the full profile and label each part.

Draw the energy grade line for the system.

15.57 Water is flowing as shown under the sluice gate in a hori-

zontal rectangular channel that is 5 ft wide. The depths of y0 and

y1 are 65 ft and 1 ft, respectively. What will be the horsepower

lost in the hydraulic jump?

15.58 Water flows uniformly at a depth in the

concrete channel shown, which is 10 m wide. Estimate the

height of the hydraulic jump that will form when a sill is in-

stalled to force it to form. Assume Manning’s n value is

n 0.012.

15.59 For the derivation of Eq. (15.28) it is assumed that the

bottom shearing force is negligible. For water flowing uni-

formly at a depth  cm in the concrete channel shown,

which is 10 m wide, a sill is installed to force a hydraulic jump

to form. Estimate the magnitude of the shearing force Fs associ-

ated with the hydraulic jump and then determine Fs FH, where

FH is the net hydrostatic force on the hydraulic jump. Assume

Manning’s n value is n 0.012.

15.60 The normal depth in the channel downstream of the sluice

gate shown is 1 m. What type of water-surface profile occurs

downstream of the sluice gate? Also, estimate the shear stress

on the smooth bottom at a distance 0.5 m downstream of the

sluice gate.
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15.61 Water flows at a rate of 100 ft3 s in a rectangular channel

10 ft wide. The normal depth in that channel is 2 ft. The actual

depth of flow in the channel is 4 ft. The water-surface profile in

the channel for these conditions would be classified as (a) S1,

(b) S2, (c) M1, or (d) M2.

15.62 The water-surface profile labeled with a question mark is

(a) M2, (b) S2, (c) H2, or (d) A2.  

15.63 The partial water-surface profile shown is for a rectangu-

lar channel that is 3 m wide and has water flowing in it at a rate

of 5 m3 s. Sketch in the missing part of the water-surface pro-

file and identify the type(s). 

15.64 A very long 10 ft–wide concrete rectangular channel with a

slope of 0.0001 ends with a free overfall. The discharge in the

channel is 120 cfs. One mile upstream the flow is uniform. What

kind (classification) of water surface occurs upstream of the

brink?

15.65 The horizontal rectangular channel downstream of the

sluice gate is 10 ft wide, and the water discharge therein is 108 cfs.

The water-surface profile was computed by the direct step

method. If a 2 ft–high sharp-crested weir is installed at the end

of the channel, do you think a hydraulic jump would develop in

the channel? If so, approximately where would it be located?

Justify your answers by appropriate calculations. Label any

water-surface profiles that can be classified.

15.66 The discharge per foot of width in this rectangular chan-

nel is 20 cfs. The normal depths for parts 1 and 3 are 0.5 ft and

1.00 ft, respectively. The slope for part 2 is 0.001 (sloping up-

ward in the direction of flow). Sketch all possible water-surface

profiles for flow in this channel, and label each part with its

classification.  

15.67 Water flows from under a sluice gate into a horizontal rect-

angular channel at a rate of 3 m3 s per meter of width. The chan-

nel is concrete, and the initial depth is 20 cm. Apply Eq. (15.37)

to construct the water-surface profile up to a depth of 60 cm. In

your solution, compute reaches for adjacent pairs of depths given

in the following sequence: d 20 cm, 30 cm, 40 cm, 50 cm, and

60 cm. Assume that f is constant with a value of 0.02. Plot your

results.

15.68 A horizontal rectangular concrete channel terminates in a

free outfall. The channel is 4 m wide and carries a discharge of

water of 12 m3 s. What is the water depth 300 m upstream

from the outfall?

15.69 Consider the hydraulic jump shown for the long horizon-

tal rectangular channel. What kind of water-surface profile

(classification) is located upstream of the jump? What kind of

water-surface profile is located downstream of the jump? If baf-

fle blocks are put on the bottom of the channel in the vicinity of

A to increase the bottom resistance, what changes are likely to

occur given the same gate opening? Explain and or sketch the

changes.   

15.70 The steep rectangular concrete spillway shown is 4 m wide

and 500 m long. It conveys water from a reservoir and delivers it

to a free outfall. The channel entrance is rounded and smooth

(negligible head loss at the entrance). If the water-surface eleva-

tion in the reservoir is 2 m above the channel bottom, what will

the discharge in the channel be?

15.71 The concrete rectangular channel shown is 3.5 m wide

and has a bottom slope of 0.001. The channel entrance is

rounded and smooth (negligible head loss at the entrance), and

PROBLEM 15.60

PROBLEM 15.62

PROBLEM 15.63

5.55 m 40 cm
V = 10 m/s

Surface profile
type = ?

Water
T = 20°C

⁄

Horizontal

?

⁄

Horizontal 1.6 m

Normal depth = 30 cm

PROBLEM 15.65

PROBLEM 15.66

PROBLEM 15.69

0.40 ft
0.66 ft 1.10 ft

125 ft 125 ft

q = 20 cfs/ft (flowing at normal depth)

1
2 3

⁄

�

⁄

⁄

A



PROBLEMS 553

the reservoir water surface is 2.5 m above the bed of the channel

at the entrance.

a. Estimate the discharge in it if the channel is 3000 m long.

b. Tell how you would solve for the discharge in it if the channel

were only 100 m long.  

15.72 A dam 50 m high backs up water in a river valley as

shown. During flood flow, the discharge per meter of width, q,

is equal to 10 m3 s. Making the simplifying assumptions that

R y and f 0.030, determine the water-surface profile up-

stream from the dam to a depth of 6 m. In your numerical calcu-

lation, let the first increment of depth change be yc; use

increments of depth change of 10 m until a depth of 10 m is

reached; and then use 2 m increments until the desired limit is

reached.  

15.73 Water flows at a steady rate of 12 cfs per foot of width

(q 12 cfs) in the wide rectangular concrete channel shown.

Determine the water-surface profile from section 1 to section 2. 

PROBLEM 15.70

PROBLEM 15.71

Reservoir
500 m

⁄
� �

PROBLEM 15.72

PROBLEM 15.73

y

yc

q = 10 m3/s

S0 = 0.0004, f = 0.030

50 m

�

2

1 q = 12 cfs/ft

Slope = 0.04

Rectangular weir

3 ft
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Volume and Area Formulas: 

Figure A.1
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A-2 APPENDIX

Table A.1 COMPRESSIBLE FLOW TABLES FOR AN IDEAL GAS WITH k 1.4

M or M1 local number or Mach number upstream of a normal shock wave; p pt ratio of static 
pressure to total pressure; � �t ratio of static density to total density; T Tt ratio of static 
temperature to total temperature; ratio of local cross-sectional area of an isentropic stream 
tube to cross-sectional area at the point where M 1; M2 Mach number downstream of a normal 
shock wave; p2 p1 static pressure ratio across a normal shock wave; T2 T1 static pressure ratio 
across a normal shock wave; total pressure ratio across normal shock wave.

Subsonic Flow

M p pt � �t T Tt

0.00 1.0000 1.0000 1.0000

0.05 0.9983 0.9988 0.9995 11.5914

0.10 0.9930 0.9950 0.9980 5.8218

0.15 0.9844 0.9888 0.9955 3.9103

0.20 0.9725 0.9803 0.9921 2.9630

0.25 0.9575 0.9694 0.9877 2.4027

0.30 0.9395 0.9564 0.9823 2.0351

0.35 0.9188 0.9413 0.9761 1.7780

0.40 0.8956 0.9243 0.9690 1.5901

0.45 0.8703 0.9055 0.9611 1.4487

0.50 0.8430 0.8852 0.9524 1.3398

0.52 0.8317 0.8766 0.9487 1.3034

0.54 0.8201 0.8679 0.9449 1.2703

0.56 0.8082 0.8589 0.9410 1.2403

0.58 0.7962 0.8498 0.9370 1.2130

0.60 0.7840 0.8405 0.9328 1.1882

0.62 0.7716 0.8310 0.9286 1.1657

0.64 0.7591 0.8213 0.9243 1.1452

0.66 0.7465 0.8115 0.9199 1.1265

0.68 0.7338 0.8016 0.9153 1.1097

0.70 0.7209 0.7916 0.9107 1.0944

0.72 0.7080 0.7814 0.9061 1.0806

0.74 0.6951 0.7712 0.9013 1.0681

0.76 0.6821 0.7609 0.8964 1.0570

0.78 0.6691 0.7505 0.8915 1.0471

0.80 0.6560 0.7400 0.8865 1.0382

0.82 0.6430 0.7295 0.8815 1.0305

0.84 0.6300 0.7189 0.8763 1.0237

0.86 0.6170 0.7083 0.8711 1.0179

0.88 0.6041 0.6977 0.8659 1.0129

0.90 0.5913 0.6870 0.8606 1.0089

0.92 0.5785 0.6764 0.8552 1.0056

0.94 0.5658 0.6658 0.8498 1.0031

0.96 0.5532 0.6551 0.8444 1.0014

0.98 0.5407 0.6445 0.8389 1.0003

1.00 0.5283 0.6339 0.8333 1.0000

(Continued)

�
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APPENDIX A-3

Table A.1 COMPRESSIBLE FLOW TABLES FOR AN IDEAL GAS WITH k 1.4 (Continued)

Supersonic Flow Normal Shock Wave

M1 p pt � �t T Tt M2 p2 p1 T2 T1

1.00 0.5283 0.6339 0.8333 1.000 1.0000 1.000 1.000 1.0000
1.01 0.5221 0.6287 0.8306 1.000 0.9901 1.023 1.007 0.9999
1.02 0.5160 0.6234 0.8278 1.000 0.9805 1.047 1.013 0.9999
1.03 0.5099 0.6181 0.8250 1.001 0.9712 1.071 1.020 0.9999
1.04 0.5039 0.6129 0.8222 1.001 0.9620 1.095 1.026 0.9999
1.05 0.4979 0.6077 0.8193 1.002 0.9531 1.120 1.033 0.9998
1.06 0.4919 0.6024 0.8165 1.003 0.9444 1.144 1.039 0.9997
1.07 0.4860 0.5972 0.8137 1.004 0.9360 1.169 1.046 0.9996
1.08 0.4800 0.5920 0.8108 1.005 0.9277 1.194 1.052 0.9994
1.09 0.4742 0.5869 0.8080 1.006 0.9196 1.219 1.059 0.9992
1.10 0.4684 0.5817 0.8052 1.008 0.9118 1.245 1.065 0.9989
1.11 0.4626 0.5766 0.8023 1.010 0.9041 1.271 1.071 0.9986
1.12 0.4568 0.5714 0.7994 1.011 0.8966 1.297 1.078 0.9982
1.13 0.4511 0.5663 0.7966 1.013 0.8892 1.323 1.084 0.9978
1.14 0.4455 0.5612 0.7937 1.015 0.8820 1.350 1.090 0.9973
1.15 0.4398 0.5562 0.7908 1.017 0.8750 1.376 1.097 0.9967
1.16 0.4343 0.5511 0.7879 1.020 0.8682 1.403 1.103 0.9961
1.17 0.4287 0.5461 0.7851 1.022 0.8615 1.430 1.109 0.9953
1.18 0.4232 0.5411 0.7822 1.025 0.8549 1.458 1.115 0.9946
1.19 0.4178 0.5361 0.7793 1.026 0.8485 1.485 1.122 0.9937
1.20 0.4124 0.5311 0.7764 1.030 0.8422 1.513 1.128 0.9928
1.21 0.4070 0.5262 0.7735 1.033 0.8360 1.541 1.134 0.9918
1.22 0.4017 0.5213 0.7706 1.037 0.8300 1.570 1.141 0.9907
1.23 0.3964 0.5164 0.7677 1.040 0.8241 1.598 1.147 0.9896
1.24 0.3912 0.5115 0.7648 1.043 0.8183 1.627 1.153 0.9884
1.25 0.3861 0.5067 0.7619 1.047 0.8126 1.656 1.159 0.9871
1.30 0.3609 0.4829 0.7474 1.066 0.7860 1.805 1.191 0.9794
1.35 0.3370 0.4598 0.7329 1.089 0.7618 1.960 1.223 0.9697
1.40 0.3142 0.4374 0.7184 1.115 0.7397 2.120 1.255 0.9582
1.45 0.2927 0.4158 0.7040 1.144 0.7196 2.286 1.287 0.9448
1.50 0.2724 0.3950 0.6897 1.176 0.7011 2.458 1.320 0.9278
1.55 0.2533 0.3750 0.6754 1.212 0.6841 2.636 1.354 0.9132
1.60 0.2353 0.3557 0.6614 1.250 0.6684 2.820 1.388 0.8952
1.65 0.2184 0.3373 0.6475 1.292 0.6540 3.010 1.423 0.8760
1.70 0.2026 0.3197 0.6337 1.338 0.6405 3.205 1.458 0.8557
1.75 0.1878 0.3029 0.6202 1.386 0.6281 3.406 1.495 0.8346
1.80 0.1740 0.2868 0.6068 1.439 0.6165 3.613 1.532 0.8127
1.85 0.1612 0.2715 0.5936 1.495 0.6057 3.826 1.569 0.7902
1.90 0.1492 0.2570 0.5807 1.555 0.5956 4.045 1.608 0.7674
1.95 0.1381 0.2432 0.5680 1.619 0.5862 4.270 1.647 0.7442
2.00 0.1278 0.2300 0.5556 1.688 0.5774 4.500 1.688 0.7209
2.10 0.1094 0.2058 0.5313 1.837 0.5613 4.978 1.770 0.6742
2.20 0.9352–1† 0.1841 0.5081 2.005 0.5471 5.480 1.857 0.6281
2.30 0.7997–1 0.1646 0.4859 2.193 0.5344 6.005 1.947 0.5833
2.50 0.5853–1 0.1317 0.4444 2.637 0.5130 7.125 2.138 0.4990
2.60 0.5012–1 0.1179 0.4252 2.896 0.5039 7.720 2.238 0.4601
2.70 0.4295–1 0.1056 0.4068 3.183 0.4956 8.338 2.343 0.4236
2.80 0.3685–1 0.9463–1 0.3894 3.500 0.4882 8.980 2.451 0.3895
2.90 0.3165–1 0.8489–1 0.3729 3.850 0.4814 9.645 2.563 0.3577
3.00 0.2722–1 0.7623–1 0.3571 4.235 0.4752 10.330 2.679 0.3283
3.50 0.1311–1 0.4523–1 0.2899 6.790 0.4512 14.130 3.315 0.2129
4.00 0.6586–2 0.2766–1 0.2381 10.72 0.4350 18.500 4.047 0.1388

(Continued)
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A-4 APPENDIX

Table A.1 COMPRESSIBLE FLOW TABLES FOR AN IDEAL GAS WITH k 1.4 (Continued)

Supersonic Flow Normal Shock Wave

M1 p pt � �t T Tt M2 p2 p1 T2 T1

4.50 0.3455–2 0.1745–1 0.1980 16.56 0.4236 23.460 4.875 0.9170–1

5.00 0.1890–2 0.1134–1 0.1667 25.00 0.4152 29.000 5.800 0.6172–1

5.50 0.1075–2 0.7578–2 0.1418 36.87 0.4090 35.130 6.822 0.4236–1

6.00 0.6334–2 0.5194–2 0.1220 53.18 0.4042 41.830 7.941 0.2965–1

6.50 0.3855–2 0.3643–2 0.1058 75.13 0.4004 49.130 9.156 0.2115–1

7.00 0.2416–3 0.2609–2 0.9259–1 104.1 0.3974 57.000 10.47 0.1535–1

7.50 0.1554–3 0.1904–2 0.8163–1 141.8 0.3949 65.460 11.88 0.1133–1

8.00 0.1024–3 0.1414–2 0.7246–1 190.1 0.3929 74.500 13.39 0.8488–2

8.50 0.6898–4 0.1066–2 0.6472–1 251.1 0.3912 84.130 14.99 0.6449–2

9.00 0.4739–4 0.8150–3 0.5814–1 327.2 0.3898 94.330 16.69 0.4964–2

9.50 0.3314–4 0.6313–3 0.5249–1 421.1 0.3886 105.100 18.49 0.3866–2

10.00 0.2356–4 0.4948–3 0.4762–1 535.9 0.3876 116.500 20.39 0.3045–2

†x–n means x & 10
–n.

SOURCE: Abridged with permission from R. E. Bolz and G. L. Tuve, The Handbook of Tables for Applied Engineering Sciences, CRC

Press, Inc., Cleveland, 1973. Copyright © 1973 by The Chemical Rubber Co., CRC Press, Inc.
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APPENDIX A-5

Figure A.2

Absolute viscosities of 

certain gases and liquids 

[Adapted from Fluid 

Mechanics, 5th ed., by 

V. L. Streeter. Copyright © 

1971, McGraw-Hill Book 

Company, New York. Used 

with permission of the 

McGraw-Hill Book 

Company.]
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Figure A.3

Kinematic viscosities of 

certain gases and 

liquids. The gases are at 

standard pressure. 

[Adapted from Fluid 

Mechanics, 5th ed., by 

V. L. Streeter. Copyright 

© 1971, McGraw-Hill 

Book Company, New 

York. Used with 

permission of the 

McGraw-Hill Book 

Company.]
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APPENDIX A-7

Table A.2 PHYSICAL PROPERTIES OF GASES [T 15°C (59 °F), p 1 atm]

Gas

Density
kg m3

(slugs ft3)

Kinematic
Viscosity

m2 s
(ft2 s)

R,
Gas Constant

J kg K
(ft-lbf slug-°R)

S
Sutherland’s

Constant
K

(°R)

Air 1.22
(0.00237)

1.46 10–5

(1.58 10–4)
287

(1716)
1004

(0.240)
1.40 111

(199)

Carbon dioxide 1.85
(0.0036)

7.84 10–6

(8.48 10–5)
189

(1130)
841

(0.201)
1.30 222

(400)

Helium 0.169
(0.00033)

1.14 10–4

(1.22 10–3)
2077

(12,419)
5187
(1.24)

1.66 79.4
(143)

Hydrogen 0.0851
(0.00017)

1.01 10–4

(1.09 10–3)
4127

(24,677)
14,223
(3.40)

1.41 96.7
(174)

Methane (natural gas) 0.678
(0.0013)

1.59 10–5

(1.72 10–4)
518

(3098)
2208

(0.528)
1.31 198

(356)

Nitrogen 1.18
(0.0023)

1.45 10–5

(1.56 10–4)
297

(1776)
1041

(0.249)
1.40 107

(192)

Oxygen 1.35
(0.0026)

1.50 10–5

(1.61 10–4)
260

(1555)
916

(0.219)
1.40

SOURCE: V. L. Streeter (ed.), Handbook of Fluid Dynamics, McGraw-Hill Book Company, New York, 1961; also R. E. Bolz and G. L. Tuve, Handbook of Tables
for Applied Engineering Science, CRC Press, Inc. Cleveland, 1973; and Handbook of Chemistry and Physics, Chemical Rubber Company, 1951.
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A-8 APPENDIX

Table A.3 MECHANICAL PROPERTIES OF AIR AT STANDARD ATMOSPHERIC PRESSURE

Temperature Density
Specific
Weight

Dynamic
Viscosity

Kinematic
Viscosity

kg m3 N m3 N s m2 m2 s

–20°C 1.40 13.70 1.61 10–5 1.16 10–5

–10°C 1.34 13.20 1.67 10–5 1.24 10–5

0°C 1.29 12.70 1.72 10–5 1.33 10–5

10°C 1.25 12.20 1.76 10–5 1.41 10–5

20°C 1.20 11.80 1.81 10–5 1.51 10–5

30°C 1.17 11.40 1.86 10–5 1.60 10–5

40°C 1.13 11.10 1.91 10–5 1.69 10–5

50°C 1.09 10.70 1.95 10–5 1.79 10–5

60°C 1.06 10.40 2.00 10–5 1.89 10–5

70°C 1.03 10.10 2.04 10–5 1.99 10–5

80°C 1.00 9.81 2.09 10–5 2.09 10–5

90°C 0.97 9.54 2.13 10–5 2.19 10–5

100°C 0.95 9.28 2.17 10–5 2.29 10–5

120°C 0.90 8.82 2.26 10–5 2.51 10–5

140°C 0.85 8.38 2.34 10–5 2.74 10–5

160°C 0.81 7.99 2.42 10–5 2.97 10–5

180°C 0.78 7.65 2.50 10–5 3.20 10–5

200°C 0.75 7.32 2.57 10–5 3.44 10–5

slugs ft3 lbf ft3 lbf-s ft2 ft2 s

0°F 0.00269 0.0866 3.39 10–7 1.26 10–4

20°F 0.00257 0.0828 3.51 10–7 1.37 10–4

40°F 0.00247 0.0794 3.63 10–7 1.47 10–4

60°F 0.00237 0.0764 3.74 10–7 1.58 10–4

80°F 0.00228 0.0735 3.85 10–7 1.69 10–4

100°F 0.00220 0.0709 3.96 10–7 1.80 10–4

120°F 0.00213 0.0685 4.07 10–7 1.91 10–4

150°F 0.00202 0.0651 4.23 10–7 2.09 10–4

200°F 0.00187 0.0601 4.48 10–7 2.40 10–4

300°F 0.00162 0.0522 4.96 10–7 3.05 10–4

400°F 0.00143 0.0462 5.40 10–7 3.77 10–4

SOURCE: Reprinted with permission from R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC
Press, Inc., Cleveland, 1973. Copyright © 1973 by The Chemical Rubber Co., CRC Press, Inc.
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Table A.4 APPROXIMATE PHYSICAL PROPERTIES OF COMMON LIQUIDS AT ATMOSPHERIC PRESSURE

Liquid and 

Temperature

Density

kg m3

(slugs ft3)
Specific

Gravity

Specific

Weight

N m3

(lbf ft3)

Dynamic

Viscosity

N s m2

(lbf-s ft2)

Kinematic

Viscosity

m2 s

(ft2 s)

Surface

Tension

N m*

(lbf ft)

Ethyl alcohol(1)(3)

20°C (68°F)
799

(1.55)
0.79 7,850

(50.0)
1.2 10–3

(2.5 10–5)
1.5 10–6

(1.6 10–5)
2.2 10–2

(1.5 10–3)

Carbon tetrachloride(3)

20°C (68°F)
1,590
(3.09)

1.59 15,600
(99.5)

9.6 10–4

(2.0 10–5)
6.0 10–7

(6.5 10–6)
2.6 10–2

(1.8 10–3)

Glycerine(3) 1,260 1.26 12,300 1.41 1.12 10–3 6.3 10–2

20°C (68°F) (2.45) (78.5) (2.95 10–2) (1.22 10–2) (4.3 10–3)

Kerosene(1)(2)

20°C (68°F)
814

(1.58)
0.81 8,010

(51)
1.9 10–3

(4.0 10–5)
2.37 10–6

(2.55 10–5)
2.9 10–2

(2.0 10–3)

Mercury(1)(3)

20°C (68°F)
13,550
(26.3)

13.55 133,000
(847)

1.5 10–3

(3.1 10–5)
1.2 10–7

(1.3 10–6)
4.8 10–1

(3.3 10–2)

Sea water 10°C
at 3.3% salinity

1,026
(1.99)

1.03 10,070
(64.1)

1.4 10–3

(2.9 10–5)
1.4 10–6

(1.5 10–5)

Oils—38°C (100°F)
SAE 10W(4)

870
(1.69)

0.87 8,530
(54.4)

3.6 10–2

(7.5 10–4)
4.1 10–5

(4.4 10–4)

SAE 10W-30(4) 880
(1.71)

0.88 8,630
(55.1)

6.7 10–2

(1.4 10–3)
7.6 10–5

(8.2 10–4)

SAE 30(4) 880
(1.71)

0.88 8,630
(55.1)

1.0 10–1

(2.1 10–3)
1.1 10–4

(1.2 10–3)

*Liquid–air surface tension values.
SOURCES: (1) V. L. Streeter, Handbook of Fluid Dynamics, McGraw-Hill, New York, 1961; (2) V. L. Streeter, Fluid Mechanics, 4th ed., McGraw-Hill, New
York, 1966; (3) A. A. Newman, Glycerol, CRC Press, Cleveland, 1968; (4) R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering
Sciences, CRC Press, Cleveland, 1973.
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A-10 APPENDIX

Table A.5 APPROXIMATE PHYSICAL PROPERTIES OF WATER* AT ATMOSPHERIC PRESSURE

Temperature Density Specific Weight Dynamic Viscosity Kinematic Viscosity Vapor Pressure

kg m3
N m3 N s m2 m2 s N m2 abs

0ºC 1000 9810 1.79 10–3 1.79 10–6 611

5ºC 1000 9810 1.51 10–3 1.51 10–6 872

10ºC 1000 9810 1.31 10–3 1.31 10–6 1,230

15ºC 999 9800 1.14 10–3 1.14 10–6 1,700

20ºC 998 9790 1.00 10–3 1.00 10–6 2,340

25ºC 997 9781 8.91 10–4 8.94 10–7 3,170

30ºC 996 9771 7.97 10–4 8.00 10–7 4,250

35ºC 994 9751 7.20 10–4 7.24 10–7 5,630

40ºC 992 9732 6.53 10–4 6.58 10–7 7,380

50ºC 988 9693 5.47 10–4 5.53 10–7 12,300

60ºC 983 9643 4.66 10–4 4.74 10–7 20,000

70ºC 978 9594 4.04 10–4 4.13 10–7 31,200

80ºC 972 9535 3.54 10–4 3.64 10–7 47,400

90ºC 965 9467 3.15 10–4 3.26 10–7 70,100

100ºC 958 9398 2.82 10–4 2.94 10–7 101,300

slugs ft3 lbf ft3 lbf-s ft2 ft2 s psia

40ºF 1.94 62.43 3.23 10–5 1.66 10–5 0.122

50ºF 1.94 62.40 2.73 10–5 1.41 10–5 0.178

60ºF 1.94 62.37 2.36 10–5 1.22 10–5 0.256

70ºF 1.94 62.30 2.05 10–5 1.06 10–5 0.363

80ºF 1.93 62.22 1.80 10–5 0.930 10–5 0.506

100ºF 1.93 62.00 1.42 10–5 0.739 10–5 0.949

120ºF 1.92 61.72 1.17 10–5 0.609 10–5 1.69

140ºF 1.91 61.38 0.981 10–5 0.514 10–5 2.89

160ºF 1.90 61.00 0.838 10–5 0.442 10–5 4.74

180ºF 1.88 60.58 0.726 10–5 0.385 10–5 7.51

200ºF 1.87 60.12 0.637 10–5 0.341 10–5 11.53

212ºF 1.86 59.83 0.593 10–5 0.319 10–5 14.70

* Notes: (1) Bulk modulus Ev of water is approximately 2.2 GPa (3.2 105 psi); (2) water–air surface tension is approximately 7.3 10–2 N m (5 10–3 lbf ft)
from 10ºC to 50ºC.
SOURCE: Reprinted with permission from R. E. Bolz and G. L. Tuve, Handbook of Tables for Applied Engineering Science, CRC Press, Inc., Cleveland,
1973. Copyright © 1973 by The Chemical Rubber Co., CRC Press, Inc.
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A N S W E R S

Answers to Even Problems

Chapter 1
1.10 �p � 432 Pa � 0.0626 psi � 1.74 in.-H2O

1.12 P � 239 W, �E � 205 calories

Chapter 2

2.4 Local conditions: � � 1.09 kg m3;
table value: � � 1.22 kg m3

2.6 �methane � 1.74 kg m3,
	methane � 17.1 N m3

2.8 �water �air � 203

2.10 Mass released is 26.7 kg.

2.12 M � 3.49 � 108 slugs, 
M � 5.09 � 109 kg

2.14  � 2.54 m3, M � 5.66 kg

2.16 Sf � 0.972, percent alcohol by volume � 13.7%

2.18 For water, �� � –9.06 � 10–4 N & s m2

and �� � –22 kg m3; for air, 
�� � 2.8 � 10–6 N & s m2 and 
�� � –0.22 kg m3.

2.20 For oil, � � 6.7 � 10–2 N & s m2 and 
 � 7.6 � 10–5 m2 s; for kerosene, 
� � 1.4 � 10–3 N & s m2 and
 = 1.7 � 10–6 m2/s; for water, 
� � 6.8 � 10–4 N & s/m2 and 
 � 6.8 � 10–7 m2/s

2.22 v 0 � (p0 p)(T T0)
5/2 (T0 ' S)

(T ' S)

2.24  � 1.99 � 10–5 m2 s

2.26  � 1.66 � 10–3 ft2 s

2.28 S � 903°R

2.30 � � 1.32 � 10–3 lbf-s ft2

2.32 For air, �air � 1.91 � 10–5 N & s m2 and
air � 10.1 � 10–6 m2 s;
for water, �water � 6.53 � 10–5 N & s m2 and 
water � 6.58 � 10–7 m2 s.

2.34 � ( y � 1 mm) � 1.49 Pa

2.36 (a) �max � 1.0 N m2; (b) minimum shear stress will occur 
midway between the two walls

2.38 (a) Maximum shear stress will occur at y � H;
(b) y � (H 2) ( � ut (Hdp ds);
(c) ut � (1 2�)(dp ds)H2

2.40 Vfall � 0.17 m s

2.42 T � ���D4 s

2.44 Ethyl alcohol is easier to compress.

2.46 �p � 44 MPa

2.50 �p � 4
 R; �p4m m � 73.0 N m2

2.52 For d � 1 4 in., �hST � 0.185 in.; 
for d � 1 8 in., �hST � 0.369 in.; 
for d = 1 32 in., �hST � 1.48 in.

2.54 p � 292 N m2

2.56 (a)

2.58 
 � 0.0961 N m

2.60 Vapor pressure increases.

2.62 P � 2340 Pa abs

2.64 Boiling temperature (3000m) � 89.7°C

Chapter 3

3.2 (a) � � 0.175 kg m3, (b) � � 0.531 kg m3

3.4 % error � 1.01%

3.10 The height decreases by 2.55 m.

3.12 Selection (a) is correct.

3.14 p � 490, p50 patm � 5.83

3.18 �h � 5.00 cm

3.20 h2 � 0.812 m

3.22 FB � 2850 lbf

3.24 Fd � 2950 lbf (acts down; metal is in tension)

3.26 �34 �8 � 1.62

3.30 p(center of pipe) � 0.0 lbf ft2

3.32 pA � 395 Pa gage

3.34 pcontainer � 891 Pa gage

3.36 pA � 39.5 kPa gage � 5.72 psig

3.38 The surface of the water is located 468 mm above the centerline
of the horizontal leg. The surface of the mercury is located 121
mm above the centerline of the horizontal leg. pmax � 16.1 kPa
gage.

3.40 pA ( pB � 4.17 kPa, hA ( hB � –0.50 m

3.42 pA ( pB � 108 psf, hA ( hB � 3.32 ft

3.44 pA ( pB � 1.57 kPa, pzA ( pzB � 0.589 kPa

3.46 Tboiling, 2000 m � 93.2°C, Tboiling, 4000 m � 86.7°C

3.48 28.4 breaths per minute
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A-12 ANSWERS TO EVEN PROBLEMS

3.50 T � 287 K � 516°R, pa � 86.0 kPa � 12.2 psia, � � 1.04 kg m3

� 0.00199 slugs ft3

3.52 p(z � 8 km) � 3.31 mbar, p(z � 30 km) � 0.383 mbar

3.56 Valid statements are a, b, and e.

3.58 F � 7.85 kN, ycp ( � 22.4 mm

3.60 Fhydrostatic � 6075 lbf ft, Fbottom tie � 8100 lbf (tension)

3.62 RA � 557 kN (acting normal to the gate)

3.64 h � � 3

3.66 Gate will stay in position

3.68 F � 5	Wh2 3 , RT F � 3 10

3.70 Unstable

3.72 n � 5 bolts

3.74 Resultant passes through the pin.

3.76 F � (3,120,000i ' 565,344j) lbf

3.78 Fhorizontal � 61.6 kN (applied to the left to hold dome in place) 
Line of action is 0.125 m below the center of the dome 
Fvertical � 20.6 kN (applied downward to hold dome in place)

3.80 (a) FB � 5.9 N, (b) FB � 4.19 � 10–6 N, (c) FB � 0.175 N

3.82 Selection (c) is correct

3.84 Wscrap � 3420 N

3.86  � 39.9 m3

3.88  � 40.8 L, 	block � 17.2 kN m3

3.90 �h � 0.368 cm

3.92 d � 2.17L

3.94 Due to the addition of ice, the water level will increase by �h �
0.306 in. Melting of the ice will not cause any additional change.

3.96 � � 8.59 m

3.98 z � 22.8 km

3.100 S � 0.938

3.102 1.11 ) S ) 1.39

3.104 � w � 0.211, S � 0.211

3.106 The block will not float in a stable manner with its ends horizontal.

Chapter 4
4.4 (a) Unsteady, uniform; (b) nonuniform, steady

4.6 Nonuniform, steady or unsteady

4.8 (a) 2-d, (b) 1-d, (c) 1-d, (d) 2-d, (e) 3-d, (f) 3-d, (g) 2-d

4.16 (a) Steady; (b) Two-dimensional; (c) No; (d) Yes

4.18 ax �

4.20 ac � 5 ft s2

4.22 al � 4q0 (Bt0)

4.24 al � 3.56 ft s2, ac � 37.9 ft s2

4.28  � –65.7 lbf ft3

4.30 p2 � 187 psfg

4.32  � –6000 N m3

4.34 az � –141 ft s2

4.36 dp dx � –5330 psf ft

4.38 pB ( pA � 12.7 kPa, pC ( pA � 44.6 kPa

4.42 pB � 527 psf

4.44 pB ( pA � 48.1 kPa

4.46 � � 0

4.48 an � 4g

4.50 � �

4.52 � � 17.7 rad s

4.54 (–1) � –34.8 kPa m,
(0) � –9.81 kPa m,
('1) � 15.2 kPa m

4.56 �pmax � 737 lbf ft2, z( pmin) � 0.206 ft above axis

4.60 V2 � 5.46 m s

4.62 V1 � 7.13 m s

4.64 h � 0.815 m

4.66 V � 92.7 m s

4.68 V0 � 1.33 m s

4.72 V � 18.3 fps

4.74 V � 96.3 fps

4.76 (c)

4.78 Same reading

4.80 V0 � 8.82 m s

4.82 Vtrue � 80.6 m s

4.88 Irrotational

4.90 Irrotational

4.92 �� � 8y (1 ( 4y2)

4.94 z2 ( z1 � 0.045 m

4.96 pA � 129 kPa, gage

4.98 (c)

4.100 p2 ( p1 � 0.96 kPa

4.102 p � 914 mbar

1.106 Toward vortex center

4.108 �sep � 81.1°

Chapter 5
5.4 (c)

5.6 Q � 4.19 cfs, 1880 gpm
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ANSWERS TO EVEN PROBLEMS A-13

5.8  � 0.239 kg s

5.10 D � 1.25 m

5.12 V0 � 1 3

5.14 Q � 163 cfs, 73,400 gpm

5.16 Q � 5 m3 s, V � 5 m s,  � 6.0 kg s

5.18 Q � 0.93 m3 s

5.20 Q � 1.70 � 10–3 m3 s

5.22 q � 3.09 m2 s, V � 2.57 m s

5.24 V � [1 (n ' 1)]Vc

5.26 V � 0.979 fps

5.28 Q � 0.0849 cfs, 37.9 gpm

5.30 Q � 0.0276 m3 s

5.38 (a) T, (b) T, (c) T, (d) T, (e) T

5.44 Rising

5.46 Vexit � 2.8 m s, aexit � 3.6 m s3

5.48 a2s � –5060 m s2, a3s � –11,400 m s2

5.50 t � 14.4 s

5.52 VR � 2 3 fps

5.54 V1 � 12 m s, V2 � 36 m s

5.56 V15 � 5.66 m s, V20 � 6.37 m s

5.58 VB � 5.00 m s

5.60 QB � 3.33 cfm, leaving tank

5.62 Rising, dh dt � 1 8 fps

5.64 Qp � 7.5 cfs

5.66  � 7.18 slug s, VC � 20.4 ft s, 
S � 0.925

5.68 V � 10.8 m s

5.70 Q � 0.658 

Q � 5.20 � 10–4 m3 s

5.72 A � 1.25 � 10–6 in.2

5.74 t � 185 s

5.76 �t � 5.48 min, 10.6 min (for p � 0)

5.78 �t � 24.8 min

5.80 Ve � 2800 m s

5.82 pc � (a�p 0.65)1/(1–n)(Ag At)
1/(1–n)(RTc)

1/[2(1–n)],
�pc � 4.54 MPa

5.84 pB � 19.3 psi

5.86 Q � 231 cfm

5.88 �h � 0.160 ft

5.90 Ve,max � 3.62 m s, Qmax � 0.00362 m3 s, Lmax � 8850 N

5.92 V2 � 24 ft s, F � 45.2 lbf

5.96 Q � 0.165 m3 s

5.98 V0 � 12.4 m s

5.100 V0 � 49.0 fps

5.102 V0 � 46.0 fps

5.104 Continuity not satisfied

5.106 v � –Ay2 2 ' C(x)

Chapter 6

6.2 an � 0.112 ft s2, an g � 0.0035

6.6 F � 0.31 N, v � 57.6 m s

6.8 � � 0.218

6.10 v1 � 51.5 ft s

6.12 F1 � 182 N, F2 � 169 N

6.14  � 200 kg s, d � 7.14 cm

6.16 FA � 643 lbf, FB � 88.9 lbf

6.18 Fy � 2�v2tr

6.20 Fx � – 4.42 kN (to left) 
Fy � –1.15 kN (downward)

6.22 Fx � 890 lbf ft(to left), 
Fy � 382 lbf ft (upward)

6.24 Ff � 2.01 N, N � 17.3 N, block moves

6.26 F � 1.48 N (to left)

6.28 h � 3.21 m

6.30 F(on vane) � (1470i ' 332j) N

6.32 Fx � 4.05 kN (to left)

6.34 as � –80 m s2

6.36 D � 91.8 lbf, L � 5260 lbf

6.38 Fx � – 4.15 lbf

6.40 F � (–5370i ' 387k) lbf

6.42 F � (808i ( 356j ' 350k) lbf

6.44 Fa � 3310 lbf

6.46 Fy � 12,200 lbf (downward)

6.48 Fx � 1840 lbf (opposite flow direction)

6.50 Fx � 1140 N

6.52 Fx � –167 lbf (to left)

6.54 Fx � –9.96 kN (to left) 
Fy � –1.8 kN (downward)

6.58 ve � 51.1 m s, F � 98.3 lbf (to left)

6.62 Fx � –40.7 N (to left)
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6.64 Fx � –18.3 kN

6.66 F(per bolt) � 1410 N

6.68 pg � 13.3 kPa, Fs � –1.38 kN m

6.70 F � (–524i ( 58.9j) lbf

6.72 F � (–36.8i ' 119j) N

6.74 Fx � –474 lbf ft

6.76 F(stationary) � 161 lbf, 
F(moving) � 113 lbf

6.78

6.80 D � 1.3 N, L � 3.33 N

6.82 T � 15.3 kN

6.86 Fr � 60 N

6.88 t � 10 s

6.90 vmax � 15.2 m s

6.92 �p � 5.93 MPa

6.94 �pmax � 525 psi

6.96 �p � �vc

6.98 Q � 1.22 m3 s, L � 2160 m

6.100 P � 1.11 kW

6.102 F � (1240i ( 420j) lbf 
M � 1260k ft-lbf

6.104 FA � –908i lbf
MA � (–1820j ' 299k) ft-lbf

Chapter 7
7.4 (a) cost � $0.67, (b) P � 1010 W, (c) P � 13.6 hp

7.6 P � 55.2 W

7.10 (a) � � 1.0, (b) � > 1.0, (c) � > 1.0, (d) � > 1.0

7.12 � � 27 20

7.14 � � (n ' 1)3 (3n ' 1), � � 1.05

7.20 (b)

7.22 pA � –250 psf, V2 � 30.0 ft s

7.24 p2 	 � 13.16 m

7.26 p2 � 16.9 psig

7.28 p1 � 9.23 psig

7.30 p1 � 152 Pa

7.32 pB � –2.38 psig

7.34 zA � depth � 9.07 m

7.36 Q � 0.302 m3 s

7.38 t � 6.63 h

7.40 Pelectrical � 1.49 W

7.42 P � 1.76 MW

7.44 h � 120 ft

7.46 P � 95.9 kW

7.48 P � 14.9 kW

7.50 P � 61.6 kW

7.52 P � 1590 hp � 1.18 MW

7.54 t � 9260 s � 2.57 h

7.56 hL � 2.52 ft

7.58 hL � 0.104 m

7.60 Q � 0.0149 m3 s

7.62 Fj � 11.7 lbf acting to the left

7.64 Fwall � 198 lbf acting upward

7.66 Fd � �U2�D2 8[1 (D2 d2 ( 1)2],
Fd � 0.372 N

7.70 Possible if the fluid is being accelerated to the left

7.78 Q � 6.23 ft3 s

7.80 P � 49.0 hp

7.82 zL � 129 ft

7.84 Q � 0.320 m3 s, pm � –78.7 kPa

Chapter 8
8.4 (a) homo, (b) nonhomo, (c) homo, (d) homo

8.6 �h d � f(D d, 	t2 �d, h1 d)

8.8 (FD �Vd) � C

8.10 (�pD2) (���V) � C

8.12 �p (n2�D2) � f(Q nD3)

8.14 h d � f (
 t2 �d3, 	 t2 �d, � t �d2)

8.16 �pd 4 �Q2 � f(�d �Q, D d)

8.18  � f(�D )

8.20 FD (�V2S) � f(�2S V2)

8.22 Vb � f [� (�fg
1/2D3/2),

(�f ( �b) �f]

8.24 FD �V2B2 � f(� �VB, urms V, Lx B)

8.30 Um � 21.4 m s, FD,m FD,p � 0.500

8.32 V5 � 1.5 m s

8.34 Vm Vp � 5

8.36 FL � 21.1 kN

8.38 p � 27.6 kbar

8.40 (c)

8.42 Re � 25,200, FD � 20.4 � 10–3 N, 
P � 16.3 � 10–3 W
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ANSWERS TO EVEN PROBLEMS A-15

8.44 Vm � 4.50 m s

8.46 Va � 11.6 m s, �p� � 7.33 kPa

8.48 �m � 0.024 slugs ft3, Fp � 500 lbf

8.50 Vp � 0.215 m/s, np � 117 N & m

8.52 pm � 808 kPa

8.54 d � 3.93 mm

8.56 m p � (Lm Lp)
3 2

8.58 Vp � 12.5 m s, Qp � 312 m3 s

8.60 Vm Vp � 1 6, Qm Qp � 1 7776, 
Qm � 0.386 m3 s

8.62 Vp � 39.3 ft s, Qp � 11,000 ft3 s

8.64 tp � 5 min, Qp � 312 m3 s

8.66 Fp � 3.83 MN

8.68 Lm Lp � 0.0318

8.70 Vp � 25 ft s, Fp � 31,200 lbf

8.72 pwindward wall � 1.08 kPa 
pside wall � –2.93 kPa
pleeward wall � –868 pa 
Fp � 5.65 MN

Chapter 9

9.4 V � 2.13 m s

9.6 � � 3.85 � 10–2 N & s m2

9.8 (a) T, (b) F, (c) F, (d) F, (e) T

9.10 (a) F, (b) F, (c) T, (d), F, (e) T

9.12 T � 1.99 N & m

9.14 T � 3.45 � 10–3 N & m

9.16 P � 0.00780 W

9.18 umax � 0.150 ft s

9.20 q � 4.65 � 10–5 m2 s

9.22 dp ds � –464 psf ft

9.24 q � 1.44 m2 hr

9.26 t � 1.024 �oU L

9.28 4.8%

9.34 � x � 0.0071

9.36 (a) is correct

9.38 Fx � 5.15 N

9.40 u � U0 � 1 m s

9.42 � � 15.8 mm, Fs � 0.0943 N

9.46 Fs � 1.29 � 10–4 N

9.48 Fs,wing � 230 N, P � 12.8 kW 
xcr � 14.4 cm 
Ftripped B.L. Fnormal � 1.162

9.50 Fs B � 3.53 N m, du dy � 9.33 � 104 s–1

9.52 � *� [1 ( (�u) (�*U*)]dy

9.54 � * � � 0.125

9.56 P � 10.4 kW

9.58 U0 � 0.805 m s

9.60 U0 � 103 m s

9.62 Fs � 26.4 lbf

9.64 P � 103 hp

9.66 Fs100 � 1360 N, Fs200 � 5000 N 
P100 � 37.8 kW, P200 � 278 kW

9.68 � Wmin vel � 0.0406, � Wmax vel � 0.036

9.70 Fs � 375 lbf

9.72 Fwave � 3.72 � 104 lbf

9.74 �0,min � 106 N m2

9.76 FD � 287 kN, � � 0.678 m

Chapter 10
10.2 Flow is turbulent, Le � 7.5 m

10.6 ptank � 1.75 kPa gage

10.8 V � 2.19 m s, Q � 0.110 L s

10.12  � 0.0141 kg s, f � 0.064, 
hf L � 0.00108 m per meter of pipe length, 
�p L � 10.6 Pa per meter of pipe length

10.14 V2 � 0.215 m s

10.16 hf � 66.4 ft per 100 ft run of pipe

10.18 V � 0.81 ft s, Q � 2.76 � 10–4 cfs

10.20 P � 1340 W

10.22 Correct choice is (d)

10.24 V2 � 0.0409 m s

10.26  � 8.91 � 10–5 m2 s

10.28 Flow is downward (from right to left), 
f � 0.076, � � 0.00154 lbf & s ft2, laminar

10.30 �p � 684 Pa

10.32 f � 0.0185

10.34 f � 0.0258

10.36 Re � 6.37 � 105, f � 0.023, �o � 51.7 Pa

10.38 hf � 182 ft

10.40  � 2.0 � 10–8 m2 s
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10.42 (a) �p � 1.58 psi, (b) hf � 3.64 ft, 
(c) P � 0.0675 hp

10.44 �p L � 208 Pa m

10.46 �p L � 2.48 psf foot

10.48 �p � 48.9 psf, P � 349 hp

10.50 (a) case 1, (b) case 3, (c) case 3

10.52 D � 0.022 m

10.54 V � 3.15 m s

10.56 Q � 6.59 � 10–3 m3 s

10.58 D � 22 cm, P � 45.6 kW for each 
kilometer of pipe length

10.60 P � 18.3 kW

10.62 t � 23.7 min

10.64 t � 46.5 min

10.66 P � 30.1 kW

10.68 Select a pipe with D � 8 in.

10.70 P � 726 W (clean tube), 
P � 3.03 kW (scaled tubes)

10.72 P � 7.49 kW

10.74 P � 10.1 � 10–4 hp

10.76 Specify a 12-cm pipe

10.78 P � 17.4 MW

10.80 Cavitation could occur in the venturi throat section or just
downstream of the abrupt contraction.

10.82 z1 � 114 m

10.84 Ploss � 40.4 kW

10.86 Vtrap Vrect � 0.84

10.88 Q � 0.25 m3 s

10.90 Q � 4700 gpm

10.92 VA VB � 1.26

10.94 Q1 � 2 cfs

10.96 (Qlarge Qsmall) � 3.86

10.98 Q(12 inch pipe) � 6.46 cfs

Q(14 inch pipe) � 7.75 cfs

Q(16 inch pipe) � 10.8 cfs

hLAB
� 107 ft

Chapter 11
11.2 Correct choice is (d)

11.4 CD � 2.0

11.8 FD � 2250 lbf

11.10 FD � 198 lbf

11.12 FD � 6.24 � 106 lbf

11.14 V � 19.7 m s

11.16 FD � 18.6 kN

11.18 Mo � 3.12 MN & m

11.20 T � 142 N

11.22 M � 21.2 kN & m

11.24 (5.9 m) s) ) V ) (17.7 m s)

11.26 P � 55.5 kW

11.28 Energy � 77.2 kJ � 18.4 food calories

11.30 Additional power � 21.9 hp

11.32 14.7%

11.34 P � 47.2 kW

11.36 Vc � 12.6 m s

11.38 756 N

11.42 The bubble will accelerate as it moves upward. Form drag.

11.44 V0 � 1.32 m s

11.46 V0 � 1.33 m s upward

11.48 Vo � 1.55 mm s

11.50 Vo � 9.13 m s

11.52 Vo � 5.70 m s

11.54 Time to reach 99% of the terminal velocity is 0.54 s. The 
corresponding distance of travel is 14.2 cm.

11.56 (a) FL � 4.84 N,
(b) A � 5.23 � 103 mm2

11.60 FL � 2.82 N

11.62 b � 20.9 ft

11.64 The correct answer is (d)

11.66 V � 29.6 m s

11.68 Vs � 99.8 m s, VL � 108 m s

11.70 V0 � 10.5 m s, FL length � 16,000 N m

11.72 CL �

CL CD � (1 2)

11.74 FD � 4000 N

Chapter 12
12.2 761 mph

12.4 M � 27.1

12.6 c � 1070 m s

12.8 cHe ( cN2
� 656 m s

12.10 c � 1480 m s

12.12 Tt � 218°C

12.14 V � 200 m s

12.18 Tt � 51°C, pt � 284.6 kPa
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12.20 T � 407 K, p � 177 kPa, V � 346 m s

12.22 T � 291 K, p � 487 kPa, M � 0.192,
� 0.032 kg s

12.24 Cp � 2 (kM2)[(1 ' (k ( 1)M2 2)(k/k–1) ( 1], Cp(2) � 2.43, 
Cp(4) � 13.47, Cp,inc � 1.0

12.26 T, T, F

12.28 M2 � 0.657, p2 � 208 kPa, 
T2 � 316 K, �s � 35.6 J kg K

12.30 M � 1.59

12.32 V1 � 1200 m s

12.34

12.38  � 0.0733 kg s, (with Bernoulli) 

� 0.0794 kg s

12.40  � 0.100 kg s (130 kPa), 

� 0.322 kg s (350 kPa)

12.48 Ae A* � 4.00, AT � 29.5 cm2

12.50 Underexpanded

12.52 M � A A* � 1.123

12.54 Ae A* � 3.60, T (ideal) � 2791 N,
T � 2790 N

12.56 A A* � 2.97, x � 5.40 cm

12.58 M3 � 0.336, p3 � 461 kPa, pt � 499 kPa

Chapter 13

13.4 Vo � 0.511 m s

13.6 V � 3.96 m s

13.8 Percent error � 0.1%

13.10 Q � 4.26 � 10–3 m3 s

13.12 Vmean � 4.33 m s, Vmax Vmean � 2,
Q � 0.196 m3 s, laminar

13.14 (a) rm D � 0.224, (b) rc D � 0.341,

(c) � 9.96 kg s

13.16 Q � 549 m3 s

13.18 V � 0.468 m s

13.20 Cv � 0.975, Cc � 0.640, Cd � 0.624

13.24 hmercury � 1.54 ft

13.28 Vpipe � 1.21 m s

13.30 Percent increase in discharge � 96%

13.34 d � 6.26 cm

13.36 d � 0.601 m

13.38 Q � KA0 Q � 0.290 m3 s

13.40 h � 0.44 m

13.42 Q � 1.36 cfs

13.44 Q � 11.3 m3 s

13.46 Q � 6.08 cfs

13.48 Q � 0.00124 m3 s

13.50 hL � 64 2g

13.54 (a) V � (L �t)[–1 '

(b) V � c2�t (2L), (c) V � 22.5 m s

13.58 Q � 0.0248 m3 s

13.60 Correct choice is (b)

13.62 Correct choice is (c)

13.64 H � 0.53 ft, Q � 2.54 ft3 s

13.66 Q � 62.7 ft3 s

13.68 Water level is falling

13.72 Q � 3.96 ft3 s

13.74 h � 1.24 m

13.78  � 0.0021 kg s

13.80  � 0.0338 lbm s

13.82 Q � 3.49 cfs, UQ � 0.192 cfs

Chapter 14
14.4 FT � 926 N, P � 35.7 kW

14.6 N � 1160 rpm

14.8 D � 1.71 m, V0 � 89.4 m s

14.10 N � 1170 rpm

14.12 a � 0.783 m s2

14.16 Q � 0.22 m3 s, P � 6.5 kW

14.18 Q � 54.6 cfs, �H � 21.8 ft, P � 169 hp

14.22 D � 0.882 m, P � 14.2 kW

14.24 P � 726 kW

14.28 Q � 0.228 m3 s

14.30 H1600 � 261 ft

14.32 Q � 0.218 m3 s

14.38 (a) Q � 0.218 m3 s, (b) Q � 76.4 gpm, (c) Q � 77.4 gpm

14.40 Mixed flow pump

14.42 Radial flow pump

14.44 Radial flow pump

14.46 P � 94.4 kW

14.48 P � 229 kW

14.50 P � 10.6 MW, D � 2.85 m
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14.52 F � (1 2)�A

14.56 �1 � 6.36°, T � 44,700 N-m, 
P � 281 kW

14.58 Pout � 271 hp

14.60 Pmax � 4.69 kW

14.62 Q � 289 gpm

Chapter 15

15.2 Rh � b 2

15.4 (c)

15.6 Q � 448 m3 s

15.8 Using Darcy-Weisbach, Q � 243 cfs;
using Manning, Q � 214 cfs

15.10 Q � 10.6 ft3 s

15.12 Using Darcy-Weisbach, V � 5.74 ft s and Q � 758 cfs; 
using Manning, V � 5.18 fps and 
Q � 684 cfs.

15.14 Q � 546 cfs

15.16 d � 4.92 ft

15.18 Half-hexagon with all three sides having length of 8.57 ft

15.20 Undesirable

15.22 Supercritical

15.24 Fr0.3 � 7.77 (supercritical), 
Fr1.0 � 1.27 (supercritical), and 
Fr2.0 � 0.452 (subcritical), 
yc � 1.18 m

15.26 yc � 2.55 m

15.28 Subcritical

15.30 Alternate depth is y � 5.38 m; 
sequent depth is y2 � 2.33 m.

15.32 Q � 187 cfs

15.34 Q � 50.5 cfs

15.36 Elev. � 101.4 m

15.38 For upstep, �y � –0.51 m, new water elev. is 2.49 m. 
For downstep, �y � 0.40 m, new water elev. is 3.4. 
Before upstream depth change: zstep, max � 0.43 m.

15.40 �z � 0.89 m

15.42 Ship squat � 0.30 m

15.44 Q � 35.5 m2 s

15.46 y � 0.23 m

15.48 hL � 2.30 ft; P � 4.70 hp, and 
Framp,H � 51.2 lbf opposite to direction of flow

15.50 Hydraulic jump can occur; y2 � 2.82 m

15.52 y2 � 2.09 m

15.54 q � 29.07 ft2 s

15.56 A hydraulic jump will form at � 29 m downstream of sluice
gate.

15.58 �Elev � 1.86 m (increase)

15.60 S3; �0 � 143 N m2

15.62 (d)

15.64 M2

15.68  � 1.51 m

15.70 Q � 19.2 m3 s

15.72 Profile progresses from an elevation of 52.2 m to 53.5 m
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I N D E X

A

Abrupt expansion, in pipes. See Sudden expansion, in pipes

Absolute pressure, 35

Absolute viscosity, 18–24. See also Viscosity

Acceleration, 82, 83–84

Euler’s equation, 86–89

types, 84–85

Advance ratio, 477

Adverse pressure gradient, 110–111, 305, 307

Airfoil

drag of, 385–388

ground-effect vehicles, 391–392

lift of, 383–385

section, pressure gradient effects, 305–306

sound propagation by, 404–405

stress distribution, 364

Airplane

lift and drag forces on, 387–389

propeller motion, 476–477

Anemometer types, 437–440

Apparent shear stress, 294–295

Archimedes’ principle, 61

Atmospheric pressure variation, 40–43

Automobile(s)

drag force, model test for, 269–270

drag forces on, 389–392

streamline pattern, 79

Axial-flow pumps, 481–485

Axial-flow turbomachinery, 476, 477

B

Barometer, 44

Bernoulli equation, 114

applications, 93–99

derivation, 92–93

energy equation, compared to, 229–230

flow properties, evaluation of, 127

irrotational flow, 105–107

See also Euler’s equation; Lagrangian approach

Best hydraulic section, 519

Bingham plastic, 24

Blasius, H., 288

Body force, 166

Boundary layer

laminar, 288–292

overview, 286–288

pressure gradient effects on, 304–306

separation, 305

thickness, 286–306

transition, 292

tripped, 307

turbulent, 292–304

Bourdon-tube-gage, 44

Broad-crested weirs, 527–528

Buckingham � theorem, 251

Bulk modulus of elasticity, 24–25

Buoyancy, 55–61

C

Capillary action, 25–26

Cavitation, 27, 144–147

Celerity. See Wave celerity, rapidly varied flow (open 

channels)

Center of pressure, 48–49

Centrifugal

compressors, 493–496

pump in pipe system, 343–345

pumps, 485–488, 491–492

Centripetal acceleration, 84–85

Channels. See Open-channel(s); Rectangular channels; 

Trapezoidal channel, transition in

Characteristic curves, for turbomachinery, 343, 482

Chezy equation, 516, 518

Circular cylinder, pressure distribution around, 111–112

Circulation, 379–381

Clift and Garvin correlation, drag on a sphere, 371

Coefficient of drag, 365–372

Coefficient of lift, 381–383

Coefficient of pressure, 110, 268, 391, 436, 478, 482, 

486

Coefficient of velocity, 446

Combined head loss equation, 339–340

Compressible flow

Mach number classification. See also individual 

types of flows

Mach number relationships in, 407–411

mass flow measurement, 459–461

pressure measurements, 458

velocity measurements, 458–459

wave propagation, 401–406

Compressors, 493–496

Computational fluid dynamics, 13



I-2 INDEX

Conduits

definition, 315

flow classification, 316–318

nonround, 341–342

systems of, 345–349

See also Pipes

Continuity equation

differential form, 147–149

for flow in pipe, 142–144

general form, 138–142

See also Reynolds transport theorem

Continuum assumption, 2–3

Control volume approach, 133–138

Convective acceleration, 84–85

Couette flow, 283. See also Parallel plates

Critical depth, 525–530, 540, 542–545

Critical flow

characteristics of, 524–527

occurrence of, 528–530

See also Venturi flumes, critical flow

Critical pressure ratio, 424

Culverts, uniform flow in, 520, 521

Cup anemometer, 438

Curved surface, hydrostatic pressure distributions on, 55–59

Cyclonic storm, pressure variation in, 107–110

Cylinders

circulation and uniform flow around, 380–381, 382

drag coefficient of, 366–369, 371, 372

vortex formation, 376

D

Dams

hydraulic jump, in spillways, 537

water-surface profiles, 540, 542–543

Darcy-Weisbach equation, 320–322

Darrieus wind turbine, 504, 505

Density

in compressible flow, 409–410

delivered, 15

See also Mass density

Developing flow, in conduits, 317–318

Dimension, 4

Dimensional analysis

importance of, 249–250

methods, 253–257

of open-channel flow, 512–513

See also �-groups

Dimensional homogeneity, 6–9

Dimensionless groups, 6. See also �-groups

Discharge. See Volume flow rate

Discharge coefficient, 446

Doppler effect, sound, 405

Drag

on airfoils, 385–388

on automobiles, 389–391

axisymmetric bodies, 370–373

coefficient of drag, 366–369

compressibility effects, 378–379

drag force equation, 365–366

on a sphere, 410

streamlining, 377

and stress distribution, 364–365

terminal velocity, 374–375

Dynamic similitude, 261–263

Dynamic viscosity. See Absolute viscosity; Viscosity

E

Efficiency, of a machine or system, 227–228

Elasticity, bulk modulus of, 24–25

Electromagnetic flow meter, 452–453

Energy, definition, 217

Energy equation

for a control volume, 219–221

for open channel flow, 522

for steady flow in a pipe, 222–226

for a system, 219

Energy grade line (EGL), 233–236

Engineering analysis, 11–12

Enthalpy

specific, 18

total enthalpy, 407

Entropy, in normal shock waves, 416

Environment, definition, 219

Eulerian approach, 127, 133–138

Euler’s equation, 92, 114

Exponent method (of dimensional analysis), 255–256

F

Fan laws, 484–485

Favorable pressure gradient, 111

Flow, 99

coefficient, 446, 447f

dimensionality, 82, 83

discharge rate, 129–131

fully developed, in conduits, 317–318

mass flow rate, 131
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Flow (Continued )

meters, types, 452–454

nozzles, 451, 452

pattern, 78–80

rate, direct measurement of, 443–444

separation. See Separation

work, 220

Flow rate equation

mass, 131

volume, 129

Fluid, definition, 1

Fluid jet, force on, 168–171

Fluid particle, 33

Force coefficient, 257

Force diagram, 166

Form drag, 365

Francis turbines, 496, 501

Free surface, 511

Friction drag, 365

Friction factor, in a pipe

chart for (Moody diagram), 329–331

Darcy and Fanning, 322

definition, 321

formula, laminar flow, 326

formula, turbulent flow, 331

total, 320

in turbulent pipe flow, 328–329

Friction velocity. See Shear velocity (friction velocity)

Froude number, 257, 258, 259

Fully developed flow, in conduits, 317–318

G

Gage pressure, 35–36

Gas

Bernoulli equation, application of, 99

flow, 99

turbines, specific speed for, 503

Gaseous flows, flow measurement of, 442–443

Gases, compared to liquids and solids, 1–2

Geometric similitude, 260–261

Gradually varied flow in open channels

differential equation for, 538–539

water surface profile, 538–545

Grid method, 9–11

H

Hagen-Poiseuille flow, 324. See also Poiseuille

flow solution

Hardy Cross method (pipe network design), 346–347

Head

definition, 225

elevation, 233

loss, 225, 320

piezometric, 40

pressure, 233

pump, 225

total, 233

turbine, 225

velocity, 233

Head loss

chart (Moody diagram), 329–331

definition, 225

formula, laminar flow, 326

formula, turbulent flow, 331

in a pipe, 320–322

total, 320

in turbulent pipe flow, 328–329

Hele-Shaw flow, 284. See also Parallel plates

Hot-film anemometer, 438

Hot-wire anemometer, 438

HVAC duct, pressure drop, 342

Hydraulic

depth, 525

grade line, 233–236

jack, 37

jump, 533–539

machine, 36, 37

radius, 341, 512–513

Hydraulics, 12

Hydrogen bubbles, in velocity measurement, 441

Hydrology, 12

Hydrometer, 56

Hydrostatic

condition, definition, 33–34

differential equation, 36, 37–38

equation, 39–41

force, 52–59

force on curved surfaces, 55–59

force on plane surfaces, 52–55

pressure distribution, 48, 49

stability, 56–61

I

Ideal fluid, 110

Ideal gas

dimensional homogeneity of, 7



I-4 INDEX

enthalpy of, 408

law, density, calculation of, 16–17

speed of sound, 403–404

Impulse turbines, 496–499

Incompressible, 16, 25

Integral, primary dimensions, 8–9

Interferometry, 462

Internal energy, 18

International System of Units, 4–5

Irrotational flow, 105–107

Isentropic compressible flow

definition, 409

duct area variation, 416–419. See also Laval 

nozzle

K

Kaplan turbines, 496

Karman’s constant. See Universal turbulence 

constant

Kinematic viscosity, 20, 21

Kinetic-energy correction factor, 222–223, 224

Kinetic pressure, in compressible flow, 410–411

L

Lagrangian approach, 127–129

Laminar boundary layer, 288–292, 302

Couette flow, 283–284

Hele-Shaw flow, 284–286

regions of laminar flow, 282

sheer stress differential equation, 282–283

Laminar flow, 81–82

in conduits, 316–317

in a round tube (Poiseuille flow solution),

324–327

Laser-doppler anemometer, 439–440

Laval nozzle, 419–421

exit (flow) conditions, 423–426

mass flow rate, 421–423

truncated nozzle, 427

Law of the wall, 297

Lift

on airfoils, 383–385

on automobiles, 391–392

circulation, 379–381

coefficient of lift, 381–383

and stress distribution, 364–365

Liquid density 16. See also Density

Local acceleration, 84–85

M

Mach angle, 405f, 406

Mach number, 257, 258–259, 263

and compressible flow properties, 407–411

duct area variation and, 417

of Laval nozzle, 419–422

of normal shock wave, 412

�-groups, 378–379

in subsonic flow, 418

in transonic flow, 418–419

Mach wave, 405f, 406

Mach-Zender interferometer, 462

Manning equation, 517–518

Manning’s n, 517

Manometer, 45–50

definition and description, 45–46

pressure variation, 91

Marker methods, for velocity determination, 

440–443

Mass density, 15. See also Density

Mass flow

compressible flow, measurement in, 459–461

Laval nozzle, 421–423

through a truncated nozzle, 427

Mass flow rate equation, 131

Mean velocity, 130–132, 295, 322, 325, 328, 337, 

439

definition, 130

equations for, 130–133

formula, laminar pipe flow, 325, 326

in turbulent pipe flow, 328

Measurement

in compressible flow, 450, 458–462

of discharge, 443–458

of pressure, 43–48

uncertainty analysis, 463–464

of velocity, 435–440

Mechanics, definition, 1

Microchannel flow, 13

Minor loss coefficient, 336–339

Mixing-length theory, Prandtl, L., 296

Model performance

and approximate similitude, 268–271

and prototype performance, 266–268

similitude, 264–266

Moment-of-momentum equation, 192–195

Momentum accumulation, 166–167

Momentum diagram, 167–168
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Momentum equation

applications, 168. See also individual applications

derivation, 163–165

interpretation of, 165–168

Moody diagram, 329–331

N

NASA testing facilities, 265

Natural gas, mass flow rate of, 450

Navier-Stokes equations, 196–200

Net positive suction head, 490–491

Newtonian fluids, 23–24

Newton-Raphson method (for nonlinear systems of 

algebraic equations), 348–349

Newton’s second law of motion, 163–164

Nominal pipe size (NPS) standard, 319

Non-Newtonian Fluids, 23–24

Nonuniform flow, 79, 511

Normal depth, 511, 516, 529, 540–544

Normal shock waves

(flow) property changes across, 412–414

in supersonic flows, 414–415

Nozzle(s)

acceleration, 85

critical pressure ratio, 423

flow, 451, 452

force on, 172–173

head loss test, 269–270

hydraulic and energy grade lines, 234

ideally expanded, 425

momentum diagram, 167

overexpanded, 425

truncated, 427

underexpanded, 424

See also Laval nozzle

O

Open-channel(s)

defined, 511

differential equation for, 539

dimensional analysis in, 512–513

energy equation, 514

flows, 538

overview, 511–512

rapidly varied flow, 523

steady nonuniform flow, 522

steady uniform flow, 514–521

water-surface profile, 538–545

See also Rapidly varied flow (open channels)

Orifice meter

head loss, 448–451

uncertainty estimate, for, 463–464

P

Parachute, drag coefficient of, 372

Parallel plates

Couette flow, 283–284

Hele-Shaw flow, 284–286

Particle image velocimetry, 441–442

Pascal’s law, 37

Pathline, 80–81

Pelton wheels, 496

Performance curves, for turbomachinery, 482

Piezometer, 45

Piezometric, head, 40

Piezometric pressure, 393

�-groups

common groups, 256–259

experimental design methods, 253–256

Pipe bends, force on, 176–179

Pipe, hydraulic and energy grade lines, 233, 234, 235

Pipes

diameter of, 332, 335–336

flow rate, 332, 333–335

force diagram, 165f

forces, 166

head loss (Darcy-Weisbach equation), 320–322, 333

head loss, in components, 336–340

Moody diagram, 329–331

networks, 345, 346–349

nominal pipe size (NPS) standard, 319

in parallel, 345

reducing bend application, 193–194

stress distributions of flow, 322–323

water hammer effect, 187. See also Water hammer

Pitch angle, 476

Pitot (stagnation) tube

Bernoulli equation, application of, 96–99

viscous effects, 435–436

Pitot-static tube, 436f, 437

Bernoulli equation, application of, 96–99

definition and description, 436, 437f

Plane surface (panel), hydrostatic pressure 

distributions on, 51–55

Poiseuille flow solution, 324–327. See also Hagen-

Poiseuille flow
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Power coefficient, 478

Power, definition, 218

Power equation, 218, 227

Power-law formula, 299–300

Prandtl, L.

and essence of boundary-layer hypothesis, 288

mixing length theory, 295–296

Pressure

absolute, 35–36

atmosphere pressure variation, 41–44

coefficient, 110–111, 268, 391, 436, 478, 482, 

486

in compressible flow, 409

critical pressure ratio, 423

definition, 34–36

distribution, 34, 48–49, 90, 107–111, 323

elevation variation with, 36–43

gage, 35–36

instruments of measurement, 44–50

measurements, 36–43

scales, 36–37

vacuum, 35–36

Pressure equations, 35

Pressure transducer, 50

Primary diversion, 4

Projected area, for drag, 366

Propeller anemometer, 438

Propellers, 476–481. See also Airfoil

Properties, 15

Prototype performance, and model performance, 

266–268

Pump(s), 218, 342

axial-flow pumps, 481–485

centrifugal pumps, 343, 485–488, 491–492

curve, 343

hydraulic and energy grade lines, 233–234

power equation, 227–228

specific speed, 488–489

suction limitations of, 490–492

viscous effects, 492–493

See also Centrifugal, pump in pipe system

Pump performance curve, 343

R

Radial-flow machinery, 476–477, 485–488. See also 

individual machines

Rapidly varied flow (open channels)

channel transition, 530–531

critical flow, 522–530

hydraulic jump, 533–538

specific energy, 522–523

wave celerity, 532

Rate of flow. See Flow, discharge rate

Ratio of specific heat, 403

Rayleigh supersonic Pitot formula, 459

Reaction turbines, 496, 499–501

Rectangular channels

best hydraulic section, 519

hydraulic jump in, 535

transition in, 530–531

Rectangular weir, 455–457

Relative roughness, 329

Resistance coefficient. See Friction factor, in a pipe

Reynolds number, 6, 7, 257, 258

and approximate similitude, 268–271

similitude, 264–266

Strouhal number versus, 376

transition, 292

Reynolds stress, 294

Reynolds transport theorem, 136–138

Rock-bedded channels, 515–516

Rocket

equation of motion, 184–187

thrust of, 169–170

Rolling resistance, 206, 370, 373–379, 396–397

Rotameter, 454

Rotating flow

Bernoulli equation, application of, 99

pressure distribution in, 98–91

Rotation

in concentric streamlines, 104–105

definition, 100–102

See also Irrotational flow

Roughness. See Sand roughness, in pipe flow

S

Sand roughness, in pipe flow, 329–330

Savonius rotor, 504, 505

Schlieren technique

on cylinders, 369

described, 461–462

Separation, 112–113

Separation point, 111, 305

Sewers, uniform flow in, 520–521

Shaft work, 220

Shear strain, viscosity and, 18–20



INDEX I-7

Shear-stress

coefficients, of laminar boundary layers, 291, 292–293

viscosity and, 18–20

Shear velocity (friction velocity), 293

Shells, drag coefficient of, 372

Ship model testing, 260–261, 273–274

Ship, stability relations, 57–58, 60

Shock waves

normal, 412, 415–416, 424–425

oblique, 415–416, 424–425

visualization, 461–462

Similitude

dynamic, 261–263

geometric, 260

Sluice gate, 181–182, 524, 527, 542, 546

Solid mechanics, definition, 1

Solids, properties of, 2

Sound

Doppler effect, 405

speed of, 401

See also Mach number

Specific energy, 523–527, 530, 536, 546

Specific gravity

definition, 16

hydrometer, 56

Specific heat, 17

Specific speed, 488–491, 503, 506

Specific weight, 16

Speed of sound. See Sound

Sphere

compressibility effects, 378–379

drag coefficient, 370–371, 372–373

drag force on, 410

lift forces on, 382–383

terminal velocity of, 375

Spillway model

definition, 271

free-surface model studies, 271–274

Spillways. See Dams

Stagnation tube, Bernoulli equation, application of, 95–98

Static tube, 436

Steady flow, 80, 511

Step-by-step method (of dimension analysis), 253–255

Stokes’s equation for drag, 371

Stratosphere, pressure variation, 42, 43

Streakline, 80–81

Streamlines

concentric, 104–105

and flow patterns, 78–80, 81

Streamlining, 377

Stress distributions

on airfoils, 364

in pipe flow, 322–323

Strouhal number, 376

Subcritical flow, 524–525, 531, 537, 546

Subsonic flow, duct area variation in, 417

Sudden expansion, in pipes, 230–232

Supercritical flow, 524–525, 531, 537, 543, 546

Supersonic flow, 418

Laval nozzle, 419–421

in normal shock waves, 414–416

Surface force, 166

Surface tension, 25–27

Sutherland’s equation, 23

Swamee-Jain equation, 331

System curve, 343

System, definition, 133

T

Temperature, total temperature equation, 408

Terminal velocity, 374–375

Theoretical power, pump

adiabatic, 493

isothermal, 494

Thermal energy, properties of, 17–18

Thermodynamics, first law of, 219

Thrust coefficient, 481

Torque, moment-of-momentum equation, 192–195

Torques, 192

Traditional Unit System, 5

Transonic flow, Mach number, 418–419

Trapezoidal channel, transition in, 531

Triangular weir, 457–458

Troposphere, pressure variation, 42–43

Turbine, 218

flow meter, 453

Francis, 194–195

gas, 503

hydraulic and energy grade lines, 234

impulse, 496–499

power equation, 227, 228–229

reaction, 499–501

specific speed for, 503

vane angles of, 501–502

wind, 503–505

See also Vane, force on
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Turbomachinery

classification, 476. See also individual machines

power absorbing, 476

power producing, 476

Turbulent boundary layer

sheer stress, correlations, 300–302

velocity distribution, 292–300

Turbulent flow, 81–82

computational examples, 332–336

in conduits, 316–317

friction factor, 328–329

Moody diagram, 329–331

overview, 327

velocity distribution, 328

Two-dimensional bodies, drag coefficient, 

366–369

U

Ultrasonic flow meter, 453

Uncertainty analysis, 463–464

Units

defined, 4

grid method, 9–11

systems, 4–5

Universal turbulence constant, 296. See also Karman’s 

constant

Unsteady flow, 80, 532

V

Vacuum pressure, 35–36

Valve, Reynolds-number similitude, 266

Vane anemometer, 438

Vane, force on, 173–176

Vapor pressure, 27

Velocity defect law, 297–299

Velocity distribution

in boundary layer, 287

in Couette flow, 283

formula, laminar pipe flow, 325

formula, turbulent pipe flow, 328

in Hele-Shaw flow, 284

in laminar boundary layer, 287

in turbulent boundary layer, 293–299

Velocity, marker methods, 440

Vena contracta, 445–446

Venturi flumes, critical flow, 528–529

Venturi meter

defined, 451, 452

flow rate measurement, 460–461

using, 452

Viscosity, 18–24

kinematic viscosity, 20, 21

temperature, effect of, 20–23

See also Absolute viscosity

Viscous sublayer, 293–299

Volume flow rate, 129–131

Volume flow rate equation, 129

Vortex flow meter, 453–454

Vortex shedding, 376

Vorticity, 102–103

W

Water distribution systems, 345, 346–349

Water hammer

force relations, 189–192

overview, 187–189

Water-surface profiles (gradually varied flow), 

539–545

Wave celerity, rapidly varied flow (open channels), 

532

Weber number, 257, 258, 260

Weirs

critical flow, 527–528

definition and description, 455–458

Wind, 265

Wind tunnel

aircraft testing, 264, 266–267

drag force on, 179–181

Laval nozzle application, 419–421

Wind turbines

definition and description, 503–505

specific speed for, 503

Work

definition, 217

flow work, 220

shaft work, 220

Y

Yaw meters, 437 



TABLE F.1 FORMULAS FOR UNIT CONVERSIONS*

Name, Symbol, Dimensions Conversion Formula

Length L L 1 m 3.281 ft 1.094 yd 39.37 in km 1000 106 �m

1 ft 0.3048 m 12 in mile 5280 km 3281

1 mm m 1000 in 25.4 39.37 mil 1000 �m 107 Å

Speed V L T 1 m s 3.600 km hr 3.281 ft s 2.237 mph 1.944 knots

1 ft s 0.3048 m s 0.6818 mph 1.097 km hr 0.5925 knots

Mass m M 1 kg 2.205 lbm 1000 g slug 14.59 (metric ton or tonne or Mg) 1000

1 lbm lbf·s2 (32.17ft) kg 2.205 slug 32.17 453.6 g

16 oz 7000 grains short ton 2000 metric ton (tonne) 2205

Density � M L3 1000 kg m3 62.43 lbm ft3 1.940 slug ft3 8.345 lbm gal (US)

Force F ML T 2 1 lbf 4.448 N 32.17 lbm·ft s2

1 N kg·m s2 0.2248 lbf 105 dyne

Pressure P M LT 2 1 Pa N m2 kg m s2 10–5 bar 1.450 10– 4 lbf in2 inch H2O 249.1

1 Pa 0.007501 torr 10.00 dyne cm2

1 atm 101.3 kPa 2116 psf 1.013 bar 14.70 lbf in2 33.90 ft of water

1 atm 29.92 in of mercury 10.33 m of water 760 mm of mercury 760 torr

1 psi atm 14.70 6.895 kPa 27.68 in H2O 51.71 torr

Volume V L3 1 m3 35.31 ft3 1000 L 264.2 U.S. gal

1 ft3 0.02832 m3 28.32 L 7.481 U.S. gal acre-ft 43,560

1 U.S. gal 231 in3 barrel (petroleum) 42 4 U.S. quarts 8 U.S. pints

3.785 L 0.003785 m3

Volume Flow

Rate

(Discharge)

Q L3 T 1 m3 s 35.31 ft3 s 2119 cfm 264.2 gal (US) s 15850 gal (US)/m

1 cfs 1 ft3 s 28.32 L s 7.481 gal (US) s 448.8 gal (US) m

Mass Flow 

Rate

M T 1 kg s 2.205 lbm s 0.06852 slug s

Energy and 

Work
E, W ML2 T 2 1 J kg·m2 s2 N·m W·s volt·coulomb 0.7376 ft·lbf 

1 J 9.478 10– 4 Btu 0.2388 cal 107 erg kWh 3.600 106

Power ML2 T 3 1 W J s N·m s kg·m2  s3 1.341 10–3 hp

0.7376 ft · lbf s 1.0 volt-ampere 0.2388 cal s 9.478 10– 4 Btu s

1 hp 0.7457 kW 550 ft·lbf s 33,000 ft·lbf min 2544 Btu h

Angular Speed � T –1 1.0 rad s 9.549 rpm 0.1591 rev s

Viscosity μ M LT 1 Pa·s kg m·s N·s  m2 10 poise 0.02089 lbf·s ft2 0.6720 lbm ft·s

Kinematic

Viscosity
 L2 T 1 m2 s 10.76 ft2 s 106 cSt

Temperature T K °C 273.15 °R 1.8

°C (°F 32) 1.8

°R °F 459.67 1.8 K

°F 1.8°C 32

* A useful online reference is www.onlineconversion.com
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TABLE F.2 COMMONLY USED EQUATIONS

Specific weight

(Eq. 2.2, p. 16)

Specific gravity

(Eq. 2.3, p. 16)

Ideal gas law

(Eq. 2.5, p. 17)

Definition of viscosity

(Eq. 2.6, p. 19 )

Kinematic viscosity

(Eq. 2.8, p. 20)

Pressure equation

(Eq. 3.3a, p. 35)

(Eq. 3.3b, p. 35)

Hydrostatic equation

(Eq. 3.7a, p. 38)

(Eq. 3.7b, p. 38)

(Eq. 3.7c, p. 38)

Manometer equations

(Eq. 3.18, p. 45)

(Eq. 3.19, p. 46)

Hydrostatic force equations (flat panels)

(Eq. 3.23, p. 49)

(Eq. 3.28, p. 51)

Buoyant force (Archimedes equation)

(Eq. 3.36, p. 56)

The Bernoulli equation

(Eq. 418b, p. 92)

(Eq. 418a, p. 92)

Coefficient of pressure 

Eq. 4.50, p. 109)

Volume flow rate equation 

(Eq. 5.8, p. 131)
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Mass flow rate equation

(Eq. 5.9, p. 131)

Continuity equation

(Eq. 5.24, p. 138)

(Eq. 5.25, p. 138)

(Eq. 5.26, p. 142)

Momentum equation

(Eq. 6.5, p. 164)

(Eq. 6.6, p. 164)

Energy equation

(Eq. 7.29; p. 225)

The power equation

(Eq. 7.3, p. 218)

(Eq. 7.31, p. 227)

Efficiency of a machine

(Eq. 7.32; p. 227)

Reynolds number (pipe)

(Eq. 10.2, p. 317)

Combined head loss equation

(Eq. 10.45, p. 339)

Friction factor f (Resistance coefficient)

(Eq. 10.34, p. 326)

(Eq. 10.39, p. 331)

Drag force equation

(Eq. 11.5, p. 365)

Lift force equation

(Eq. 11.17, p. 381)
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TABLE F.3 USEFUL CONSTANTS

Name of Constant Value

Acceleration of gravity g 9.81 m s2 32.2 ft s2

Universal gas constant Ru 8.314 kJ kmol K 1545 ft lbf lbmol °R

Standard atmospheric pressure patm

patm

1.0 atm 101.3 kPa 14.70 psi 2116 psf 33.90 ft of water 

10.33 m of water 760 mm of Hg 29.92 in of Hg 760 torr 1.013 bar

TABLE F.4 PROPERTIES OF AIR [T 20oC (68 oF), p 1 atm]

Property SI Units Traditional Units

Specific gas constant Rair 287.0 J kg K Rair 1716 ft lbf slug °R

Density � 1.20 kg m3 � 0.0752 lbm ft3 0.00234 slug ft3

Specific weight 	 11.8 N m3 	 0.0752 lbf ft3

Viscosity � 1.81 10–5 N s m2 � 3.81 10–7 lbf s ft2

Kinematic viscosity  1.51 10–5 m2 s  1.63 10– 4 ft2 s

Specific heat ratio k cp cv 1.40 k cp cv 1.40

Specific heat cp 1004 J kg K cp 0.241 Btu lbm °R

Speed of sound c 343 m s c 1130 ft s

TABLE F.5 PROPERTIES OF WATER [T 15oC (59 oF), p 1 atm]

Property SI Units Traditional Units

Density � 999 kg m3 � 62.4 lbm ft3 1.94 slug ft3

Specific weight 	 9800 N m3 	 62.4 lbf ft3

Viscosity � 1.14 10–3 N s m2 � 2.38 10–5 lbf s ft2

Kinematic viscosity  1.14 10–6 m2 s  1.23 10–5 ft2 s

Surface tension

(water-air)

 0.073 N m 
 0.0050 lbf ft

Bulk modulus of elasticity Ev 2.14 109 Pa Ev 3.10 105 psi

TABLE F.6 PROPERTIES OF WATER [T 4oC (39 oF), p 1 atm]

Property SI Units Traditional Units

Density 1000 kg m3 62.4 lbm ft3 1.94 slug ft3

Specific weight 9810 N m3 62.4 lbf ft3
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Table A.6 NOMENCLATURE

Symbol Dimensions Description

A L2 Area

Aj L2 Jet area

A0 L2 Orifice area

A* L2
Nozzle area at M 1

a L T 2 Acceleration

b . . . Intensive property

B L Linear measure

B . . . Extensive property

b L Linear measure

Cc . . . Coefficient of contraction

CD . . . Coefficient of drag

Cd . . . Coefficient of discharge

Cf . . . Average shear stress coefficient

CF . . . Force coefficient

CH . . . Head coefficient

CL . . . Coefficient of lift

CP . . . Power coefficient

Cp . . . Pressure coefficient

CQ . . . Discharge coefficient

CT . . . Thrust coefficient

Cv . . . Coefficient of velocity

c L T Speed of sound

cf . . . Local shear stress coefficient

cp L2 T 2� Specific heat at constant pressure

cv L2 T 2� Specific heat at constant volume

CP . . . Center of pressure

cs . . . Control surface

cv . . . Control volume

D L Diameter

D L Hydraulic depth

Dh L Hydraulic diameter

d L Diameter

d L Depth

E ML2 T 2 Energy

E L Specific energy

Ev M LT 2 Elasticity, bulk

e L2 T 2 Energy per unit mass

Fr . . . Froude number

F ML T 2 Force

FD ML T 2 Drag force

FL ML T 2 Lift force

FS ML T 2 Surface resistance

f . . . Friction factor

G . . . Giga, multiple 109

g L T 2 Acceleration due to gravity

H L Head

h L Piezometric head

h L2 T 2� Specific enthalpy

hf L Head loss in pipe

�
⁄

⁄

⁄
⁄

⁄

⁄
⁄

⁄
⁄
⁄
⁄

�
⁄

⁄

Symbol Dimensions Description

hL L Head loss

hp L Head supplied by pump

ht L Head given up to turbine

L4 Area moment of inertia, centroidal

i . . . Unit vector in x direction

j . . . Unit vector in y direction

k . . . Unit vector in z direction

K . . . Minor loss coefficient

k . . . Ratio of specific heats

ks L Equivalent sand roughness 

L L Linear measure

l L Linear measure

� L Linear measure

M . . . Mach number

M ML2 T 2 Moment

m M Mass

M T Mass flow rate

N T –1 Rotational speed

Ns Specific speed

Nss Suction specific speed

n . . . Manning’s roughness coefficient

n T –1 Rotational speed

ns . . . Specific speed

nss . . . Suction specific speed

p M LT 2 Pressure

�p M LT2 Change in pressure

P ML2 T 3 Power

p* M LT 2 Pressure at M 1

pt M LT 2 Total pressure

pv M LT 2 Vapor pressure

pz ML2/T2 Piezometric pressure

Q L3 T Discharge, volumetric flow rate

Q ML2 T 2 Heat transferred

q L2 T Discharge per unit width

q M LT 2 Kinetic pressure

Rh L Hydraulic radius

R ML T 2 Reaction or resultant force

R L2 �T 2 Gas constant

Re . . . Reynolds number

r L Linear measure in radial direction

S L2 Planform area

St . . . Strouhal number

S0 . . . Channel slope

s L2 T 2� Specific entropy

S . . . Specific gravity

s L Linear measure

T ML2 T 2 Torque

T � Temperature

(Continued)

I

⁄

m· ⁄

L3 4/ T3 2/⁄
L3 4/ T3 2/⁄

⁄
⁄

⁄
⁄ �
⁄
⁄

⁄
⁄

⁄
⁄

⁄
⁄

⁄

⁄



Table A.6 NOMENCLATURE (Continued)

Symbol Dimensions Description

Tt � Total temperature

T* � Temperature at M 1

t T Time

U0 L T Free-stream velocity

u L T Velocity component, x direction

u L2 T 2 Internal energy per unit of mass

u
*

L T Shear velocity

u L T Velocity fluctuation in x direction

V L T Velocity

V0 L T Free-stream velocity

L3 Volume

L T Area-averaged velocity

v L T Velocity component, y direction

v L T Velocity fluctuation in y direction

W ML2 T 2 Work

W ML T 2 Weight

We . . . Weber number

w L T Velocity component, z direction

x L Linear measure

y L Linear measure

yc L Critical depth

yn L Normal depth

z L Elevation

�z L Change in elevation

�

⁄
⁄
⁄

⁄
′ ⁄

⁄
⁄

V

V ⁄
⁄

′ ⁄
⁄

⁄

⁄

Greek Letters

� . . . Angular measure

� . . . Lapse rate

� . . . Kinetic energy correction factor

� . . . Angle of attack

� . . . Angular measure

� L2 T Circulation

	 M L2T 2 Specific weight

� . . . Increment

� L Boundary layer thickness

� L Laminar sublayer thickness

� L Nom. laminar sublayer thickness

� . . . Efficiency

� . . . Angular measure

� . . . Turbulence constant

� M LT Dynamic viscosity

� M LT 2 Shear stress

 L2 T Kinematic viscosity

� . . . Dimensionless group

� M L3 Mass density

�* M L3 Density at M 1

�t M L3 Total density

� T –1 Rate of rotation

� T –1 Angular speed

� T –1 Vorticity


 M T 2 Surface tension

⁄
⁄

′
N′

⁄
⁄
⁄

⁄
⁄ �
⁄

⁄
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