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PREFACE TO THE TWELFTH EDITION

A Chapter on General Equation of the second degree and reduc-
tion to canonical forms and classification has been added. It is
hoped that the treatment is natural and simple and as such will
appeal to the imagination of the students.

Hans Raj College, SHANTI NARAYAN
Delhi University,
January, 1961,

PREFACE TO THE FIRST EDITION

This book is intended as an introduction to Analytical Solid
Geometry and covers as much of the subject as is generally expected
of students going up for the B.A., B.Sc., Pass and Honours exami-
nations of our Universities.

I have endeavoured to develop the subject in a systematic and
logical manner. To help the beginner, elementary parts of the
subject have been presented in as simple and lucid a manner as
possible and fairly large number of solved examples to illustrate
various types have been introduced. The books already existing
in the market cover a rather extensive ground and consequently
comparatively lesser attention is paid to the introductory portion
than is necessary for a beginner.

The book contains numerous exercises of varied typesina graded
form. Some of these have been selected from various examination
papers and standard works to whose publishers and authors I offer
my best thanks.

I am extremely indebted to Professor Sita Ram Gupta, M.A.,
P.E.S., of the Government College, Lahore, who very kindly went
through the manuscript with great care and keen interest and
suggested a large number of extremely valuable improvements.

I shall be very grateful for any suggestions for improvements or
corrections of text or examples.

LAHORE : SHANTI NARAYAN
June, 1939.
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CHAPTER I
CO-ORDINATES

Introduction. In plane the position of a point is determined by
two numbers z, y, obtained with reference to two straight lines in the
plane generally at right angles. The position of a point in space is,
however, determined by three numbers z, y, 2. We now proceed to
explain as to how this is done.

1-'1. Co-ordinates of a point in space. Let X'OX, Z'0OZ be two
perpendicular straight lines. Through O, their point of intersection,

pA
Y'
C // M
L fd
X >X

/0 /A

B N

Fig. 1

called the origin, draw a line Y'OY perpendicular to the XOZ plane
so that we have three mutually perpendicular straight lines
X'0X,Y'0Y, 2'0Z

known as rectangular co-ordinate axes. (The plane XOZ containing
the lines X'0OX and Z'0Z may be imagined as the plane of the paper ;
the line OY as pointing towards the reader and OY " behind the paper).
The positive directions of the axes are indicated by arrow heads.
These three axes, taken ih pairs, determine three planes,

X0Y, YOZ and ZOX

or briefly XY, YZ, ZX planes mutually at right angles, known as
rectangular co-ordinate planes.

Through any point, P, in space, draw three planes parallel to the
three co-ordinate planes (being also perpendicular to the corresponding
axes) to meet the axes in 4, B, C.

Let, A=z, OB=y and 0C=g,
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These three numbers, z, y, 2z, determined by the point P, are
called the co-ordinates of P.

Any one of these z, y, 2, will be positive or negative according
as it is measured from O, along the corresponding axis, in the positive
or negative direction.

Conversely, given threc numbers, z,y, z, we can find a point
whose co-ordinates are z, 7, z. To do this, we proceed as follows :

(¢) Measure 04, OB, OC, along OX, OY, OZ equal to z, y, 2
respectively.

(#2) Draw through A4, B, C planes parallel to the co-ordinate
planes YZ, ZX and XY respectively.

The point where these three planes intersect is the required
point P,

Note. The three co-ordinate planes divide the whole space in eight com-
partments which are known as ewght octants and since each of the co-ordinates
of a point may be positive or negative, thero are 23(=8) points whose co-ordi-
natﬁs have the same numerical values and which lie in the eight octants, one in
each,

1'11. Further explanation about co-ordinates. In §1-1 above,
we have learnt that in order to obtain the co-ordinates of a point P,
we have to draw three planes through P respectively parallel to the
three co-ordinate planes. The three planes through P and the three
co-ordinate planes determine a parallelopiped whose consideration
leads to three other useful constructions for determining the co-
ordinates of P.

The parallelopiped, in question, has six rectangular faces
PMAN, LCOB ; PNBL, MAOC ; PLCM, NBOA

(See Fig. 1).

(?) We have

2=0A=CM =LP =perpendicular from P on the YZ plane ;
y=0B=AN=JM P=perpendicular from P on the ZX plane ;
2=00+=AM =NP =perpendicular from P on the XY plane.
Thus the co-ordinates z, y, z of any point P, are the perpendicular

distances of P from the three rectangular co-ordinate planes YZ, ZX and
XY respectively.

(?2) Since PA lies in the plane PJf AN which is perpendicular to
the line 0A4*, therefore
P4 | OA.

Similarly PB] OB and PC ] OC.
Thus the co-ordinates z, y, z of any point P are also the distances

from the origin O of the feet A, B, C of the perpendiculars from the point
to the co-ordinate axes X'X, Y'Y and Z'Z respectively.

) * A line perpendicular to a plane is perpendicular to every line in the
plane.
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Ex. What are the perpendicular distances of a point (z, y, z) from the

co-crdinate axes ? [Ans. 4/(y2+22), 4/(22+422), 4/ (22+92)
(731) We have
NP=AM=0C=z; z P
AN=0B =y ; :
OA=zx. o) A X
Thus (Fig. 2) if we draw PN | XY / Jv/ -
plane meeting it at N .and NA || OY &

meeting OX at A, we have
OA=z, AN=y, NP=z.

Exercises
1. In fig. 1, write down the co-ordinatesof 4, B, C ; L, M, N when the
co-ordinates of I’ are (x, v, 2).
2. Show that for cvery point (x, y, 2) on the ZX plane, y=0.
3. Show that for every point (z, y, z) on the Y-axis, x=0, 2=0.
4. What <s the locus of a point for which

(7) z=0, (72) y=0, (74) 2=0.
(i) z=a, (v) y=b, (v1) z=c.
5. What is the locus of a point for which
(¢) y=0, z=0, (¢%) 2=0, z=0, (#31) x=0, y=0.
() y=1b, z=c, (v) z=c, x=aq, () z=a, y=b>.

6. I 2 any point (x, 9, z), and «, B, vy are the angles which OP makes with
x-rats, y-axis and z-axis respectively ; show that

cos a=x[r, cos B=y[r, cos y=z|r,
where r=0P.

7. Find the lengths of the edges of the rectangular parallelopiped formed
by planes drawn through the points (1,2, 3) and (4, 7, 6) parallel to the co-
ordinato planes. [Ans. 3,5, 3.

v'1-2. Distance between two points. 7o find the distance between
the points P(xy, ¥, 2,) and Q(xs, Ys, 23).

Through the points P, @ draw plancs parallel to the co-ordinate
planes to form a rectangular parallelopiped whose one diagonal is PQ.

VA & M
L 4
ks ¥
B N
/ z
Y
Fig. 3

Then
APCM, NBLQ ; LCPB, QM AN ; BPAN, LCMQ
are the three pairs of parallel faces of this parallelopiped,
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Now £ ANQ is a rt. angle. Therefore,
AQ*=AN?*4-N@2.
Also AQ lies in the plane QM AN which is perpendicular to the
line PA. Therefore
AQ | PA.
Hence
PQ?=PA*+ AQ*=PA®+ AN24NQ2.

Now, PA is the distance between the planes drawn through the
points P and @ parallel to the YZ-planc and is, therefore, equal to
the difference between their 2—co-ordinates.

& PA=x,—u,.
Similarly AN=y,—y,,
and NQ=2z,—2z,.
Hence PQ?=(x;—x1)*+ (y: —y)* + (2. —2y)%.

Thus the distance between the points
(@1, Y1, 21) and (s, Y5, 2,)
i8 VI(@e—21)*+ (Y. —1)* + (22—21)%].
Cor. Distance from the origin. When P coincides with the origin
O, we have z;=y,=2,=0 so that we obtain,

0Q*=x2 4,2 +2,%

Note. The reader should notico the similarity of the formula obtained
above for the distance between two pomnts with the corresponding formula in
plane co-ordinate geometry. Also refer §1-3.

Exercises
1. Find the distanco betweon the points (4, 3, —06) and (=2, 1, —3).
[Ans. 7.
2. Show that the points (0, 7, 10), (—1, 6, 6), (—4, 9, 6) form an isosceles
right-angled triangle.
3. Show that the three points (—2, 3, 5), (1, 2, 3), (7, 0, —1) are collinear.
4. Show that the points (3,2, 2), (—1,1,3), (0,5, 6),(2,1,2) lieona

sphere whose centre is (1, 3, 4). Find also its radius. [Ans. 3.
5. Find tho co-ordinates of the point equidistant from the four points
(a, 0, 0), (0, b, 0), (0, 0, ¢) and (0, 0, 0). [Ans. (3a, 3b, ic).

<13, Division of the join of two points. 7o find the co-ordinates
of the point dividing the line joining
P(z,, y1, 21) and Q(2s, Y, 2a),
in the ratio m : n.
Let R (z, y, 2) be the point dividing PQ in the ratio m : n.
Draw PL, QM, RN perpendiculars to the XY-plane.

The lines PL, QM, RN clearly lie in one plane so that the points
L, M, N, lie in a straight line which is the intersection of this plane
with the XY-plane.

The line through R parallel to the line LM shall lie in the same
plane. Let it intersect PL and QM at H and K respectively.
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The triangles HPR and QRK are similar so that we have
m _PR_PH NR—LP z—z

7-—E=E=M@:NR_224 z z
z — M2 0Z
T m+n

Similarly, by drawing perpendiculars to
the XZ and YZ planes, we obtain

_my,tny; o mxnx 0

Y= m+n ¥ " min X
The point R divides PQ internally or M
is

externally according as the ratio m:n
positive or negative.
Thus the co-ordinates of the point which Fig. 4
divides the join of the points (21, yy, 2,) and
(%3, Yq, 23) tn the ratio m : n are
(mx,r—}—n?cl_ myy+ny, mz2+nz1)
‘m+n * m4n ' m4n /°
'/ Cor. 1. Co-ordinates of the middle point. In case R is the
middle point of P@, we have
m:m::1:1

so that
e =}(z,+2,), y=4(y1 ), 2=+ 2).

Cor. 2. Co-ordinates of any point on the join of two points.
Putting k& for m/n, we see that the co-ordinates of the point B which
divides PQ in the ratio k£ : 1 are

kxg+zy  kya+u k?‘z +2,
1+k ° 1+k ° 14k /°

To every value of k there corresponds a point E on the line PQ
and to every point R on the line PQ corresponds some value of k, viz.
PR|RQ.

Thus we see that the point
(’i%:*‘% kyat-uy kz Jrf;) )
1+k * 14k ° 14k
lies on the line PQ whatever value k may have and conversely any
given point on the line PQ) is obtained by giving some suitable value
to k. This idea is sometimes expressed by saying that (¢) are the
general co-ordinates of any point of the line joining P(zy, y,, 2;) and
Q(x2; Ya, 22)0 °
Exercises
71. TFind the co-ordinates of the points which divide the line joining the
points (2, —4, 3), (—4, 5, —6) in the ratios

(7) (1:—4) and (¢) (2:1). N
[Ans. (f) (4, =7, 6); (¢%) (=2, 2, =3).

"2, 4(3,2,0), B(53,2). C(~9,6 —3) are three points forming a
triangle. AD, the bisector of the anglo BAC, meets BC at D. Find the
co-ordinates of D. (dne. (13, $%, 13).
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3. Find the ratio in which the line joining the points
(2’ 47 5)! (3y 6: —4)
t8 divided by the YZ-plane.
The general co-ordinates of any point on the line joining the given points are
3k+2 bk+4 —4k+45 .
(1+k T4k 14k ) (%)
This point will lie on the YZ plane, 1f, and only if, its # co-ordinate is
zero, t.e.,

3k+2 . 2
ik =0, t.e., Ic_—..§~ .
Hence the required ratio=—2: 3. Putting k= —2/3 in (), we see that the
poin§ of intersection is (0, 2, 23).
/4. TFind the ratio in which the X Y-plane divides the join of
(—3, 4, —8) and (5, —6, 4).
Also obtain the point of intersection of the line with the plane.
[Ans. 2;(7/3, —8/3, 0).
5. The three points 4(0, 0, 0), B(2, —3,3) C(—2, 3, —3), are collinear.
Find in what ratio each point divides the segment joining the other two.
[Ans. AB|BC=—}%, BC/CA=—2, CA|AB=1.
6. Show that the following sets of points are collinear :
(¢) (2,6, —4), (1, 4, —3), (4,7, —6).
(42) (5, 4, 2), (6, 2, —1), (8, —2, —T).
7. Find the ratios in which the join of the points (3, 2, 1), (1, 3, 2) is
divided by the locus of the equation
322-72y2412822=3, [Ans. —2:1;1:-=2,
8. A(4, 8, 12), B(2, 4, 6), C(3, b, 4), D(5, 8, 5) are the four points ; show
that the lines AB and CD intersect.
9. Show that the point (I, —1,2), is common to the lines which join
(6, —7, 0) to (16, —19, —4) and (0, 3, —6) to (2, —5, 10).
10. Show that the co-ordinates of any point on the plane determined by
the three points (z;, ¥y, 21), (%3, Ya, 2g), and (x3, y3, 73), may be expressed in the
form

(@1+mx2ig\a€3 ULy +mys+nys lzl+ng+nza) .
l4+m+n ’ I+m+n ° l4+m+n
11. Show that the centroid of the triangle whose vertices are (z,, y,, 2,) ;

r=1,2,3,is
(__xl___ Fot+2s Y1tYetys 21tz J,fa)
3 ’ 3 ’ 3 ’

1°'4. Tetrahedron. Tetrahedron is a figure bounded by four
planes. It has four vertices, each vertex arising as a point of inter-
section of three of the four planes. It has six edges; each edge arising
as the line of intersection of two of the four planes. (*C,=6).

To construct a tetrahedron, we start with three points 4, B, C,
and any point D, not lying on the plane determined by the points

A, B, G. Then the four faces of the
A tetrahedron are the four triangles,

ABC, BCD, CAD, ABD;
the four vertices are the points
A,B,C, D
and the six edges are the lines
Fig. & AB,CD ; BC, AD ; CA, BD,
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The two edges AB, CD joining separately the points, 4, B and
C, D are called a pair of opposite edges. Similarly BC, AD and CA4,
BD are the two other pairs of opposite edges.

Exercises

1. The four lines drawn from the vertices of any tetrahedron tothe
centroids of the opposite faces meet 1n a point which is at three-fourths of the
distance from each vertex to the opposite face.

2. Show that the three lines joining the mid-points of opposite edges of a
tetrahedron moeet in a pomt.

1'5. Angle between two lines. The meaning of the angle
between two intersecting, i.e., coplanar lines, is already known to the
student. We now give the definition of the angle between two non-
coplanar lines, also sometimes called skew lines.

Def. The angle between two non-coplanar, t.e., non-intersecting
lines is the angle between two intersecting lines drawn from any point
parallel to each of the given lines.

Note 1. To justify the definition of angle between two non-coplanar lines,
as given above, 1t 18 necessary to show that this angle is independent of the
posttion of the pomnt through which the parallel hnes are drawn, but here wo
simply assume this result.

Note 2. The angles between a given line and the co-ordinate axes are
the angles which the line drawn through the origin parallel to the given line
makes with the axes.

v 1'6. Direction cosines of a line. If «, B, ¥ be the angles which
any line makes with the positive directions of the axes, then cos «,
cos B, cos ¥ are called the direction cosines of the given line and are
generally denoted by I, m, n respectively.

Ex. What are the direction cosines of the axes of co-ordinates ?
’ [4ns. 1,0,0;0,1,0;0,0,1.

7 1°61. A useful relation. If O be the origin and (z, y, z) the co-
ordinates of a point P, then

x=lr, y=mr, z=nr,
where I, m, n are the direction cosines of OP and r, i3 the length of OP.
Through P draw PL_| x-axis so

that OL=x. From the rt. angled Z
triangle OLP,
we have . P
9—L=cos /. LOP 4
OoP >
0 L X
. oz
te, —=I or x=lr.
r
Similarly we have ¥
y=mr, z=nf. Fig. 6

v'1+7. Relation between direction cosines. If I,m and n are the
direction cosines of any line, then

P+m?4ni=1,
t.¢., the sum of the squares of the direction cosines of every line ts one.
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Let OP be drawn through the origin parallel to the given line so
that I, m, m are the cosines of the angles which OP makes with 0X,

0Y, OZ respectively. (Refer Fig. 6)

Let (z, y, 2) be the co-ordinates of any point P on this line.

Let OP=r,

-~ z=lr, y=mr, z=nr.

Squaring and adding, we obtain

224yt +22= (24 m2-n2)r2

But 224yt +22=0P2=72

P+m?4n?=1.

Cor. If a, b, ¢ be three numbers proportional to the actual direction
cosines I, m, n of a line, we have

tom_n_ VEtmw)_ 1
a b ¢ V(@2 b2 +c?) V(@242 +c?)’
. — a - - ,b R
o EE ety "TE @by
n:i-,, 2_,? 2 2\’
1/ (a4 b%4-c?)

where the same sign, positive or negative, is to be chosen throughout.

Direction Ratios. From above, we see that a set of three numbers
which are proportional to the actual direction cosines are sufficient to
specify the direction of a line. Such numbers are called the direction
ratios. Thus if a, b, ¢ be the dircction ratios of a line, its direction
cosines are

+a/v/Za?, +b/4/Za?, +c/Za?

Note. It is easy to see that if a line OP |through the origin O makes

angles «, B, y with 0X, OY, 0Z, then the line OP obtained by producing OP

Fig. 7

backwards through O will make angles m—«, ®—B, n—y with 0X, 0Y, OZ.
Thus if

cos a=I, cos B=m, co8 y=n
are the direction cosines of OP, then
cos(m—a)= —1, cos(n—B)=—m, cos(n—y)=—n
are the direction cosines of OP’, ¢.e., the line OP produced backwards.
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Thus if we ignore the two senses of a line, we can think of the direction
cosines I, m, n or —I, —m, —n determining the direction of one and the same
line. This explains the ambiguity in sign obtained above.

Note. The student should always make a distinction betwcen direction
cosines and direction ratios. It is only when [, m, n are direction cosines, that
we have the relation

B4+ m24ni=1.

Exercises

1. 6, 2, 3 are proportional to the direction cosines of a line. What are
their actual values ? [Ans. (6/7,2]7, 3]7).
2. What are the direction cosines of lines equally inclined to the axes ?
How many such lines are there ? [Ans. (1]4/3, £1/4/3, £1/4/3); 4.
3. The co-ordinates of a point P are (3, 12, 4). Find the direction cosines
of the line OP. [Ans. (3/13, 12/13, 4/13).

4. The direction cosines I, m, n, of two lines are connected by the relations
l4+m+n=0 we.(2)
2im42ln—mn=0. .. (22)

Find them ?
Eliminating n between (¢) and (72) ; we get
218 —lm—m?2=0
I\* !
o (L)'=t i
m m

This equation gives two values of I/m and hence there are two lines. The
two roots of (¢47) are | and —3.

If I, my, ny and Iy, my, ngy be the direction cosmes of two lines, we have

Also *+ li4my+n;=0 or ,,%"‘*‘H:T:: ro %z— ’
and ‘.c ly4mg4-ny=0 or ;,ZT’;—+1+7%:~=O, %:—=—-A%v

5. The direction cosines of two lines are determined by the relations
(4) 1—bm+3n=0, T24+5m2—3n2=0;
(¢6) l4m—n=0, mn+6in—120n=0;
fird them ?
2.8 . 11
VIi£ Vid' T8 6’ Ve
L1 3 4 1 2 3
) U3 26 6’ 14 YIE yid
1°8. Projection on a Straight line.

[4ns. (3) VlTel’

(=)

1'81. Projection of a point on a line. The foot of the perpendi-
cular P from a given point 4 on a given straight line BC is called the
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orthogonal projection (or simply projection for the purpose of this
book) of the point on the line and is the same point where
the plane through the given point and

A perpendicular to the given line meets the
line.
Thus in Fig. 1, page 1, 4 is the projec-
J: ? tion of P on X-axis ; also B and C are the
I projections of P on Y-axis and Z-axis respec-
Fig. 8. tively.

_1-82. Projection of a segment of a line on another line. The
projection of a segment AB of a line on any line CD is the segment
A’'B’ of CD where 4A’, B’ are the projections of 4, B respectively on
the line CD.

Clearly A'B’ is the intercept made on CD by planes through
A, B each perpendicular to CD.

Ex. The co-ordinates of a pomnt P are (z, y, z). What are the projections
of OP on the co-ordinate axes ? [Ans. x,y, 2.

_ Theorem. The projection of a given segment AB of a line on any
line CD is AB cos @, where § is the angle between AB and CD.

Let the planes through 4 and B perpendicular to the line CD
meet it in 4’, B’ respectively so that A’B’ is the projection of AB.

Through 4 draw a line AP ||CD to meet the plane through
B at P.

Now, AP || CD.

/. PAB=6.
Also BP lies in the plane which is | AP.
/. APB=90°
Hence AP=AB cos §

./—‘—-‘ B
A P
C l/]/' . y D
Fig. 9
Clearly A’B'PA is a rectangle so that we have
AP=A'B'.

Hence A'B'=AB cos g.

Cor. Direction cosines of the join of two points.
To find the direction cosines of the line joining the two points

P(zy, 1, 1) and Q(22, Ya, 2y).



PROJECTION OF A BROKEN LINE 11

Let L, M be the feet of the perpendiculars drawn from P, @ to
the X-axis respectively so that

OL=z,, OM =x,.
Projection of PQ on X-axis=LM
=0M—OL
=z, —x;.

Also if I, m, n be the direction cosines of PQ, the projection of
PQ on X-axis=1.PQ.

l.PQ=xy—2,.
Similarly projecting PQ on Y-axis and Z-axis, we got
m.PQ=y,—y,, -
n.PQ=2,—2,. Ps- ‘05*3’*(‘):
. Za—Ty Y3~ 91_22“‘21__‘1,@ \/‘r
e I m — ’

Thus the direction cosines of the line joining the two points
(xls Yis zl) and (x2> Yo, zk)
are proportional to

To—xy, Y2 — Y1, 23—21.

Exercises
1. Find tho diroction cosines of the lines joining the points
(?) (4, 3, —5) and (—2, 1, —8). [Ans. (6/7, 2]7, 3[7).
(é9) (7, —5, 9) and (5, —3, 8). [Ans. (2/3, —2/3, 1/3)

2. Show that the points (I, —2, 3), (2, 3, —4), (0, —7, 10) are collinear.
3. The projections of a Iine on the axes are 12, 4, 3. Find the length and

the direction cosines of the line. [Ans. 135 (12/13, 4/13, 3/13)
1:83. Projection of a broken line (consisting of several continuous
segments). If Py, Py, Pg,......... , Pq be any number of points tn space,

then the sum of the projections of

on any line is equal to the projection of PP, on the same line.

Let Ql: QZ: Q37 '''''' ’ Qn Q
be the projections of the points onated Ly
P, P, P,,......, P, Mr. N, Sreeks
on the given line. Then M.Sc.(Maths) ¢
@19, =projection of P,P,,
Q!QB= ” ” P2P33
and so on.
Also Q,Q@,=projection of PP,
As Q,, @y, Qs....... , @, lie on the same line we have, for all
relative positions of these points on the line, the relation
Qle + QIQS +oen + Qn—lQn =@ Qn

Hence the theorem.,
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P
v'1-84. Projection of the join of two points on a line. 7o show that
the projection of the line joining
P(ay, y1, 21) and Q(,, Ys, 22)
on a line with direction cosines 1, m, n is
(=)l (y2—y)m+ (2 —21)n.

Through P, @ draw planes parallel to the co-ordinate planes to
form a rectangular parallelopiped whose one diagonal is PQ. (See
Fig. 3, Page 3).

Now

PA=x,—x,, AN=y,—1y,, NQ=2,—2,.

The lines PA, AN, NQ are respectively parallel to z-axis, y-axis,
z-axis. Therefore, their respective projections on the line with
direction cosines I, m, n are

(@a—x)l, (Ya—y)m, (za—2y)n.

As the projection of P@) on any line is equal to the sum of the
projections of P4, AN, N@Q on that line, therefore the required pro-
jection is

(xa—x)1+ (y2 —y)m+(z;—2,)n.

Exercises
1. A(6, 3, 2), B(5, 1, 4), ((3, —4, 7), D(0, 2, 5) are four points. Find the
projections of 4B on ("D and of (D on AB. [Ans. —13/7 ; —13/3.

2. Show by projection that if P, Q, R, S are the pomts (6, —6, 0),
(=1, =17, 6), (3, —4, 4,) (2, —9, 2) respectavely then PQ | RS,
V19, Angle between two lines. 7o find the angle between lines
whose direclion cosines are (I, m,, ny) and (ly, m,, n,).
Let OP,, OP,, be lines through the origin parallel to the given
lines so that the cosines of the angles which OP; and OP, make with
z
.1A

Y

Y

Fig. 10
the axes are l;, m,, n, and l,, m,, n,, respectively and the angle
between the given lines is the angle between OP, and OP,. Let this
angle be 4.
Let the co-ordinates of P, be (z;, y,, z,).
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The projection of the line OP, joining
0(01 0’ 0) and Pﬁ(x2, Yo, 22)
on the line OP; whose direction cosines are

by, my, g,
is (2a—0)l;+ (y2—0)my+ (2a—O)ny =1 iy + MYy + 1124
Also this projection is OPy cos §.
s OP; vos 0=1zy+my,+n,2,.
But 2y =15.0P,, yyy=m,.0P,y, 2g=10,.0P,. (§1°61)
- ‘ OP, cos 0= (l,l,+m;my~+ nyn3)OP,
or cos 0=L1,+mm,-}-n;n,.

Second Method. Suppose OP,=r;, OPy=r,,

Let the co-ordinates of Py, P, be (z, ¥, 2) and (z,, ¥,, 25)
respectively.

Then r=nl, y=rm, z=rn, (§1-61)
and To=Tyly, Ya==TyMg, 2Zg=TgMNy.
We have

P P2 = (2, — 1)+ (45— 41)*+ (22— 2)?
= (22 42+ 2,7 + (x24y2+2,%) —2(x122+ Y192 +2122)

=12+ 12— 2ryr (Ll +mymy+-nymy). ()]
Also from Trigonometry, we have
P Py==r2 41,2 —2r 7, coS § ... ()

Therefore, from (z) and (¢¢), we obtain
72412 —2rry cos =P, P,?
=124 r,2—2rro(Lly+ mymg - mymy)
1.e., cos §=ULl,+mmy+nn,.
Cor. 1. Sin ¢ and tan 9. The expressions for sin § and tan § in
a convenient form are obtained as follows :—

sin20=1—cos?¢

=1—(hily+mymy+nm,)?

= (1% m 2+ 1) (2 + Mo+ ng?) — (Lla+myma+mymy)*

= (lymg —lym)? -+ (myny—mgny )+ (nyla—myly)2.

o sin § = v/[Z(lymy—Iymy)?]
_Ssing VI[Z(imy—1ym,)* ]
and tan 0—~COS = + - A

Cor. 2. If the dircction cosines of two lines be proportional to
@y, by, €1, and ay, by, ¢,, then their actual values are

i _7____21 — o, + b! ~ , + ‘1 .
V(e +bite?) T Vel Hbite?) T Vel +bi+e®)
:!I N ,4‘_‘!’2_____’ i DT "b2* ) :i’_' G

V/(a5®+ba*+¢,’) v (ag*+b5*+ ) V(agt+by+cy?)’
80 that if § be the angle between the given lines, we have
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@,8q-+b,bg+¢4c
o8 = + — - 23T 1T lﬁﬁﬁfﬁx,
=1 V(a2 + b +c?) vV (as®+by2+-c,?)
4 V@D —a35)* 4 (biea—bye))?+ (c,a,—cy0, )?]
V(@ 2+b2 4% (@2 +ba?+cy?) '
_ V[s(ab,— anl)g]
tan 9= £ VLN :
The expression for tan § is of the same form whether we use
direction cosines or direction ratios.
Cor. 3. Conditions for perpendicularity and parallelism.
(¢) When the given lines are perpendicular,

0=90° so that cos §=0.

sin =

This gives
a,a, +b;by+4c,¢,=0.
(42) When the given lines are parallcl,
=0 so that sin §=0.
This gives
(@yba— a3D1)% + (byca~ byey)? + ()0 — €284)%=0,
which is true only when
3by—a3by =0, byc,—bsc;=0, c,a,— €22 =0,

or ==

Cy

This result is also otherwise evident, for, the lines through the

origin drawn parallel to the parallel lines coincide and, therefore, their

direction cosines must be the same and hence direction ratios propor-
tional.

Exercises
1. Find the angles between the lines whose direction ratios are
“(2) 5, =12, 13 ; =3, 4, 5. [4ns. cos™1(1/65).
(%) 1, 1,2;4/3—1, —4/3—1, 4, [Ans. =/3.

2. Show that the angle between the lines whose direction cosines are given
by the relations in Ex. 4, P. 9 is }r.
“3. Find the direction cosines of the line which is perpendicular to the lines
with direction cosines proportional to (1, —2, —2), (0, 2, I).
Sol. If I, m, n be the direction cosines of the line perpendicular to the
given lines, we have
L14m(—2)+n(—2)=0, ie., I—2m—2n=0,
U0)+m(2)+n(1)=0, 7.e., 0l4+2m+n=0,

These give 5=
l_;________,.2,_4_,,_ 7.v_.._g_, m= l

, VIR (=D2422 T3 TT T3
4. Show that a line can be found perpendicular to the three lines with

direction cosines proportional to (2, 1, 5), (4, —2, 2), (—6, 4, —1). Hence show
that if these three lines be concurrent, they are also coplanar.

5. Iy, my, ny ; Uy, Mg, np are the direction cosines of two mutually perpends-
cular lines. Show that the direction cosines of the line perpendicular to them both

are
m‘nz——mznl, nllz—ﬂzll, llm,—-laml.
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Sol. Ifl, m, n be the dircction cosines of the required line, we have
iy +mmy+nny =0,
lly+mmg+nng=0.
These give
1 _ m n _ /22 1!
myng—mgny nylg—ngly Lymg—lymy~ 4/[Z(myng—mgny)?] sin 6’

where 0 is the angle between the given lines. As 6=90°, we have sin 6=1. Hence
the result.

6. 1, my, nq and ly, my, ny aro the direction ratios of two intersecting lines.

Show that lines through the intorsoction of these two with direction ratios
U1 +kly, my+kmg, ny -} kng

are coplanar with them ; k being any number whatsoever.

(Show that they all have a common perpendicular direction.)

7. Show that threo concurrent lines with direction cosines

(s my, m1), (L, My, M), (I3, M3, M)

are coplanar if.

8. Show that tho join of points (1, 2, 3), (4, 5, 7) is parallel to the join of
the points (—4, 3, —6), (2, 9, 2).
9. Show that the points
(4,7,8);(2,3,4); (-1, =2, 1); (1,2, 5)
aro the vertices of a parallelogram.
10. Show that the points
(5, =1, 1), (7, —4, 7), (1, —6, 10), (—1, =3, 4)
are tho vertices of a rhombus.
11. Show that the points.
0, 4, 1), (2,3, —1), (4,5,0), (2,6,2)
are the vertices of a square.
/12. A(l, 8, 4), B0, —11, 4), C(2, —3, 1) are three points and D is the foot
of the perpondicular from A on BC. Find the co-ordinates of D.
[Ans. (4,5, —2).
13. Find tho point in which the join of (-9, 4,5) and (11,0, —1) is met
by the perpendicular from the origin. [4ns. (1,2, 2).
14. A(-1,2,-3), B(5, 0, —6), C(0, 4, —1) are three points. Show that
the direction cosines of the bisectors of the angle BAC are proportional to
(23, 8, 5) and (—11, 20, 23).
[Hint.—Find the co-ordinates of the points which divide BC in the ratio
AB : AC.]
- 15. Find the anglo between the lines whose direction cosines are given by
the equations 3l4-m+5n=0 and 6mn—2nl45lm=0. [Ans. cos—1 3.
. 16. Show that the pair of lines whose direction cosines are given by
3Im—4in+mn=0, I+ 2m+3n=0 are perpendicular.
17. Show that the straight lines whose direction cosines are given by the
equations
al+bdm+cen=0, ul24vm2+4+wn2=0
are perpendicular or parallel according as

@2(v+w) +b2(w+u) +c(utv)=0 or a?{u+b%|v+c2fw=0,
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Sol. Eliminating [, betwcen the given rclations, we have
w(bim+cn)?
T
or (D2 a20)n242ubc nn 4 (c2u+au)n?=0 e (?)
If the lines be parallel, their ditection cosines are equal so that the two
values of m/n must be equal. The condition for this is
w2b22= (b2 +a?y) (c2utalw)

Fom2+wn?=0

or
a2 b 2 0
u+1.v+w— :
Again, if I, my, ny and Iy, my. g be the direction cosines of the two lines.
then equation (2) gives
my Mg mymg c2utaw

ny oy mgng b2utatv

or
inyMe nyng
u+taw b2u —}-';ﬂ'vk
or
Similarly the elimination of n, gives, (or by symmetry)
lllz _ 7721"12
b2w+c2v  alw+cu
Ny Ly _ "”,1,"'2‘ __Mme —, say
b2w+c2v  alw+tcu b2utav
or

Llg+mymatning=k(b2w + c2v+aw+c2u-b2u+alv).
For perpendicular lines
lilg+mymg+ning=0
Thus the condition for perpendicularity is
a2(v+w) +b2(w+u) +c2(n+v)=0.
18. Show that the straight lines whose direction cosines are given by
al4+bm+cn=0, fmn+gnl+hlm=0,

fla+glb+h[c=0, .
and parallel if

V'af £/ by £/ ch =o0.
19. Uy, my, ny ; Iy, my, ng are the direction cosines of two concurrent lines.

Show that the direction cosines of the lines bisecting the angles between them are
proportional to

are perpendicular if

lixly, mytmy, nydeng.
Sol. Let the lines concur at the origin O and let 04, OB be the two lines.
Take points 4, B on the two lines such that 04=0B=r, say. Also take a

A’ o A
Fig. 11
point 4’ on A0 produced such that A0=0A4’. Let C, C’ be the mid-points of
AB and A’B. Then OC, OC’ are the required bisectors. The result, now,
follows from the fact that the co-ordinates of 4, B, 4’ )
respectively are

(l‘r, myr, n;r) ; (lzr, met, nar) 3 (-—llr, ~myr, —nyr),
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20. If the edges of a rectangular parallelopiped are a, b, ¢ show that the
angles between the four diagonals are given by

cos™ [ (a24h24-¢2) [(a24-b2 +c?)].
Sol. Take one of the vertices O of the parallelopiped as origin and the

three (ec‘tangular faces through it as the three rectangular co-ordinate planes.
(See Fiy. 1, Page I).

Let OdA=a, OB=b, OC=c¢c
The lines OP, AL, BM, CN are the four diagonals.
The co-ordinates of 4, B, C aro (a, 0, 0) ; (0, b, 0) ; (0, 0, c).
» L, M, N are (0, b, ¢) ; (a, 0, ¢) ; (a, b, 0).
’ 0, P are (0,0, 0) ; (a, b, c).
. . . a b c
Direction cosines of OP are Vvt 3 7272,
—a b [
ViR s’ yEd
a —b c .
VI yya’ vz’
a b —c
VvZa2' y/3a?’ y/Zat’
The angle between OP and CN, therefore, is
a24b2—c2
a2 _*sz_]fgz :
. dSimiInrly tho angle between any one of the six pairs of diagonals can be
ound.

21. A lino makes angles «, B, v, §, with the four diagonals of a cube ; prove
that cos? a+4-cos2 B+cos? y4-cos? §=4/3. (P.U. 1932)
(Choose axes as in Ex. 20 above and suppose that the direction cosines of

tho given line are I, m, n.)

22. O, A, B, C, are four points not lying in the same plane and such that
OA | B/ and OB_| (’AA.  Prove that OC_| .\B. What well-known theorem does this
become if four points are co-planar ?

The result of this example may also be stated thus :—

“If two pairs of opposite edges of a tetrahedron be at right angles, then so 18
the third.”

Take O as origin and any three mutually perpendicular lines through O as
co-ordinato axes.

Let (vy, y1, 21), (%9, Yas 23), (*3, Y3, 23) be the co-ordinates of the points
A, B, C respectively,

As 0.1 | BC, we have

Direction cosines of AL are
' »w 5 BM are

s »w 5 CN are

cos™1

@y (Xa—3) + 1 (Y2 —y3) +71(22—23) =0, ()
As OB CA, we have
wo(v3—2y) + Y2 (v3— Y1) +2a(23—21) =0. - (%)

Adding (7) and (%), we obtain
a3(we—a1) +ya(y2—y1) +23(22—2) =0
which shows that OC_| AB.
23. If, in a totrahedron 0.4BC,
0A2%4+BC?=0DB2+CA2=00%4 AB?,
then its pairs of opposite edges are at right angles.
24. Iy, my, ny and Iy, my, ng are two diroctions inclined at an angle ¢, to
each other. Show that the direction
Dtly omatmg - nydng
2cosp o’ 2cos o’ 2cos} e
bisects the angle between these two directions.
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Show that these direction cosines are the actual values,
25, Show that the direction equally inclined to the three mutually per-
pendicular directions
L, my, ny 5 lg, mg, ng ; Iy, Mg, ng,
is given by the direction cosines
UL +ls+lg my+mgtmg ny+ng4ng
Y2 RV VS S
/26. Show that the area of the triangle whose vertices are the origin and
the points (3. ¥y, 2;), and (g, ys, 2g) 18
V(12— vye21) 3 (222 —2971) 2+ (T1y2—2291) 2] (B.U. 1958)
27, Iy, my,ny; la, mg, ng ; Iz, Mg, N3
are the direction cosines of three mutually perpendicular lines ; show that
11, 13, I3 ; my, mg, mg ; Ny, Ng, N3
are also the direction cosines of three mutually perpendicular lines. Hence
show that

5,24m 24 2=1, 11241524 132=1,
lp24+mg24ny2=1, M2 mg2+amg2=1,
132+ mg24+ng2=1, ny24ng24ng?=1,
Llg+mymig+ning=0, Lmy+lgme4-l3mg=0,
lglz+mgmg~+nyng=0, mng+mgngtmgng =0,

I3l +mgmy+4ngny =0, nyly +ngla+nglz=0.



CHAPTER II
THE PLANE

‘/2'1. General equation of first degree. Every equation of the first
degree in x, y, z represents a plane.

The most general equation of the first degree in z, y, z i
ax-+by-t-cz+d=0
where @, b, ¢ are not all zcro.

The locus of this equation will be a plane if every point of the
line joining any two points on the locus also lies on the locus.

To show this, we take any two points
P(xy, y1, 21) and Q(x, ¥a, 2,)
on the locus, so that we have-

ax,+by,+cz,+d=0, w.(?)
axy+by,+cz,+d=0. ... (20)

Multiplying (¢2) by k£ and adding to (z), we get
®y-bkry | hAkys | 2ytkzy, o
a T4k +b 1+ +c 1k +d=0. . (297)

The relation (:¢¢) shows that the point
nitke  yitky, zﬁ,’ffz)
1+k° 14k’ 14k

is also on the locus. But, for different values of k, these are the
general co-ordinates of any point on the line P¢). Thus every point
on the straight line joining any two arbitrary points on the locus also
lies on the locus.

The given equation, therefore, represents a plane.

Hence every equation of the first degree in z, y, z represents
a plane.

Ex. Find the co-ordinates of the points where the plane

ar+by+cz+d=0

meets the three co-ordinate axos.

v'2:2.  Normal form of the equation of a plane. 7o find the equation
of a plane in terms of p, the length of the normal from the origin to it
and I, m, n the direction cosines of that normal ; (p is to be always
regarded positive).

Let OK be the normal from O to the given plane ; K being the
foot of the normal.

Then OK=p and I, m, n are its direction cosines.

Take any point P(z, y, 2) on the plane.

Now, PK | OK, for it lies in the plane which is | OK.
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Therefore the projection of OP on OK=0K=p.

Y

Also the projection of the line OP joining
0(0, 0, 0) and P(z, y, 2),
on the line OK whose direction cosines are

Fig. 12

) l, m, n,
is

l(x—0)+m(y—0)+n(z-0)=lr+my+nz. (§1'84, p. 14)
Hence Ix+my-+nz=p.

This equation, being satisfied by the co-ordinates of any point
P(z, y, 2) on the given plane, represents the plane and is known as
the normal form of the equation of a plane.

Cor. The equation of any plane is of the first degree in z, ¥, 2.

This is the converse of the theorem proved in § 21.

Ex. Find the equation of the planc containing the lines through the
origin with direction cosines proportional to (1, —2, 2) and (2, 3, —1).
[Ans. 4x—5y—T2=0.

~"2:3. Transformation to the Normal form. 7o transform the

cquation
ax+by+cz+d=0
to the normal form
lx-+my+nz=p.
As these two equations represent the same plane, we have

d _a _b_c_ v@+b+c) _ 21 B2y 2
~ o ST T m w Ty e mepay =TV @ )-

Thus, —d/p=44/(a?4b%+¢?) and as p, according to our con-

vention, is to be always positive, we shall take positive or negative

sign with the radical according as, d, is negative or positive.

Thus, if d be positive,
=2 o=l O . =4 d
TR T T s VT T gt PR T s
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If d be negative, we have only to change the signs of all these.
Thus the normal form of the equation ax+by4cz+d=0 is

a b c d . .
_Vﬁxﬁvzdzy_vfdzz:\/ - 3 if d be positive ;
b d . .
\/Eaz + =y+\/2a2 b if d be negative.

v 2-31. Dxrectlon cosines of normal to a plane. From above we
deduce a very important fact that the direction cosines of normal to
any plane are proportional to the co-efficients of z, y, z in its equation
or, that the direction ratios of the normal to a plane are the co-
efficients of z, ¥, 2 in its cquation,

Thus,
a,b,c
are the direction ratios of the normal to the plane
ax +by+cz+d=0.
Ex. 1. Find the direction cosmoes of the normals to the planes
(2) 20—3y+062="7. (i) L+"1/ +22—1=0
lAns. (2) 2/7, —-3/7 6/7, (%) 1/3,2/3,2/3.
Ex. 2. Show that the normals to thoe plunm
c—y+z=1, Je42y—2z4+2=0
are inclined to each cther at an angle 90°.

v 232 Angle between two planes. Angle between two planes is
equal to the angle between the normals to them from any point.
Thus the angle between the two planes

ar+by+cz+d=0, and ayx + b,y +-¢,2-+d; =0
is equal to the angle between the lines with direction ratios
a,b,c,
a5, by, ¢y,
and is, therefore,

o _af_ 0a;+0b+cc
=05 50 /(a0

‘/2'33. Parallelism and perpendicularity of two planes. Two
plancs are parallel or perpendicular according as the normals to them
are parallel or perpendicular. Thus the two planes

axr+by+cz+d=0 and a,x+ b,y + ¢c;z2+d;=0
will be parallel, if
a/a;=b/b,=c/c, ;
and will be perpendicular, if
aa, +bb,;4-cc;=0.

Exercises

/1, Find the angles between the planes
(§) 2x—y+22 =3, 3o+6y+22=4, [Ans. cos™1 (4/21).
(¥0) 2z —y+2=6, x+y+22=17, [Ans. =/[3.

- (¢%7) 3x—4y+62=0, 2r—y—22=>5. FAns. =[2,
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2. Show that the equations
ax+by+r=0, by+cz+p=0, cz+ar+q=0
represent planes respectively perpendicular to XY, YZ, ZX planes.

3. Show that ax+by+cz+d=0 represents planes, perpendicular respoc-
tively to YZ, ZX, XY planes, if a, b, ¢ separately vanish. (Similar to Ex. 2).

4. Show that the plane
x42y—324-4=0
is perpendicular to each of the planecs
2240y +42+1=0, 42+ Ty+62+42=0,

* 2'4. Determination of a plane under given conditions. 7T'he general
equation ax+by+cz+d=0 of a plane contains three arbitrary cons-
tants (ratios of the co-efficients a, b, ¢, d) and, therefore, a plane can
be found to satisfy three conditions each giving rise to only one
relation between the constants. The three constants can then be
determined from the three resulting rclations.

We give below a few sets of conditions which determine a planc:—
(7) passing through three non-collinear points ;

(72) passing through fwo given points and perpendicular to a given

plane ;
(¢73) passing through a given point and perpendicular to two given
planes.

v 2'41. Intercept form of the equation of a plane. 7o find the
equation of a plane tn terms of the intercepts a, b, ¢ which it makes on
the axes.

Let the equation of the plane be
Ax+By+Cz+D=0. ...(1)
The co-ordinates of the point in which this plane meets the
X-axis are given to be (a, 0, 0). Substituting these in equation (1),
we obtain

ad+D=0,
or _A4_ L
D a
Similarly
_B_1 c 1
D% D o
The equation (1) can be re-written as
A B C
“p* o ¥ b

so that, after substitution, we obtain
X4y, z_
‘a + pTe=b

a8 the required equation of the plane.

Note. The fact that a plane makes intercepts a, b, ¢, on the three axes is
equivalent to the statement that it passes through the three points (a, 0, 0),
(0, b, 0), (0, 0, c), so that what we have really done here is to determine the three
ratios of the co-efficients in (1) in order that the same may pass through these
pointas.
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Ex. 1. Find the intercepts of the plane 2x—3y+42=12 on the co-ordinate
axes, [Ans. 6, —4, 3.

Ex. 2. A planc meets the co-ordinate axes at A, B, C such that the
centroid of the triangle ABC is the point (a, b, ¢) ; show that the equation of the
planoc is z/a+4y[b+z[c=3.

Ex. 3. Prove that a variable plane which moves so that the sum of the
reciprocals of 1ts intercepts on the three co-ordinate axes is constant, passes
through a fixed point.

2'42. Plane through three points. To find the equation of the
plane passing through the three non-collinear points

(@15 Y15 21), (T2, Y2, 22), (%3, Y3, 23)-
Let the required equation of the plane be

ax+ by-+cz+d=0. ...(?)
As the given points lie on the plane, we have
ax,+by,+cz, + d=0, ...(27)
azy~+bys4-c2;+d=0, ... (i13)
axy+-byy ¢z +d=0. oo (tv)
Eliminating a, b, ¢, d from (¢)—(¢v), we have
Y% 1
Z1, Yo 2y, 1
=0
Ty Y2, 2y, 1
Z3, Ys, 23, 1

which is the required equation of the plane.

Note. In actual numerical exercises, the student would find it more con-
venient to follow the method of the first excrcise below.

Exercises

\/1. Find the equation of the plane through
P2, 2, —1), Q(3, 4, 2), R(7, 0, 6).
The general equation of a plane through P(2, 2, —1) is
a(@—2)+b(y—2)+c(x+1)=0 (Refer 4, § 25, p. 25) «.(%)
It will pass through @ and R, if
a+2b43c=0

ba—2b+T7¢=0.

These give

Substituting these values in (¢), we have
5(rx—2)4+2(y—2)—3(z+1)=0
i.€., bw+42y—32—17=0
as the required equation.

/2. Find the equation of the plane through the three points (1, I, 1),
(1, -1, 1), (=7, —3, —6) and show that it is perpendicular to the XZ plane.
[4ns. 3z—4241=0.
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/3. Obtain the equation of the plane passing through the point (—2, —2, 2)
and containing the line joining the points (1, 1, 1) and (1, —1, 2).
[Ans. a—3y—62+8=0.
4. If, from the point P(a, b, ¢), perpendiculars PL, PM be drawn to YZ
and ZX planes, find the equation of the plane OLM. [Ans. bcx+cay—abz=0.
5. Show that the four points (—6, 3, 2), (3, —2, 4), (6, 7, 3) and
(—13, 17, —1) are coplanar.
6. Show that the join of points (6, —4, 4), (0, 0, —4) intersocts tho join
of (-1, =2, —3), (1, 2, —5).
+7. Show that (—I1, 4, —3) is tho circumcentre of the triangle formed by
the points (3, 2, —5), (—3, 8, —5), (—3, 2, 1).
Js. Find the equation of the pluane through the points
(2,2, 1) and (9, 3, 6)
and perpendicular to the plane
20 4+6y+6z--9.
Any plane through (2, 2, 1) is
a(@—2)40(y—2)+c(z—1)=0. . (7)
It will pass through (9, 3, 6) if
a(9—-2)+0(3—-2)+c(6—-1)=0

t.e., Ta+b4-5¢=0 .. (27)
The plane (7) will be perpendicular to thoe given plane if
2a46b--6¢=-0. .. (1)
From (¢¢) and (¢7), we have
a b c « b c
THT-Ta0 3T 4TI

Substituting in (z), we seo that the oquation of the roquired plane is
3(x—2)+4(y—2)—5(z—1)=0
or 3r+4y—5z=9.
+9. Show that the equations of the three planes passing through the points,

(1, -2, 4), (3, —4, 5) and perpendicular to XY, YZ, ZX planes are x4y+1=0;
z—2247=0; y+22=6 respectively.
+10. Obtain the equation of the plane through the point (—1, 3, 2) and
perpendicular to the two planes x+42y+2z=5 ; 3v+3y+2z=8.
[Ans. 2x—4y+3z4-8=0.
-11. Find the equation of the plane through 4(—1, 1, 1) and B(1, —1, 1)
and perpendicular to the plane x+2y+2z=5. [Ans. 2z+2y—3z+43=0.
-12. Find the equations of the two planes through the points (0, 4, —3),

(6, —4, 3) other than the plane through the origin, which cut off from the axes
intercepts whose sum is zero. (M.T.)

[Ans. 20—3y—62=6 ; 6243y —2z=18.

13. A variable plane is at a constant distance p from the origin and meets

the axesin 4, B, C. Show that the locus of the centroid of the tetrahedron
OABC,is z724+y~242-2=16p~2.

\/2'5. Systems of planes. Thedequation of a plane satisfying
two conditions will involve one arbitrary constant which can be
chosen in an infinite number of ways, thus giving rise to an infinite
number of planes, called a system of planes.

The arbitrary constant which is different for different members
of the system is called a parameter.

Similarly the equation of a plane satisfying one condition will
involve two parameters.

The following are the equations of a few systems of planes
involving one or two arbitrary constants.



EXERCISES %5

1. The equation
ax+by+cz+k=0
represents a system of planes parallel to the plane
J*\ ax+by+cz+d=0,
k being the parameter. (§ 2:33, p. 21).
2. The equation
ax+by+cz+k=0
represents a system of planes perpendicular to the line with direction

ratios a, b, ¢ ; k being the parameter. (§2-31, p. 21).
3. The equation
(ax+by+cz+d)+k(az+ by +cz+d;)=0 ...(1)

represents a system of planes passing through the line of intersection
of the planes
ax+by +cz+d=0, ...(2)
a,2+b,y+ciz+dy=0; --(3)
k being the parameter, for

(?) the equation, being of the first degree in z, y, 2, represents a
plane ;

(¢2) it is evidently satisfied by the co-ordinates of the points which
satisfy (2) and (3), whatever value & may have.

\/' 4. The system of planes passing through the point (z;, ¥, 2;) is
A(x—2,) +B(y—y1) +C(z —2,)=0,

where the required two parameters are the two ratios of the co-effi-

cients A4, B, C; for, the equation is of the first degree and is clearly

satisfied by the point (x,, y;, z,), whatever be the values of the ratios
of the co-efficients.

Exercises
L \/1. Find the equation of the plane passing through the intersection of the
planes
z+y+2=6 and 2x-} 3y+424+5=0
and the point (1, 1, 1),
The plane
4 y+2—6+k(2043y+4:+45)=0, e (?)
passes through the intersection of the given planes for all values of k.
It will pass through (1, 1, 1) if
—34-14k=0 or k=3/14.
Putting k=3/14 in (¢), we obtain
202 +23y +262—69=0,
which is the required equation of the plane.
2. Obtain the equation of the plane through the intersection of the planes
z+2y+324+4=0 and 4x43y+2241=0
and the origin. [Ans. 3x42y+2z=0.
3. Find the equation of the plane passing through the line of intersection of
the planes
2x—y=0 and 3z—y=0
and perpendicular to the plane
424 b6y—32=8.
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The plane
20—y+4-k(32—y)=0,i.e., 22— (1—k)y+3k2=0,
passes through the line of intersection of the given planes whatever k may be.
It will be perpendicular to

42 +5y—32=8,

if 24— (1 +k)'54-3k(—3)=0, 7.e. 14k=3.
3
k=7

Thus the required equation is

2x—y+(%)(3:—y)=0,
t.e., 28— 17y+492=0.
/ 4. Fmnd the equation of the plano which is perpendicular to the plane
Sx+43y+62+8=0
and which contains the line of intersection of the planes
z42y+32—4=0, 2v+y—2+4+5=0. (L.U. 1934)
[Ans. 5le415y—5024173=0.
/5, The plane x—2y+3:=0 is rotated through a right angle about its line
of intersection with the plane 204 3y—42:—5=0, find the equation of the plane in
its new position. [Ans. 2204 5y—42—35=0.
6. Find the equation of the plane through the mmtersection of the planes
ax+by+cz+d=0, ayx+byjy+c;z+dy=0
and perpendicular to the X Y plane.
/ [Ans. z(acy—aye) +y(bey—b1e) + (dey—dyc) =0,
. 7. Obtain the equation of the plane through the point (xy, y1, 21) and parallel
to the plune ax+by+cz+4d=0.

The plane
ax4-by+cz+k=0
is parallel to the given plane for all values of k.
It will pass through (xy, ¥4, 2;), if
axy+byy+cz+ k=0,
Subtracting, we get
a(z—2y) +b(y—y1) +c(z—21) =0,
which is the required equation.
8. Fmnd the equation of the plane through the point (2, 3, 4) and parallel
to the plane 5x—6y+72=3. [Ans. Bx—O6y+ Tz=20.
+9. Find the equation of the plane that passes through (3, —3, 1) and is
normal to the line joining the points (3, 4, —I1) and (2, —1, 5).
[Ans. x+45y—6z4+19=0.
+10. Obtain the equation of the plane that bisects the line joining (1, 2, 3),
(3,,4, 5), at right angles.
v 11. 24+2y-—2—3=0, 3x—y+2:—1=0,
20—2y+-32—2=0, 2—y+2+1=0
are four planes. Show that the line of wntersection of the first two planes is coplanar

with the line of tntersection of the latter two and find the equation of the plane
contuining the two lines.

The planes
24-2y—2—3+k(Bx—y+22—1)=0
and 20—2y+32—24k' (x—y+2+1)=0
t.e., (14-3k)z+4 (2—Fk)y+ (—1+42k) 2+ (—8—k)=0
and @+k)2+(=2—k)y+ (3+k)z+(—2+F)=0,

separately contain the two lines. The two lines will be coplanar if, for some
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values of k and k’, they become identical. This requires

143k_ 2—k _—142k_—3—k
24k 2=k 3tk —24E”
or 844k +3k'4-2kk’' =0, ... (d)
4414k’ =0, ()
11—k 4 2k’ + 3Kk’ =0. .. (1)

(¢) and (i) give
k=-3/2, k'=5,
and k=2. k= -
Of these two sets of values, k=—3/2 and k’=5 satisfy (¢i7) also. Thus
the two planes become 1dentical for k=—3/2 and k’'=5. Hence the two lines
are coplanar and the equation of the plane containing them is
To—Ty+82+3=0.
12. Show that the line of intersection of the planes
Tr—4y4+T:+16=0, 4o +3y—22+3=0
is coplanar with the line of intersection of
x—3y+42+6=0, x—y+2+4+1=0.
Obtain the equation of the plane through bhoth.
[Ans. 3rx—Ty+492+13=0.
13. A variable plane passes through a fixed pomt (¢, b, ¢) and meets
the co-ordinate axes in A, B, C. Show that the locus of the point commnon to
the planes through A, B, C parallel to the co-ordmnate planes is

alc+bly+cl:=
x 2'6 Two sides of a plane. T'wo points
Ay, Y1, 21), B(za, Y2, 2)
lie on the same or different sides of the plane
ax+by+cz+d=0,
according as the expressions
ax,+by;+cz +d,  axyt+by,tezntd

are of the same or different signs.

Let the line AB mcet the given plane in a point P and let P
divide AB in the ratio » : 1 so that r is positive or negative according
as P divides AB internally or externally, i.e., according as 4 and B
lie on the opposite or the same side of the plane.

Since the point P whose co-ordinates are

(mﬁxl ety TEtE
r+1 7 41’ 741

lies on the given plane, therefore

1%+ 2, ’?/z“H/l i Tzz‘_ijf;
&0 +b +c il +d=0,
or r(azy+byy+czy+d) +(asc1+by1+cz,+d)=0,
azy+by, +cz+-d

or "=t by ot d

This shows that r is negative or positive according as
az;+by, + ez, +d, ax,+ by, +cz,+d
are of the same or different signs.
Thus the theorem is proved.

Ex. Show that the origin and the point (2, —4, 3) lie on different sides of
the plane x43y~b52z4-7=0.
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27. Length of the perpendicular from a point to a plane. To
Jind the perpendicular distance of the point
Py, Y1, 21)
Sfrom the plane
lx+my+nz=p.
The equation of the plane through P(z,, yi, 2;) parallel to the
given plane is
lx+ my+nz=p,
where . lzy4my;+nz=p;.

Let OKK' be the perpendicular from the origin O to the two
parallel planes meeting them in K and K’ so that

OK=p and OK'=p;.
Draw PL | given plane.
Then LP=0K'—-0K
=p,—p=Iz;+my,+nz—p.
Cor. To find the lenglh of the perpendicular from (z;, Yy, 2,) to the
plane ax+by+cz-+d=0.
The normal form of the given equation of the plane being

a b c d
+ 5 T sl £ e T ysa 0
the required length of the perpendicular is
ax,;+by;4-cz;+d

V@ e
Thus the length of the perpendicular from (x,, y,, 2,) to the plane
ar+by+cz+d=0
13 obtained by substituting
Ty Y15 215 fOT z, Y, 2
respectively tn the expression,

ax +by+cz+d,
and dividing the same by
V(@452 4.
Exercises
/1. Find the distances of the points (2, 3, 4) and (1, 1, 4) from the plane
3z—6y+22411=0. [Ane. 1;16/7.

/2. Show that the distance botween the parallel planes
20x—2y+243=0 and 4r—4y+224-5=0
is 1/6.
(The distance between two parallel planes is the distance of any point on
one from the other).

. *3. Find the locus of the point whose distance from the origin is three timos
its distance from the plane 2r—y-+22=3.
[Ans. 3224322—d4zy+-82z—4yz— 1224 6u—1224-9=0.
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4. Show that (1/8, 1/8, 1/8) is in the centre of the tetrahedron formed by
the four planes ©=0, y=0, 2=0, z42y+2z=1.

5. Sum of the distances of any number of fixed points from a variable
plane s zero ; show that the plane passes through a fixed point.

6. A variable plane which remains at a constant distance, 3p, from the
origin cuts the co-ordinate axes at 4, B, C. Show that the locus of centroid of
the triangle ABC is

a2y 24 r-2=p=2,

2:71. Bisectors of angles between two planes. 7o find the equa-

tions of the bisectors of the angles between the planes
azx +by+cz+d=0, ayx+b,y+c;2+d,=0.

If (2, y, 2) be any point on any one of the planes bisecting the
angles between the planes, then the perpendiculars from this point
to the two planes must be equal (in magnitude).

Hence
ax+by+cz+d a,x+byy+ez+d;
V@0 +0) = F (@ +br o)
are the equations of the two bisecting planes.

Of these two bisecting plancs, one bisects the acute and the other
the obtuse angle between the given planes.

The bisector of the acute angle makes with either of the planes
an angle which is less than 45° and the bisector of the obtuse angle
makes with either of them an angle which is greater than 45°. This
gives a test for determining which angle, acute or obtuse, each
bisecting plane bisects.

Ex. Find the equations of the plunes bisecting the angles between the planes

42y +2:—3=0, )]
34 4y4-12:41=0. oo (i)
and specify the one which bisects the acnte angle.

The cquations of the two bisceting planes are
a2y 4223 + Sr44y+4+12241

Tl - 13
or 204 Ty—>5:—21=0, D)
and Me419y4312—18=0. e (82)
If 6 be tho angle between the planes () and (¢77), we have
cos 0==2/4/78

so that tan 0=4/742, which being greater than I, we sce that 0 is greater than
45°. Hence (¢7) bisects the obtuse angle, and consequently, (d¢v) bisects the
acute angle.

Note. Sometimes we distinguish between the two bisecting planes by
finding that plano which bisects the angle betwoen the given planes containing
the origin. To do this, wo express the equations of the given planes so that d
and d; aro positive. Consider tho equation

ar+by+tcz4d aypr+byy+epztdy A

V(@@ F02Fe?) T4/ (a2 +by 24 42) - (4)
Since, by virtue of tho equahty (A), the expressions ar+by+cz+d and
ayz+ byy+¢y2-+-dy must have the same sign (denominators being both positive),
the points (x, %, 2) on the locus hic on the origm or the non-origin side of both
the planes, ¢.e., the points on the locus lie in the angle between the planes
containing the origin. Thus the equation (.1) represents the plane bisecting
that angle between the planes which contains the origin.
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Similarly,
ax+by+eztd _ _apr+biy+ejztd;
V (a2+0%+c2) V(1,2+6,2+¢,2)
represents the plane bisecting the other anglo between the given planes.
Exercises
1. TFind the bisector of tho acute angle between the planes
2r—y+22+3=0, 3r—2y+ 6:48=0.
[Ans. 23z—13y+322445=0.
2. Show that the plane
14z—8y+13=0
bisects the obtuse angle between the planes
3a+4y—bz+1=0, Hu-+12y—132=0,
3. Find the bisector of that angle between the planes
3x—06y+2:45=0, 40—12y+3:—3=0.
which contains the origin. [-Ins. 67c—162y+47z+44=0.
~'2:8. Joint equation of two planes. 7o find the condition so that
the homogeneous second degree equation
ax®+by*+c2+2fyz+ 2920+ 2hay =0 ..(1)
may represent two planes.
Let the two planes represented by (1) be
lz+my+nz=0, and 'z +m'y+n'z=0.
There cannot appear constant terms in the equations of the
planes, for, otherwise, their joint equation will not be homogeneous.
We have
ax?+by? +c2*+-2fyz+ 2gza + 2y = (lu -+ my +n2) 'z +m'y+n'2)
8o that comparing co-efficients, we obtain
a=l', b=mm’, ¢c = nn’
and 2f=m'n+mn’, 29=Ilr'+1'n, 2h=1Ilm’'+1U'm.
In order to find the required condition, we have to climinate

I, m, n; U m,n from the above six relations and this can be easily
effected as follows. We have

L, U, 0 ', 1, 0
0= | m, m, 0 |x{m', m, 0
n, n', 0 n', n, 0

w 4l Um+im’, Unit+ In'

= | Im' +U'm, mm'+m'm, m'n4+mn’

n'l +nl', n"'m+nm’, n'ntnn’

a, h, g

=8 k, b, [ |=8(abc+2fgh—af*—bg®—ch?)
g [ e
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Hence
abc + 2fgh—af2—bg?—ch?=0
is the required condition.
Cor. Angle between planes. If § be the angle between the
planes represented by (1), we have
VI(ma —m'n)?+ (ul —n'l)2+ (I’ —V'm)’%)
W +mm' -+nn'
~2V(f1+g*+R2—ab—be—ca)
atb+c ’
The planes will be at right angles if a+b+¢=0, for then g is 90°.

Ex. Show that the following equations represent pairs of planes and also
find the angles between each pair.
(7) 1222—2y2—6:2—20y+ Tyz+ 620=0. [Ans. cos™1(4/21).
(13) 2w2—2y24-4:246uz4-2y2 430y =0. [Ans. cos™1(4/9).
2'9. Orthogonal projection on a plane. Determination of Plane
Areas. Def. T'he foot of the perpendicular drawn from any point
P to a given plane, =, is called the orthogonal projection of the point P
on the plane .
This plane, =, is called the planc of the projection.

Thus (Fig. 1, p. 1) L, M, N are respectively the orthogonal
projections of the point P on the YZ, ZX and XY planes.

The projection of a curve on the plane of projection is the locus
of the projection on the plane of any point on the curve.

The projection of the area enclosed by a plane curve is the area
enclosed by the projection of the curve on the plane of projection.

In particular, the projection of a straight line is the locus of the
foot of the perpendicular drawn from any point on it to the plane of
the projection.

tan 0=

2'91. The following simple results of Pure solid geometry are
assumed without proof :—

(1) The projection of a straight line is a straight line.

(2) If a line 4B in a plane, be perpendicular to the line of inter-
section of this plane with the plane of projection, then the length of
its projection is AB cos 6 ; 0 being the angle between the two planes.

In case AB is parallel to the plane of projection, then the length
of the projection is the same as that of 4B.

(8) The projection of the area, 4, enclosed by any curve in a

plane is A4 cos §; 0 being the angle between the plane of the area
and the plane of projection.

Theorem. If A,, A,, A4, be the areas of the projections of an area,
A, on the three co-ordinate planes, then
A=A+ 42+ 42
Let I, m, n be the direction cosines of the normal to the plane of
the area 4.
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Since ! is the cosine of the angle between the YZ plane and the
plane of the arca A, therefore

A4,=1.A4.
Similarly, Ay=m.A,
and =n.A.

Hence A2+ A2+ A= A2+ m24n?)= 42

Exercises
\/1. Find the area of the triangle whose vertices are the points
(1,2, 3), (=2, 1, —4), (3,4, —2). (D.U. Hons., 1947)

To find the area A4 of this triangle, we find the arcas A, A4,, A4, of the
projection of the same on the co-ordinato plancs,

The vertices of the projection of tho triangle on the XY plane are
(13 2; 0)! (_2: 1; 0)1 (31 4y 0):

8o that
1, 2 1
l i
Ax=—2——2, 1, 1 =-2.
3, 4, 1
1, 3, 1
Similarly, A”=_;— -2, —4, 1 =_2§9~
3, —2, 1
2, , 1
1 19
and A== 1, —4, 1=7,
4, —2 1

Therefore, the area of the triangle

(29)2  (19)2\ /0218
—viatagraz=n /(1 S )=V
2. Find the arcas of the triangles whose vertices are the points
(.1:) ((1’ 0> 0), (0; b’ 0)) (O’ 0; C).
(72) (x1, Y1, 21), (%9, Y2s 23), (T3, U3, 23)-
3. From a pomnt P(a’, y’, #’), a plano is drawn at right angles to OP to

meet the co-ordinate axes at 4, B, ¢ ; prove that the arca of the triangle 4BC
is 75/2x'y’2’, where r 13 the measure of OP.

2°10. Volume of a tetrahedron. 7o find the volume of a tetrahedron
in terms of the co-ordinales

(xly Y1, zl)s (xﬂy Yo, zz), (xS: Yss za)» (xb 3/4’ 24)
of its vertices A, B, C, D.
Let V be the volume of the tetrahedron ABCD.
Then

V=1ipA, --(3)
where p is the length of the perpendicular
AL from any vertex 4 to the opposite face
BCD ; and /\ is the arca of the triangle
BCD.
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The equation of the plane BCD is

z, Y, 2, 1
xzs yg) 22, 1
=0
3, U3 %3, 1
Xy, Y 24y 1
Yas 23 1 o, 28 1
or x| Y, 23, 1| —y| s 23, 1
Y, 24, 1 ' g, %45 1
78 Ya. 1 i T2, Yes R
+2z| %3, Ys. 1 i — | % Ys, zy | =0.
|
Ty Y L Ty, Y 2
.. the length of the perpendicular, p=
Y2, 29, 1 Tg, 23, 1 Lo, .1/2, 1 Ta, y‘.b zz
Ty | Y3y 23, L=y %, 25, 142 25, ys, 1| — | 23, ¥s, 23
Yo 2, 1 Ty, 2, 1 ‘ Ty, Yy 1 %4, Y1 24 .
.. ()
2 2
r Y2, =g 1 Ty, 29, 1

X2, Yo, 113
| |

Ys, 2 1|+ |x;, 25 1]+ .-’1’73, Yy, 1 ,>
| J

Yoo 2 1 Ty, 2, 1 Ty Yy, 1
Zy, Y 2 1
Xy, ?/2, e2’ 1
The numerator of p=
3, Y3 %3 1
Ty, ?/4, 24, 1 .

If Asy Ay /e be the arcas of the projections of A on the YZ
ZX, XY plancs respectively, we obtain

Ya» 29, 1| | 2 22 1
2A3= Y3 %3; 1 ) 2A11= T3, 23, 1
Ya» 24, 1 4, Yo 1 ]

T, Ye, 1
20N:=| 3, Ys» 1

| Tas Ys» 1 J
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Therefore, denominator of p=[4(Am.+A',+Az’)]}=2A.
From () and (it), we see that the required volume

Ty Y, 21 1
xz: ?/z; zb 1
T3, Y3, 23 1

Ty, Ysr 2 11

Exercises

1. The vertices of a tetrahedron are (0, 1, 2), (3,0, 1), (4,3, 6), (2,3, 2);
show that its volume is 6.

2. A, B, C are three fixed points and a variable point P moves so that
the volume of the tetrahedron PABC 1s constant ; show that the locus of the
point P is a plane parall.] to the plane ABC.

3. A variable plane makes with the co-ordinate planes a tetrahedron of
constant volume 6443. Find

(¢) the locus of the centroid of the tetrahedron. [Ans. xyz=6k3.
(#¢) the locus of the foot of the perpendicular from the origin to tho
plane. [Ans. (x2+y2+22)3-2384k32yz.
4. Find the volume of the tetrahedron in terms of three edyes which meet in a
point and of the angles which they make with each other. (P.U. 1939)
B Let 0 ABC be a tetrahedron.
Let
OA=a, OB=b, 0C=c.
Lot
@ /. BOC=), /COA=yp.
and /. AOB=v.
We take O as origin and any system
C LA of three mutually perpendicular lmes
through O as co-ordinate axes. Lect the
Fig. 14 ® direction cosines of 04, OB, OC be

lj, my, ny ; lg, mg, ny ; I3, mg, ng.
Therefore, the co-ordinates of 4, B, C are
(lha, m,ya, nya) ; (lgb, meb, neb) ; (I3c, mge, ngc) (§ 1-61)
Therefore, the volume of the tetrahedron 0 A BC

o0 0, 0O 1

lia, mja, nya U, my, ny
1 La, ma, mna, 1 1 abe
=—6—- =~6~ lgb, ﬂ?zb, ’nzb =— lz, mg, Ng
I;b, mgb, mgb, 1 6
lc, mge, nge l3, mg, ng
lge, mge, nge, 1
Now
l],: my, ny 2 lp my, N3 ll’ my, Ny
lyy mg, ng|=|ly, mg, ng|X| Iy, my, ny

lg, mg, ny ly, m3, ng l3, mg, ng
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20L3, Il Il 1, cosv, cosp
== zlllb Elzs, Elgla =| COS v, l, cos A

Shly, Slaly, Xlg2 cOS £, CO8 A, 1
Therefore, the volume of the tetrahedron 0.4 BC
1, cos v, cos i '}

___ng cos v, 1, cos A

CO8 |4, COB A, 1

5. Show that the volume of the tetrahedron, the equations of whose faces are
ax+by+ez+d,=0,r=(1, 2, 3, 4)
is
A3
6D, D303y
where N\ s the determinant
ay, by, €1, dy
ag, b2, Ca, (12
ag, ba, C3, (13
ay, by, ¢4, dyg
and Dy, Dy, D3, Dy are the co-factors of dy, da, d3, dy respectively in the determi-
nant A\.
Let (4, y1, 1) be the point of intersection of the three planes
ax+by+c,z+d,=0,r=(2, 3, 4),
go that (zy, ¥y, 2;) is one of the vertices of tho totrahedron.

Let (xq, yg, 23), (3, Y3, 23)s (%4> ¥4, 24) be the other vertices, similarly
obtained.

We write
ayry+oyyr ez tdi=ky
i.e.,
a7 +b1y1+ 121+ (71— ky) =0. Q)
Also, we have
agry+boyy + 21+ dy=0, e (2)
agry +bgyy +cgz1+da=0, «..(3)
agx1+bayy + 421 +dg=0. e (4)

Eliminating 1, ¥3, 2 from (1), (2), (3), (4), we have
ay, by, ¢y, di—ky

L]
ag, by, ¢3, dp
ag, ba, C3, d3

ag, by, ¢4, dy
or

ag, by, ¢y

Dtk ag, by, c3 |=0,

ay, ba, 04_
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or

Similarly

We, now, have

ANALYTICAL SOLID GEOMETRY

A—kyDy=0.

a2”2+52'Jz+"222+d2=k2=‘%;'

2

a3x3+bsya+0323+d3=k3=_ll)l_
3

gty +byygtcqzgtdg=ky= 54_

ap, bl’ C1, dl E T1s Y15 %15 1 kl; 0» 0» 0
ag, b2’ Cg, d2 Lo, Ya, 22, 1 0: k2) 01 0
X =
ag, bg, c3, d3 T3, Y3 23, 1 0,0, k3,0
ag, by, ¢4, dy xg, Ygs 2g 1 0,0,0, kg |
=kikglaky
A4
= DiD,Dgby ?
Therefore the required volume = - Ls

are

6D, D, gDy

6. Tind the volumo of the tetrahedron formed by planes whose equations

y+2=0, 24+ 2=0, r4-y=0 and z+y+4=z=1. (P.U. 1942)

[Ans. 2/[3.



CHAPTER III
RIGHT LINE

3'1. Equations of a line. A line may be determined as the
intersection of any two planes through it.

Now, if

ax+by+ce+d =0 and ax+0,y+cz+d; =0
be the equations of any two planes through the given line, then these
two equations, taken together, give the equations of the line. This
follows from the fact that any point on the line lies on both these
planes and, therefore, its co-ordinates satisfy both the equations and
conversely, any point whose co-ordinates satisfy the two equations
lies on both these planes, and, therefore, on the line.

Thus, @ straight linc in space is represented by two equalions of the
first degree in x, y, z.

Of course any given line can be represented by different pairs of
first degree equations, for we may take any pair of planes through
the line and the cquations of the same will constitute the equations
of the line.

In particular, as the X-axis is the intersection of the XZ and
XY plancs, its cquations arc y=0, z=0 taken together. Similarly
the equations of the Y-axis arc =0, z=0 and of the Z-axis are
=0, y=0.

Ex. Find the intersection of the line

x—2y+42+4=0, 2+ y+2—8=0
with the plane

r—y+2241=0. [Ans. (2,5,1)
~/3‘ll.

Symmetrical form of the equations of a line. 7o find the

equations, of the line passing through a given point A(xy, ¥, 2,), and
having direction cosines, I, m, n.

Let P (x, y, z) be any point on the line and let 4P=r.
Projecting AP on the co-ordinate axes, we obtain
x—xy=lr, y—y,=mr, z2—z;=nr ...(3)
so that for all points (z, ¥, 2) on the given line,
T4 _Y=—h_2TA
Thus
T ="m = n . ...(13)

are the fwo required equations of the line,.

Clearly, the equations (#¢) of th.e line are not altered if we replace
the direction cosines I, m, n by thrce numbers proportional to them.
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so that it suffices to use direction ratios in place of direction cosines
while writing down the equations of a line.

Cor. From the relations (z), we have
x=x,-+Ir, y=y,+mr, z=z,+nr,
which are the general co-ordinates of any point on the line in terms
of the parameter r.
Any value of r will give some point on the line and any point
on the line arises from some value of r.

It should be noted, that it is only when [, m, n are the actual
direction cosines that r gives the distance between the points
(x5 ¥1, 21) and (z, y, 2).

Note 1. Tho symmotrical form (i) of the equations of a straight line
proves useful when we are concerned with the direction cosines of the line or
when wo wish to obtain tho genoral co-ordinates of any point on the line in
terms of a parametcr.

Note 2. The cquation

T=ry_Y—=
LT m
of first degroe, being froo of =z, reprosents a plane through the line drawn
perpendicular of the XOY plane. Similar statements may be made about the
equations

Yy=in z=n 2=z -1
m T on n l
The equations
(=2 [l=(y=y1)Im, (y—y1)[m=(z—z1)/n
represent a pair of planes through the given line,
<312, Line through two points. 7o find the equations of the line
through the two points
. (21, Y1,21) and (23, Y, 25)-
Since
T3 =T, Yo~ Y122
are proportional to the direction cosines of the line, the required
equations are
X=X _Y¥Y=N_2—7
X—X1 Yo=Y, Za—Z; '
Note. Results obtained in Cor. 2 page 6 may be regarded as the para-

metric equations of the line through the two points (zy, y;, z3) and (g, ¥a, 22); A
being the parameter.

Exercises
/1. Find k so that the lines
z—1 y—2 2-3
-3 T2
z—1 y—b6 z—6
BT T =5
may be perpendicular to each other. [Ans. —10/7.
-2. Find two points on the line .

1~ -2 2
on either side of (2, —3, —5) and at a distance 3 from it.
[Ans. (3,—5, —3); (1, =1, —17).
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3. Find the co-ordinates of the point of intersection of the line
z+1_ y+3 2-2

1 = 3 =2
with the plane
3z 4-4y+52=>5.
Let
shl_y+3_2=2_
TT 3 T2

8o that the point
r—1, 3r—3, =2r42
lies on the given line for all values of r.
If it also lies on the given plane, we have
37r—3+4+12r—12—107410=5 or r=2.
Hence the required point of intersection is (1,3, —2).
Its distance from the point (—1, —3, 2) is 4/ 56 which is different from
the valuo 2 of r. (Why ?)
‘4. Find the pomt where the line joining (2, —3, 1), (3, —4, —5) cuts the
plane 2x+4y+2="17. [Ans. (1,-—2, 7).
4’5, Find the distance of the point (—1, —5, —10) from the point of inter-
section of the line §(x—2)=}(y+ l)=‘112'(z—2) and the plane
z—y+2="5. (P.U. 1934) [Ans. 13.
< 6. Find tho distance of the point (3, —4, 5) from the plane
2x4+5y—62=16
measured along a line with direction cosines proportional to (2, 1, —2).
[Ans. 60/7.
/7. Find the tmage of the point P (I, 3, 4) in the plane
2x—y+2+3=0.
If two points P, Q be such that the line is bisected perpendicularly by a
plane, then either of the points 1s the image of the other in the plane.

The line through P perpendicular to the given P
plane is
z—1_ y—-3 z—4
2 -1 1
so that the co-ordinates of Q are of the form L

2r+1, —r+3,r4+4)
Making use of the fact that the mid point

(r+1, —ir 43, ir+4).
of PQ lies on the given plane, we see that Q

re=—2 Fig. 15
8o that the image of P is (-3, 5, 2),

/8. Find the equations to the line through (—1, 3, 2) and perpendicular to
the plane z+ 2y+2:=3, the lcngth of the perpendicular and the co-ordinates of
its foot, [4ns. 2; (—5/3, 5/3, 2/3).

9. Find the co-ordinates of the foot of the perpendicular drawn from the
origin to the plane 2z+43y—4z+41=0; aleo find the co-ordinates of the point
which is the image of the origin in the plane, (P.U. Supp.)

[Ans. (—2/29, —3/29, 4/29) ; (—4/29, —6/29, 8/29).

10. Find the equations to the line through (z;, y;, z;) perpendicular to
the plane ax+by+cz-+d=0 and the co-ordinates of its foot., Deduce the
expression for the perpendicular distance of the given point from the given
plane,

[Ans. (ar+2y, br+yy, cr4+2;) where r=—(ax,+byy+ cz;+d)/(a®+ b2+ c?).
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11. Show that the line
He=T)=— (y+3)=(:—4)

6r+4y—5:=4and v—56y+2:=12

in the same point and deduce that the line is co-planar with the line of inter-
section of the planes,

/12. Show that tho line
(r=3)[3=2—y)[4=(=+1)/1

r42y+43:=0, 2x+4y+3:43=0.
Find thcir point of intersection, [Ans. (9, -6, 1),

13. Show that the equations to the straight line through (a, b, ¢) parallel
to the X-axis are (vt—a)/l=(y—0b)/0=(z—c)/O0.

14. Show that

intersects the planos

intersects the line

(r—a)[l=(y—b)[:mn=(2—¢)/0
is a straight line perpendicular to the Z-axis,
15. Show that the straight line
(w=a) 1= (y—B)m = (z=)In
meets the locus of the equation
a? Fbytte?=1,
in two points,
Deduce the conditions for the two pomts to coincide at («, B, ).
[Ans. alu+bnB+cny=0; aa?4bp2+4cy2=1.
16. P 13 any point on the plane le+4my+nz=p and a oint @ is taken on
the line OP such that OP.0Q=p3 ; show that the locus of @ 18
p(le+my+nz) =ad4y2422,
17. A vanable plane muakes mtercepts on the co-ordinate axes the sum of
whose squares 18 constant and equal to k2, ¥ind the locus of the foot of the
perpendicular from the origin to the plane.

[Ans. (x=24y 24272) (22+y2422)2=k2,
18. Show that the equations of the lines hisecting the angles between the
lines

x—3_y+4_:—b

> -

) 4 12 73
T3 _yt4_z=5 w3 _ytd =75
ore 38 —49 —i7’ 14 23 =35
3:13. It has been seen in §§ 3:11, 3:12, that the equations of a
straight line which we generally employ are of two forms.

One is the symmetrical form deduced from the consideration
that a straight line is completely determined when we know its .
direction and the co-ordinates of any one point on it, or when any
two points on the line are given.

The second form is unsymmetrical and is deduced from the con-
sideration that a straight line is the locus of points common to any
two planes through it.

In the next section it will be seen how one form of equations can
be transformed into the other.

=3 _y+4_z—

ST

314. Transformation from unsymmetrical to the symmetrical
form. To transform the equations

ax+by+cz+d=0, ax+by+cz+d;=0
of a line to the symmetrical form.
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To transform these to the symmetrical form, we require
(7) the direction ratios of the line, and
(¢¢) the co-ordinates of any one point on it.
Let I, m, n be the direction ratios of the line. Since the line
lies in both the plancs
ar+by+cz+d=0 and a,x+b,y+cy2+d,=0,
it is perpendicular to the normals to both of them. As the direction
ratios of the normals to the two plancs are
a, b’ C; ay, bl) C1»
we have
al+bm-+cn=0,
a,l+bm+cn=0.
. ! _  m _  n
be,—bic cay—c,a ab,—ad
Now, we require the co-ordinates of any one point on the line
and there is an infinite number of points from which to choose. We,
for the sake of convenience, find the point of intersection of the line
with the plane z=0. This point which is given by the equations

ax+by+d=0 and ez +b,y+d,=0,

is
(bdil,i_bl(l ﬂd_'ad! 0)
ab,—ab’ aby—ab’ "/’
Thus, in the symmetrical form, the equations of the given line
are
z — (bd, "bxd)/(a’h—({n_({)=_ - (a,d—-ad.)_/(ab,—Mq‘,é)= z2—0

bey—bie cay,—¢,a aby—a;b

Exercises

1. Find, in a symmetrical form, the equations of the line
z+y+241=0, 4r4+y—2:42=0
and find its direction cosines, (P.U. 1937)
e+ 1/3  y+2/3 1 2 1
[""S' I~ =2 YRV RV
2. Obtain the symmetrical form of the equations of the line
x—2y+32=4, 2r—3y+42=75.
[Ans. (e42)=}(y+3)==.
3. Find out the points of intersection of the line
r4+y—z2+1=0=142 4 9y—T2—1
with the XY and YZ planes, and hence put down the symmetrical form of its
equations, [Ans. —(2)[2=(y—4)/T=(2—5)/5.
4. Find the equation of the plane through the point (1, 1, 1) and per-
rendicular to the line

_Z
T

z—2y+2=2, 4x4-3y—2+41=0,
[Ans. 2—By—11z415=0,
5. Find tho equations of the line through the point (1, 2, 4) parallel to
the line

3x42y—2=4, x—2y—22=>5,
[Ans. (z—1)/6=(2—y)[5=(2—4)/.8
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6. Find the angle between the lines in which the planes
3r—Ty—52=1, bx—13y+32+4+2=0
cut the plane
8r—11y+422=0 [Ans. 90°
7. Find the angle between the lines
Jx+2y+2—6=0=2+4+y—22—3,
2z —y—z=0="Tx+10y—82, (L.U.) [Ans. 90°.
8. Show that the condition for the lines
r=az+b, y=cz+d ; x=a;z+by, y=c 2+dy,
to Le perpendicular is
aay+cey+1=0.
9. What are the symmetrical forms of the equations of the lines
(») y=b,z=0 [Ans. x/1=(y—0b)/0=(z—c)/0.
(i2) a=a, by+cz=d [Ans. (c—a)[0=(y-d[b)[c=2—b.

32. 7o find the angle Lelween
Tt _Y—h_ "%
l m n’

and the plane ax +by+cz+d=0.

Angle beween a line and a plane is the complement of the angle
between the line and the notmal to the plane.

Since the direction cosines of the normal to the given plane and
of the given line are proportional to @, b, ¢ and I, m, n respectively,
we have

the line

Sin f= -~ - al+bm+en
V(b +e?) v/ (I m'+n?)’
where § is the required angle.
The straight line is parallel to the plane, if §=0
t.e., al4+bm+ cn=0,
which is also evident from the fact that if a line be parallel to a plane,
it is perpendicular to the normal to .

Exercises

1. Show that the line §(r—-2)=%{y-—-3)=%(z——4) is parallel to tho plane
2r+y—2z=3.
2. Find tho equations of the line through the point (—2, 3, 4), and parallel
to the planes 2z+3y+4z=5 and 3z +4y+52=6,
[Ans. (z42)=—4(y—3)=(z—4).
[Hint. The dircction ratios, I, m, n, of the line arc given by the rclations
2l4+3m+4n=0=314+4m+5n.]
3. Find the equation of the planc through tho points
(l: 0' '—1)’ (3’ 2y 2)
and parallel to tho line
(z—=1)=(1—y)/2=(2—2)/3. [Ans, 4x—y—22=06,
4. Show that the equation of tho plane parallel to the join of
(3,2, —5) and (0, —4, —11)
and passing through the points
R (_2’ ]’ _3) and (4'1 3, 3)
is
4x4-3y—52=10,
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5. Find the equation of the plane containing the lino
2x—b5y+22=0, 2x+3y—2z="5
and parallel to the line x=—y[6=2/T. [Ans, 6x+y—16=0,
6. Prove that the equation of the plane through the line
uy=a1x+by+cyz+dy =0, ug=agr+byy+ cgz+dg=0
and parallel to the line
o afl=y[m=z[n
is
ug(agl+bym+ can) =uy(ayl+bym—+cyn). (D.U. Hons. 1957)
7. Find the equation of the plane through the point (f, g, h,) and
parallel to the lines a/l,=y[m,=z[n, ; r=1,2. [Ans. Z(x—f)(ming—mgny)=0,
8. Find the equations of the two planes through the origin which are
parallel to the line
(z—1)[2=—(y+3)=—(2+1)[2
and distant 5§/3 from it ; show that the two planes are perpendicular,
, [Ans. 2x+4+2y+2=0, x—2y+422=0,
3:3. Conditions for a line to lie in a plane. T'o find the conditions
that the line

may lie in the plane
ax+by+cz+d=0.
The line would lie in the given plane, if, and only if, the
co-ordinates
lr4ax, mr4y,, nr+2z,
of any point on the line satisfy the equation of the plane for all values
of r so that
rlal +bm+cn) + (ax, + by, + cz,+d) =0,
is an identity.
This gives
al + bm+ cn=0,
ax, +by,+cz;+d=0;
which are the required two conditions.
These conditions lead to the geometrical facts that a line will lie
in a given plane, if
(¢t) the normal to the plane is perpendicular to the line,
and (¢7) any one point on the line lies in the plane.
Cor. General equation of the plane containing the line
T _Y—Y%_2"2

l m n
i8 A(z—z)+B(y—u) + C(z—2,)=0,
where
Al+ Bm+Cn=0. (1)

Here, A : B : C are the parameters subjected to the condition (1).

Exercises

1. Show that the lino o+ 10=(8—y)/2=z lies in the plane
z42y+32=6
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and the line §{2—2)=—(y+2)=14(2—3) in the plano
254+ 2y—2z+3=0,

. 2. Find the equation to the plane through the point (xy, yy. z,) and through
the line

(c—a)ll=(y—=b)/m=(z—c)/n. (P.U. 1939)
The general equation of tho plane containing the givgn line is
A(x—a)+B(y—0)+C(z2—c)=0, (1)
where 4, B, C aro any numbers subjected to the condition
Al+Bm+Cn=0, (1)
The plane (t) will pass through (xq, ¥4, 21), if
A(xy—a)+B(y;—b)+C(zy—c)=0. .. (1u)

Eliminating 4, B, C from (¢), (4¢) and (2¢), we have
[ t—a, y—b, 2z2—c¢
‘ L, ”m, n | =0,
l xy—a, yp1—b, z—c¢
as the required equation,

3. Find the equation of the plane containing tho line
Ho+2)=Hy+3)=—}(:z—4)
and the point (0, 6, 0). [Ans, 3x+4+2y+4+6:—12=0,

4, TTMYTY1 AT gnq FT LY et
4 my ny N Mg ng
are two straight lines, ¥ind the equation of the plane containing the first lino
and parallel to the second, [Ans., X(x—xp)(myng—mgny)=0,
5. Show that the equation of the plane through the line
z—1_y+4+6_241 z—2 y—1_z+4
3 i and parallel to 9 T 3T 5

is 260 —11y—172—109=0 and show that the point (2, 1, —4) lies on it, What is
the geometrical relation between tho two lines and the plane ?

6. Find the equation of the plans containing the line
—Haz+1)=Hy—3)=(z+2)
and the point (0, 7, —7) and show that the lino x=§(7—y)=3}(z+47) lies in the
same plane, [Ans. =z +y+2=0.
7. Find the equation of the planc which contains the hine
(x—1)f2=—y—1=(2=3)/4
and is perpendicular to the plane
z42y+2=12,
Deduce the direction cosines of the projection of the given line on the given
plane, (L.U,)
[Ans, 9r—2y—5z44=0; 4k, —7k, 10k, where k=1/4/(165).
. 8. Find the equations, in the symmetrical form, of the projection of the
ine
Yo+ )=4y+2)=1:+3)
on the plane
z—2y+32—4=0,
[Ans. (z—1)/10 =(y+15/8)/20=(z—0)/16,
3:4. Coplanar Lines. Condition for the coplanarity of lines.

To find the condition that the two given straight lines should intersect,
t.e., be coplanar.
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Let the given straight lines be

=L _ YW 24

=, (1)
-y _YTY:_2"%0
L om,  my - (2)

If the lines intersect, they must lie in a plane. Equation of any
plane containing the line (1) is

A(x—=z)+B(y—y)) +C(z—2)=0 ()
with the condition

Al + Bmi4 Cny=0. ...(21)
The plane (i) will contain the line (2), if the point (x,, ¥, 25)
lies upon it and the line is perpendicular to the normal to it. (§ 3'3).

This requires
Ay ~2))+B(ya—y1) +C(2: - 2)=0, (1)
Aly+ Bmy+ Cny=0. ... (v)
Eliminating A4, B, C from (i), (#i3), (tv), we get

To—Xy, Yo~ Y1, 22— 2
L, my, n | =0, --(A)

Ly, Mg, Ny
which is the required condition for the lines to intersect. Again
eliminating 4, B, C from (), (it), (iv) we get

T—=2, Y=Y, 2—2%

l.l’ my, m = O,

Iy, My, Ny

which is the equation of the plane containing the two lines, in case
they intersect.

Second Method. The condition for intersection may also be
obtained as follows :—

(Liry+ay, myrit-yy, nirt21) and (a4, mara+ Y, nyra+2,)
are the general co-ordinates of the points on the lines (1) and (2)
respectively.

In case the lines intersect, these points should coincide for some
values of ; and r,. This requires

(xr—mp) + Ly —lorg =0,

(Y1 —Y2) +mr —mara =0,

(2y—2q) + myry —mgry =0.
Eliminating r;, r,, we have

x; — 2, L, ly

Yi—Ys My, My |=0

212 Ny, My
which is the same condition as (A).
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Note 1, 1In general, the equation

=y, Y=y 2—2

ls my, ny |=0

l My, 7y

represents the plane through (1) and parallel to (2), and the equation

T—2Zg, Y—Y3 2—23

i, my, np|=0

ly, mg, Mg
represents tho plane through (2) and parallel to (1),

In case the lines are coplanar, the condition (A) shows that the pont
(%9, Y2, z3) lies on the first plane and the point (xy, ¥, 2;) on the second, These
two planes are then identical and contain both the intersecting lines,

Thus the equation of a plane containing two ¢ntersecting lanes is obtained
by finding the plane through one line and parallel to the other or, through one
hine and any point on the other,

Note 2, Two lnes will mmtersect if, and only if, thero exists a point whoso
co-ordinates satisfy the four equations, two of ecach lmme, But we know that
three unknowns can be determined so as to satisfy three equations, Thus for
intersection, we require that the four equations should be consistent among
themselves, i.e., the values of the unknowns z, y, 2, as obtained from any thrce
equations, should satisfy the fourth also. The condition of consistency of four
equations containing three unknowns s obtained by ehimmnating the unknowns,
It is sometimes comparatively more convenient to follow this method to obtam
the condition of intersection or to prove the fact of intersection of two lines,

Note 3. The condition for the lines, whose equations, given in tho unsym-
metrical form, are

ayz+biy+ciz+d;=0, agx+byy+cgz+dy=0;
agr+bgy+czz+dg=0, agx4byy+cy4z+dy=0;
to be coplanar, 7.e., to intersect, as obtained by eliminating z, », = from theso
equations, is

ap, b, e, dp
ag, by, ¢y dy
ag, by, c¢3, d3
ag, by ¢4 dy
In case, this condition is satisfied, the co-ordinates of the point of intersce-
tion are obtained by solving any three of the four equations simultanoously,
Examples
1. Prove that the lines
:5:;4_:1/_—}—_3 z+1 2_7__—_} y+1 2410

1~ -4 7 72 T 3T 8
intersect and find the co-ordinates of their point of intersection.
Now,
(r+4, —4r--3, 7r—1) and (2r'+1, -3 —1, 8'—10)

are the general co-ordinates of points on the two lines respectively.
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They will intersect if the three equations

r—2r' +3=0, e Q)
—3r'4+2=0, .. (#7)
7r—8r' +9=0, .. (113)

arc simultaneously true.

(¢) and (dé5) give r=1, r'=2 which also, clearly, satisfy ().
Hence the lines intersect and their point of intersection obtained by
putting r=1, or ' =2 is (5, — 17, 6).

Note. This equation can also be solved by first finding the point
satisfying three equations

_y+3 . y+3_ztl a-1_y+]

1 —4 a7 Ty Ty
and then showing that the same point also satisfies the equation
y+1_ 2410
=g

2. Show that the lines
v+8_y+5_z—7 a+l_y+l 2+l
2 3 -3’ 4 5 —1
are coplanar and find the equation of the plane containing them.
The equation of the plane containing the first line and parallel
to the second is
x+3 y+5, 2—17 |
2,” 3, —3|=0
4, 5 —1]|
or 6x— 5y —2=0.,
which is clearly satisficd by the point (—1, —1, —1), a point on the
second line. Hence this plane contains also the second line. Thus
the two lines are coplanar and the equation of the plane containing
them is
62— b5y —2=0.
3. Show that the lines
r+6_ytd_2-T7
3 1 =2
3z }+2y+2—2=0=2—3y +22--13
are coplanar and find the equation to the planc in which they lie.
The general equation of the plane through the second line is
3z+2y +2—24k(z—3y+22—13)=0
or
3(3+k)+y(2—3k)+2(142k)~2—13k=0.
This will be yarallel to the first lino
if
3(3+k)+ (2—3k) —2(1+2k) =0, i.e., k=%.
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Hence the equation of the plane containing the second line and
parallel to the first is

212—19y+222—125=0

which clearly passes through the point (—5, —4, 7) and so contains
also the first line,

Thus the two lines are coplanar and lic in the plane
21x—19y+4-222—125=0.

Exercises
1. Show that the lines
Hod4)=3(y+6)=—1(—1)
3x—2y+24+5=0=2r43y-}42—4
are coplanar, F¥ind also the co-ordmates of their point of intersection and the
cquation of the plane in which they lie,
[Ans. (2,4, —3) ; 45v—1Ty4-252453=C,
2. Prove that tho lines
x— }zﬁ}_;+10 =4 _y+3_ _2+1

e =3 "8 1 T -1 7
intersect, Find also their pomnt of intersection and the plano through them,
[dns. (5, =T, 6); 1le=6y452467.
3. Prove that the lines

x+1_y+3_ 245 xr—2_y—1 2—6
375 17 8 5
interscet, Find their point of intersection and tho plane in which they lie,
[Ans. (1/2, —1/2, —8/2) ; —2y+2=0,
4. Show that the lines
a4-2y—5249=0=3x—y+22—5 ;
21 +3y—2—3=0=40—5y+2+3
are coplanar,
5. Prove that the Iines
a—3y+2:44=0=20}y+424+1;
3a+2y+56:—1=0=2y+=2
intersect and find the co-ordmates of their point of intersection,
[Ans. (3,1, =2).
6. Prove that the lincs

r—a_y-b_z—c and r—a' _y=b'_z—¢

o Y a b c
intersect and find the co-ordinates of the point of intersection and the equation
of the plane m which they lie, [cAns, (a+a’, b4V, c+c') 5 Za(be'—b'¢)=0,

7. Show that the condition that the two straight hines
x=mz+a, y=nz-+b, and x=m':+a’, y=n'z-}0’
should intersect is
(a—a’)(n—n")=(b=b")(m—m").
8. Show that the plane which contains the two parallel lines
w—4=—4(y—3)=13(—2), 2=3=—1}(y+2)=132
is given by
1lz—y—32=35.
9. Find the equation of the plano passing through z/l=y/m=2/n, and
perpendicular to the plane containing
xfm=y[n=z[l and 2[n=y[l=2[m. (D. U. Hons. 1949)
[Ans, Z(m—n)z=0.
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10. Show that the line x+4a=y+b=72--c intersect the four lines
() =0, y4+2=3a; (4i) y=0, 24+2=3b ; (1) 2=0; z+y=3¢c
(3v) x+y+2=3k, ala—Lk)~1 x4+ b(b—k)™1 y+c(c—k)-12=0

at right angles if a4+b+4c=0.

11. Obtain tho condxtlon for the lino

=(y—=B)m=(z—)/n
to intersect the locus of bho cquations ax24-by2-=1, =0.
[Ans. alan—1Iy)24-b(Bn—my)2=n2.

3:5. Number of arbitrary constants in the equations of a straight
line. 7o show that there are four arbitrary constants in the equations of
a strazght line.

A line PQ can be regarded as the intersection of any two planes
throughit. In particular, we may take the two planes perpendicular
to two of the co-ordinate planes, say, YZ and ZX planes.

The equations of the planes through P@ perpendicular to the YZ
and ZX planes are respectively of the forms

z=cy-+d, and z=ax+b
which are, therefore, the cquations of the line P@ and contain four
arbitrary constants a, b, ¢, d.

Hence the equations of a straight line tnvolve four arbitrary cons-

lants as it is always possible to express them in the above form.,

Note. Tho symmetrical form of the equations of a line apparently involves

six constants xq, y1, 21 ; I, m, n, butl they are really equivalent to four arbitrary
constants only as is shown below :

1, m, n, which are connected by the rclation 124m24+n2=1 aro equivalent
to two indopendent constants only.

Also, of the three apparently independent numbers g, 7, 24, only two

are indopendent as one of them can always be arlatrarily chosen as deseribed
bolow :—

A lino cannot be parallol to all the co-ordinate planes. Let the given line,
in particular, bo not parallel to the ¥Z plano. If, now, z; be assigned any
value, we may tako tho point where the lino meets the plane xr=a; at the point
(%1, ¥15 21)-

Hence wo muy give to ay any valuo we plcaso, The three numbers
2y, Y1, 71 are, thereforo, equivalent to two independent constants only.,

The fact that the general equations of a straight line contain
four arbitrary constants may also be seen directly as follows :—

We see that
=T _Y=~Y Y—~Hh_*F4
I~ m’ m n
are equivalent to

l_y_*_ (mx,— l.%) _m +(".7/1 mz,;)

m m y n n

r=-

respectively, so that
oom oma—ly, my—mz
m’ n’ m n
are the four arbitrary constants or parameters,
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3'51. Determination of lines satisfying given conditions.

We now consider the various sels of conditions which determine
a line.

We know that the equations of a straight line involve four
arbitrary constants and hence any four geometrical conditions, each
giving rise to one relation between the constants, fix a straight line.

It may be noted that the conditions for a line to intersect a
given line or be perpendicular to it separately involve one relation
between the constants and hence threec more relations are required to
fix the line.

A given condition may sometimes give rise to two rclations
between the constants as, for instance, the condition of the linc
(¢) to pass through a given point.
or (¢2) to have a given direction.

In such cases only two more relations will be required to fix the
straight line.

Equations of lines have already been discussed under the follow-
ing sets of conditions :

(¢) passing through a given point and having a given direction ;
(77) passing through two given points ;
passing through a point and parallel to two given planes ;

(di¢
(iv) passing through a point and perpendicular to two given
lines.

Some further sets of conditions which determine a line are given
below :—

(v) passing through a given point and intersecting two given lines ;
(v?) intersecting two given lines and having a given dircction ;
(wit) intersecting a given line at right angles and passing through
a given point;
(visz) intersecting two given lines at right angles ;
(2x) intersceting a given line parallel to a given line and passing
through a given point ;

(x) passing through a given point and perpendicular to two
given lines ;

and so on.
An Important Note : If

u1=0=v; and vy=0=1y,

l;z htwo straight lines, then the general equations of a straight line intersecting them
th are

=~~~

Uy 00, =0=wug+2grg,
where Ay, Ay are any two constant numbers.

The line uy+X vy =0:=ug+4Agv, lies in the plane uy+rv;=0 which again
contains the Iine u;=0=1v,.

The two lines
’U1+111}1=0=1l2+)\2’l)2 H u1=0=1)1
are, therofore, coplanar and hence they intersect,
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Similarly, the samo line intersects the line wg=0=1v,.
This conclusion will be found very holpful in what follows.
For the sake of illustration, we give below a few examples.

Examples

1. ‘Find the equations of the line that infersects the lines
204+y—4=0=y+22 ; x+32=4, 22+ 52=8
and passes through the point (2, —1, 1).
The line
224+y—4+ N (y+22)=0, 2+ 32 - 442,(22 52— 8) =0
intersects the two given lines for all values of A, A,.
This line will pass through the point (2, —1, 1), if
—14A,=0 and 14A,=0,
i.e., if A=1, Ap=—1.
The required equations, therefore, are
r+y+2=2 and x4 22=4.
2. Find the equations, to the linc that intcrsects the lines
20+y—1=0=0—2y+3z;
3r-y+2+2=0=4x+5y—2x—3
and s parallel to the line
x _ Yy _ 2
12 37
The general equations of the lines intersecting the two given
lines are

20+y—14+A(x—2y+32)=0
3x—y+z+24+A(4x+ 5y—22—3)=0
which will be parallel to the given line if A;, A, be so chosen that the
two planes representing it are separately parallel to the given line.
This requires
(24 A)+2(1—2A,) +3(3A,) =0, i.e., A\;=—%.
and (B44Ny) +2(—1451y) +3(1 —21,) =0, i.e., Ay=—1.
The required equations of the line, therefore, are
4x4Ty—62 -3=0, 20—Ty+424+7=0.
3. A line with direction cosines proportional to 2, 1, 2 meets each
of the lines given by the equations
r=y+ta=z; vta=2y=2z;
Jfind out the co-ordinatcs of each of the points of intersection.
P(r, r—a, r) and P'(2r'—a,r’, ') are the general co-ordinates of
points on the two given lines
z _yta_z =zta_y __ =
T 1 1’ 2 1 1°
The direction cosines of PP’ are proportional to
r2r'+a, r—r'—a, r—r',
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Now, we choose r and 7' such that the line PP’ has direction cosines
proportional to (2, 1, 2).
. r—2r'+a_r—r'—a__ r—r
LX) - 2 = h l A—_'“vz )
which give
r=3a, r =a.
Putting #==3a and 7"=a in the co-ordinates of P and P’, we get
(3a, 2a, 3a) and (@, a, a)

which are the required points of intersection.

4. Find the equations of the perpendicular from the point
(3, —1, 11) {o the line

te=3(y—2)=1(—3).

Obtain also the foot of the perpendicular.

The co-ordinates of any point on the given line arc

2r, 3r+2, 4r+4-3.
This will be the required foot of the perpendicular if the line joining
it to the point (3, —1, 11) be perpendicular to the given line. This
requires
2(2r—3)4+3(3r+2-+1) 4 4(4r4+3—11)=0 or r=1.
Therefore the required foot is (2, 5, 7) and the required equations

of the perpendiculars are

z—3_y+1_z-11
1 —6 4

Exercises

1. Find tho cquations of the perpendicular from

(@) 24,—1)  to (x+5)=1(y+3)=—1{z—0),

(%2) (=2, 2, —=3) to (x—3)=}(y+1)=—1%(z—-2),

(423) (0, O, 0) to x+4-2y+4324+4=0=2243y+425,

() (—2,2, —3) to 2x+4y4-2—T==0=4r4z—14.

Obtain also the feet of the perpendiculars. :
[Ans.  (3) §la—2)=}(y—4) =}(+1), (—4,1, =3).

(27) -};(x+2)=-(y—2)=(z+3), (4,1, —2).
(243) —x[2=y=2z[4, (2/3, —1/3, —4/3).
(@) & l+2)=—(1 2)=(243), (4, 1, —2).

2. A line with direction cosines proportional to (7,4, —1) is drawn to
intersect the lines

z—1_y—7_242 43 _y— 3_2-5

3 -1 1’ =3 2 4
Find the co-ordinates of the points of intersection and the length inter-
cepted on it. [Ans. (7,5,0), (0, 1, 1), 4/(66).

3. Find the equations to the line that intersects the lines
rt+y+e=1, 2xmy—2=2; r—y—2=3, 2x+4y—2=
and passes through the pomnt (1, 1, 1). Find also the points of intersection.
(P.U. 1939)
[Ans. (x2—1)[0=(y—1)[1=(2=1)/35 (1, }, —%); (1, 0, —2).
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. 4. Find the equations to tho straight lines drawn from the origin to
intersect tho Ines

3x42y+42—5=0, 26—3y+42+1=0; 206—4y+24+6=0=3zr—4y+2—3.
(P.U. 1942)
[Ans. 13x—13y+242=0=8x—12y-}3z.
5. Obtain the equations of the line drawn through the point (1, 0, —1),
and mtersecting the lines

r=2y=2z ; Jx+4y=1; da+52=2.
[Ans. —(x—1)[6=y=(z+1)/9.
6. I'ind the equations to tho line drawn parallel to x/2=y[3=2/4 s0 as to
intersect the lines

9v+y+2+4=0=52+y+3z ; 2+4+2y—32—3=0=2x—5y+3243.
[Ans. (241)/2my[3=2/4.
7. Find tho equations of tho lne drawn through the point (—4, 3, 1),
parallel to the plane a+2y—z==5 so as to mtersoct the line

— (1) 3= (y—3)[2=— (:—2).
Find also the point of mtersection.
[Ans. (x4+4)3=—(y—3)=(=—1); (2, 1, 3).
8. Find the distance of the point (—2, 3, —4) from the line
(+2)[3=(2y+3)4=(3:+4)[5
measured parallel to the plane
42+12y—32+41=0. [Ans. 17/2.
9. Find tho equations of the straight line through the point (2, 3, 4)
perpendicular to the X-ax1s and ntersecting the line x=y=z.
[Ans. x=2, 2y—z=2.
10. Fing the equations of the straight line through the origin which will
intorscet tho lines

(v—1)[2=(y+3)/4=(2—5)[3, (z—4)[2=(y+3)[3=(=—14)/4
and prove that the secant 1s divided at the origin in the ratio 1 : 2.
11. TFind the cquations of the two lines through the origin which intersect
the line (x—3)/2=y—3== at anglcs of 60°.
[Ans. z=y[2=—z; x=—y=2z[2.
12. The straight line which passes through the points (11, 11, 18), (2, —1, 3)

is intersccted by a straight hine drawn through (15, 20, 8) at right angles to
Z-ax1s ; show that the two lines mntersoct at the point (5, 3, 8).

13. A straight line 1s drawn through the origin meeting perpendicularly the
straight line through (a, &, ¢) with direction cosines [, m, n ; prove that the
direction cosmes of the hne are proportional to

.a——lk, b—mk, ¢—nk where k=al+bm-cn.

14. From the point P(a, b, c) perpendiculars PA, PB aro drawn to the
lines y=2x, z=1 and y=—2x, z=—1 ; find the co-ordinates of 4 and B.

Prove that, if P moves so that the angle APB is always a right angle, P
always lies on tho surface 12x2—3y2+42522=25.

[Ans. A[(2b+a)[5, (4b+2a)/5, 1]; Bl(a—2b)[5, (4b—2a)[5, —1].

3'6. The shortest distance between two lines. 7o show that the
shortest distance between two lines lies along the line meeting them
both at right angles.

Let AB, CD be two given lines.

A line is ccmpletely determined if it intersects two lines at
right angles. (See § 3'51. Case viii).

Thus, there is one and only one line which intersects the two
given lines at right angles, say, at G and H.
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GH is, then, the shortest distance between the two lines for, if,
A, C be any two points, onc on cach of the two given lines, then GH
is clearly the projection of AC on itself and, therefore,

GH=AC cos ¢,
/}/ where ¢ is the angle between’GH and AC.
G Hence GH<AC

\ .
ﬁ// \\\ Thus GI{ is.the shortest distance

\ between the two lines AB and CD.
\ 361. 1o find the magnitude and the
\ equations of the line of shortest distance
3 between two straight lines.

ne A ¢ If AB, CD be two given i d

Fug. 16, 3, ¢ two given lines an
GII the linc which meets them both at
right angles at ¢ and II, then GH is the line of shortest distance
between the given lines and the length G is the magnitude.
Let the cquations of the given lines be

T3, _Y - _ 22 :
I my  ony (@)
% Y 7Y 2% i
i =y vou (12)
and let the shortest distance G/ lie along the line
—o__Y— z2=7 '
] =‘~/~mﬁ= e ... (1a2)

Line (i17) is perpendicular to both the lines (¢) and (i¢). Therefore,

we have
iy +mm,+nn,=0, //’
Uy +mmy+nny,=0, e

l mo n

MyRg—mgny  Malg—nyly — Ly —lymy
1 _ 1
\/E(mln2 -myny)*  sin @

where § is the angle between the given lines.
myng—myny . nl, ly—nyl lymy—1ym .

o —L:m 9 ° “sing Sy = sin 02 ? (i)

The line of shortest distance is perpendicular to both the lines.
Therefore the magnitude of the shortest distance is the projection on
the line of shortest distance of the line joining any two points, one on
each of the given lines (?) and (7).

'.[‘a.kmg the projection of the join of (zy, y;, 21), (%5, Y2, 25) ON the
line with direction cosines I, m, n, we see that the shortyista.nce

=(xg— 2+ (Y2 —y1)m—+(23—21)m, .

where 1, m, n have the values as given in (iv).

To find the equations of the line of shortest distance, we observe
that it is coplanar with both the given lines.

or
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The equation of the plane containing the coplanar lines (i) and
(td1) is

| T=X1, Y—Y1, 2—2

Lhy my, my =0 we(v)

and that of the plane containing the coplanar lines (i) and (i) is

Ty, Y~ Yo, 323

l,, my my, =0, voo(v2)

l, m, n |

Thus (v) and (vi) are the two equations of the line of shortest distance,
where [, m, n are given in (iv).
Note. Other methods of determming tho shortest distance are given
below where an example has been solved by three diffcrent methods.
Examples

1. Find the magnitude and the equations of the line of shortest
distance between the lines ;

\,3 ::16=4 7 , ...(@)

3 — 8§ T 5° N (1))
First Method
Let I, m, n be the direction cosines of the line of shortest
distance.
As it is perpendicular to the two lines, we have
3l—16m+7n=0,

and 3l+-8m—5n=0.

. L_m_n

' 24 36 72°
I _m _n

or TSI 6

Hence

l::%: ’m"_‘?i) n=%
The magnitude of the shortest distance is the projection of the

join of the points (8, —9, 10), (15, 29, 5), on the line of the shortest
distance and is, therefore,

=7.34+383-5.9=14.
Again, the equation of the plane containing the first of the two
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given lines and the line of shortest distance is

-8, y+9, 2—10

3, —16, 17 |=0,
2, 3, 6
/

or :

117z + 4y—412—490=0.
Also the equation of the plane containing the second line and
the shortest distance line is

x—15, y—29,z—5 )
3, 8, —5 =0,

2 3 6
or
92 —4y—z=14.
Hence the equations of the shortest distance line are
1172 +4y—412—-490=0=9z — 4y —2—14.
Second Method
P3r+8, —16r—9, 7r+10), P'(3r'+ 15, 87'+29, —5r' +5)

are the general co-ordinates of the points on the two lines respec-
tively. The direction cosines of PP’ arc proportional to

3r—3r'—17, —16r- 8’ —38, Tr-5r' +5.

Now PP’ will be the required line of shortest distance, if it is
perpendicular to both the given lines, which requires

3(3r—3r'—7)—16( - 167 ~8r'—38)4+7(Tr+5r"+5)=0

b

and 3(3r—3r'—7) +8(—16r—8r' — 38) -~ 5(7r+5r'45) =0
or 157r+77r" . 311=0 and 11r +77'+25=0
which give r=-—1,r"=-2,

Therefore co-ordinates of P and P’ are
(5,7, 3) and (9, 13, 15).

Hence, the shortest distance PP'=14 and its equations are
x—b_y—T7_2-3

2 367
This method is sometimes very convenient and is specially useful
when we require also the points where the line of shortest distance
meets the two lines.

Third Method. This method depends upon the following consi-
derations :—

Let AB, CD be the given lines and GH, the line of shortest
distance between them.
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Let ‘«’ denote the plane through AB and parallel to CD and let
‘f’ be the plane through CD and parallel to AB.

The line of shortest distance G'H, being perpendicular to both
AB, CD is normal to the two planes so that the two planes are
parallel. The length GII of the shortest distance is, therefore, the
distance between the parallel planes « and . This distance between
parallel plancs being the distance of any point on one from the other,
w: see that it is enough to determine only one plane say ‘@’ and then
the magnitude of the shortest distance is the distance of any point
on the second line from the plane ‘«’.

Again, we casily scc that the plane through the lines AB, GH is
perpendicular to the plane ‘@’ and the plane through CD, GH is
perpendicular to the plane ‘B’ and, therefore, also to ‘«’. Thus GH, the
line of shortest distance, s the line of intersection of the planes separately
drawn through AB, CD perpendicular to the plane ‘o’.

We now solve the equation.
The equation of the plane containing the line (i) and parallel to
the line (¢7) is
" xz—8, y+9, 2—10 |
|
3, —16, 7 =0
| 3 8 =5
or 2x+3y+62—49=0 ...(352)
Perpendicular distance of the point (15, 29, 5), lying on the
second line, from this plane
30 +87430—49
7
=14,

which is the required magnitude of the shortest distance.
The equation of the plane through (i) perpendicular to the plane
(¢d7) is
z—8, y+9, 2—10
3, —186, 7 =0

2, 3, 6
or 1172+ 4y—412—490=0. oo (1)

The equation of the plane through (i¢) and perpendicular to the
plane (i) is :
z—15, y—29, 2—5

3, 8, —5 =0

2, 3, 6
or 92 —4y—2=14. ee()
Hence (iv), (v) are the equations of the line of shortest distance.
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2. Find the shortest distance between the axis of z and the line
ax+by+cz+d=0, a’x+b'y+c'z+d =0.
(D.U. Hons. 1948, B.U. 1955)
The third method given on page 56 will prove very convenient in
this case.
Now, any plane through the second given line is
ax+by+cz+d+k@’z+b'y+c'z+d)=0, '
i.e., (@a+ka’)x+ (b+kb )y+ (c+kc')z+(d+kd')=0. «.(7)
It will be parallel to z-axis whose direction cosines are 0, 0, 1, if
the normal to the plane is | z-axis, i.e., if,
0.(a+ka')+0.(b+kb")+1.(c+kc')=0,
t.€., k==—c/c.
Substituting this value of k in (i), we see that the equation of
the plane through the second line parallel to the first is
(ac’' —a'c)x+(bc’' —b'c)y + (dc’ —d'c)=0 .. [37)
The required S.D. is the distance of any point on z-axis from the
plane (i7).
& S.D.=perpendicular from (0, 0, 0), (a point on z-axis)
_ dc’—d'c
=% ae = a0+ (b’ <o)
Exercises

1. Find the magmtude and the cquations of the line of shortest distance
between the two lines :

z=3_y+15_2—9 =z+l_ y—1_ 2-9

() B S R w—
y z—3 _y—4 _z+2 2—1_y47_ 242
(#) S S 17T 8 T2

[Ans. (1) a=y=2z; 44/3.
(4i) (x—4)=(y—2)/3=—(z4 3)/5 ; 1/35.
2. Find the length and the equations of the shortest distance line hetwoen
bx—y—2=0, z—2y+2+3=0;
Te—4y—22=0, z—y+2—3=0,
[Hint, Transform the equations to the symmetrical form.]
[Ans. 172420y —19z—39=0=8x+5y—312+67 ; 13/4/75.
3. Find the magnitude and the position of the shortest distance between

the lines
(1) 2z+y—2=0, x—y+22=0; 242y—3z=4, 20 —3y+42=>5,

(49) ”—=giél=z—2 ; br—2y—324+6=0, 2—3y+2:—3=0,

4 2
[Ans. (3) 3x+2=0=22x—5y+42-—67, 24/ 14/7.
, (%) Tox—2y—112+420=0=13z—13z+24 ; 171/6/39,
4. Obtain the co-ordinates of the points where the shortest distance
between the lines
z—23_y—19 _2—26 «—12_y—1_2-5
—6 -+ 3
meets them, [Ans. (11, 11, 31) and (3, 5, 7).
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5. Find the co-ordinates of the point on the jomn of (—3, 7, —13) and
(—6, 1, —10) which 1s nearest to the intersection of tho planos

3x—y—32432=0and 3x+2y—152—8=0.
[Ans. (=7, —1, —9).
6. Show that the shortest distance between the lines
z4+a=2y=—12z and r=y42a=62—6a
is 2a.
7. TFind the shortest distanco between the lines
r—1 _y—2 2—3 a—2 y—-3 2—4
2 3 T4 377 475 7
show also that the lines are co-planar, (P.U. 1926)
8. Find the length and equations of the line of shortest distance between
the lmes
e T (B.U. 1956)
[Ans. 9; 3204345+ 132—108 =20, 12,0433y 4 152—81=0,
9. Show that the longth of tho shortest distance between the line
z=x tan «, y =0 and any tangent to the ellipse x2 sin? a+ y2=qu?, z=01s constant,
10. Show that the shortest distance between uny two opposite edges of the
tetrahedron formed by the planes
y+2=0, z2+2=0, 2+y=0, 24+y+z=a
is 2u/4/6 and that tho three lincs of shortest distance intersect at the pomnt
@¢-zy=i=—a. (D.U. Hons. 1960)

37. Length of the perpendicular from a point to a line. 7o
Jind the length of the perpendicular from a given point P(xry, y;, 2,) to a
given line

r—a_y—B_z—Y P(xpyzn

l m n

If H be the point («, 3, ) on
the given line and ¢ the foot of the

perpendicular from P on it, we have, A(<,8Y) Q
PQ*=HP*—HQ> Fig. 17.

But HP*=(2,—a)*+(y,—B)*+ (2 —7)?,

and HQ@Q=projection of P on the given line

=l(z,—a)+m(y,—B)+n(z=7),
provided [, m, n, are the actual direction cosines.
o PQ*=(x;—a)*+(y,—B)* + (2,—7)?
— Uz, —a) +m(y,—B) +n(z—7) ]2
The expression for PQ? can be put in an elegant form as follows :
We have, by Lagrange’s identity, '
PRE=[(x;— &)+ (y,—B)* + (21— ][I +m* + n?]
—[Uzy—a)+ m(y, —B) +n(z, —7)]?
=[Uy1—B) —m(x,— &)+ [m(z, —Y) —nly,—B)]*
+[n(x,—a) —U(z;—=7)]?

2 n—pB =7 [ 7=y, r—a

T1—a&, yx"‘ﬁ

L, m m, n n, lle
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Exercises

1. Find the length of the perpendicular from the point (4, —5, 3) to
the line

r—5_y+2_2z—06 4/ (475)
B S i [Ans. g

2. Find the locus of the point which movoes so that its distance from the
line x=y=2z is twice its distance from the plane z+y-+4z=1.

[Ans. a%+4y2422450y+5yz+ber—do—4y—4z+2=0,

3. Find the length of tho perpendicular from the point P(5, 4, —1) upon
the line (z—1)=3y=14z. [Ans. 4/(2109/110).

3-8. Intersection of three planes. 7o find the conditions that
the three planes

a,x+by +cz+d,=0; (r=1,2,3)

should have a common line of intersection.

If these three planes have a common line of intersection, then

azx+byy+csz +dg=0 ...(3)
must represent the same plane as
a,x+b,y + ¢z +d+Magz+by +cpz+dy) =0, N (1)

for some value of A.
Comparing (¢) and (i), we get
a1+7\a2=b1+7\b2 _clf_xcl=d1+}\d2
as l)3 C3 d3
o a,+Na;—kaz=0,
by +Aby — kby =0,
¢y +Aeg —kes =0,
di+Ady—kdg=0.
Eliminating A and % from these four equations, taking them
three by three, we obtain

\ .
a,, by, ¢y by, ¢y, d | ay, ¢y, ay, by, dy

=k, (suppose)

ag, by, 63| =0, by, 0y, dy | =0, |ay, ¢y, dy| =0, |ay, by, d,| =0,

ag, by, ¢ bs, c3, d3
which are the required conditions.

Only two of these four conditions are independent for, if the
planes have two points in common, they have the whole line in
common and this fact requires only two conditions.

These four determinants will respectively be denoted by the
letters A\, A1, Doy Da

Note. The following is the Algebraic proof of the fact that only
two of the above four conditions are independent, s.e., if two of these
four determinants vanish the other two must also vanish.

ay, ¢y, dy as, bs, ds

a, by, ¢ by, ¢1, dy
Let ag, by, €3 |=0==| by, ¢y, dy

a37 ba, 63 b89 Cg, da
:. a1A1‘+a2A2 +(l3A3=0

d1A1+dgA2+daA3=0
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. ) AJA ,,:_.‘_4,?,___._-: . Ay — 1,‘ (suppose)
 aydi—aydy  Ggdi—0ydy  aydy—agd, kPP
or  aydy—asdy=kA;, asd,—a,dz= kA,, ayds—a,d,=kA,.
Thus we obtain
by(ayds — aydy) +by(asdy — ayds) + by(ady — aqd,)
=k(A;b,+ Agby+ A5h3) =0,
Y[ a, bl; dl
i.e., | ay, by, dy [=0.

|
| ag, by, dy

Similarly it can be proved that
| @y, 61, dy

Ay, Coy dy |=0.

@3, Cg, Ay
Note. The same conditions will also be obtained in § 3'82 in a
different manner.

3-81. Triangular prism. Def. Three planes are said to form a
triangular prism if the three lines of intersection of the three planes,
taken in pairs, are parallel.

Clearly, the three planes will form a triangular prism if the line
of intersection of two of them be parallel to the third.

; 3-82. To find the condition that the three planes
ax+by+c,z+d,=0; (r=1, 2, 3)
should form a prism or intersect in a line.

The line of intersection of the first two planes is

iﬁ@@z ‘j,_bzdl)“/(“lbz —asb;) Y (aydy— ) [(@yby— ay),)

b,c3—bgecy azEl: dﬁ_
@;éE;'BT ...(1) (See Page 41)
Sy

/

A

AN

(6

8 7o

v/
Fig. 18. Fig. 19.

The three planes will form a triangular prism if this lines
parallel to the third plane but does not lie in the same.
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Then line (i) will be parallel to the third plane, if
(D¢~ byey) +b3(c185 —C01) + ¢4 (a1hy—0a,0,) =0,
or ay, by, ¢

ag, bz, 62 =0,

a3, bs, ¢
ie., ‘ A =0.
Again, the planes will intersect in a line if the line (¢) lies in the
plane azx +bsy+cs2+d;=0. This requires :
(1) this line is parallel to the third plane which gives A =0, and
(2) the point ( 1‘;”_22(;1 Z:Z: —Z;: 2 O) lies on it which gives

a3(b,de—bady) 4 by(ayd, — ayds) +dy(aby —ash,) =0,

or ay, by, dy

Ay, bﬁ’ dy =0,

as, bs, dy
?‘.(’., A:;:" .
Thus the three planes will intersect in a line, if

A=/N3=0,
and will form a triangular prism, if
A=0and N;#0.

Note. Three distinct non-parallel planes behave in relation to
each other in any of the following three ways :—
(¢) They may intersect in a line which requires that two of the
four determinants /. A, Ns, A3 should vanish,
(#7) They may form a prism which requires that only /\ should
vanish. )
(777) They may intersect in a unique finite point which requires

that A#0.

" Exercises

1. Show that’ ﬂhe followmg sets of planes intersect in lines :
(i) 424-8y+824.7=0, 2r+y—dz41=0, z—T2—2=0.
(71) 2x+4y+++4=0, y—244=0, 3x+2y+42+8=0.
2. Show that the following sets of planes form triangular prisms :
(?) x4+y+243=0,32+y—2:42=0, 2x+4y+ 72— T7=0.
(i2) —2—1=0, v+y—22—3=0, v—2y+2—3=0.
3. Examine the nature of the intersection of the following sets of planes :
() 4o—by—22—2=0, 5x—4y+2:4+2=0, 2x42y+82—1=0.
(i7) 2243y—2—2=0, 3r+3y+2—4=0,x—y+2:—5=0.
(428) Bx4-3y+ 72 —4=0, 3x+26y+22-9=0, To42y+10:—-5=0.

() 2x+46y+411=0, 6x+20J—-6z+3 0, 6y—1824+1=0.
[4ns. (¢) prism, (4) point, (uz) line, (dv) prism.
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4, Prove that the planes
z=cy+bz, y=az+cx, 2=br+ay,
pass through one line if
a?+b24-¢c2+42abec=1,
and show that the line of intersection, then, is

ad Y

z
Va9 y(1—e) (B.U)
5. Show that the planes
bx—ay=n, cy—bz=I, az—cx=m,
will intersect in a line if
al+bm—+cn=0,
and the direction ratios of the line, then, are, a, b, c.
6. DProve that the three planes
bz—cy=b—c, cx—az=c—a, ay—br=a—b,
pass through one line (say !), and the three planes
(c—a)z—(a—b)y=b-+tc,
(a—b)e—(b—c)z=c+a,
(b=c)y—(c—a)zr=a+Db,
pass through another line, say (I'). Show that the hnesand !’ are at right
angles to each other.



CHAPTER 1V

INTERPRETATION OF EQUATIONS
LOCI

4'1. In Chapters II and III, it has been shown that any equa-
tion of the first degree in x, ¥, 2 represents a plane and two such
equations together represent a straight line.

We now consider the nature of the geometrical loci represented
by the equations of any degree.

42. Equation to a surface. Locus of a variable point with its
current co-ordinates x, y, z connected by a single equation f (z, y, 2)=01s
a surface.

Consider any point («, 8, 0) on the XY plane. The line through
this point drawn parallel to the Z-axis, viz., x=a, y=8 meets the
locus in points whose z-co-ordinates are given by the roots of the
equation f(«, 8, 2)=0.

As this equation has a finite number of roots, the number of
points of the locus on every such line is also finite. Hence the locus,
which is the assemblage of all such points for different values of «, 8,
must be a surface and not a solid.

Thus the equation f(x, y, z) =0 represents a surface.

421. Equations free from one variable. Cylinders. Locus of
the equation f (x, y) =0 is a cylinder with its generators parallel to Z axis.

Consider the curve on the XY plane, whose two dimensional
equation is f(x, y)=0. Let («, B) be any point on itso that f(«,B)=0.

Any point («, 8, 2) on the line through this point, drawn parallel

to 0Z, therefore, satisfics the equation f (z, )=0 and hence the whole
line lies on its locus.

Thus the locus is the assemblage of lies, parallel to OZ drawn
through the points, on the curve and is, therefore, a cylindrical
surface.

Similarly the loci of the equations

f(y,2)=0 and f (2, )=0
are cylinders with generators parallel to the X-axis and the Y-axis
respectively.

Ex. What surfaces are represented by the equations

(7) x2+4y2=a?, (#3) a2/a?+y2[b2=1, (447) y2=4ax.

(tv) zy==c2, (v) x2[a2—y2[b2=1.

422. Equations containing only one variable. Locus of the
equation f(x)=0 is a system of planes parallel to the YZ plane.

If o), Gy, Kg.ceueeenrunesrnnneenneensaely be the roots of the equation

f@)=0,
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then this equation is equivalent to
(x—ay)(x—0t) e vareee(x—0ty) =0
and, therefore, represents the planes
T=0y, T=0Olgyerreers .y =0y,
which are parallel to the YZ plane.

Similarly the loci of the equations f(y)=0 and f(z)=0, are
systems of planes respectively parallel to the ZX and XY planes.

4:3. Equations to a Curve. Two equations
f(x’ Y, 2):(), ¢(x, Y, Z)'~=O
together represent a curve.
The points, whose co-ordinates satisfy these equations simul-

tancously, are common to the two surfaces separately represented by
them and, therefore, lic on their curve of intersection.

Hence the locus of a point whose current co-ordinates are
connected by fwo equations is a curve.

Exercises
1. TFind out the loci vepresented by
(7) a?lal4-92[b2=1,2=0, (47) y2=am, z=c,
(777) @24-y2 =02, 2= 2.
2. Show that the two curves
Sz, y, 2)=0, 9(z, y, 2)=0;
f(l', Y, :)_*’Q(”‘s Y, :) ::0’ f(‘Tx Y, 5)—?‘?(“‘, Ys :):0
are identical.

3. Find the equations to the parabola whose focus is the point (1, 2,3,),
and directrix the hne r=y=z.

[“Ans. 22424224204 2y24-202— 60— 12y—1824-42=0=0—2y 2.

4'4. Surfaces generated by straight lines. Ruled Surfaces. A
straight line subjected to three conditions only, can take upan infinite

number of positions, The locus of these lines is a surface called a
ruled surface.

441. To determine the ruled surface generaled by a siraight line
inlersecting three given lines

Uy =0=0v, ; Up=0=0, ; ug=0=w;,
where w=a,x+by+cz+d,, v,=a" 2+ by +c'2+d,.
The straight line
Uy +A 0 =0=uy+ A0, .. (?)
intersects the first two lines for all values of A, A,. (Note Page 50)

The condition of intcrscction of the line (¢) with the third given
line is a relation between A, A, say

J(A1, A)=0. v (35)

The required ruled surface is, then, obtained by eliminating
A5 A, between (7) and (%),

Another method will be indicated in the examples below.
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4:42, Condition for the intersection of a straight line and a curve,
If a straight line intersects a given curve, the co-ordinates of the
points of intersection satisfy the four equations (two for the straight
line and two for the curve) so that the four equations are simul-
taneously valid, 7.e., consistent. The condition for consistency is
obtained by eliminating z, y, z from the four equations.

Examples
1. Find the condition that the line
z—a _ y—B_ 27 :
= "m = ..(2)
should inlersect the curve
xy=c?, 2=0. ... (1)

Eliminating z, y, z from (i) and (i4), we obtain

(=) (p="0)=

which is the required condition.
2. Find the locus of the line which tnlersects the three lines

y=b, z2=—c; z=¢, x=—a;z=a, y=—0>.
First Method. The line
y—b+A(z +€)=0, z—ctAyfz4a)=0, i)

which interscets the first two of the given lines, will also intersect
the third,

. . 20
if \c——2a7\2:=7A1—c
or c= br-{-a7\z. ...(22)
A
Eliminating Ay, A, from (¢) and (i), we obtain
bﬁ(z +ﬁc)_ z—c

T y—b  %ta
or o(z+a)(y—b)+alz—0)(y—b) 4 blz+a)(z+) =0,
or ayz+bzx +cxy + abec=0,

which is the required locus.

Second Method.
b Let the equations of the variable line intersecting the given lines
e
z—e_y—B =Y '
l m n ()
so that («, B, ¥) is any point on the line.
-It will intersect the three given lines, if

b= _ _ et (i)

l n
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c—Y _ ata
=T ...(113)
a—a _ b4p .
and = D))

(Note Page 49)

Eliminating I, m, n, between (1), (74) and (iv), we have

(@—a)(0—B)(c—7)+(a+«)(b+B)(c+7)=0.

As («, B, 7) is any point on the variable line, the required locus

(a—2)(b—y)(c—2)+(a+z)(b+y)(c+2)=0,
or ayz+bzx -+ cxy+abe=0.
3. Two skew lines are given by the equalions
ax+by=z4+c=0; ar—by=2—¢=0;
show that the lines which are perpendicular to the line with direction
costnes proportional to I, m, n, and which meet the given lines generate
the surface

is

abz(lx+my + nz) =c(a*mx+b%y +aben). (M.T.)

Let the variable line be
r—o_y—B_z=Y .
2z " v ... (2)

This will be perpendicular to the line with direction cosines
proportional to I, m, n,

if
INmp+nv=0, ...(21)
and will intersect the given lines
if
al (Y + ¢)+bu(Y +c) —v(ax+b3)=0. ... (3%1)
and
aX(Y—c)—bu(¥Y—c)—v(ax—bB)=0. ... (1)
Eliminating A, p, v from (d7), (437), (tv), we have
a(y—c), —b(y—c), ax—bp
a()”{’c)’ b(}"}'c), a“'i"bB 209
l’ m, —n
or l(abay —b2cB) —m(abBY — a’cx) + nab(Y2—c?) =0.

The required locus, therefore, is
abz(lx+my + nz) = c(a?ma + b2ly -+ aben).
4. Find the locus of the line which moves parallel to the ZX plane
and meets the curves
zy=c? 2=0 ; y*=4cz, =0 ;
verify that the locus contains the curves.
Let the variable line be
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x—“=y_—6=z_:-'y )
l m  on ()
Thys will intersect the two given curves
. 24 my ..
if (oc-—;;)(ﬂ— ” )=c2 ...(4t)
oom\ 2 on
and (8="7) =tc (»-F) ..(iid)
The line (z) will be parallel to the ZX plane
if m=0. .. (1v)

Eliminating I, m, n from (i7), (¢7) and (iv), we obtain
(c*—ap)(B—4cY)=4call?,
so that Y2 (E—ay)=4c%
is the required locus.
Putting z and 2z separately cqual to zero in this equation we get
y?=4cz and xy=c? and hence the verification.
5. Find the equation of the surface traced out by lines which pass
through a fixed point (x, B, Y) and intersect the curve
ax®+by’=1, z=0.
Any line through (a, B, 7) is
z-o_y—Pf_z=7. ;
l m n ) ...(1/)

1, m, n, being variables.
It will intersect the given curve

if a(a_i)f 2+b( p~2Y =y ... (i)

n
Eliminating I, m, n between (i) and (i7), we get

a( a—)’:;; z+b (B —7‘3{3)2=1,

or a(az—Y2)2+b(Bz—Vy) =(2—7)?,
which is the required equation to the surface.

Exercises

1. Prove that all lines which intersect the lines
Y=MX, 2=C; Y=—MT, 2=—C
and are perpendicular to the X-axis lie on the surfaco
maz=cy.
2. Find the locus of the lines which are parallel to the plane
x+y=0,
and which intersect the line x—y=0==z and the curve
x2=2az, y=0. [Ans, x2—y2=2qz.
3. Find the surface generated by straight lines which intersect the lines
y=0, z=c ; =0, z=—c ; and are parallel to the plane
le+my+nz=0, [Ans, Ix[(z+c)+my/(z—c)+n=0.
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4. Show that the equation to the surface generated by straight lines
intersecting the three lines

x=4a, y+22=0; x4+ 4a=0, y=2z ; y=4a, v=2z,
is
224 y2—422=106a2.
5. A variable line intersects the three lines
y—2=1,2=0; z2—a=1,y=0; z—y=1, 2=0.
Show that the locus is
22+ y2422—2xy—2yz—2zx=1.
6. Obtain the locus of the straight Iine which intersects the circle
22492272, 2=0
and the two straight lines x=0=z+a ; y=0=2—a.
[Ans. a?[v2(z—a)24-y2(z+a)2]=r2(z2—a?2)2.
7. Prove that the locus of a line which mcets the lines
Yy=xmz, z=2c
and the circle
224y2=a?, 2=
is e2m?2(cy —mxz)24c2(yz—cmz)2=a2in2(22—c2)2.
(D.U. Hons. 1948)
8. A straight line is drawn through a variable point on the ellipse
z2[/a24y2[b2=1, 2=0 to meet two fixed lines
Y=mz, 2==C ; y=—Inx, 2=—C.
Find the equation to the surface generatod.
[Ans.  a2c2m?(cy—maz)? 4 b2c2(mex—yz)2=a2bm2(c2—22)2.
45, Equations of two skew lines in a simplified form. 7o find
the equations of two skew straight lines in a simplified form.

Let the shortest distance betwcen the two given lines 4B and
CD mecet them at L and M and be of length 2c.

Fig. 20

Through O, the mid-point of L3, draw OG and OH parallel to
AB and CD.

Take the bisectors of the angles between OG and OH as the X and
Y-axis and LM as Z-axis. These threc lines are mutually at right
angles.

If the angle between the given lines be 29, the line OG makes
angles g, 4w —0, }m with the axes OX, 0Y, OZ so that the direction
cosines of 4B which is parallel to OG are
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cos @, sin 6, 0.
Also, since OH makes angles —¢, 4w+6, in with the axes,
therefore the direction cosines of CD are

cos g, —sin 4, 0.
Finally, the co-ordinates of L, M are
(0, 0, ¢) and (0, 0, —c)
respectively, for LM =2c.
Thus the equations 4B, CD are

x 1 z—c .
&),é,é=sh-1/0 T M YT tang, z=c;
Lr Y _ETe —_— =
and cos B sing 0 1.6, Y z tan g, 2 c

respectively.
Note I. (r, r tan 0, ¢) and (p, —p tan 0, —c) are the general co-ordinates of
points on the two lines ; » and p beng the parameters.

Note 2. Solutions to certamn problems relating to two non-intersecting
straight lines are often simplified by taking the cquations of the lmmes in the
simplified form obtained above.

Exercises

1. Find the surface generated by a straight line which meets two given skew
lines at the same angle.
Choosing the axes as in § 4'5, the equations of the two lines can be taken as
x Yy _z—c

i :7&-*'~0 ...()
A s i
and T ™ G .o (79)

8o that the points (», mr, ¢) and (p, —mp, —c) lie on these linos for all values of
r and p.

The line joinng these points is
T—r__ y—mr _z—c

r—p m(r+p) T2 ()
As it makes the same angle with both the lines (#) and (4%), we have
r—p+m2(r+p)=r—p—m2(r+p) N ()

or r+4p=0.
From (sii) and (¢v), we have

xr—r_z—cC B
2 = 2 and y—mr=0,
8o that eliminating r, we obtain
mex=yz,

as the required locus.

2. A line intersects each of two fixed perpendicular non-intersecting lines
so that the length intercepted is constant ; show that the locus of the middle
point of the intercept is a circle.

3. A line of constant length has its extremities on two fixed straight
lines ; find the locus of its middle point. (D.U. Hons., 1959)

4. Find the locus of a point which moves so that the perpendiculars
drawn from it to two given skew lines are at right angles.

5. Two skew lines AP, BQ, mnclined to one another at an angle of 60°, are
intersected by the shortest distanco between them at 4, B, respectively, and
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P, Q are points on the lines such that 4Q is at right angles to BP ; prove that
AP.BQ=2AB2.

6. Two skow lines AP, BQ are met by the shortest distance between them
at A, B and P, Q arc pomnts on them such that AP—-r, BQ—p. If the planes
APQ and BPQ are perpendiculars show that, pr, is constant.

7. AB and CD are two fixod skew lines, Planes are drawn through them
at right angles to cach other. Find the locus of their line of intersection, Show
that the locus degenerates into two planes if AB 1s perpendicular to UD,

8. AB, CD are two perpendicular skew lines and the shortest distance
between them meets the sano at L and M ; O 18 the mid-point of LM ; P and
P’ aro variable points on AB and ¢D such that QP24+O0P‘2is constant. Find
the locus of the line PP’.

9. Prove that the locus of the point which is equidistant from the lines
y—mx=0=z—c¢, y+mae=0=z+4c
is the surface
may+(1-+m2)cz=0.

10. One edge of a tetrahedron is fixed in magnitude as well as position,
and the opposite edge 1s of given length and lies along a fixed straight line.
Show that the locus of the centroid of the tetrahedron 18 a straight line.

11. The length of two opposite edges of a tetrahedron are a, b ;the
shortest distance between them s 2¢ and the anglo between them is a«; prove
that its volume is («be sin «)/3.

12. A4, B, C and 4’, B’, ¢’ arc two scts of pomts on two skew lines. Prove
that if

AB:BC=A'B' : B'¢’,
the middle points of 44’, BB’, CC’' are collinear. (M.T.)
13. Lines are drawn to intersect the lines
y—mr=0=z—c and y+mr=0=z+c
and to make a constant angle with z-axis. Show that the locus of their mid-
pomts is an ellipse whose cccentricity 18

(1——7;»4)% or (m"t——l)i /7)1,2
according as m2<<1 or > 1.
14. AA’ is the common perpendicular of two skew lines PQA, P'Q’A4’;
P, Q being any two points on the first lmc and P’, @’ any two pomts on the

sccond. Prove that the common perpendicular of A4’ and the line joining the
mid-points of PP’, QQ’ bisects 44, (M.T.)



CHAPTER V
TRANSFORMATION OF CO-ORDINATES

5:1. The co-ordinates of a point in space are always determined
relatively to any assigned system of axes, generally called the frame
of reference and they change with the change in the frame of reference.
We shall now obtain the formulae connecting the co-ordinates of a
point relative to two different frames of reference.

5-11. Change of origin. 7o change the origin of co-ordinates
without changing the directions of axes.

Let OX, 0Y,0Z, be the original axes and 0'X’, 0'Y’, O'Z’, the
new axesrespectively parallel to the original axes. Let the co-ordi-
nates of O’ referred to the original axcs be (f, g, h).

Let the co-ordinates of any point P be z,y,zandz’, y, 2
referred to the original and the new axes respectively.

Draw PL perpendicular to the parallel plancs YOZ and Y'0'Z’
meeting them at L and L’ so that

LP=z and L' P=x'.

Now, LL'is equal to the length of the perpendicular from O’ to
the YOZ plane and is, therefore=f.

’

ZA ¢ A7
L £ P
rd “I—-—_‘——-X
v/
9 X
7
Fig. 21.

Also LP=LL'+L'P
kA x=x"+4f.

Similarly
y=y'+g, and z=2"+h.
Hence, if in the equation lo any surface, we change
z, Y, 2
to z+f, y+g, z+h

respectively, we obtain the equation to the same surface referred to the
point (f, g, h) as origin.
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Ex. Find the equations of the plane 22+ 3y+4z=7 referrod to the point
(2, —3, 4) as origin ; directions of the axes remaning the same.

[Ans. 2x4-3y+-4z4-4=0.

5:12. Change of the directions of axes. 7To change the directions
of axes without changing the origin.

Let Iy, my, ny; Iy, my. ny ;5 ly. mg, ng be the respective direction
cosines of the new axes OX’, OY’, OZ’ referred to the original axes
0X, 0Y, OZ.

Let z,y,z and 2, y’,2 be the co-ordinates of any point P
referred to the two systems of axes.

Draw PN | X'OY’ plane meeting
it in N’ and also N'L’ | OX' meceting it
in L' so that

OL'=xz" ; L'N'=y’ ; N'P==z.

Now, the projection of OP being
equal to the sum of the projections of
OL', L'N’, N'P on OX’, we have,

x=Ix" +Ly +Lz' ,
Similarly y=m;x'+m,y’ +msz’y 3 ...(A)
and z=nx" +ny’ +ngz'.

By a method similar to the one adopted, we can show that

x' =lLx+my+nz;
Y =lx+my+n,z; -.(B)
z =lx+myy+nyz ;

The results (A) and (B) can easily be written down with the

help of the following table :

Fig. 22.

z" | {5 | ms | ng

Exercises
1. Find the equation of the surface
81245924322 4-2y2+ 2220+ 22y =1
with refcrence to axes through tho same origin and with direction cosines
proportional to (—1, 0, 1), (1, —1, 1), (1, 2, 1), [Ans. 22243y2+4622=1,
2. Show that the equation ly+my+nz=0 becomes z=0, when referred to
new axes through the same origin with direction cosinos
—m l —In —mn
Vim0 O ety VET) s bm .
Hence show that the curve az2+by2=22, lx+my+nz=0 is a rectangular
hyperbola if (a+b)n2 +am2+4bl2=0,
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513, T'he degree of a surface is unaltered by any transformation
of axes.

Since, for z, y, z we always put expressions of the first degree in
z, ¥, 2, the degree cannot increase.

Also, it cannot decrease for, otherwise, on ret}ransforming it
must increase.

5:2. Relations between the direction cosines of three mutually
perpendicular lines.

1, my, m, 5 lg, My, ny 5 I, mg, mg being the direction cosines of
three mutually perpendicular lines 0X, OY, OZ, we have the relations

L 4mld+n,’=1;

13 +my2+ny2=1; ...(4)
I3+ mg?+ng=1;
Lly+myme+n,n,=0;

Lol +myma+nyng=0 ;} ...(B)

and lsly +mgmy +ngn,; =0 . (Cor. 3, Page 17)

Thus these six relations exist between nine direction cosines.
They can also be expressed in another form as shown below.

Now, 1;, I3, I3 ; my, mg, mg ; ny, ny, ng are clearly the direction
cosines, of the original axes 0X, 0Y, OZ referred to the new. There-
fore, we have the relations

l12+l22+532: >
my24myt+my2=1 ; ...(C)

n4n?+ng?=1;

and Limy+lmy+1lamy=0 ;
MMy~ Mg+ Mmgny=0 ; ...(D)

s+ noly+nyls=0. J
The relations A, B, ¢, D are not independent.

In fact the relations C, D can be algebraically deduced from the
relations A, B and vice versa, without any geometrical considerations

at all,
Cor. If 1y, my, ny ;5 Uy, my, my 5 ly, mg, ng be the direction cosines of
three mutually perpendicular straight lines, then

[l ’ my, n

l2’ My, Ny =3:i:1-

133 m3’ ng
For, if D be the given determinant, we have
Iy, my, nq) |, my, ny
D2=|l,, My, g X |ly, my, Ny

L3, mg, ng s, mg, ng
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P+ m? + ng?, Ll mygmytrgng, Lily+mymg+nyng
=Ll tmymgt+nyng, 12 +mg? + na?,  lyly+mgms+nyng

Lls+mmg4-nin,, Ll +mymy+ngn,, L2+ ms® + ngt

1, 0, 0/
= 0, 1, 0 |=1.
| 0, 0, 1
Hence D==+41.

5-3. Invariants. If, by any change of rectangular axes without
change of origin, the expression

ax®+-by* 4 c2® + 2 fyz+ 2922+ 2hay

becomes
a'2? 4 b'y?+c'2 + 2f ya+ 29 20+ 2h'zy
then
(7) a+b+c=a +b'+¢,
(1) ab+bctca—fi—g>—hi=a'b'+0'¢'+c'a’"—f'*—g'2—h'3,

(g22) a h g | a b g
!
b fl= W b f

g f c E gl fl N CI .
Consider two sets of rectangular axes .

Oz, Oy, Oz ; OX, 0Y, OZ
through the same origin 0. Let P be any point so that if (z, y, 2),
(X, Y, Z) be the co-ordinates of the same relative to the two systems
of axes, we have

22442422 =0P*=X%*4 Y2+ 72
Thus we see that
.’E2+y2+22,

X34 Y3422,

becomes

Also, as given,
ax?+by?*+c2t+ 2fyz+ 2gzx + 2hxy

a' X240 Y2 4 22+ 2f'YZ +29'ZX + 20 XY .
Then if A be any constant number, the expression
ax?+by?+c2?+ 2fyz+ 2gzx -+ 2hay +Nxt+y%+2°)
=(@ 4N+ (0 + Ny +(c+ N2+ 2fye+ 2g2z+ 2hay  ...(1)

becomes

becomes
o' X240’ Y2+ ' 224 2f'YZ+29'ZX +- 20 XY + N X234 Y24 Z2)
=(a'+N)X2+ 0" +AN) Y2+ (c'+N) 22+ 2f'YZ+29'ZX + 21" XY ...(2)
If now, for any value of A, the expression

(1) becomes a product of two linear factors, then, for the same
value of A, the expression _~ _ ~—— -~
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(2) must also become a product of two linear factors. This
follows from the fact that the degree of an expression does not
change as a result of the change of axes so that the linear factors of
(1) will become the two linear factors of (2).

Now, by § 2'8, P. 37, the values of A for which the expression (1)

and (2) are the products of linear factors are respectively the roots
of the cubic equations

atN b g ‘} a’ +A r g
\
h b+A f =0, K V4N f =0
| , ’ ’
| g f c+A g f ¢ +A
i.e., N4+A(a+b+c)+Abe+catab~ f2—g*—h?)+ D=0, ...(3)
NHA(a"+0 +c") +Ab e +c'a’+a'b’ —f'2—g't—h'?)+ D' =0, ...(4)
where
| a h g { al hl gl
D= b b I D'=| b b I
g f o g f
As the equations (3) and (4) have the same roots, we see that
1 _atbte _  beteatab—f—g?—h* _ D
T al+bl+cl b,C"*“C’a:’*f' albl —f’?‘—-glz—h" D/ ’
so that a+bt+c=a+b +c,
betcatab—f2—g>*—hi=b'c'+c'a’ +a'b' —f'2—g'2—p'2,
D=D',

Note 1. The result obtained above shows that if in relation to
any second degree homogeneous expression

ax?+by?+ c2®+2fyz+2g2x + 2hay,
x, Y, z be subjected to any change of rectangular axes without change
of origin, then

a+b+c, betcatab—f2—g*—h2, D

are invariants.
Note 2. It may be seen that
be+ca+ab —fi—g*—ht=A+B+4C,
where A4, B, C are the co-factors of @, b, ¢ in the determinant D,
Ex. Show directly by changing
z, Y, 2, to x+p, y+q, 2+r

at+bic, A+B+C, D
are also invariants for change of origin.

[In fact, as may easily be seen, the co-efficients a, b, ¢, f, g, h,
are themselves separately invariants for a change of origin without
change in the direction of axes].

respectively that
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Ex. 1. 04, OB, OC are three mutually perpendicular lines through
the origin, and their direction cosines are

l1, my, ny ;5 Ly, my, ny 5 13, My, na.
If 0A=0B=0C=a, prove that the equation to the plane ABC is
(L1 +15)x + (my+ma+ ma)y + (ny+ np+ng)2=a.
Let the required equation be
le+my+nz+p=0. ...(2)
The co-ordinates of A are (al,, am,, an,).
The plane (¢) passes through 4. Therefore, we have

a(lly+mm;+nn,)+p=0. .o(22)

Similarly, we have )
a(lly+mmy+nny) + p=0, .. (e7)
a(lly+mms+nng)-+p=0. .o ()

Multiplying (43), (¢42), (iv) by I}, L, I; respectively, and adding,
we get
al+p(li+1,+15)=0,
(From relations D. Page 74)

or L _htlhtl
P a
Similarly
m . _mtmytm,
P a
and 1!; = — 1}1 + ngifng .
P a

Making substitutions, in (i), we get the required result.

Ex. 2. 1,, m,, n,; (r=1, 2, 3) aro direction cosines of three mutually per-
pendicular straight lines and
a b + ° _p @ b c

ll ;)l_l- ny

s 7 T —=0.
lg g mg
Prove that
afl3+bfmg+cfng=0and a: b : c=1 Il : mymomy : nyngny,
Ex. 3. If three rectangular axes be rotatcd about the line given by
z/l=y[m=z/n

into new positions and the direction cosines of the new axes referred to the old
ars Iy, my, ny ; lp, My, ng ; lg, mg, ng ; and, if

1 =+ (mgng—mgny)

then Umgkng) =m(ny+1l3)=n(lg+my). (B.U.)
Examples
1. Shkow that the planes
3x—6y—>524+3=0, ... (3)
6x — 9y —82+3=0, ... (27)
r—y—2z+2=0. «o(112)

form a triangular prism. Find the area and the lengths of the edges of
its normal section.
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Symmetrical form of the equations of the lines of intersection of
the first two planes is
z—1_y~-1_ =z
T Ty
and, as may be easily shown, this line is parallel to the third plane
but does not wholly lie in it. Hence the planes form a prism.
Normal sections of the prism are congruent triangles.
We consider the normal section through the origin. Equation
of the plane of this section is
x—2y+32=0. ()
Co- ordmates of the three vortices of the triangular sectlon are
obtained by solving simultaneously each of three pairs of the given
equations with the equation (iv).
Thus the vertices are
A(——%%) %2: ]34) B(—:ll;:: '_%%: —l%i)i O(%g: %%1 _1§4)'
Therefore, the lengths of the edges 4B, BC, CA are
V1512 V10136 4/3920
14 7 147 14
Let A be the arca of A\ ABC. The co-ordinates of the projec-
tions A'B'C’ of A, B, C on the XY plane are
("147: 14; 0); ( 14; 14»0)’('}?% %?2' 0)

Let /\; be the arca of A\ A'B'C’. Therefore,

—41 _18 7
14, 14> I
—1 21 40 -8
[\z_z 14 14 1 “%
1 12 1
14 14>

Let 9 be the angle between the planc (7v) and XOY plane.
Therefore,

cos f=- 3
V/(14)
Also A,=A cos 0.
. A ._:? Evs 14
.o A_cos v 7 3_"_”* Vi,

2. Find the equations of the line of the greatest slope on the plane
3r—4y+52—5=0
drawn through the point (3, —4, —4) ; given that the plane
4x—5y+62—6=0
18 horizontal.

Line of greatest slope on a given plane, drawn through a given
point on the plane, is the line through the point perpendicular to the
line of intersection of the given plane with any horizontal plane.

We have, thus, to find the line through A(3, —4, —4) perpen-
dicular to the line of intersection of the plancs

3z —4y+52—5=0,
4x—5y+62z—6=0.
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Equations of this line in the symmetrical form are

z+1  y+2 2 .
1 _— 2 :.'-'1 ’ "'(1’)
so that the general co-ordinates of any point P on the line are
r—1,2r—2,r.

The line AP will be perpendicular to (1), if
1(r—4)4+2(2r+2)+1(r+4)=0, i.e., r=—%
Thus, the co-ordinates of P are
(-3 =% —9.
Hence the line, AP, of greatest slope is
x—3 y+4 244
7= 1 T 5"
3. CP, CQ, are conjugate diameters of the ellipse
a4y bi=1, z=—c ;
C'P’, C'Q" are conjugate diameters of the ellipse
x?/a’?._*_yz/b?:l’ z2=—c¢C;
drawn in the same direction as CP and CQ. Find the locus of the lines
PQ’ or P'Q.
Let P be (acos g, b sin g, ¢). Thercfore, @, P',Q" are
(—a sin g, b cos g, c), (a cos @, b sin 8, —c)
(—a sin §, b cos g, —c¢)

respectively.
Equations of PQ’ are
x—a cos 0 y—bsing _z—c¢ (i)
a(cos +sin 6) ~ b(sin §—cos ) 2c
The locus will be obtained on eliminating § from the equations (7)
The equations (z) can be written as

—:zicos 6+— sm 9,

© ayg <

f—=~—z';~cos 0+ j; sin .
Squaring and adding, we obtain
102 yz z4c \2 z—c 2
B2\ 2 > T\ 2 )
or 2x2 "512 _ 22 S =1,
as the required locus.
It may be shown that the locus of P’Q is the same surface.
4. Show that the equations of the planes through the lines which
bisect the angles between the lines
x oy =z y =z

T=V el L5

l n UV " m' n
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and perpendicular to the plane containing them, are
4z +(mAEm")y+(ntn")z=0. (P.U. 1945)
“Let 04, OB be the given lines. Take points 4 and B on the
lines such that
04=0B=r.
Take another point 4’ on the line 04 produced such that O is
the mid-point of 44",
The co-ordinates of 4, B, 4’ are
(Ir, mr, nr), (U'r, m'r, n'r), (—1lr, —mr, —nr)
respectively.

"+ Let P, @, be the mid-points of 4B and A’B respectively so that
OP, OQ are the bisectors of the angles between 04 and OB. We have
P=[3(141)r, H(m+m")r, $(n+n')r].
Q=[("=Dr, 3(m” —m)r, }(n' —n)r].
Thus the lines OP, OQ arc
T Y F roYy - 2 (2)
I+ m+m' a0’ U'—1 m'—m n'—n
The lines 04, OB, OP, PQ arc all coplanar.
Let OR be normal to this plane.

The lines OP, 0Q and OR are mutually perpendicular so that
the p]anes POQ (i.e., the plane 40B), QOR, ROP are also mutually
perpendicular.

The plane QOR passes through a bisector OQ and is perpendicular
to the plane AOB so that it is one of the required planes. Being
perpendicular to the line OP, its equation is

(I+z+ (m+m' )y + (n+n')z=0.

Similarly POR is the other required plane. Being perpendicular
to the line 0Q, its equation is

I—=0U)z+(m—m")y+(n—n')2=0.

Revision Exercises I
1. Find the volume of the tetrahedron formed by the planes

le+my+nz=p, le+my=0, my+nz=0, nz4lx=0,
(D. U. Hons., 1948)
[Ans. 2p3/3lmn

2. Show that the straight lines

x Y z x y z z
o "By aw 8B ey T
will lie in one plane, if

lb—c)[a+m(c—a)/B+n(a—b)[y=0. (P.U. 1942)
[The three lines have a point in common, vz, the origin. They will be

coplanar, if there exists a line through the origin perpendicular to each of them,
If A, 1, v be tho direction cosines of thisline, we have

A4 B +vy=0, aad+ 0B+ cyv=0, IA4-mp+4+nv=0,
Eliminating 2, &, v we have the given condition,]
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3. Show that the lincs

Ly 2. Yy . % _Y_*
afa” Bb yjc’ « By ’aa Bb yc
are coplanar if a=b or b=c or c=a.
4. Show that the triangle whose vertices have co-ordinates (u, b, ¢),
(b, ¢, @) and (c, @, b) is an oqulateral triangle. ¥ind the co-ordinates of the
vertices of the two regular totrahedra described on the above equilateral triangle

as base, i YRR 2_%h
ase (C.U.1915) [4ns. (f,f, 1) wherof:zu+ 7\»/(732_@4“27_0),
~ 5. If two opposite odgos of a totrahedron are equal in length and are at
right angles to the line joining their middle points, show that the other two pairs
of opposite edges have the same property.

6. Two edges, AB, CD of a tetrahedron 4 B('D are perpendicular ; show
that the distance between the mid-points of AD and BC is equal to the distance
between the mid-pomnts of AC and BD.,

7. Planes are drawn so as to make an angle of 60° with the line r=y=z
and an anglo of 45° with the line +=0-=y—z. Show that all these planes make
an angle of 60° with the plane x=0.

Find the equations of the planes of thus family which are 3 units distant
from the pomt (2, 1, 1), [Ans. 2x+(244/2) y+(2F V2) 2=20 or —4,

8. A plane meets a set of three mutually perpendicular planes in the sides
of a triangle whose angles are 4, B, C. Show that the first plane makes with
the other three planes angles, the squares of whoso cosines are

cot B cot C, cot C cot 4, cot A cot B. (B.U. 1926)

9. A triangle the lengths of whose sides a, b and ¢, is placed so that the

middle points of its sides are on the co-ordinate axes, Show that the equation
to 1ts plane is

ale+y/B+z/y=1, )
where 8a2=b2+4c2—a?, 882=c24a2—b2, 8y2=0u2+4b2—c2.
Also show that the co-ordinates of the vertices of the triangle are
(—‘d, B: Y)) (a, -B» Y)r (d, Br —Y)- (‘4'U‘ 1938)

10. Show that there are two lines which intersect the lines
a—5=3(y—8)=4(:—14)
to={(y+1)=4(=—10)
and also intersect the z-axis perpendicularly, Find the points in which they meet
the x-axis, . [4ns, (2,0, 0), (74/17, 0, 0).
11. Taking axis OZ to be vertical, find equations of the line of greatest
slope through the point P(2, —1, 0) on the plane
2243y —42—1=0. [dns. d(z—2)=Ti(y+1)=74z
[The required line is the line through P drawn perpendicular to the line of
intersection of the given plane and the horizontal plane z=0.]

12. The plane 3x+4y+562=0 is horizontal., Show that the equations of the
line of greatest slope on the plane x+2y-3z=4 through tho point (2, —35, 4) are
(#=2)=(y+5)=—1—1),

13. Find the equation of tho plane through (0, 1, 1) and (2, 0, —1) which
is parallel to the line joining (—1, 1, —2), (3, —2, 4). Find also the perpendi-
cular distance between the line and the plane, e

[Ans, 6r410y+z—11=0; 9/4/137,

14. A straight line is drawn through (a, B, y) perpendicular to cach of two
given straight lines which pass through («, 8, y) and whose direction cosines are
i35 my, ny ; lg, g, ny. Show that the volume of the tetrahedron formed by («, 8, v)
and the points where the three lines cut =0 is

a8 8in2 6/61yla(myng—mgn;)
where 0 is the angle between the lines, (B.U.)
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15. If 04, OB, OC have direction cosines I., m,, n,; (r=1,2, 3) and
04’, 0B’, 0C’, bisect the angles BOC, COA, AOB ; the planes A404’, BOB’,
COC’ pass through the line

z Y _ 2

ll+l2+ls=5nl—|—-m2+m3_nl+n2+n3'
16. A point P moves so that three mutually perpendicular lines P.1, PB,
PC may be drawn cutting the axes 0X, 0Y, OZ at 4, B, C and the volume of
the tetrahedron O ABC is constant and equal to a3/6. Prove that P lies on the
surface

(22 +y2+422)8=8uryz,
17. Find the angle between the common line of the planes
r+y—z=1, 2x—3y+z=2
and the line joining the points (3, —1, 2), (4, 0, —1)., Find also the equations
of the line through the origin which 1s perpendicular to both the above lines.
[Ans. cos~1 (10/4/418, z/ld=—y/l1=2.
18. Show that the image of the line x—1= —9(y—2)= —3(z+3) in the plane
3x—3y+102:=26 18 the line

Sa—)=—(+D=—}=—7.

19. The plane xzfa+y/b+z/c-=1 meets the axes at A, B, C respectively and
planes aro drawn through OX, OY and OZ meeting BC, CA and AB respec-
tively at right angles, Show that these planes are coaxial,

If the common axis meets tho plino 4BC in P and perpendiculars are
drawn from P to the co-ordinate planes, show that the equation of the plano
through the feet of the perpendiculars is

EL Y LB 2abe
be  ca  ab b2c24c2ul4a2b2

20. Prove that

a b [

Yy—z z—x x—Y
represents a pair of planes whose line of intersection is equally inclined to the
axes, (C.U. 1927)
21. From a point P whose co-ordinates are (x, y, 2), a perpendicular PM
is drawn to the straight line through the origin whose direction cosines aro
!, m, n, and 18 produced to P’ such the PM=P’'M.
If the co-ordinates of P’ are (z’, y’, '), show that
’ ’ o m LA
a;ﬁ-lp :‘t?%“ :T-Ei ==2(Le+my+nz). (P.U.)
22. Show that tho reflection of the plane 2x+43y+2=1 in the line
x=y/2=z/3 is the plane 3x—y—262+47=0,
23. Prove that the reflection of the plane
a’z+b'y+c'z4d =0
in the plane
ax+by+cz+d=0
is the plane
2(aa’ +bb' 4cc’)(ar+by+cz+d)=(a2+b2+4c?)(a’z+b'y+c'z+d’). (M.T.)
24. Find the equations of the straight line through the point (3, 1, 2) to
intersect the straight line
Ttd=(y+1)=2(2—2)
and parallel to the plane 4z+y+52=0. (B.U. 1959)
' [4ns. —{(@—3)=}y—1)=—}(z—2).
25. The line %(:c+6)=§(y+10)={(z+14) is the hypotenuse of an isosceles
right-angled triangle whose opposite vertex is (7, 2,4). Find the eqations of the
remaining sides, [Ans, }(x—T)=% (y—2)=3(2—4) ; }(&z—T)=—}y—2)=3(z—4).
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26. A straight line 4B is drawn through a point (4, 1, 7) and perpendicular

to the plane 2x+4-3y—4--=8. Find the pointsin wiaich AB and the axis OX are
intersected by their comimon normal, (B.U. 1926) [Ans. (6,4, 3), (6,0,0).
27. Find the equations of tho two straight linos through the origin, each
of which intersect the straight line
Ho—3)=(y—3)=2
and is inclined at an angle of 60° to it. (L.U, 1937)
[Ans, zi=y=—z;z=~-y=1}z.
28. Find the direction cosines of the projection of the line
Ha—1)=—y=(2+2)
upon the plane 2r+y—3z=4. [dns. 2[4/6, —1/4/6, 1/4/6.
29. Find the equations of the straight line which is the projection on the
plane 3x+2y+2=0, of the line of intersoction of the planes
r—y+2:2=1, x42y—2=2,
[Ans. —(x+1)/11=(y—1)/9=(2—1)/15.
30. QP, RP are two lines through a point P with direction cosines propor-
tional to 1, I, —2 and 1. —1, 1 respectively. Find the equation of the plane
through the origin which is perpendicular to the plane PQR and parallel to the
line QP,
If P s the point (—1, 1, 1), find tho co-ordinates of the foot of the perpen-
dicular from P on this plane. [Ans, 4x—2y+2=0, (— A 11 29%)
31. Show that the shortest distance between any two opposite edges of the
tetrahodron formed by the planes «+y:==0, y+2=0, z24+2=0, x+y+2z=a is 2a[4/6
and that tho three lines of shortest distance meot at the point r=y=z=—a.
32. Prove that the co-ordinates of the points where the shortest distance
Iine between the lines

r—a y—b__z—c

@Y TP gng T ST AT

l m n v m
meots the first lino are
a+1 cosec? 6(u’ cos 0—u), b4+m cosec O(«w’ cos 0—u), c4+n cosec? O(x’ cos —u),
where 0 is the angle between the given straight lines
u=l(la—a')+m(b—b")+n(c—c’),
and w' =l'(a—a')+m' (b—b")+n'(c—c’). (B.U. 1920)
33. Prove that the shortest distance between the axis of z and the line

L Y\ = _z_1¢, ¥
+c~_k(l+ )’ c ).(I T)

a b a
for varying, A, generates the surface
abz(x2+y2)=(a2—b2)cxy. (B.U. 1929)
34, Prove that through the point (X, Y, Z) one line can be drawn which
intersects the lines y=u tan a, 2=c ; y= —x tan «, 2= —c and that it meets the

plane XY at the point
x=(cYZ cot a—c2X)/(Z2—c2), y=(cXZ tan « —c2Y)[(Z2—c2), 2=0. (L.U.)
35. Show that the surface generated by a straight line which intersects
the lines y=0, z=c; x=0, 2=—c¢ and the hyperbola 2=0, xy+4c2=0 is the
surface z2—zy=c2,

36. A straight line intersects the three lines
=0, By+yz=Py,
y=0, yz+az=ya,
2=0, ax+By=af.
Prove that it is parallel to the plane z+y+42=0 and its locus is the surface
ZTar?+3(a+B)2y—Za(B+y)z+afy=0, (M.U. 1912)
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37. Show that the planes

z=y sin &!H—z sin @, y==z sin 04 sin up, z=2x sin ¢4y sin 0,
intersect in the line

x___ ¥ _ *
cos 0 cosp cos ()’
i 0o+ =i

38. Points P and Q are taken on two given skew lines so that PQ is
always parallel to a given plane,
If R divides PQ in a given ratio, prove that the locus of R is a straight line,

39. Find the locus of a point whose distance from a fixed point is n a

constant ratio to its distance measured parallel to a given plane, from a given
line,

[Hint, Take the given plane as XY plane and its intersection with the
given line as origin.]

40. Show that the planes

2v+3y+42=6, 3x4-4y+452=2, x+2y+32=2

form a prism and find the area of its normal scction, [Ans. 84/6/3.

41. A straight line meets the co-ordmate planes Y0Z, Z0OX, X0Y in the
points 4, B, C respectively. If «, 8, y denote the angles BOC, (04, AOB
respectively, and 1f the equation of the plane joining the lme to O 13
la4my+nz=0, show that

14 cot? a==m4 cot2 B =nd cot? v, (M.T.)

42, G is the centroid of the triangle whose vertices are the points in which
the co-ordinate axes meet & plane «, The perpendicular from ¢ to this plane
meets the co-ordinate planes in 4, B, . Prove that

1,1, 1 3
GATGBTGC oK

where K is the foot of the perpendicular from the origin O to the plano «.

43. Assuming that the equation

ax2+4by2+c224-2fyz+4-2g920+ 2hey =0
represents two planes, show that their line of intersection is
Fa=Qy=Hz,
where F, ¢, H are the minors of f, g, h 1n the determinant
a, h, g

h, b, f

g, f sy C e
44. Three straight lines mutually at right angles meet in a point P and
two of them ntersect the axes of x and y respectively, whilo, the third passes

through a fixed point (0, 0, ¢) on the axis of z. Show that the oquation of the
locus of P is

x2+4y24-22=2cz. (D.U. Hons. 1944)
45. The triangle whose vertices have the rectangular co-ordinates
(5, —4, 3), (4, —1, —2) and (10, —5, 2)
respectively is projecied orthogonally on to the plane whose equation is z—y=3.
Find the co-ordinates of the vertices and the area of the new triangle,
(M.T. 1950) {Ans. (2, —1,3), (3,0, —2), (4,1,2),9/v/2.
46. Prove that the plane through the point («, 8, y) and the line,
x=py+q=rz+ts
is given by
z, py+q, r2+s
a, pP-+gq, ry+s |=0.

1, 1, 1 (D. U. Hons., 1955)



CHAPTER VI
THE SPHERE

6°11. Def. A4 sphere is the locus of a point which remains at a
constant distance from a fixed point.

The constant distance is called the radius and the fixed point
the centre of the sphere.

6'12. Equation of a sphere. Let (a, b, ¢) be the centre and » the
radius of a given sphere.

Equating the radius r to the distance of any point (z, ¥, z) on
the sphere from its centre (a, b, ¢), we have

(z—a)*+(y- b)*+ (z—c)*=r"
or 2?-+y?+2°— 200 —2by —2c2+- (@®+ b2+ 2 —1r2) =0 ...(A)
which is the required equation of the given sphere.

We note the following characteristics of the equation (A) of the
sphere :

1. Tt is of the second degrce in z, ¥, z ;
2. The co-efficients of a2, 2, 22 are all equal ;
3. The product terms zy, yz, 2z are absent.
Conversely, we shall now show that the general equation
ax? + ay?+ a2+ 2ux+2vy +2wz+d=0, a £0 .. (B)
having the above three characteristics represents a sphere.
The equation (B) can be re-written as
u \? v \2 w\? w4+ wi—ad
(o) (o5 ) + (s g) =77 575
and this manner of re-writing shows that the distance between the
variable point (z, y, 2) and the fixed point

u v w
) <__a’ “a’ T a
is
V(w4 vi 4 wi—ad)
a
and is, therefore, constant.
The locus of the equation (B) is thus a sphere.
The radius and, therefore, the sphere is imaginary when
w2424 wi—ad<<0
and in this case we call it a virtual sphere.
6:13. General equation of a sphere.
The equation (B), when written in the form,

2u 2v 2w d
2 2 2 - —_—2 —=
a*+ytte+ - at - Y+t =000
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or o+ 2422 4 2u' 2 420"y + 2w’z 4-d' =0,
is taken as the general equation of a sphere.
Ex. 1. Find the centres and radii of the spheres :
(2) a24y2+22—6x+8y—10241 =0.
(44) x24+y2+422420—4y—62+45 =0,
(443) 2x242y24-2:2—2x+4y+2243 =0,
[Ans. (3) (3, —4,5); 7. (¥) (—1,2,3); 3. (%) (3, —1,—3);0,
2. Obtain the equation of the sphere described on the join of
A(2, —3,4), B(—5,6, —17)
as diameter, [Ans. a+4y24+2243(x—y+2)—56=0.

3. A point moves so that the sum of the squares of its distances from the six
faces of a cube s constant ; show that its locus is a sphere.

Take the centre of the cubo as the origin and the planes through the
centre parallel to its faces as co-ordinate planes.

Let each edge of the cube to be equal to 2a.
Then the equations of the faces of the cube are
T=a;r=—a;y=a,y=—a;r=a,2=—a.
If (f, g, h) be any point of the locus, we have
(f=a)+(f+a)2+(9—a)2+(9+a)2+(h—a)2+(h+4a)2=k% (k, a constant)
or 2( f2+g2+1243al)=k2
so that the locus is
2(x24-y2+4224-3a2) =12,

which is a sphere,

4. A plane passes through a fixed point (e, b, ¢). Show that tho locus of
the foot of the perpendicular to it from the origin is the sphero

22492422 —arx—by—cz=0.

5. Through a point P three mutually perpendicular straight lines are
drawn ; one passes through a fixed point C on the z-axis, while the others
intersect the x-axis and y-axis, respectively ; show that the locus of Pisa
sphere of which C is the centre.

6'2. The sphere through four given points. General equation of
a sphere contains four effective constants and, therefore, a sphere
can be uniquely determined so as to satisfy four conditions, each of
which is such that it gives rise to one relation between the constants.

In particular, we can find a sphere through four non-coplanar
points
(1‘1, Y1, zl), (xZ! Ya» 22)’ (xax Ys, za), (xdr Ya» z4)'
Let
22+ y? 422+ 2ux+ 2vy+- 2wz 4-d=0, ... (2)
be the equation of the sphere through the four given points.
We have then the equation
224y, 2+ 2,2+ 2ux, 4+ 20y, + 2wz, +d =0, v (19)
and three more similar equations corresponding to the remaining
three points.

Eliminating %, v, w, d, from the equation (i) and from the four
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equations (¢7) just obtained, we have
a*+y’+2% oz, oy, 2 1

xﬁ—{—yﬁ-}—zﬁ, Ty, Yp 215 1

€'+ Y2 4252, g, Y, 25, 1 |=0,

2 2 2
23+ Y3 +252, 13, ¥, 23, 1

x42+ y4z+z42; T4y Yu» 245 1
which is the equation of the sphere through the four given points.

Note. In numerical questions, we may first find the values of u, v, w, d
from the four conditions (#2) and then substitute them in the equation (3).

Exercises

1. Find the equation of the sphere through the four points
(41 —1, 2)1 (0’ "2’ 3)3 (Iy '—59 "]), (21 O) 1)'
[Ans. a?4-y2+422—4a46y—22+45=0.
2. Find the equation of the sphere through the four points
(0) 0’ O)r ("‘ay b, C), ((l, "b’ 0), ((l, br —c)
and determine its radius, (D.U. Hons. 1947)
24 24,2 P
eyttt @y “,_ s 3a24b2 L e2)a/ (a2 4b=24-c—2
[ An bt 0 b =0; 3}a?+b%2+c?)y/(a=24b"24c2).
3. Obtain the equation of the sphere circumscribing the tetrahedron
whose faces are
2=0, y=0, =0, 2/a+y[b+z[c=1.
{Ans. 224y24-22—ar—by—cz=0.
4. Obtain the equation of the sphero which passes through the points
(1, 0, 0), (0,1, 0), (0, 0, 1),
and has its radius as small as possible.
[Ans. 3(a24y2422)—2(a+y+2)—1=0,
5. Show that the equation of the sphere passing through the three points
3,0, 2),(—1,1,1),(2, —5, 4) and having 1its centre on the plane 2x+43y+4:=6
is w24y 42244y —06:=1.
6. Obtain the sphere having its centro on the line 5y+2:=0=2r—3y and
passing through the two points (0, —2, —4), (2 —1, —1).
[Ans. 12-1—1/2-{- 22— 6x—4y+10=+12=0.
7. A sphere whose centre lies in the positive octant passes through the
origin and cuts the planes a=0, y=0, z=0, 10 circles of xad1i 4/2a, 4/2b, 4/2c,
respectively ; show that its equation is
224242224/ (b2 4 c2—a2) £—24/(c2+a2—b2) y—24/(a2+b2—c2)z=0,
8. A plane passes through a fixzed roint (a, b, c) and cuts the axesin
A, B, C. Show that the locus of the centre of the sphere 0ABC is

ajx+blytclz=2. (D.U. Hons., 1958, 60)
Let the sphere 04BC bo
224924224 2ua+ 2vy 42wz =0, «.(1)

so that u, v, w are different for different spheres The points A, B, C where it
cuts the three axes are (—2u, 0, 0), (0, —2v,0), (0, 0, —2w). The equation of
the plane ABC is

x Y z__
— 2u+ —211+ — 210
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Since it passes through (a, b, ¢) we have

a b c
o T oy :i’;;:l' ..(2)
If z, y, z be the centre of the sphere (1),
T=—u, Y=—v, T=—u, <. (3)
From (2) and (3), we obtain
%+—Z—+%=2

as the required locus,

9. A sphere of constant radius » passes through the origin O and cuts tho
axes in 4, B, (', Find the locus of the foot of the perpendicular from O to the
plane ABC, (P.U. 1940 ; B.U. 1955)

[dns. (22+y2+:2)3(c=2 4y 2 4272) =42,
10. If O be the centre of a sphere of radius unity and 4, B be two points
in a line with O such that
0A.0B=1
and if P be any variable point on the sphere, show that
P4 : PB=constant, (P.U. 1941)
11. A sphere of constant radius 2k passes through the origin and meets

the axes in 4, B, C. Show that the locus of the centroid of the tetrahedron
OABC is the sphere

a2 y2 a2 k2,

6°31. Plane section of a sphere. A plane section of a sphere, i.e.,
the locus of points common to a sphere and a plane, is a circle.

Let O be the centre of the sphere and P, any point on the plane
section. Let ON be perpendicular to the given plane ; N being the
foot of the perpendicular.

As ON is perpendicular to the plane which
contains the line NP, we have

ON | NP

Hence

NP?=0P%—ON2

Now, O and N being fixed points, this rela-
tion shows that NP is constant for all positions
of P on the section.

Fig. 23 Hence the locus of Pis a circle whose centre
is N, the foot of the perpendicular from the
centre of the sphere to the plane.

The section of a sphere by a plane through its centre is known
as a great circle.

The centre and radius of a great circle are the same as those of
the sphere.

Cor. The circle through three given points lies entirely on any
sphere through the same three points.

Thus the condition of a sphere containing a given circle is equi-
valent to that of its passing through any three of its points.
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6°32. Intersection of two spheres. The curve of intersection of
two spheres is a circle.

The co-ordinates of points common to any two spheres

Si=x? 4y + 224 2ux + 20,y + 2w z-+d, = 0,
Se=2%+y% + 22 + 2ux + 20,y + 2wz + dy =0,
satisfy both these equations and, therefore, they also satisfy the
equation
8y — 8 =2(uy —uy) + 2y (v, — v5) +22(w; — wy) + (dy —dg) =0
which, being of the first degree, represents a plane.

Thus the points of intersection of the two spheres are the same
as those of any one of them and this plane and, therefore, they lie on
a circle. [See § 6°31].

6:33. Sphere with a given diameter. 7o find the equation of the
sphere described on the line joining the points

A(xla Y1, 21), B(xz, Yo, 22)
as diameler.

Let P be any point (2, y, 2) on the sphere described on 4B as
diameter.

Since the section of the sphere by the plane through the three
points P, 4, B is a great circle having 4B as diameter, P lies on a
semi-circle and, therefore,

PA ] PB.
The dircction cosines of PA, PB are proportional to
X=Xy, Y—Y1, 2—2 and £ —x,, Y — ¥, 2—2,
respectively. Therefore they will be perpendicular, if
(x—X1)(X—3) + (y—y1) (¥ = yo) + (2—21)(z—2,) =0
which is the required equation of the sphere.
Ex. Show that the condition for the sphero

234y 422420+ 20y +2wz+d=0
to cut the sphere

22+ y24224-2u 04201y + 2wyz+ d =0

2uuy 4200 + 2uwwy —(d+-dy)=2ry2,
where 74 is tho radius of the latter sphere,

6'4. Equations of a circle. Any circle is the intersection of its
plane with some sphere through it. Therefore a circle can be
represented by two equations, one being of a sphere and the other of
the plane.

Thus the two equations

22+ 2+ 224 2ux+ 20y + 2wz +d=0, lx+my-+nz=p
taken together represent a circle.

A circle can also be represented by the equations of any two
spheres through it.

Note.~The student may note that the equations

224424292 +2fy+c=0, 2=0
also represent a circle which is the interscetion of the cylinder
22+y2 4292+ 2fy+c=0,

in a great circle is

with the plane
2=0,
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Examples

1. Find the equations of the circle circumscribing the triungle

Jormed by the three points
(e, 0,0), (0, b, 0), (0,0, ¢c).
Oblain also the co-ordinates of the centre of this circle.
The equation of the plane passing through these three points is
zla+ylb+zle=1.

The required circle is the curve of intersection of this plane with

any sphere through the three points.

To find the equation of this sphere, a fourth point is necessary,
which, for the sake of convenience, we take as origin.
If

22+ yi+ 224 2ux+ 20y 42wz +d =0
be the sphere through these four points, we have
a’42ua+d=0; b*420b+d=0; ¢*42wc+d=0;
d=0.
These give
d=0, u=—}a, v=—13%b, w=—}c.
Thus the equation of the sphere is
224y 22—ar—by—cz=
Hence the equations of the circle are

24,20 2 g by LY %
'+ y*+22—ar—by—cz 0’a4b+c 1.

To find the centre of this circle, we obtain the foot of the
perpendicular from the centre (}a, 3b, §¢) of the sphere to the plane

r, Y 2
a Tt 1.
The equations of the perpendicular are
r—3a_y—3b_z—}%c

Ta —Ap - T W

r o, a r b r ,c
(Gts ++5 o9
is any point on the line. Its intersection with the plane is given by
1 1 1 1 1
’ (E§'+F +‘o’i'> Py =0 orr=—To5ay
Thus the centre is
[a<b—2+c—2) blc+a?) o(a2+b-?) ]

so that

2% 2Za? ' 23a7?
2. Show that the centre of all seclions of the sphere
a4yt =2
by planes through a point (', y', 2') lie on the sphere
a(z—x')+y(y—y') +2(z—2")=0.
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The plane which cuts the sphere in a circle with centre (f, g, ) is
J@—=f)+9(y—g)+h(z—h)=0.
Jt will pass through (', 3', ), if
f&" =f)+ 9 —g9)+k(z' —h)=0,
and accordingly the locus of ( f, g, k) is the sphere
a(z'— )+ y(y' —y)+2(z' —2)=0.
Exercises

1. Find the centre and the radius of the circle
42y +2:=15, a24y2 4222y —4z=11,
lAns. (1, 3, 4), /7.
2. Find the equation of that scction of the sphere
a2fytstat,
of which a given internal point (zy, ¥1, z;) 18 the centre, (P.U. 1939 Suppl.)

(The planc through (rq, 1, 2;) drawn perpendicular to the line joming this
point to the centre (0, 0, 0) of the sphere determines the required section.)

3. Obtam the equations of the circle lying on the sphere
a4y 22—2r+4+4y—6243- 0
and having 1ts centro at (2, 3, —4).
[Ans. a24y2+:2—20+4y—6243=0=2+5y—T7:—45,
4. O isthe origin and A, B, C, are the points
(4a, 4b, 4¢), (4D, 4c, 4a), (4c, 4a, 40).
Show that the sphere
a4y 42222 +y+2)(a+b+c)4-8(betcat-ab)=0
pass~s through the nine-point circles of the faces of the tetrahedron O0ABC,

5. Find the equation of the diameter of the sphere 124-y2422=29 such
that a rotation about 1t will transfer the point (4, —3, 2) to the point (5, 0, —8)
along a great circle of the gphere, Find also the angle through which the sphere
must be so rotated. (L.U.) [Aprs. ja=§y=1%z cos™1(16/29).

6. Show that the following points are concyclic :—
(¢) (5,0,2), (2, —6, 0), (7, —3, 8), (4, —9, 6).
(42) (—8,5,2), (=5, 2,2),(~1T, 6, 6), (—4, 3, 6).
6'41. Spheres through a given circle. The equation
S+AU=0,
obviously represents a gencral sphere passing through the circle with
equations
8=0, U=0, .@onafa{ £y
where e i aios Mr. N. Sreekanth
S=a4 24224 2ux +20y+ 2wz + d, M.Sc.(Maths) Q.U
U=lz+my+nz—op. 4
Also, the equation
S+AS'=0
represents a general sphere through the circle with equations
8=0, §'=0,
where
S=a24y2+ 22+ 2ux+ 20y +2wz+d,
S'=a -y 422420z + 20"y + 2w’z +-d.
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Here A is an arbitrary constant which may be so chosen that
these equations fulfil one more condition.

Note 1. We notice that the equation of the plane of the circle through
the two given spheres is

S—8'=2(u—u’)r+2(v—v)y+2(w—w')z4+d—d’ =0,
From this we see that the equation of any sphere through the circle
§=0, 8’=0
can also be taken of the form
S+k(S—8")=0;
k, being any arbitrary constant.
This form sometimes proves comparatively mors convenient.

Note 2, It is important to remembor that the goneral equation of a sphere
through the circle

a2+ y24-290+2fy+¢=0, 2=0
is 224y +22+4 29204 2fy+kz+c==0,
where k is different for the different spheres,
Examples
1. Find the equation of the sphere through the circle
224y +22=9, 22+43y+42=>5
and the point (1, 2, 3).
The sphere
224y +22—9+A 2z + 3y +42—5)=0
passes through the given circle for all values of A.
It will pass through (1, 2, 3) if
54-15A=0 or A= —1.
The required equation of the sphere, therefore, is
32+ y*+2%) —2x—3y—42—22=0.
2. Show that the two circles
224yt +2P—y+22=0,r—y+2—2=0;
2?*+y+2t+a—3y+z2—5=0, 2x--y+42—1=0;

lie on the same sphere and find its equation. (D.U. Hons. 1947)
The equation of any sphere through the first circle is
2+t + 2 —y+- 22+ NMx—y +2—-2) =0, <. ()
and that of any sphere through the second circle is
224yt +22+x—3y+2—5+4(2x —y+42—1) =0. o (71)

The equations (i) and (¢) will represent the same sphere, if A, @
can be chosen so as to satisfy the four equations

A=2u+1,
—1—-A=—p-3,
24+A=4p41,

The first two of these equations give A=3, p.=1, and these values
clearly satisfy the remaining two equations also. These four equations
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in A, u being consistent, the two circles lie on the same sphere, viz.,
224y 28—y + 22+ 3(x—y+2—2)=0,
1.e.,

224 y?+22+4 3x —4y+52—6=0.

Exercises
1. Find the equation of the sphere through the circle
2249242242043y +6=0, z—2y+4+42—9=0
and the centro of the sphere
224y2+422— 2044y —62+45=0.
[Ans. a2+4y24224Ty—82424=0.
2. Show that the equation of the sphere having 1ts centre on the plane
dr—5y—z=3
and passing through the circle with cquations
224 y2+22—22—3y44248 -0, 224 y2+422f4x+5y—6242=0;
is
224y 4224 Tx 49y —112—1=:0.
3. Obtain tho equation of the sphere having the circle
224+ y2422410y—42—8=0, x+y+2=3
as tho great cirele. )
[The centre of the required sphero lies on tho plane x4-y+2=3.]
[Ans. 224y2+4:2—4x+46y—82z44=:0.
4. A sphere S has points (0,1, 0), (3, —5, 2) at opposite ends of a

diameter,  Find the equation of the sphere having the intersection of § with
the plane

bx—2y+4247=0
as a greatl circle,
[Ans. 224424224 22042y+224-2=0,
5. Obtain the equation of the sphero which passes through the circle
24 y2:=4, 2=0 and is cut by the plane x+4-2y+22=0 in a circle of radius 3.
[Ans. 224y2+22462—4=0.
6. Show that the two circles
2(x2+y24-22)+8r—13y+17:—17=0, 2x+y—3z+4+1=0;
224 y2+4-224-3x—4y+32=0, 2—y+22—4=0;
lie on the same sphere and find its equation.
[Ans. x24y2+42245x—6y+T72—8=0,
7. Prove that the circles
224 y2 4222243y +42—5=0, 5y+62+1=0;
22492422 3x—4y+52—6=0, a42y—Tz=
lie on the sphere and find its equation, (D.U. Hons., 1945)
[Ans. «24-y24:2—22—2y—22—6=0.
6'5. Intersection of a sphere and a line.
Tet .
22+ y? 2%+ 2ux+2vy+ 2wz 4 d=0 eee(1)
and ‘
z-a_y—f_z=7 (2)
l m n ? LIX]

be the equations of a sphere and a line respectively.
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The point (Ir+a, mr+8, nr +7) which lies on the given line (2)
for all values of r, will also lie on the given sphere (1), if r satisfies
the equation

(124 m2+n?) 4 2r[l (a4 u) +m(B+0) + n(Y +w)]

+ (a2 4-B2 4+ Y2+ 2ua+ 208 + 2wy +d) =0, ...(A)
and this latter being a quadratic equation in 7, gives two values say,
ry, rg of . Then

(lrl+ o, Mmry + ﬁ) nrl +y)’ (lrz +as mr2+‘3, nr2+y)
are the two points of intersection.

Thus every straight line meels a sphere in two points which may be
real, imaginary or coincident.

Ex. Find the co-ordinates of the pomnts where the line

1@+3) =5y +9=—3(z-8)

224y2+22 20— 10y =23.
[Ans. (1, —1,3); (5, 2, —2).

6°51. Power of a point. If [, m, n, are the actual direction
cosines of the given lJine (2) in § 6'5, so that l!{4+m?+n?=1, then
71, 79, are the distances of the point A (a, B, ¥) from the points of
intersection P and .

s AP X AQ=ryr;=a?+B2+ Y24 2ua+ 20p+ 20wy +d
which is independent of the direction cosines, I, m, n.

Thus if from a fized point A, chords be drawn in any direction
to intersect a given sphere in P and (), then AP.AQ s constant. This
constant is called the power of the point 4 with respect to the sphere.

intersects the sphere

Example

Show that the sum of the squares of the intercepts made by a given
sphere on any three mutually perpendicular straight lines through a fixed
point is constant.

Take the fixed point O as the origin and any three mutually
perpendicular lines through it as the co-ordinate axes. With this
choice of axes, let the equation of the given sphere be

2?4y 422+ 2ux + 2vy + 2wz +d=0.
The z-axis, (y=0=z) meets the sphere in points given by
22+ 2ur+4-d=0,
so that if x;, x, be its roots, the two points of intersection are
(21, 0, 0), (25, 0, 0).
Also we have
T+ xp=—2u, x,2,=d.
~. (intercept on z-axis)?=(z, —x,)*
= (214 ,)? —4x,2,=4(u?—d).
Similarly
(intercept on y-axis)?=4(v?—d),
(intercept on z-axis)?=4(w?—d).
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The sum of the squares of the intercepts
=4(u+ v?+w?—3d)
=4(ut+v*+w?-d)—8d
=472—8p,
where r is the radius of the given sphere and p is the power of the
given point with respect to the sphere.
Since the sphere and the point are both given, » and p are both
constants.
Hence the result.

Note. The co-efficients u, v, w and d in the equation of the
sphere will be different for different sets of mutually perpendicular
lines through O as axes.

Since, however, the sphere is fixed and the point O is also fixed,
the expressions

r’=ul4+v’+w?—d
for the square of the radius and
p=d,
for the power of the point, w.r.t. the sphere will be invariants.

Exercises

1. Tind the locus of a point whose powers with respect to two given
spheres are in a constant ratio.

2. Show that tho locus of the mid-pomts of & system of parallel chords
of a sphere 1s a plano through 1ts centre perpendicular to the given chords,
6'6. [Equation of tangent plane. 7o find the equalion of the
tangent plane al any point («, B, Y) of the sphere
2+ y2+ 224 2ux + 20y + 2wz +d=0.
As («, 8, 7) lies on the sphere, we have
a2 4+B2+ Y24 2ua+ 208 + 2wy +d=0. ..(f)
The points of intersection of any line
x—a_y—B_2=Y .
T m a =T N (7))
through (, B, ¥) with the given sphere are
(rt+o, mr+B, nr+7)
where the values of r are the roots of the equation
r2 (P4 m?+n?) +2r(l(x+ u) + m(B +v) +n(Y 4-w)]
+(o® + B2+ 7%+ 2ua+ 208 4 2wy + d)=0.
By virtue of the condition (i), one root of this quadratic equation
is zero so that one of the points of intersection coincides with
(=, B, 7).
In order that the second point of intersection may also coincide
with (a, B, 7), the second value of r must also vanish and this
requires

l(ae4u)+m(B +v)+n(Y +uw)=0. ()
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Thus the line

-« _Yy—B_z-Y

I " m  n

meets the sphere in two coincident points at («, B, 7) and so is a

tangent line to it thereat for any set of values of I, m, n which satisfy
the condition (¢it).

The locus of the tangent lines at (a, B, ¥) is, thus, obtained by
eliminating I/, m, n between (ii7) and the equations (7i) of the line
and this gives

(z—a)(@t+u)+(y—B)B+v) +(z=Y)(Y +w) =0
or ax +Ly + Yzt u(z+a)+o(y+B)+w(z+7) +d
=ua? B2+ Y2+ 2ux+ 20+ 2wy +d=0, from (3)
which is a plane known as the tangent plane at («, . 7).
Hence
(a4u)z+ (B + v)y+ (Y +w)z + (ux 034wy +d)=0
is the equation of the tangent plane to the given sphere at («, B, 7).

Cor. 1. The line joining the centre of a sphere to any point on it
1s perpendicular to the tangent plane thereat, for the direction cosines
of the line joining

the centre (—u, —v, —w) to the point («, B, ¥)
on the sphere are proportional to
(atu, B+o, ¥ +w)
which are also the co-efficients of z, y, z in the equation of the tangent
plane at («, B, 7).

Cor. 2. If a plane or a line touch a sphere, then the length of
the perpendicular from its centre to the plane or the line is equal
to its radius.

Note. Any line in the tagent plano through its point of contact touches
the section of the sphere by any plane through that line.

Examples

1. Show that the plane lx+my+nz=p will touch the sphere
224y -+ 22+ 2ux -t 20y + 2wz -+ d =0,

(ul+vm+wn-tp)2= 2+ m*+n?)(u2+vi4+wi—d).

Equating the radius 1/ (u®+v*+w?—d) of the sphere to the length

of the perpendicular from the centre (—u, —v, —w) to the plane
lx+my+nz=p,

we get the required condition.

2. Find the two tangent planes lo the sphere

42t et —dr42y—62+4+5=0
which are parallel to the plane
2x+42y=-=.
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The general equation of a plane parallel to the given plane
2242y —2=0,
is
2242y —2z2+A=0.
This will be a tangent plane. if its distance from the centre
(2, —1, 3) of the sphere is equal to the radius 3 and this requires

—14A
i3 =3.
Thus
A=10 or —8.

Hence the required tangent planes are
2x+2y—2+10=0, and 2x+42y —2—8=0.
3. Find the equation of the sphere which touches the sphere
2?2+ y +22—x+3y+22—3=0,
at (1, 1, —1) and passes through the origin.
The tangent plane to the given sphere at (1, 1, —1) is
x +5y—6=0.
The equation of the required sphere is, therefore, of the form
22+ g +22—2z+3y+ 22—3 + k(x + 5y —6)=0.
This will pass through the origin if
k=—1%.
Thus the required equation is
2(x?+y2+22)—3x + y+42=0.
4. Find the equations of the sphere through the circle
x?4y?+22=1, 22+4y+52="6
and touching the plane
z2=0.
The sphere
224+ 2+ 22— 14+AN2x +4y+52—6)=0
passes through the given circle for all values of A.
Its centre is (—A, —2A, —3%A), and radius is
/(A2 4NE 28N 11 4 61).
Smce it touches 2=0, we have by Cor. 2,
— A =4 +/(5A2+ 1i7\2+1 +6A).
or H5A24.6A4+1=0.
This gives
A=—1 or —3%.
The two corresponding spheres, therefore, are
22+ 422 — 20 —4y ~52+45=0,
5(2*+ y*+2%) —2x — 4y —52-+1=0.
5. Find the equations of the two tangent planes to the sphere
2’4y’ +2=9,
which passes through the line
z+y=6, x—22=3.
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Any plane
z+y—6+Mx—22—3)=0
through the given line will touch the given sphere

if
—6—3\
V(I EEV RN wwyy
or
2AT—A—1=0.
This gives
A=1: _%'

The two corresponding planes, therefore, are
2z +y—22=9, 242y+22=9.

Exercises

1. Find the equation of the tangent plane to the sphere
3(a2+y2+22)—2x—3y—42—22=0
at the point (1, 2, 3).
[Ans. 4x+49y+142—64=0,
2. Find the equations of the tangent line to the circle
23424224 52— Ty 422 —8=0, 3r—2y+42+3=0
at the point (—3, 5, 4).
Ans. (2+3)/32=(y—5)/34=—(z—4)/7.
3. Find the value of a for which t}[w plane(a 3l =51 ( /

2+y+z=a3
224y2422—-2x—2y—22—6=0,

touches the sphere

[Ans. 343,
4. Show that the plane 2x—2y+2-+12=0 touches the sphere
2244242220 —4y422=3
and find the point of contact.
[Ans. (-1, 4, —2).
[The point of contact of a tangent plane is the point where the line
through the centre perpendicular to the plane meets the sphere,]
8. Find the co-ordinates of the points on the sphere
22442422424 2y=4
the tangent planes at which are parallel to the plane
2z—y+2z=1,
[Ans. (4, —2, 2), (0, 0, —2).
6. Show that the equation of the sphere which touches the sphere
4(22+y2+22)+ 102 —25y —22=0,
at (1, 2, —2) and passes through the point (—1, 0, 0) is
22442422420 —6y+1=0.
7. Obtain the equations of the tangent planes to the sphere
x2+4y2422462—22+41=0
which pass through the line
3(16—x)=32=2y+30,
[Ans. 2x+42y—2—2=0, z+2y—2z+414=0.
8. Obtain the equations of the sphere which pass through the circle
224 y2 422 -2+ 2y+42—3=0, 2z+y+2=4
and touch the plane 2z+4y=14,
[Ans, 22+4y2422+42zx+44y46z—11=0, 22+y2422—2242y—42—3=0,
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9. Find the equation of the sphere which has its contre at the origin and
which touches the line

2(x+1)=2—y=2+3.
[Ans. 9(x2+y2+422)=5,
10. Find the equation of a sphere of radius r which touches the three
co-ordinate axes. How many spheres can be so drawn.

[Ans. 2(a2+y2+22)4-242(fxtytz)r4+r2=0; eight.
11. Prove that the equation of tho sphoere which lies in the octant 0XYZ
and touches the co-ordinate planes is of the form

a2+ Y2422 — 2N (x +y+2)+222=0,
Show that, in general, two spheres can be drawn through a given point to

touch the co-ordinate planos and find for what positions of the point the
spheres are

(a) real, (b) coincident. (P.U. 1944)

[The distances of the centre from the co-ordinate planes are all equal to

the radius so that we may suppose that A is the radius and (A, A, A\) is the
centre ; A being the parameter.]

12. Show that the sphores
x2+4y2422=25
224 y2+22—240—40y —182+4225=0
touch externally and find the point of the contact.
[Ans. (12/5, 20/5,9/5).
13. Find the centres of the two spheres which touch the plane
4z 43y=47
at the point (8, 5, 4) and which touch the sphere
x24y2422=1,
[Ans. (4, 2,4). (64/21, 27/21, 4).
14. Obtain the oquations of spheres that pass through the points (4, 1, 0),
(2, —3,4),(1, 0, 0) and touch the plane 2z+42y—z=11. (P.U. 1934)

[Ans. x24y2+422—6x+2y—42+565=0; 16(x?+4y2+22)—1022450y —4924-86=0.

15. Find the equation of the sphere inscribed in the tetrahedron whose
faces are

(i) r= Ol y O; z= , 13+ y+2z“l
(#2) 2=0, y=0, 2=0, 22—6y+32+6=0.
[Ans. (i) 32(x2+4y2+22)—8(z-+y+2)+1=0. (%) 0(x2+y2+22)+6(x—y+2)+2=0.

16. Tangent plane at any point of the sphere x2-4y2422=72 meets the
co-ordinate axes at 4, B, C. Show that the locus of the point of intersection
of planes drawn parallel to the co-ordinate planes through A, B, C i# the surface
m—2+y—2+z—2=r—2'

6°61. Plane of Contact. To find the locus of the poinis of contact
of the tangeni planes which pass through a given point (a, B, 7).

Let (2', ¥', 2’) be any point on the sphere

2t +y?+ 22+ 2ux+ 20y + 2wz +d=0.
The tangent plane
z(x' +u)+ Yy +v) +2(2' +w) + (v’ + vy’ +wz' +d)=0,
at this point will pass through («, 8, ),
if
a(z’+u) +B(Y +0)+7 (' + )+ (ua’ + vy’ +wz' +d)=0,

or

o' (@ +u)+y' (B+0) +2'(Y +w) + (va +v3+wy +d) =0,
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which is the condition that the point (z', ¥, 2') should lie on the

plane
a(et ) +y(B+v)+2(Y+w) +(watovB+wy+d)=0.
It is called the plane of contact for the point (x, B, ¥

Thus the locus of points of contact is the circle in which the
plane cuts the sphere.

Ex. 1. Show that the line joining any point P to the centre of a given
sphere 18 perpendicular to the plane of contact of P and if OP meets it in Q, then

OP.0Q —=(radius)2,
Ex. 2. Show that the planes of contact of all points on the line
z[2=(y—a)[3=(243a)/4
with respect to the sphere x2+-324-22=qu2 pass through the line
—(2x43a)/13=:(y—a)/3==z/1.

6 62. The polar plane. If a variable line is drawn through a
Sixed point A meeting a given sphere in P, Q and point R s taken on
this line such that the points A, R divide this line internally and
externally in the same ralio, then the locus of R is a plane called polar
plane of A w.r. to the sphere.

It may be easily seen that if the points 4, R divide PQ internally
and externally in the same ratio, then the points P, @ also divide
AR internally and externally in the same ratio.

Consider the sphere

22yt 22=qa?, «..(1)
and let A4 be the point («, 8, ¥).

Let (x, y, z) be the co-ordinates of the point R on any line
through 4. The co-ordinates of the point dividing AR in the ratio

A:1lare
[(A:H—« 7\y+B) Azj—J)]
A1 7\+1 TNAFL/
This point will be on the sphere (1) for values of A which are
roots of the quadratic equation

2\_“1"’“ }‘y’*‘ﬁ Az+7\2_
(7\+1) +( A+l ( 7\4»1) =
i.e., A (2t +y% +22—a?) 4 2Nax+ Py + Yz —a?) +
(«2+B24Y2~a?)=0 ...(2)
Its roots A; and A, are the ratios in which the points P, @ divide
AR.
Since P, @ divide AR internally and externally in the same ratio,
we have

A 1+ Ns= 0.
Thus from (2), we have
ax+By+7Yz—a*=0, eee(3)
which is the relation satisfied by the co-ordinates (z, y, 2) of R.
Hence (3) is the locus of RB. Clearly it is a plane.
Thus we have seen here that the equation of the polar plane of
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the point («, 8, 7) with respect to the sphere
x"l'?/z'i'zz‘—'a’,

oax+By + Yz=a®
It may similarly be shown that the polar plane of («, B, ¥) with
respect to the sphere

22+ 4224 2ux + 20y + 2wz + d=0,

(xtu)z +(B+v)y+ (Y +w)z+ (uatvf+wy +d)=0.

On comparing the equation of the polar plane with that of the
tangent plane (§ 6'6) and the plane of contact (§ 6:61), we see that
the polar plane of a point lying on the sphere is the tangent plane at
the point and that of a point, lying outside it, is its plane of contact.

If = be the polar plane of a point P, then P is called the pole of
the plane .

6°63. Pole of a plane. T find the pole of the plane

lx+my+nz=p .. (1)

is

is

with respect to the sphere
a?+ y +2?=al.
If («, B, ¥) be therequired pole, then we see that the cquation (7)
is identical with

oz +By+Yz=a? ...(13)
so that, on comparing (i) and (i7), we obtain
« B Y a?
T=m T

or
a=a’l/p, B=a’m[p, Y =a’n/p.
Thus
(a’l/p, a®m|p, a*n|p)

is the required pole.

6'64. Some results concerning poles and polars. In the following
discussion, we always take the equation of a sphere in the form

2+ 2+ =al

1. The line joining the centre O of a sphere to any point P is

perpendicular to the polar plane of P.

The direction ratios of the line joining the centre O (0, 0, 0) to
the point P(«, B, 7) are «, B, ¥ and these arc a,]so the direction ratios
of the normal to the pola,r plane ax+ By +Yz=a? of P(«, B, ¥).

2. If the line joining the centre O of a sphere to any point P meets
the polar plane of P in Q, then

OP.0Q=a?,
where a 18 the radius of the sphere.
We have,
OP=+/(&*+B+77),
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Also, 0Q, which is the length of the perpendicular from the centre
0(0, 0, 0) to the polar plane az+By+Yz=a® of P, is given by
a2
00=-—— S _,
O=V iy
Hence the result.
3. If the polar plane of a point P passes through another point Q,
then the polar plane of Q passes through P.
The condition that the polar plane
2 +By+Y12=a?,
Of P(aly ﬁla yl) Pa'sses through Q(“Z: Bb YZ) iS
as+BiBa + 7172 =0’,
which is also, by symmetry, or directly, the condition that the polar
plane of @ passes through P.
Conjugate points. 7Two points such that the polar plane of either
passes through the other are called conjugate points.
4. If the pole of a plane =, lies on another plane w,, then the pole
of wy also lies on ;.
The condition that the pole
(tll a’my a'm, )
n P p
of ths plane =
L +my+nz=p,
lies on the plane m,
B lyx+may +ngz=p,
is
a?(lyla+mym, + nyng) =p1p,
which is also, clearly, the condition that the pole
(@%/pg, @°ma[ps, a*no/py)
of m, lies on =;.
Conjugate planes. Two planes such that the pole of either lies on
the other are called conjugate planes.

5. The polar planes of all the points on a line I pass through
another line U'.

The polar plane of any point,
(Ir+«, mr+B, nr+7),

on the line, I,

is

(r+o)z+(mr+B)y + (nr+7)2=a?,

(ex+By+72z —a?) + r(lx+my+nz) =0,
which clearly passes through the line

ax+ Py +Yz2—a*=0, lx+my+nz=0,
whatever value, 7, may have. Hence the result.

or
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Let this line be!’. We shall now prove that the polar plane of
every point on [’ passes through I.

Now, as the polar plane of any arbitrary point P on ! passes
through every point of I, therefore, the polar plane of every point of
U passes through the point of P on ! and as, P is arbitrary, it passes
through every point of [ i.e., it passes through l.

Thus we see that if I’ is the line such that the polar planes, of all
the points on a line I, pass through it, then the polar planes of all the
points on I’ pass through /.

Polar Lines. Two lines such that the polar plane of every point on
either passes through the other are called Polar Lines.

Exercises
1. Show that polar line of
(2+1)]2=(y—2)3=(=+3),
with respect to the sphero
x2+4y24-22=1,
is the line
7£+3_2—7y:L

11 5 -1

2. Show that if a line [ is coplanar with the polar line of a line I/, then,
I" 13 coplanar with the polar line of I.

3. If PA, @B be drawn perpsndicular to the polars of @ and P respec-
tively, with respect to a sphere, centre O, then

PA_oOP
QB 09’
4. Show that, for a given sphere, there exist an unlimited number of

tetrahedra such that each vertex 18 the pole of the opposite face with respect to
the sphere.

(Such a tetrahedron is known as a self-conjugate or self-polar tetrahedron )
6'7. Angle of Intersection of two spheres.

Def. The angle of intersection of two spheres at a common point
1s the angle between the tangent planes to them at that point and is,
therefore, also equal to the angle between the radii of the spheres to
the common point ; the radii being perpendicular to the respective
tangent planes at the point.

The angle of intersection at every common point of the spheres
is the same, for if P, P’ be any two common points and C, C' the
centres of the spheres, the triangles CC'P and CC'P’ are congruent
and accordingly

/CPC'=/CP'C".
The spheres are said to be orthogonal if the angle of intersection
of two spheres is a right angle. In this case
CC"*=CP*+C'P2.
671. Condition for the orthogonality of two spheres.
To find the condition for the two spheres
224 2422 F 2uyx +- 20,y + 2w,z + d,=0,

2?4y + 27 + 2y + 20,y + 2w,z + dy =0,
to be orthogonal.
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) The spheres will be orthogonal if the square of the distance between
their centres is equal to the sum of the squares of their radii and this
requires
(w1—up)* + (v1—2,)%+ (w; —w,)?

= (w2 v wd—d,) + (w2 0,2+ w2 —dy)

2uu3 4 2v, v+ 2w, wo=d, -+ d,.

Exercises
1. Find the equation of the sphere that passes through the circle
224 y24-22—2x4-3y—42+6=0, 3x—4y4+5:—15=0
and cuts the sphere

or

224924242244y —~0624+11=0

[Ans. 5(x24y2422)—13r+19y—252+45=0.
2. Find the equation of the sphere that passes through the two points
(09 3, 0)’ (42: -1, _’4)
and cuts orthogonally the two spheres
224924224232 —2=0, 2(r24+y2422) +a+3y+4=0.
[Ans, a?+4y2422 420 —2y+42—-3=0,
3. Find the equation of the sphere which touches the plane
3x+2y—2+2—=0
at the point (1, —2, 1) and cuts orthogonally the sphere
a24y2422—4x4-6y+4+4=0. (L.U.)
[Ans, a2+4y2422+4T0+410y—52+4+12=0.
4. Show that every sphere through the circlo
224 y2—2ax+412=0, 2=0,
cuts orthogonally every sphere through the circle
22422=172 y=0,
5. Two points P, @ are conjugate with respect to a sphere S ; show that
the sphere on PQ as diameter cuts S orthogonally.

6. If two spheres S;and Sy are orthogonal, the polar plane of any point
on Sy with respect to S, passes through the other end of the diameter of 8
through P,

orthogonally,

Example
Two spheres of radii ry and r, cut orthogonally. Prove that the
radius of the common circle is
rirs[V/ (ri+1r3d).
Let the common circle be
' a?+y?=a?, 2=0.
The general equation of the sphere through this circle being
x4 y2 422+ 2kz—at=0,
let the two given spheres through the circle be
224yt 224 2k 2 —a2=0, 2®+y*+22+2kyz —a®=0.
We have
rii=k2+a? r=ky+al. ()]
Since the spheres cut orthogonally, we have
2k ky=a®+a*=2at. pee(13)
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From (z) and (i2), eliminating k,, k,, we have
(r?—a?)(r?—a%) =a,
or
=P (r 1),

Hence the result.

6'8. Radical plane. To show that the locus of poinis whose
powers with respect to two spheres are equal is a plane perpendicular to
the line joining their centres.

The powers of the point P(, y, 2) with respect to the spheres

Si=22+ y*+224 2w, 2+ 20,y + 2w,z + d; =0,
Sy =2+ 12+ 22+ 2ux+ 20,y + 2w,z 4+ dy=0,

are
2?+yt+ 22 2u 2+ 20,y 4 2w, 2+ d,,
and
22+ 2+ 224 2uy 4 20,y + 2wz +-d,,
respectively.

Equating these, we obtain
2x(u; — uy) +2y(vy —V2) +22(W; — W,) + (d; — d;) =0,

which is the required locus, and being of the first degree in (z, ¥, 2), it
represents a plane which is obviously perpendicular to the line joining
the centres of the two spheres and is called the radical plane of the
two spheres.

Thus the radical plane of the two spheres

§,=0, 8,=0,
in both of which the co-efficients of the sccond degree terms are equal to
unity, s
Sy - 8,=0.

In case the two spheres intcrsect, the plane of their common
circle is their radical plane. (§ 6:32).

6'81. Radical line. The three radical planes of three spheres
taken two by two intersect in a line.
If

8;=0, 8;=0, S3=0
be the three spheres, their radical planes
81 —8,=0, 8,—8;=0, §3—-8,=0,
clearly mect in the line
S;=28,=28;.
This line is called the radical line of the three spheres.

6'82. Radical Centre. The four radical lines of four spheres
taken three by three intersect at a point.
The point common to the three planes
S1=SQ=SS=S4
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is clearly common to the radical lines, taken three by three, of the
four spheres

8,=0, §;=0, §3=0, §,=0.
This point is called the radical centre of the four spheres.
6°83. Theorem. If 8;=0, S,=0, be two spheres, then the
equation
8;+AS,=0,
A being the parameter, represents a system of spheres such that any two
members of the system have the same radical plane.
Let
S14M8,=0 and S;+2A,8,=0,
be any two members of the system.

Making the co-efficients of second degree terms unity, we write
them in the form
SL*_Z\£2 =0 Sl+7\2S,2=0
147 D S Ve
The radical plane of these two spheres is
Si4+ASs 81428,

147, T4, =0,

or
Sl—Sz=0.
Since this equation is independent of A; and A, we see that
every two members of the system have the same radical plane.

Co-axal System. Def. A system of spheres such that any two
members thereof have the same radical plane is called a co-axal system
of spheres. .

Thus the system of spheres
S;4A8,=0
is co-axal and we say that it is determined by the two spheres
8;=0, S,=0.
The common radical plane is
S;—8,=0
This co-axal system is also given by the equation
81+ ky(S;—8,) =0.
Refer Note 1, § 6:41, P. 92.
Note. It can similarly be proved that the system of spheres
S+AU=0
is co-axal ; S=0 being a sphere and U=0 a plano ; the common radical plane
is U=0.
. Cor. The locus of the centres of spheres of a co-azal system is a
ine.
For, if (x, y, 2) be the centre of the sphere
Sl+7\52=01
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we have
__wtAuy vy, z__w'+?\,1”2
42 Y57 T
On eliminating A, we find that it lies on the line
rhu _yto_ztw
Up—U2 VUV, —V3 Wy— W
This result is also otherwise clear ag the line joining the centres
of any two spheres is perpendicular to their common radical plane.
6'9. A simplified form of the equation of the two spheres.

By taking the line joining the centres of two given spheres as
X-axis, their equations take the form
224924 224 2u,x+ d,=0, 22+ y?+ 22+ 2ux+dy=0.
Their radical plane is
2x(uy— uy) + (d;—dp) =0.

Further, if we take the radical plane as the YZ plane, i.e., =0,
we have d,=d,=d, (say).

Thus by taking the line joining the centres as X-axis and the
radical plane as the YZ plane, the equations of any two spheres can
be put in the simplified form

224924 224 2u,2+ d=0, 22+y% 422+ 2ux+d=0,
where u;, 4, are different.

Cor. 1. The equation

2?4y 224 2ka+d=0

represents a co-axal system of spheres for different values of k; d
being constant. The YZ plane is the common radical plane and
X-axis is the line of centres.

Cor. 2. Limiting points. The equation
22+ y?+ 22+ 2kx+d=0
can be written as
(x+k)2+ y2+2%= k2—d.
For k= ++/d, we get spheres of the system with radius zero and
thus the system includes the two point spheres

(—+/d, 0, 0), (4/d, 0, 0).
These two points are called the limiting points and are real only

when d is positive, i.e., when the spheres do not meet the radical
plane in a real circle.

Def. Limiting points of @ co-azxal system of spheres are the point
spheres of the system.
Examples

1. Find the limiting poinis of the co-axal sysiem defined by the
spheres

2} 4?4224 32 —3y+6=0, a®+y?+22—6y—62+6=0.
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The equation of the plane of the circle through the two given

spheres is
32 +3y+62=0, 1., x+y+22=0.

Then the equation of the co-axal system determined by given

spheres is
22+ 2 +22 432 —3y + 6+Ax+y+22)=0,

.., 2249422+ (3+N)x+(A—3)y + 202+ 6=0. (1)

The centre of (1) is

3+A A=3
[0 50]
and radius is

3+A\2, /A-3\?
V) +(557) 4 |
Equating this radius to zero, we obtain
6A2—6=0,
.., A=+1.
The spheres corresponding to these values of A become point

spheres coinciding with their centres and are the limiting points of
the given system of spheres,

The limiting points, therefore, are
(—1,2,1) and (—2,1, —1).
2. Show that spheres which cut two given spheresalong great circles
all pass through two fixed points. (P.U. 1944 Suppl.)

With proper choice of axes, the equations of the given spheres
take the form

2?4y + 224 2u,x 4+-d=0, 0
2+ 9%+ 224 2ux + d=0. N (D))
The equation of any other sphere is
22+ 12+ 224 2ux+ 20y + 2wz + ¢=0 . (t03)
where u, v, w, ¢ are different for different spheres.

The plane
2x(u—u,)+ 20y + 2wz + (c—d) =0,
of the circle common to (¢) and (ii3) will pass through the centre
(_uls O, O)
of (¢), if
—2u,(u—u;)+(¢c—d)=0, vee(T0)
which is thus the condition for the sphere (i) to cut the sphere (z)
along a great circle.
Similarly
—2uy(u—1u,) +(c—d)=0, )
is the condition for the sphere (iit) to cut the sphere (it) along a
great circle.
Solving (i) and (v) for u and ¢, we get
w=uy+uy ; c=2uuy+d,
g0 that u, ¢ are constants, being dependent on u,, u4, d only.
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The sphere (i11) cuts X-axis at points whose z-co-ordinates are
the roots of the equation

2?4 2ur+c=0.

The roots of this equation are constant, depending as they do
upon the constants » and ¢ only.

Thus every sphere (141) meets the X-axis at the same two points
and hence the result.

Exercises
1. Show that the sphere
224924224 20y +-2wz—d=0
passes through the limiting points of the co-axal system
22+y24-2242kx+d=0

and cuts every member of the system orthogonally, whatever be the values of
v, .

Hence deduce that every sphere that passes through the limiting points of
a co-axal system cuts every sphere of that system orthogonally,
2. Show that the locus of the point spheres of the system
224924224 20y + 2wz —d=0
is the common circle of the system
224y2+4224 2ux+d=0;
u, v, w being the parameters and d a constant.

3. Show that the sphere which cuts two spheres orthogonally will cut every
member of the co-axal system detormined by them orthogonally.

4. Find the lmiting points of the co-axal system of spheres
a2+4y2+422—20x430y —4024-29+A(2x— 3y +42) =0,
[Ans. (2, —3,4);(—2,3. —4).
5. Three spheres of radii r% 7a, 73, have their centres 4, B, C at the points
(a, 0,0), (0,5, 0), (0, 0,c) and 7, +792+rg2=a24b2+4c2 A fourth sphere passes
through the origin and A4, B, C. Show that the radical centre of the four spheres
lLies on the plane ax+ by+cz=0_ (D.U.)

6. Show that the locus of a point from which equal tangents may be
drawn to the three spheres

224242242242y 4 224-2=0,
224-y2422 4 404-4244=0,
24y 422 a+6y—42—2=0,

@[2=(y—1)[5=23.
7. Show that there are, in general, two spheres of a co-axal system which
touch a given plane,

Find the equations to the two spheres of the co-axal system
2?4 Y2422 540 2e+y+32—3)=0,
which touch the plane

is the straight line

3x+4y=16.
[Ans, a24y2+4224-4a+2y+62—11=0, 5(+24y2+22) —8r—4y—12:—13=0,
8. P isa variable point on a given line and 4. B, C are its projections on
the axes, Show that the sphere O ABC passes through a fixed circle,

9. Show that the radical planes of the sphere of a co-axal system and of
any given sphere pass through a line.



CHAPTER VII
THE CONE AND CYLINDER

7-1. Def. 4 cone is a surface generated by a straight line which
passes through a fixed point and satisfies one more condition : for
mstance, it may intersect a given curve or touch a given surface.

The fixed point is called the wvertex and the given curve the
guiding curve of the cone.

Any individual straight line on the surface of a cone is called
its generalor.

In this book we shall be concerned only with quadric cones, ¢.e.,
cones with second degree equations.

7-12. Equation of a cone with a conic as guiding curve. 7o find
the equation of the cone whose vertex is at the point

(«, B, 7)
and whose generators intersect the conic
ax’+ 2hxy +by* +2gx +2fy+¢=0, z2=0. .. (2)
The equations to any line through (o, 8, 7) are
Toe_y—f_2—Y i
l m n - (@)

This line meets the plane z=0 in the point

(o3 0=5000)

which will lie on the given conic, if

o(a-7) 422 (o) w0 (52

2g(a—-——)+2f<ﬁ——)+c— . (§44)

This is the condition for the line (4t) to intersect the conic (i).
Eliminating I, m, n between (1) and (i), we get

a( a_:i;“,r >2+ 2h ( ac—'?:a 7)( B—y—p 7) +

b(8=Y=E7 )+ 20( a-20y )+ 27(8-Y 0 ¥ )40
or a(az—2Y)*+2h(az—27)(Bz—y¥) +(Bz-yY)*+
29(az—27)(z =)+ 2/ Bz —yY) (z—7) +c(z—7)*=
which is the required equation of the cone.

Note. The degrae of the equation of a cone dopends upon the nature of
the giiding curve. In case the guiding curve is a conic, the equation of the
cone shall be of the second degree, as is seen above, Cones with sccond degree
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equations are called Quadric cones, In what follows, we shall almost be
exclusively concerned with quadric cones only,

Exercises
1. Find the equation of the cone whose generators pass through the point
(a, B, v) and have their direction cosines satisfying the relation
al24-bim24cn2-=0, (P.U. 1937)
[Ans. a(zx—«)24b(y—B)24c(z—y)2=0,
2. Find the equation of the cone whose vertox is the point (I, 1, 0) and
whose guiding curve is
y=0, z2422=4,
[Ans, 22—3y2+422—2zy48y—4=0,
3. Obtain the equation of the cone whose vertex is the point («, B, y) and
whose generating lines pass through the conic
x2/a?4y2[b2=1, z=0,
Ans (_az—xy)2+ (Bz-yY 2-— 2
Ans. b ) =(z—7v)2.

a
4. The section of a cone whose vertex is P and guiding curve the ellipse
22/a4-y2/b2=1, 2=0 by the plane x=0 is a rectangular hyperbola. Show that
the locus of P is
z2  y2422 -1
@ T T
5. Show that the equation of the cone whose vertex is the origin and
whose base is tho circle through the three pomnts
(a, 0, 0), (0, ,0), (0,0, ¢c)
is Ya(b24c2)yz=0. (B.U. 1958)
6. Find the equation of the cono whose vertex is (1, 2, 3) and guiding
curve is the circle
224y2422=4, xtyt+2=1
[Ans. b5u24-3y2422—2xy—6yz—4za+06048y410:=26,
7. The plane lx+my+nz=0 moves in such a way that 1ts intersection
with the planes
ar+by+cz+d=0, a’z+b'y+c'24+d’ =0
aro perpendicular. Show that tho normal to tho plane at the origin describes,
i general, a cono of the sccond degree, and find 1ts equation. Examine the
case in which aa’+bb"+cc’=0. (M.T. 1956)

7-13. Enveloping cone of a sphere. 7o find the equation of the
cone whose verlex 8 at the point (a, B, ¥) and whose generators touch
the sphere

2+t +22=al ...(7)

The equations to any line through («, B, 7) are
r—a_y—p_2—-V ..
—Ti:y—ﬂb‘ﬁ_ ; . ...(711)

The points of intersection of the line (i) with the sphere (i) are
given by
r2(24-m2+n?) + 2r(la-+mB+nY)+ (224 P2+ Y2 —a?)=0.

(See § 6°5)
and the line will touch the sphere, if the two values of r are coin-
cident, and this requires

(la+mB+nY)2=(12+m?+n?) (a2 +P2+Y2—a?). N (179)
This is the condition for the line (3i) to touch the sphere ().
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Eliminating [, m, n, between, (1¢) and (i¢1), we get
[«(z—) + Bly—B)+7(z—7)P 9 ,
=[(z—a)’+(y—PB)*+ (=7 [« +B*+V*—a’],  ...(%)
which is the required equation of the cone.
If we write
S=x+y*+22—a?, §,=x2*4+B'+Y%2—a?, T'=ax t Br+Yz—a?,
the equation (iv) can be re-written as
(T -8)2=(8—2T+8)S,
or
88, =172,
ie., (2" + g+ 22— a?) (4 B2+ 72 - a?) = (aw+ By + 72 - a?)2.
Def. Enveloping cone. The cone formed by the tangent lines to a
surface, drawn from a given point ts called the enveloping cone of the
surface with given point as its vertex.

Exercises
1. Find the enveloping cone of the sphere
224 y2423 - 2r 4 d42=1

with 1ts vertex at (1, 1, 1),
[Ans. 42243y2—522_6yz —8r4+16:—4==0.

2. Show that the plane z=0 cuts the envecloping cone of the sphere
a24y2+22=11 which has 1ts vertex at (2, 4, 1) 1n a rectangular hyperbola,

7-14. Quadric cones with vertex at origin. 70 prove that the
equation of a cone with its vertex at the origin is homogeneous in z, y, z
and conversely.

We take up the general equation

ax’+by? + ¢+ 2fyz + 2gzx+ 2hay+ 2ux 4+ 2vy+-2wz+ d=0 ...(1)
of the second degree and show that if it represents a cone with its
vertex at the origin, then
u=v=w=d=0.

Let P(«', ¥, 2’) be any point on the cone represented by the
equation (1).

Now, rx’, ry’, rz’ are the general co-ordinates of a point on the line
joining P to the origin O.

Since OP is a generator of the cone (1), the point

(rz’, ry’, r2)

should lie on it for every value of . Hence
r¥ax'?4-by't+c2'24-2fy'2 + 2g2'x" + 2ha'y") + 2r(ux’ + vy’ +w2') +d=0,
must be an identity.

This gives
ax'?+by'? ezt +2fy'2" +2g2'a" + 2ha'y’ =0, . (1)
ux’ +vy +wz' =0, (1))
d=0. .. (132)

From (ii1),

d=0.
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From (i1), we see that if u, v, w, be not all zero, then the co-
ordinates z’, ', 2’, of any point on Ythe cone satisfy an equation of the
first degree so that the surface is a plane and we havea contradiction.

Hence

u=v=w=0.

Thus we see that the equation of a cone with its vertex at the
origin, is necessarily homogeneous.

Conversely, every homogeneous equation of the second degree
represents a cone with its vertex at the origin.

It is clear from the nature of the equation thatif the co-ordinates
x', y', 2', satisfy it, then so do also r2’, ry’, r2’, for all values of 7.

Hence if any point P lies on the surface, then every point on OP
and, therefore, the entire line OP lies on it.

Thus the surface is generated by lines through the origin O and
hence, by definition, it is a cone with its vertex at O.

Note. A homogencous equation of the sccond degree will represent a y.air
of planes, if the homogeneous expression can be factorized into linear factors,
The condition for this has already been obtained in Chapter 11,

Cor. 1. If I, m, n be the dircction ratios of any generator of the

cone
ax®+4by*4- 2+ 2fyz +2g2x+ 2hay =0, «.(1)
then any point (Ir, mr, nr) on the generator lies on it and, therefore,
al® +bm2+cn+ 2fmn+2gnl+2him=0. ...(2)

Conversely, it is obvious that if the result (2) be true then the
line with direction ratios I, m, n is a generator of the cone whose
equation is (1).

Cor. 2. The general equation of the cone with its vertex at
(a) B) y) is

a(@—a)?+bly—B)*+c(z—Y)*+2f (z—Y)(y—p) +
2g(x—a)(z—7Y)+2h(r—a)(y —B) =0,
as can easily be verified by transferring the origin to the point
(a’ B! 7)‘
Example

Find the equation of the quadric cone whose vertex is at the origin

and which passes through the curve given by the equations
ax? + by?+c2?=1, lx+my+nz=p.
The required equation is the homogeneous equation of the second

degree satisfied by points satisfying the two given equations. We
rewrite

lx+my +nz=p

as lztm +7r;y__~_+ n_1.
Thus the required equation is
o Iz +my +nz\?
2 ? | ol BT Y T
ax?-+by* +cz ( » ) ,

or S(ap®—12)at==2ZImzy =0.
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Exercises
1. Find the equation of the cone with vertex at the origin and direction
cosines of its generators satisfying the relation
312—4m245n2=0,
[Ans, 3r2—4y24-522=0.

2. Find the equations to the cones with vortex at the origin and which
pass through the curves given by the equations

(3) z=2, X34 y2=4.
(%) a:c’+by24...~, lx+my+nz=p.

(747) 2243242242 —2y+32=4 ; 22+y2 424 20—y +-4z=

[Ans, (2) x24y2—2z%=0. (i3) p(ax24by?)=22 (lx-i—my-}-nz).
(777) 222412 —Bxy—3yz+422=0,
3. A sphere.S and a plane « have, respectively, the equations
o+ utc=0;v=1,

where ¢=a2+y2+22, v and v are homogeneous linear functions of z,Y, 2 and c is

a conqtant Find the equation of the cone whose generators join the origin O
to the points of intersection of & and a.

Show that this conoe meets S agamn in points lying on a plane 8 and find the
oquation of B in terms of w, v and c.

If the radius of S varies, while its centre, the plane «, and the point O

remain fixed, prove that B passes through a fixed line. (M.T.)
[The required cone, C, is given by
C=9p+uv-tce?,
Now C—S=(p+uv+cv?) —(p+u+c)=(v—1)(utcv+-c)

so that we see that the cono C meets S again 1n powmntslying on tho plane

=u-+cv+4c=0,

Since the radius of § varies and 1ts centre remains fixed, we see that wu is
constant while ¢ varies, Also » 1s constant, This shows that the plane
B=wu+c(r+1) passes through tho line of interscction of tho fixed planecs
u=0, v4+1=0.]

7°15. Determination of Cones under given conditions. As the
general equation of a quadric cone with a given vertex contains five
arbitrary constants, it follows that five conditions determine such a
cone provided each condition gives rise to a single relation between
the constants. For instance, a cone can be determined so as to have
any given five concurrent lines as genemtors provided no three of them
are co-planar,

Examples

1. Show that the general equation to a cone which passes through
the three axes ts

Jyz+gzx+hxy=0.
The general equation of a cone with its vertex at the origin is
ax?+ by + 2+ 2fyz + 2922 +2hry =0, «e(9)
Since .X-axis is a generator, its direction cosines 1, 0, 0 satisfy (z).
This gives a=0. Similarly b=c=0.

2. Show thut a cone can be found so as to contain any two given sets
of three mutually perpendicular concurrent lines as genergtors,
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Take the three lines of one set as co-ordinate axes.
Let the lines OP, 0Q, OR of the second set be

LY 2 _Y_*2 T_Y_Z*
L my n) 1y, my my Iy my mg
respectively. '
The general equation of a cone through the three axes is
fyz+gza+hxy=0.
It will contain the lines OP and OQ as generators, if ’
Smuny+gnyly +Rlymy =0, ...(3)
Smany+gnoly + hlymy=0. (1)
The lines of the set being mutually perpendicular, we have
myny +Mmeny+mang=0,
nlll"}‘nzlg +nal3———0, .- (A)
Lymy+1my +15my=0. )
Adding (7), (1) and employing the relation (A), we deduce the
condition
fm3n3+ 971313+’Ll3m3=0,
so that the cone through OP and OQ passes through OR also.

Exercises

1. Find the equation to the cono which passes through the three
co-ordmmate axes as well as the lines

[Ans. 3yz+162x+152y=0,
2. Find the equation of the cone which contains the three co-ordinate
axes and tho lines through the origin with direction cosmes (I, 7y, n;).and

(I, Mg, my),
[Ans. Xlly(myng—mgng)yz=0.

3. Find the equation of the quadric cone which passes through the three
co-ordmate axes and the three mutually perpendicular lines

le=y=—z, 2=dy=1z, dr=—1fy=3%2
[Ans, 16yz—33zx—25xy=0,

7-2. Condition that the general equation of the second degree
should represent a cone. Co-ordinates of the vertex.

We have seen that the equation of a cone with its vertex at the
origin is necessarily homogeneous and conversely. Thus any given
equation of the second degree will represent a cone if, and only if,
there is a point such that on transferring the origin to the same the
equation becomes homogeneous.

Let

f(z, y, 2) =ax®by*+ c2*+2fyz+2gzx+2hay
+ 2ux+2vy +2wz+d=0, (1)
represent a cone having its vertex at (z’, ', 2').
Shift the origin to the vertex (', ¥', 2') so that we change
zto z+2', y to y+y' and 2 to 242",
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The transformed equation is
ax®+by*+c2? + 2 fyz+ 2922+ 2hay -
2[x(az’ +hy 492" +u) + y(ha' + by + 12" +v) + 2(gx’ +fy' +c2' + w)]
+/@', y', 2)=0. -(2)
The equation (2) represents a cone with its vertex at the origin
and must, therefore, be homogeneous. This gives

ax’+hy' +92' +u=0, e (7)
ha'+by +f2' +v=0, ... (i)
gz’ +fy' + ¢’ +w=0, .. (v12)

f@, y', 2')=0, (i)

Also, f(@', ¥, 2")=2"(ax'+ hy'+92" +u)+y' (ha' 4- by’ + f2' +v) +
2 (g2’ +-fy’ +c2’ + w)+ (ua' + oy 4 w2’ 4-d).
Thus with the help of (i), (i) and (iii), we see that (i) is
equivalent to
ux' +vy'+wz'+d=0. - (v)
Eliminating ', %', 2’ betwoen (z), (it), (¢ii), and {v), we obtain

a, b, g, u

h, b, f, v
:0’
9, [, ¢, w

u, v, w, d

as the required condition for the general equation (1} of the second
degree to represent a cone.

Assuming that the condition is satisfied, the co-ordinates (x',y', 2')
of the vertex are cbtained by solving simultancously the three linear equa-
tions (i), (1) and (¢i4).

Cor. IfF (x,y, z)=ax®+by2+c2t 4+ 2fyz+ 29z + 2hay +-

2ux + 20y + 2uz+4-d=0,
represents a cone, the co-ordinates of ils vertex satisfy the equations
F,=0, Fy=0, F,=0, F;=0,
where ‘t’ is used to make F(x, y, z) homogeneous and is put equal to
unity afier differentiation.
Making F(z, y, z) homogeneous, we write
F(z, vy, 2, )=ax*>+by’+ c2®+2fyz+ 292w+ 2hay
+ Quart 4 vyt + 2wzt + dt?.

Then

F.=2(ax + hy+ gz +ut), Fy=2(ha+by +fz+ot),

F,=2(gx+fy + cz+wt), Fi=2(ux+vy+wz+dt).

Putting t=1, we see from (i), (i), (i), (v) that the vertex
(%, Y1, 21) satisfies the equations

F,=0, F,=0, F,=0, F;=0.
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Note. The student should note that the co-efficients of second degree

terms in the transformed cquation (2) are the same as those n the original
equation (1).

Note. Thoe equation I'(., i, 2)=0 represents a cone 1if, and only if, the
four hnear equations I, =0, Fy=0, ¥,=0, F; =0 are consistent. In the caso of
consistency the vertex 13 given by any three of these,

Example
Prove that the equalion
42— 1242224 20y —3yz -+ 120 —11y+ 624+ 4=0,
represents a cone whose vertex is (—1, —2, —3).
Making the equation homogeneous, we obtain
F(z. y, z t)=4a?—y?* 4222+ 22y — 3yz+ 122t — 1 1yl + 6zt 4%

Equating to zero the partial derivatives with respect to 2, ¥, 2
and ¢, we obtain the four linear equations

82 +2y+12t=0, e (1)
2e—3y—32+11t=0, . (20)
—3y+42+6t=0, (7))
12x—11y+6z+ 8t=0. oo (1)
Replacing ¢ by unity and solving the resulting three linear equa-
tions (1), (7¢), (¢i7) for z, ¥, z, we obtain .
r=—1, y=—2 2=—3.

The values satisfy (iv) also.
Thus the equation is & cone with vertex (—1, —2, —3).

Exercises

1. Prove that the oquation
222924 32— gy +-6yr—Gre+ 8o —19y—22—20=0,
represents a cono with vertex (1, —2, 3).
2. Prove that the cquation
2y2—8yz—drzr—8ry+6r—4y—2:45=0,
represents a cone whose vertex 1s (—7/6, 1/3, 5/6).

Example
Find the equations lo the lines in which
the plane
2z+y—2z=0,

cuts the cone
42*—y24-322=0.
Let

be the equations of any one of the two lines in which the given plaue
meets the given cone so that we have

214+ m—n=0, 412 —m?43n=0,
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These two equations have now to be solved for I, m, n. Eliminat-
ing n, we have

12—m?+3(2l+4+m)2=0,

i.e., 812+ 6lm +m2=
: 1_—6iy36-33_ 1 1
e m 16 4 2 .
Also we have
l n
2 —_—
m +1 m 0
1 n 1
o when —=— e we have e =
I _m_mn
so that "1 9
l 1
and when ——=——_we have —=0
m 27
Il _m_n
so that S
Thus the two required lines are
' Y _E e Y %
—1 4 27 —1 2 0

Exercises

1. Find the equations of the lines of intersection of the following plancs
and cones :

(¢) 24-3y—22=0, 224-9y2—422=0,
(#7) 3wr+4y+2=0, 1502 —32y2—1722==0,
(¢28) a+Ty—>52==0, 3ys+1420—300y=0.

[Ans, (i) x=2z, y=0; 3y=2z, x=0. (¢) __‘_v_=-__=_.~, = =

i) =Y =% T _Y _Z
@) v~=5=3 37 17 ~"3"

2. Show that the equation of the quadric cone which contains the three
co-ordinate axes and tho lines in which the plane

x—5y+3z=
cuts the cone
T2+ 5y2—322=0,
is
yz2+10z0—18zy=0.
3. Find the angle between the lines of intersection of
(%) z—3y+42=0 and 22—5y2+422=0,
(¢6) 10x4-7y—62=0and 20x247y2—10822=0.
(¢72) 4x—y—5z=0and 8yz+3zx—baxy=0.
(%v) z+y—+2=0and 6xy+3yz—2z20=0,
(v) z4+y+2z=0and 22~—yz42y—322=0,
[Ans. cos™1(5/6), (¢%) cos~1(16/21), (¢ig) cos~1(242/3), () =3, (v) n/6.



MUTUALLY PERPENDICULAR GENERATIONS OF A CONE 119

4. Prove that the plane
ax+by+cz=0
cuts the cono
. yz42z42y=0,
in perpendicular lines if
Lililo,
a b c
(D.U. Hons. 1955)
[Refer, also Ex. 1, after tho noxt soction 73}
7'3. Mutually perpendicular generators of a cone.
To find the condition that the cone

az?+by*+c22 2 fyz+ 2gzx +-2hay =0 ...(1)
should have three mulually perpendicular generalors.
Let
%=%=é .. (37)
be any generator of the cone so that
A2+ b2 4-cvi+ 2 fuv 4 2gVA + 2hAu=0. ...(113)

Equation of the plane through the origin perpendicular to the
line (4i) is
Az + py+vz=0. ...(w)
If I, m, n be the direction cosines of any one of the generators
in which the plane cuts the given cone, we have
al*+bm* 4 cn®+2fmn-+ 2gnl -+ 2him =0, ee(v)
and
N mp-+nv=0. e (v2)
Eliminating »n between (v) and (vi), we obtain
1%(av¥+cA? — 2gAv) + 2lm (A + b — gy +fAv) + m3(bv: +cpu? —2fuv) =0
which, being a quadratic in ! : m, we see that the plane (fv) cuts the
given cone in two generators.
Hence if (I;, my, ny,), (I3, mg, n,) be the direction cosines of these
two generators, we have
bia _ bviteut—2fuy
‘mymg  avi-+cA3—2ghy
or bl umg
bvi-tep?—2fuv avi4-chi—2gAv
From symmetry, each of these is further
B -
= g = ()
Lyl mmy+mymg=a(p?+v2) + B3N + o2+ p?)
—2 fuv—2gvA —2RhA@]
=k(a+b+c)(A+u*+v?), .. (vid)
with the help of (¢i2).
If these two generators be at rt. angles, we have
Ly +mmy+nny=0,
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and hence
a+b+c=0.

Also conversely, if a+b+c=0, we see from (vii) that these two
generators are at right angles.

Since x/A=y/u=2/v, is any arbitrary generator anc the condition
obtained is independent of A, u, v, we see that if

a+b+c=0,
then the plane through the vertex perpendicular to any generator of the
cone cuts it in two other perpendicular generators. These two gencrators
will themselves be perpendicular to the first generator so that the
vhree generators will be perpendicular in pairs.

Thus if

a+b+e=0
the cone has an infinite number of sets of three mutually perpendicular
generators.

In fuct if this condition is satisfied, then the plane™perpendicular
to any generator OP of the cone cuts the same in two perpendicular
generators 0@, OR, so that OP, 0Q, OR is a set of three mutually
perpendicular generators.

Note. If the general equation

ax? +by2+c224-2fyz+2gze 4 2hay +-2uxr + 20y 4+ 2wz 4-d =0

represents a cone having sets of three mutually perpendicular generators, then
also

a+b+c=0

for, on shifting the origin to 1ts vertex, the co-efficients of the second degree
terms remain unaffected.

Exercises

1. Show that the two straight lines representod by the equations
ax+by+cz==0 and yz + zx+ay=0,
will bo perpendicular if
1/a + 1/b41[c=0. (P.U. 1939)

[The sum of the co-eflicients of 22, 42 and 22 in the equation of the given
cone beimng zero, we see that the given plane will cut the given cone in perpendi-
cular generators if the normal to the plane through the vertex which is the
orign, viz.,

afa=yfb=zc
is a generator of the cone.

This requires
betca+ab=0, i.e., 1/a+1/b41[c=0.]
2. Prove that the plane lx +my+nz=0 cuts the cone
(b —c)x24-(c—a)y2+(a—b)22+ 2fyz+ 292z + 2haxy =0
in perpendicular lines if
(b—c)l24 (c—a)ym2 4 (a—b)n2+2fimn +2ynl+2him=0.
3. If
r=4y=2
represents one of a set of three mutually perpendicular generators of the cone

1yz+4622—142y=0,
find the equations of the other two.

[Ana. %=%=—Z~—; —?—‘ Yy d
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4. If -
r _Y _2
I = 2773

represent one of a set of thrce mutually perpendicular generators of the cone
5yz—8zx—32y=0,

find the equations of the other two. (D.U. Hons. 1960)
. xr_ Y _E..2_Y_E,
dns. —=—"(=7 57 =7T=11

5. Show that the cone whose vertex is the origin and which passes through
the curve of intersection of the suifuce 242—y?42:2=3d2 and any plane at a
distance d, from the origin has three mutually perpendicular generators,

6. ¥ind the locus of a point from which three mutually perpendicular
lines can be drawn to intersect the central conic

ar24+by?=1, z=0.
[dns. a(x2422)+b(y2+22)=1,

7. Show that three mutually perpendicular tangent ines can be diawn to
tho sphere

x?+y2+ 22— p2
from any point on the sphere

2224 y222)=3r2,
8. Three points I, @, I arc taken on the ellipsoid
2@+ y2[U2422)c2- 1

so that the lines joining P, @, R to the origin are mutually perpendicular. Prove
that the plano PQ R touches a fixed sphere,

(P.U. 1949)
7°4. Intersection of a line with a cone.
To find the points of inlersection of the line
r—o_y—FB_2—Y .
L m on - (1)

wilh the cone ,
f(x, y, 2)=ax®+by*+ cz*+ 2fyz + 2yza + 2hay = 0. ... (1)
The point (Ir+«, mr+p, nr-+7) which lies on the line (i) for all
values of 7 will lic on the cone (it) for values of r given by the
equation
a(lr+o)?+b(mr+ B)*+c(nr+7)* +2f(mr+4-8) (nr+7)
-+ 2g(Ir+ ) (nr+7) 4+ 2h(Ir+ o) (mr + B) =0,
or rYal24-bm2+ cn® + 2fmn + 2gnl + 2him)
+2r{i(ac + b3+ gY) +m(ha+0B+ 1Y)+ n(ga+fB+cY)]
+f(°"; B’ 7)=0, .
which being a quadratic in r, we see that there are iwo points of
intersection.
Hence every line meets a quadric cone in two points.
Cor. A plane section of a quadric cone is a conic, as every line
in the plane meets the curve of intersection in two points.

Note. The equation (A) gives the distances of the points of intersection
P and Q from the point («, B, v), if [, m, n are diroection cosnes,

Exercises
1. Show that the locus of mid-points of chords of the cone

a2+ by?+c22+2fyz+2gzx+ 2hay =0
drawn parallel to the line
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x[l=y[m=z[n

z(al+hm+gn)+y(hl4-bm—+fn)42(gl+fm-+cn)=0,
[Hint. If (¢, B, y) be the middle point of any such chord
@—a_y—B_z—y
U m n

the two roots of the equation (A) are equal and opposite and as such their sum
is zero, |

2. Find the locus of the chords of a cone which are bisocted at a fixed
point,

7°41. The tangent lines and tangent plane at a point.

is the plane

Let z—e_y—B_==Y (i)
l m n
be any line through a point («, 8, ¥) of the cone
ax®+by?+ c2® -+ 2fyz+2gza+ 2hxy =0 ... (22)
so that

ax®+bB% Y24 2fBY +2¢Y o+ 2haf =0.

Thus one of the values of 7 given by the equation (A) of Art. 74
is zero and so one of the two points of intersection coincides with
(e, B, 7). The second point of intersection will also coincide with
(«, B, V) if the second root of the same equation is also zero. This
requires

Nao+-1B+g7) +m(ha+b8 +f7) +nlgoe+fB+c¥)=0 .. (311)

The line (¢) corresponding to the sot of values of I, m, n, satisfying
the relation (1i:) is @ tangent line at («, B, ¥) to the cone (3t).

Eliminating I, m, n, between (¢) and (¢4¢), we obtain the locus of
all the tangent lines through («, 8, 7), viz.,

(x—a)(ax+hB+g7) + (y—p) (ha+bB+[Y) (2 =¥ ) (gx+fB+cY)=0
or z(ae+hB3+ gY)+yha+08 +fY) + 2(ga+fB+ cY)
=ax2+0B*+ Y3+ 2fBY -+ 297 4 2haf3 =0,
which is a plane known as the tangent plane.

Clearly the tangent plane at any point passes through the vertex.

Cor. The tangent plane at any point (kx, kB, kY) on the
generator through the point («, B, 7) is the same as the tangent plane
at («, B, 7).

Thus we see that the tangent plane at any point on a cone touches
tt at all points of the generator through that point and we say that the
plane touches the cone along the generator.

Examples

1. Show that
z[l=y/m=z[n
18 the line of intersection of the tangent planes to the cone
ax®+by?+ 622+ 2 fyz + 2g2x + 2hay =0,
along the lines tn which it 13 cut by the plane
z(al+hm~+gn)+y(hl+bdm + fn) +2(gl + fm+cn) =0.
The tangent plane at any point (a, 8, 7) of the given cone is



BXAMPLES 158

w(ax+hP+97) +y(ha+bB+fY) +2(ge+fB+c¥)=0.
It will contain the line
z/l=y[m=z|n,

lax+hB+gY) +m(ha+b84fY) +n(ge+fB+cY) =0,
i, a(al-hm-tgn)+B(hl+bm+fn) +¥(gl+fm+on)=0.
Thus the point («, B, ¥) lies on the plane
#(al+hm+gn) -+ y(hl+bm +fn) +2(gl+fm—+cn) =0,
Hence the result.

2. Show thal the locus of the line of intersection of langent planes
to the cone

if

ax®+by*+ c2?=0
which touch along perpendicular generators is the cone
a?(b+c)x®+b%(c+a)y*+-c(a+b)2*=0.
Let the tangent planes along two perpendicular generators of the
cone meet in the line
T __y _ =z

Z - z. oo (d)

! m n
_ Therefore, the equation of the plane containing the two generators
is
alx +bmy+cnz=0. v (12)
Let A, p, v, be the direction ratios of any one of the two genera-
tors so that we have
alA 4 bmp~+cnv=0, ...(st2)
al®+ b+ cvi=0. ... ()
Eliminating v from (4¢7) and (:v), we have
a(cn®+al?)A2 + 2ablmAp -+ b(cn?+ bm?)u?=0.
If Ay, 1, v; 5 Agy R, vo, be thoe direction cosines of the two genera-
tors, we have
_7_\_17\_3=b(cn2+bm2)

Wi a(eni+alé)

or __._A’Z\ 2 = VHIHL,‘.
(cn®+bmP) e (cn*+al?)/b
Hence, by symmetry, we get
*_.2\1_)\2_"_._ =. Yilhe o ViVa
(ent+bdm?)ja  (cn®+al?)[b  (al*+bm?)|c’
The generators being at right angle, we have
APAg+ ety =0,
. cn?+bom? | cn+al® | al?+bm®
t.e., - +- =0,
a b c
or a?(b+c)l24-b(c+a)m?+c*}(a-+b)n*=0. e (V)

Eliminating ! : m : » from (¢) and (v), we obtain
a?(b+c)z?+b%(c+a)y+ci(a+b)22=0,
as the required locus.
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7-42. Condition for tangency. 7o find the condition that the plane
lx+my+nz=0, ; .«.(1)
should touch the cone
axt+by*+c2* + 2fyz + 2922+ 2hay =0. e (2)
If (x, B, ¥) be the point of contact, the tangent plane
z(an+nB+gY)+yhat+B8+fY)+2(ge+/E+cY)=0

thereat should be the same as the plane (1).

.. a“,_*_bLB + (/Y=ha+bBLfZ:ﬁi[[ﬁig?/.=k' (say).
m n
Hence X
ax+ h3+ gy —1lk=0, w. (2)
ha+03+fY—mk=0, e (12)
ga+-f3+cY—nk=0. .. (002)
Also, since (o, B, 7) lics on the plane (1), we have
lat+mP+ny=0. ... (1)

Eliminating «, 8, ¥, k between (i), (1), (2ii), (v), we obtain
‘ a) ]L, g’ l !

|

\
LI, b, i m

| —0, o (A)
| g, f) [ n

1, m, n, 0 |
as the required condition.
The determinant (A), on expansion, gives
Al4- Bm*+Cn?+2Fmn-+2Gnl +2HIm=0,

where 4, B, C, F, ¢, H arc, as usual, the co-factors of a, 0, ¢, f, g, A
respectively in the determinant

! a, h, g
‘h b,
g c
i.e., A=bc—f? B=ca—g? C=ab—h?;

F=gh—af, G=hf—bg, H=[fg—ch.

7:53. Reciprocal cones. 7o find the locus of lines through the
vertex of the cone

ax®+by?+c2® + 2fyz +2g2x + 2hay =0 ..(1)
perpendicular lo its tangent planes.
Let
lx+my+nz=0, ..(2)

be any tangent plane to the cone (1) so that we have
A2+ Bm24+-Cn?+2Fmn+2Gnl+ 2HIm=0. «.(3)
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The line through the vertex perpendicular to the tangent plane
(2) is

,,x, - :__?__/__ = f
L om o (4)
Eliminating I, m, n between (3), (4), we get
Az®+ By*+ C22+2Fyz+ 2G2x + 2Hay =0 ...(8)

as the required locus which is again a quadric cone with its vertex at
the origin.

If we now find the locus of lines through the origin perpendicular
to the tangent planes to the cone (5% we have to substitute for
A, B, C, F, @, H in ils equation the corresponding co-factors in the
determinant

4, H, @
H, B F

| G, F, C |
Since, we have, by actual multiplication,
BC— F*=aD, CA-G*=bD, AB—H?:==¢D ;
GH—AF=fD, IIF—BG=gD, FG—CH=hD;
where
D=abc +2fgh —af*~ by*—ch?,
it follows that the required locus for the cone (5) is
ax®+ by?-t-czt 42 fyz 4 29z +2hay =0,
which is the same as (1).
The two cones (1) and (5) are, therefore, such that each is the

locus of the normals drawn through the origin to the tangent plaues
to the other and they are, on this account, called reciprocal cones.

Cor. The condition for the cone

ax?+by*+c2®+2fyz 4 2922+ 2hay=0, e (3)
to possess three mutually perpendicular tangent planes is
A+B+C=0.

The cone (i) will clearly possess three mutually perpendicular
tangent planes, if its reciprocal cone

Ax*+ Byt 4+ C22+2Fyz+2Qzx+2Hay =0,
has three mutually perpendicular generators and this will be so if
A+B+C=0, i.e., if bctcat+ab=f24g?+h2
Examples

1. Show that the general equation of a cone which touches the three
co-ordinate planes is
‘ vV fx 44 gy - hz =0.
The reciprocal of a conc touching the three co-ordinate planes
is a cone with three co-ordinate axes as three of its generators. Now,
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the general equation of a cone through the three axes is
Sfyz+gre+hxy=0.
Its reciprocal cone is
—f 1 —g2y% — R34 2ghyz + 2hfzax+- 2 fgry =0,

or (fr+gy—he)'=4fgzy,

or fr+gy—hz=+2V fgry,
or frtgy+2V fazy=hz,

or (Vfr 4+ Vgy)i=hz,

or VirEvVgy=+tVhe,
or ViE £+ gy £V hz=0.

2. Show that the locus of the line of intersection of perpendicular
tangent planes to the cone
ax®+ by +c2*=0,

a(b+c)z?+blc+a)y*+c(a-t b)22=0.

Gencrators of the reciprocal cone corresponding to the perpendi-
cular tangent planes of theoriginal cone are themselves perpendicular.
Also, the line of intersection of the perpendicular tangent planes i3
perpendicular to the corresponding generators of the reciprocal cone.
Combining these two facts, we sec that the given question is equiva-
lent to determining the locus of normals through the origin to the
planes which cut the reciprocal cone along perpendicular generators.

Equation of the reciprocal cone is

28 the come

a? oy 22
c

CRICRIC
or
bea®+ cay®+ abz?=0. ...(z)
Let the plane
le+my+nz=0 ... (12)
cut the cone (¢) along perpendicular generators. The condition for
this, as may be easily obtained, is

a(db+c)i4b(c+a)m+cla+b)n2=0. ... (132)
The equations of the normal to the plane (iz) are
_'?_ = ._y_.=_z_ . Y
] P ()]

Eliminating I, m, n from (4it) and (:v), we obtain
a(d+e)x®*+b(c+a)y*+c(a+b)z*=0,
as the required locus.
Exercises
1. Find the plane which touches the cone
224 2y%—3224-2yz—5za 432y =0,

along the generator whose direction ratios are 1, 1, 1,
[AM- y=z'
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2. Prove that perpendiculars drawn from the origin to the tangent planes
to the cone
ax?4-by2+c22=0,

22[a+-y2/b422/c=0.
3. Prove that tangent planes to the cone
23— 24222 3yr 4 42x—5ry=0,
are perpendicular to the generators of the cone
17234 8y2429284-28yz—46zx— 162y =0,
4. Prove that the cones

ayz+bze+cxy=0, (a:v)%—i- (by)*+ (cz)§A= 0

lie on the cone

are reciprocal.

S. Prove that the cones
ar?4-by2+c:2=0

x2fa+4-y2[b+22[c=0
are reciprocal. (D.U. Hons. 1957)

6. Show that a quadric cone can be found to touch any five planes which
meet at a point provided no three of them intersect in a line,

Find the equation of the cone which touches the three co-ordinate planes
and the planes
42y +3:2=0, 224 3y+42-=0.
Lans. @)+ (—6p)}+(62t=0.

7. Show that a quadric cone can be found to touch any two sets of three
mutually perpendicular planes which meet in a point.

8. Find the equation of the quadric cone which touches the three co-
ordinate planes und the three mutually perpendicular planes

x—y+2=0, 2x43y+z=0, 4v—y—52=0.
[Ans. 64x2+9y2+25:2 30y~—80zx 4482y =0.

7'5. Intersection of two cones with a common vertex. Sections
of two cones, having a common vertex, by any plane are two coplanar
conics which, in general, intersect in four points.

The four lines joining the common vertex to the four points of
intersection of these two coplanar conics are the four common
generators of the two cones.

Therefore two cones with a common vertex intersect, tn general, in
Sfour common generators.

In case two cones with the same vertex have five common
generators, they coincide.

and

If
8=0, §'=0,
be the equations of two cones with origin as the common vertex, then
S+kS =0

is clearly the general equation of a cone whose vertex is at the origin
and which passes through the four common generators of the cones
§=0, §'=0
If & be so chosen that S+kS'=0 becomes the product of two
linear factors, then the corresponding equations obtained by putting
the linear factors equal to zero represent a pair of planes through the
common generators,
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Such values of k are the roots of the k-cubic equation
atka’, h+kb, g+kg

Rk,  bLkY,  fiEf | =0.

g+kg, S+Ef, ¢tk
The three values of k give the three pairs of planes through the
four common generators.

Exercises

1. Find the equation of the cone which passes through the common
generators of the cones

—2224+4y2+22=0 and 10cy—2yz45z2=0
and the line with direction cosines proportional to 1, 2, 3,
[Ans. 222--4y2—224-10xy—2yz+522=0,
2. Show that the equation of the cone through the intersection of the
cones

a2~ 2y243:2—4yz45:20—6oy=0 and 222—3y2+4:2-5y:+4+6z2—10xy=0
and the line with direction cosines proportional to 1, 1, 1 1s
y2—2:24 3yz—422 422y =0.
3. Show that the plane 3.0+ 2y—42=0 passes through a pair of common
generators of the cones
27224-2042—32:2=0 and 2yz4zv—4ay=0.
Also show that the plane containing the other two generators is
Ox+10y-+ 8z=0.
4, Show that the plano 3x—2y—z=0 cuts the cones
3yz—2zx4+20y=0 and 21v2—4y2—5:2=0
in the same pair of perpendicular lines.

Also show that the plane Tx+2y--5:=:0 contains the remaining two
common generators.

5. Two cones are described with guiding curves

az=a?, y=0; y2=102, =0,
and with any vertex, Show that if their four common generators meet the plane
z=0 in four concyclic points, the vertex lines on the surface
2(a24y?) =a%e+ 12y

6. Find the conditions that the lines of section of the plane lx++my+4nz=0

and the cones fyz+gza+hry=0, aa?+by2+ c22=0 should be coincident.
[Ans. bni—}—cmz=€Z2+a112_a7n2+b12

Jmn gnl” T hme T
7-6. The right circular Cone.

7-61. Def. A right circular cone is a surface generated by a line
which passes through a fixed point, and makes a constant angle with a
fized line through the fixed point.

The fixed point is called the vertex, the fixed line the axis and the
fixed angle the semi-vertical angle of the cone.

The justification for the name right circular cone is contained in
the result obtaincd below.

The section of a right circular cone by any plane perpendicular to
its axis 18 @ circle.
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Let a plane perpendicular to the axis ON of the right circular
cone with semi-vertical angle, «, meet it at N.

Let P be any point of the section. Since ON is perpendicular
to the plane which contains the line NP, we have

ON | NP o
: PN”“t NOP=t
.o al‘v‘— an L =tan «,
or PN=ON tan «,

which is constant for every position of the point P
of the section.

Hence the section is a circle with N as its
centre. Fig, 24
7:62. Equation of right circular cone. To find the equation of
the right circular cone with its vertex at («, B, Y), ils axis the line
r—o _y—B __ 2=V
T T
and its semi-vertical angle 6.
Let O be the vertex, and, 04, the axis of the
«<B,Y cone.
Any point P(z, y, 2) on the cone is such that
the line joining it to the vertex O makes an angle §
P(J(?,y,Z) with th axis 0.4.
Direction cosines of OP are, therefore, propor-
tional to x—a, y—B,z=7.

- cos f= l{x—a) +m(y—PL)+n(z—7)
Fig. 25 h TV (P m )V [(2 - @)+ (y - B+ (2—7)*]
The required equation of the cone, therefore, is
[Uz—o)+m(y—B) +n(z—7)]
= (B+mP ) [(x—a)*+ (y—B)*+ (2—7)*] cos?.
Cor. 1. If the vertex be at the origin, the equation of the cone
becomes

A

(lz+my +n2)?= (1> -+ m?+ n?) (22 + y*+2?) cos? 0.
Cor. 2. If the vertex be at the origin and axis be the z-axis,
then taking
(=0, m=0, n=1
in the preceding Cor., we see that the equation of the cone becomes
2= (22+y2+2?) cos? 0, te., x4y =2?% tan’f. eee(1)
Cor. 3. The semi-vertical angle of a right circular cone having sets
of three mutually perpendicular generators is
tan—14/2,
for, the sum of the co-efficients of z?, %2, 2? in the equation of such a
cone must be zero and this means that ’
14+1—tan%9=0 [Refer (1), Cor, 2.]
i.e., f=tan"4/2,
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Cor. 4. The semi-vertical angle of a right circular cone having sets
of three mutually perpendicular tangent planes is

tan~'v/,

for by Cor. to § 7°43, this will be so if [Refer (1), Cor. 2]
1—tan? §—tan? 6=0
1.e., tan §=4/3.
or g =tan"14/4.
Exercises

1. Find the equation of the right circular cone with its vertex at the
origin, axis along Z-axis and semi-vertical angle «.
[Ans. ax24y?=22tan2a.

2. Show that the equation of the right circular cone with vertox (2, 3, 1),
axis parallel to the line —z=y/2=< and ono of 1ts genorators having direction
cosines proportional to (1, —1, 1) is

22— 8y2 4224 120y —12yz+ 620— 462436y +222—19=0.

3. Find the equation of the circular cone which passes through the pomt

(1, 1, 2) and has 1ts vertex at the origin and axis the Iino
z[2=—y[4=2/[3.
[Ans, 422440y2419:2—48ry—"T72yz+4362¢==0.

4. Find the equations of the circular cones which contain the three

co-ordinate axes as generators,
[dns., yzzetkry=0.

5. Lines are drawn through the origin with direction cosines proportional
to (1, 2, 2), (2, 3, 6), (3, 4, 12). Show that the axis of the right circular cone
through them has direction cosines

(—‘\/§) \/%’ \/5),
and that the semi-vertical angle of the cone is cos™1(1/4/3).

Obtain the equation of the cone also.
[Ans. ay—yz+zx=0.

6. Find the equation of the right circular cone generated by straight
lines drawn from the origin to cut the circle through the threo pomts
(1,2, 2), (2,1, —2) and (2, —2, 1).
[Ans, 8x2—4y2—422+4bay+yz+522=0,
7. If « is the semi-vertical angle of the right circular cone which passes
through the lines Oy, Oz, x=y=z, show that
cos = (9—dy/3) "
The Cylinder

7*7. A cylinder ¢s a surface generated by a straight line which s
always parallel to a fized line and i3 subject to one more condition ; for
instance, 1t may intersect a given curve or toucha given surface.

The given curve is called the guiding curve.

771. Equation of a cylinder. 7o find the equation to the
cylinder whose generators intersect the conic

ax®+2hxy 4-by?+ 292 +2fy+¢=0, 2=0 «.(?)
and are parallel to the line
£ =2 ... (i)

I =m=n
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Let («, B, ¥) be any point on the cylinder so that the equations
of the generator through it are

Foa_y-— B z_~—2’
1 m n .. (297)
Asin § 7°12, the lmo (227) will intersect the conic (¢), if

o2 0 522) 1o 122}
+29( a= )25 820y o0,

But this is the condition that the point («, £, Y) should lic on
the surface

(b)) o B2
mz
2y o) 421 4=" )te=0,
or a(nx—Iz)2+2h(nx —1z2)(ny —mz) -+ b(ny—mz)2+
2gn(nx—1z)+2fn(ny —mz)+cn?=0
which is, therefore, the required cquation of the cylinder.
Cor. If the gencrators be parallel to Z-axis so that
{=0=m and n=1,
the equation of the cylinder becomes
ax®+2hay + by +29x+2fy+c=0,
as is already known to the reader.

Exercises

1. Find the equation of the cylinder whoso generators are parallel to
w=—ly=14:
and whose guiding curve is the ellipse
24 2y2=1, 2=3.
[Ans. 3(x2+42y2+22)+2(dyz—z2)+6(x—4y—32)+24=0.
2. Find the equation of the quadric cylinder whose generators intersect
the curve ax2+4-by2=2z, lz-}-my+nz=p and are parallel to Z-axis.
[Eliminate z from the two cquations,]
[Ans. n(az?+by?) +2lr+2my—2p=0.
3. Find the equation of the quadric cylinder with generators parallel to
X.-axis and passing through the curve
ax?+-by2+c2=1, lx+my+nz=p.
[Ans. (bI24am?)yR+2mnayz+-(cl2+an2)22—2apmy—2apnz+ (ap?—12)=0.
4. Show that the equation of the tangent plano at any point («, 8, y) of
the cylinder
ax?+42hxy+by2+2924-2fy+c=0
is
z(ax+hB+g)+y(hatbB+f)+ (9utfB+c)=0,
und that it touches the cylinder at all points of the generator through the point.
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7°72. Enveloping Cylinder. 7To find the equation to the cylinder
whose generalors touch the sphere

2+ yi+22=al, wee(2)
and are parallel to the line
F=L_2 )

Let («, B, ¥) be any point on the cylinder so that the equations
of the generator through it are

b B a4 ... (i5)

m n
The line (¢74) will touch the sphere (1) if
(la+mB+nY)?=(12+m*+n?)(a®+p2+72—a?).
But this is the condition that the point («, B, ¥) should lic on
the surface
(lz + my + nz)?2= 12+ m?+n?) (2 + 4+ 22 —a?),
which is, therefore, the required equation of the cylinder and isknown
as an enveloping cylinder of the sphere (1).
Ex. Find the enveloping cylinder of the sphere
22+yl42t—2244y=1,
having its generators parallel to the line
r=y=z,
[Ans. 224924 228—ay—yz—20—4245y—2—2=0.
7-8. The Right Circular Cylinder.

781. A right circular cylinder is a surface generated by a line
which intersects a fixed circle, called the guiding circle, and is perpendi-
cular to its plane.

The normal to the plane of the guiding circle through its centre
is called the axis of the cylinder.

Section of a right circular cylinder by any plane perpendicular
to its axis is called a normal section.

Clearly all the normal sections are circles having the same radius
which is also called the radius of the cylinder. 7The length of the

perpendicular from any point on a right circular eylinder to its axis ts
equal to its radius.

7-82. Equation of a Right Circular Cylinder. 7To find the
equation of the right circular cylinder whose axtis is the line
r—a_y—B_z-—7
l m n

9,
and whose radius 1s r.

Let (x, y, 2) be any point on the cylinder. Equating the perpen-
dicular distance of the point from the axis to the radius r, we get

_ _ 2 Bz—a)+m(y—B)+nz—Y)] _
(@—a)?+(y—B)>+(2—7)? P ymitn? -
which is the required equation of the cylinder.

r2,
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Example

Find the equation of a right circular cylinder of radius 2whose axis
passes through (I, 2, 3) and has direction cosines proportional to
(2, —3,6). (P. U. 1940)

The axis of the right circular cylinder is

r—1_y—2_2-3 x—1_y-2_2—3
T9 T =37 6 g —=3)1 61

Let (f, g, k) be any point of the cylinder. The square of the

distance of the point (f, g, k) from the axis is
(f—1)24+(9—2)*+ (-3~ (f— 1) —3g—2)+2(h-3)]%

Equating it to the square of the radius 2, we see that the point

(f, g, h) satisfies the equation
45f2+ 40g% 4 13h% 4 36gh—24hf 4 12fg —42f— 2809 — 126k +294=0

so that the required equation is
4522+ 40y?+ 1322 - 36y2— 2420 + 120y — 420 — 280y — 12624294 =0.

Exercises

1. Find the equation of the right circular cylinder of radius 2 whose axis
is the line

(z—=1)[2=(y—2)=(2—3)/2.
[Ans. b5x24-8y24522 —dry —4y:—8zx4-22r—16y—142—10=0.
2. The axis of a right circular cylinder of radius 2 is
z—1_y 2—3,
SR S B
show that its equation is
10224 5y2+4-1322 — 120y —6y2 —42zx— 82430y — 742 4-59 =:0.
3. Find the equation of the circular cylinder whose guiding circle is
224-9y2422—9=0, x—y+2=3.
[Ans. x24y24224-2y+yz—20=9,
[Hint. Show that the radius of the circle is 4/6 and the axis of the cylinder
isr=—y=2.]

4. Obtain the equation of the right circular cylinder described on the
circle through the three points (1, 0, 0), (0, 1, 0), (0, 0, 1) as guiding circle.

[Ans. a2+4y2+428—ay—yz—2zz=1,
Examples
1. Find the angle belween the lines in which the plane
ux vy +wz=0,
cuts the cone
ax®+4by?+c2?=0.
Let I, m, n be the direction cosines of any one of the two lires so
that we have

ul+vm+wn=0, ...(7)
al*4-bm?+ cn?=0. ... (%7)
Eliminating ! from (7) and (¢7), we obtain
(av? 4 dbu?)m? 4- 2avwmn 4 (aw? +cu?)n?= 0,

or (av?-+bu?) (%)2 + 200w (1}) F(awout)=0.  ...(ii)
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Let I3, my, ny ; Iy, my, ny, be the direction cosines of the two lines
separately. From (i), we get

my My aw?+cul
g my  ari4bud’

my, m 2avw
and 4 2= . 1
ny N, avi+-bu
Thus
mmy, MMy MNytmyn,
awr+cut T avi4 bu? — 2avw

—_ v/ [(myny + mgny)® — 4m1m2'r£,_n2l B
V400w — d(aw' + cu?) (av*+ bu?)]
. MyNy — My
=+ 2uy [~ (u¥e + v'ca +wiab)]’
From symmetry, cach of these expressions is equal to
L, n,l,—n,l,
bt +cut T 2uy/[—(ube 1 vica+-wrab)]
-1 limg — Ly,
2w/ — («*be+ vica+wiab))
If ¢ be the angle between the two lines, we have
V[Z(m,ny —mgn;)?)
X,
V4?02 4-202%) (ube + v? ca+w?ab)],
=+ a(v®+w?) +b(w+u?) +o(ud4of)
2. P, Q are the poinls of intersection of the line
r-—o y—P_2z2—
I m n

=k, (say)

tan =

H

with the cone
ax® + by’ +¢2%==0.
Show that the sphere described on PQ as diameter will pass through
the vertex of the cone, if

a(p?+v8)+b(v+A%) + c(A*+p?) =0,

A=fn - Y, p=Yl-an, v=am—fL.
Any point (Ir + «, mr4-8, nr+7) on the line will lie on the cone

where

if

(al?+bdm2+-cn?)r*+2(alo + binB +cnY)r 4 (ae®>+-bB24-c¥%)=0. . (1)
Let 7, ra be the roots of this 7-quadratic. Therefore, the points

P, Q are

(Iry+a, mry+B, nry bY), (Irg+a, mry+B, nry+7).
Thus
rybrg= —2(ala+-bmB +-cn?¥) __ ——2Saﬁc
18T gl bt - on® Sal? ’ .
_ax®+bp*+cY? _ Zaa? ---(17)
YT bmiten? T Sal®
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The sphere on P as diameter is
2w~y o) (z—Ir,+a) =0,
or (v—af+(y—P)+(z—7)—
[l(@—a)+m(y—B)+n(z—7)1(r1+rs) + (P +mP+n?)rr;=0,
which, with the help of (¢), becomes
2(x—a)2Tal?4-28)(x — o) Zala 4 Tl Taa®=0.
It will pass through (0, 0, 0), if
(a’+[32 +7?)(al*+bmE+cn?) —2(a+mB + nY (aloc+me+cn')’)+
(12 4m? 4 n?)(aa? 4 bB%+ cy?)=

or Za[(ly —an)?+ (am —pl)*]1=0,

i.e., Za(p?4v?)=0

3. A4 sphere passes through the circle

=0, 2?4 y?=al.

Prove that the locus of the extremities of its diameter parallel to X -axis

ts the rectangular hyperbola

y=0, 2°—2'=d? (B.U.)
The equation of the general sphere through the given circle is
a? pyt 2t he=a’; e (3)

A being the parameter.
Its centre is (0, 0, —3A). Therefore, the equations of its
diameter parallel to X-axis are
y=0, z=—1}M\. N (1))
Eliminating A between () and (i), we get
y=0, 2?—2*=qa>
as the required locus which is clearly a rectangular hyperbola.

Revision Exercises II

1. Show that the plane z +2y—z=4 cuts the sphere
224 Y2422 —ntz=

in a circle of radius unity and find the equation of the sphere which has this
circle as one of its great circles.
(Ans. a24y?+22—2r—2y+2:42=0.

2. Find the equation of the sphere which passes through the point
(2, 3, 6) and the feet of the perpendiculars from this point on the co-ordinate
planes.

Also find the equations of tangent planes to the sphero which arc parallel
to the plane 2x+2y+2=0 ; and the co-ordinates of their points of contact.

[Ans, 24y2422—22—3y—62=0; 4x+4y+224+5=0; 4o+ 4y+22—37=0,

. _% ll) . (19_ 23 i!)
> ¢/ ->\8> 65 68/

3. Show that all the spheres that can be drawn through the origin and

each set of points where planes parallel to the plane
zja+y[b+z[c=0

cut the co-ordinate axes form a system of sphercs which are cut orthogonally
by the spheres

224424224 2fr+ 29y +2h2=0 if af+-bg+ch=0. (M.T.)



136 ANALYTICAL $SOLID GEOMETRY

4. Find the equations of the lines passing through the point (1, 1, 1),
tangent to the sphere a2+4y2+:2=2 and parallel to the plane

4r4+3y—2z=0-
[Ans. 3—2r=y=z;2(z—1)=3(l—y)=2—1.
5. Obtain the equations of the planes passing through the point (3,0, 3),
tangent to the sphere £+ y2+22=9 and parallel to the lino
r=2y=—=z.
[Ans, x42y+42:=9;2z—-2y+2z=9.
6. Find the equations of the spheres which touch the planes z=0, y=0,
2=0, lie on the positive sides of these planes and are cut orthogonally by the
sphere
22442422 —4ax—6y+4+224+6=0,
[dAns. 224y2+422—2(w+y+2)+2=0, 22+4y2+22—6(z+y+2)+18=0.
7. Find the equations of the spheres that pass through the points
(=3, 4, 1), (—=1,0, =3), (0, 3, —3) and touch the lne z=y, 2=0.
[Ans. 224y2422440—4y+2:-0,
6(x2+4y2422)4-402x— 150y + 3272+41323=0.
8. Show that the line (x—a)/l—(y—b)/m=(2—c)[n is touched by two
spheres, each of which passes through the points (0, 0, 0), (2a, 0, 0), (0, 2, 0).
Show further that the distance between the centres of the spheres 18

2[02-—-712(w2+b2+02)jé/n2.
9. Find the equations of the tangent to the circlo through the three points
(—3,0,1), (5,1, —2), (0, 4, 2) at the point (=3, 0, 1).
LAns. == =135~ 75 "
10. Find the equation of the sphere mscribed mn the tetrahedron formed
by the planes whose equations are
y+Z:0, Z+J;';0, $+y’-*0, z+y+tz=1
[Ans. a2 4y2422—2a(x+y—+2)+a2=0, where (3+4/6)a=1.
11. If 4, A’ are points where the hnes y=mz, z=c¢ ; y= —maz, z=—c, meet
the shortest distance between them and P, P’ are the points, one on each of
these lines, such that the sphere on PP’ as diameter cuts orthogonally the
sphere on A A’ as diamoter, show that PP’ les on the surface
(1—m2)(y2—m222)=2m2(22—c?). (B.U.)

12, POP’ is a varnable diameter of the hyperbola z2/a2—y2/b2=1, 2=0,
and a circle is described 1n tho plane PP'ZZ’ on PP’ as diameter, Prove that
as PP’0O varies, the circle generates the surface

(2492422 @ _ g\ _ 2442
¥ ) oz T )TETY

13. A variable plane is parallel to a given plane zja+y/b+2z/c=0and
meets the axes in 4, B, C. Prove that the circle 4, B, C lies on the cone

yz (-—i——-}-—%—) +zz (—%—'*'—-g—) +ay (—%—-}-%):0.
(D.U. Hons., 1959 ; B.U.)
14. A straight line whose equations in one position are
v-a_y—b_z—c
i m n
is rotated about the axis of Z ; prove that the surface generated is
n?(224y2) = (lz+na—Ic) 24 (mz4nb—me)2.

15. Find the equation of the system of spheres which touch Z-axis at the

origin and pass through a fixed point (a, b, c) ; show that all these spheres pass
through a fixed circle.
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16. Find the equations of the two spheres whose centres lie in the positive
octant and which touch the planes
=0, y=0, 2=0, z+2y+22=
[Ans. (5) 224+y2422—2a(x+y+2)+2a2=0. (i3) 224 y2+22—8a(z + y+2)+32a2=0.

17. Find the equation of the sphere which cuts orthogonally each of the
four spheres

z24y2+22=a2+b2+ct, 224y?+2%4-20z=a?,
224 y24224-2by=b2, 224 y242242c2=c2. (M.T.)
2
[ne. sopyrgarp ity 2bat OV o agen o

18. Show that the locus of the centre of a variable sphere which cuts a

fixed sphere S=0 orthogenally and is cut by another sphere S'=0 along a great
circle 18 the sphere S+S8’=0.

19. Prove that the locus of the centre of a variable sphere which cuts
each of two given spheres in great circles is a plane perpendicular to their line of
centres,

20. Find the locus of the centres of spheres which touch the two lines
Y==mz, 2===C.
[Ans. may+cz(1+4+m)2=0.

21. A sphere of radius R passes through the origin; show that the
extremities of the diameter parallel to the X-axis lie one on each of the spheres

224-y2+4224-2R2r=0, (L.U. 1907)
22. Show that the cone yz4-zx+2y=0 cuts the sphere 22+y2+4-22=qa?in
two equal circles, and find their area. [Ans. %§mal.

23. (¢) Find the angles between the lines in which the plane

ur+vy+wz=0,
cuts the cone

ayz+bzx+caxy=0.
[Ans. tan-i[Bita?=2BbemaZutit

Jarw
(¢¢) Show that the plane
ax4by+cz=0,
cuts the cone
yz+4zx+2y=0

in two lines inclined at an angle

tan_l[{(az-{—bz—i—c’)(az-{—bz+cz—2ab—2bc—2ca)}§ ]

bc+ca+ab
(D.U. Hons. 1958)
24. Show that the angle botween the lines given by
z+4y+2=0, ayz+ bza+cxy=0,
is
inif a+b+c=0and {n if a=14b~14c"1=0,
(D.U. Hons., 1959)

25. Find the equation of the cone generated by straight lines drawn from
the origin to cut the circle through the three pomts (1,0,0), (0,2,0), (2,1, 1)
and prove that acute angle between the two lines in which the plane =2y cuts
the cone is cos—1 4/(5/14). (M.T.)

[Ans. 822—zax—bay+4yz=0.
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26. A cone has for its guiding curve the circle
224 y2+42ax + 2by =0, 2=0
and passes through a fixed point (0, 0, ¢). If the section of the cone by the
plane x=0 is a rectangular hyperbola, prove that tho vertex lies on the fixed
circle
224 y24224-2ar4+2by =0, 2ax 4+ 2by4-cz=0.
27. Planes through X-axis and Y-axis include an angle a ; show that locus
of their lines of intersection is the cone
2@+ y2+22)=12y? tan? a.
28. Prove that the straight lines which cut two given skew lines such
that the length intercepted is constant, are parallel to the generators of a
circular cone whose axis lies along the line of shortest distance between the given
lines.
29. Show that the plane z=a meets any enveloping cone of the sphere
22+ y2+22=a? in a conic which has a focus at the point (0, 0, @). (P. U. 1938)
30. A point O is at a constant distance 2z from the origin and points
P, Q, R are taken on the axes in such a way that OP, OQ, OR are mutually
perpendicular. Prove that the plane PQR always touches a fixed sphere of
radius a. (M.T.)
31. Show that, in general, two spheres may be drawn to contain a given
circle and to touch a given plane. If the circle lies in the plune z=0, and has a
given radius «, and if tho plane s x cos 0-z sin =0, show that if the distance
between the centres of the two spheros 1s constant and equal to 2¢, the locus of
the centre of the circle is the pair of lines
x=a=+/(«24-c2 cos2 0), z=0. (P. U. 1949)
32. Find the equation of the right circular cone with the vertex
(1, =2, —1), semi-vertical angle 60° and the line
rHl_y+2_ztl
3 —4 5
as its axis. Prove that the plane 3v—4y-}-52=56 cuts it in a circle, Find its
centre and radius, Find the equation of the right circular cylinder with the
above circle as its base, (P.U. 1948)
[Ans. Tr2—Ty2—25:2+480y+80y:—C0zx+220+4y-+1702478=0
centre (4, —6, 4) ; radius 54/6.
41224-34y2+ 2522 242y 440yz—302v —64.c + 152y 41602 —7236 =0,
33. At what angle does the sphere
22442422 2r—4y—G2+10=0
intersect the sphere which has the pomnts (1, 2, —3) and (5, 0, 1) as extremities
of a diameter. Find the equation to the sphere through the point (0, 0, 0)
coaxal with the above two spheres, (P.U. 1948)
[Ans. cos=1(—%) ; 2(2+y2 +22)—142—3y+ 82=0,
34. A line with direction ratios ! : m : » is drawn through the fixed point
(0, 0, a) to touch the sphere
224y2+422—2ax=0,
Prove that
m2+4-2nl=0.
Find the co-ordinates of the point P in which this line meets the plane
2==0 and prove that as the line varies, P traces out the parabola
y2=2azx, z=0,



APPENDIX

HOMOGENEOUS CARTESIAN CO-ORDINATES
ELEMENTS AT INFINITY

A.1. Let X, Y, Z be the cartesian co-ordinates of any point P
and let z, ¥, 2z, w be any four numbers such that
z ¥ z
X:Z)—, Y:’J)‘, Z= ’1,(7’ (w#O).
Then we say that z, y, 2, w are the homogeneous cartesian
co-ordinates (or simply homogeneous co-ordinates for the purposes
of this book), of the point P. Also, if . ¥, 2, w are the homogeneous
co-ordinates of a point P, then the four numbers kz, ky, kz, kw,
(k#0) which arc proportional to #, y, 2, w are also the homogencous
co-ordinates of the same point, for,

In particular, (2, y,2,1), are the homogeneous co-ordinates of the
point whose ordinary co-ordinates are (z, ¥, 2).

Conversely, if the homogeneous co-ordinates of a point are
(%, y, z, w), then its ordinary co-ordinates are

(xfw, y/w, zjw).

A. 11. Equation of a plane in Homogeneous co-ordinates. In

the ordinary cartesian equation,
AX+BY+-CZ+D=0,

of a plane, if we change X, Y, Z to x/w, ylw, z/w, respectively, we
obtain

Az+ By +Cz+Dw=0,
which is the general equation of a plane in homogenous cartesian
co-ordinates ; z, y, 2, w, being the current co-ordinates.

A. 12. Equation of a line in Homogeneous co-ordinates. As
above we can easily see that, in homogeneous cartesian co-ordinates,
the equations of the straight Jine through (2', ¥', 2', ') with direction
ratios [, m, n are

aw’ —wx' _yw' —wy 2w —w?

l m n
Also, we may easily see that the equations of the line through
(xh Y 21, wl): and (“’a, Ys %25 wl) are
P —HW Yo YW B T2

T W —ToW; Y1 Wa— YW1 ZW3—2W;
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Ex. Show that any point on the line joining

. (71, y1, 21, wy) and (zy, Yy, 23, wy)

18
(x1+trg, y1+tyg, 2y+izg, wittwyg) ;

t being the parameter.

A. 2. Elements at infinity. Let (z, y, 2, w) be the homogeneous
co-ordinates of any point. If z, y, z are not all zero and w— 0 then,
one at least of the three ordinary co-ordinates z/w, y/w, z/w, tends to
infinity. We find it convenient to express this idea by saying that
(z, ¥, 2, w), when w=0 and =z, y, z are not all 0, 18 a point al infinity.
The aggregate of the points (z, y, z, 0) where z, y, z take up different
sets of values, not all zero, is the aggregate of the points at infinity.
The equation of the locus of points at infinity is

w=0,
which being of the first degree, we say that the locus of the points at
infinity in space is a plane and call it the plane at infinity.

A. 21. Two parallel lines meet at a point at infinity. Consider
the two parallel lines

W — Ty W__ YW, — YW __2W; —2,W .
Sy T ...(3)
JWy— Xl YW, — YW __ 2Wy — 2410 ..
R '2’7‘ T "E' - /;;" Te ..-(21:)

Putting w=0, we obtain

for both (), (¢1) so that we see that both the lines meet at the point
at infinity (I, m, », 0).

It is useful to remember that (I, m, n, 0) ts the point at infinity
on every line with direction ratios I, m, n.

A. 22. Line at infinity on a plane. The aggregate of points
(x, ¥, 2, w) which satisfy the equation

w=0 ()
of the plane at infinity, and the equation
Ax+ By+Cz+Dw=0 .. ()

of any arbitrary plane, is said to be the line at infinity, on the
plane (iv).
Thus, for the line at infinity on the plane (iv), we have the
equations
Ax+By+Cz2=0, w=0.
A. 23. Two parallel planes have a common line at infinity.
Putting w=0 in the equations of the two parallel planes
Az+ By+Cz+Dw=0,
Ax+ By+Cz+D'w=0,
we see that they both contain the same line at infinity, viz.,
Ax+ By 4+ Cz=0, w=0.
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Note. The importance of the notions of ‘points at infinity’ and ‘lines at
infinity’ lies in the fact that in certain cases we can replace directions of lines
and orientations of planes by points and lines lying on the plane at infinity.

A. 3. Illustrations.
1. Find the equation of the plane through the points
(1,0, —1), (3,2, 2)
and parallel to the line

In the notation of homogeneous co-ordinates, we are required to
find the plane through the three points

(1,0, —1,1),(3,2,2,1),(1, —2,3,0);
the last one being the point at infinity on the given line.
The required equation is
Axz+By+Cz+Dw=0, ...(1)

where 4, B, C, D are to be determined from the three simultaneous
linear equations

A—C+D=0, 34+2B+2C+D=0, 4—2B+3C=0.
Solving these for 4 : B : C : D and substituting the values in (1),
we see that the required equation is
4x—y—22—6w=0
ie., 4rx—y—22—6=0,
in the notation of ordinary co-ordinates.
2. Find the condition for the lines
Ty _Y—Y_ 272 T—T_ YUYy 2%
L ome om L my my
to be coplanar.

In the notation of homogeneous co-ordinates, we see that the
first line is the join of the points

(xl.a Y1, %15 1) and (ll) my, Ny, 0)
and the second is the join of
(Itz, ?/2, 2a, 1) a«nd (lg, mz, nz, 0).

The necessary and sufficient condition for the two lines to be coplanar
is that these four points be co-planar for which we have the condition

Zy Y1, 21, 1
T2y Y5 225 1

=0,
lly my, My, 0

ly, my, mg, O
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i.e., Ty — %25 Y1~ Y2 2172, 0
g Y2 22, 1
= 0,
lp m.l’ nl; 0
l2s my, Ny, 0
or T1— %2 Y1~ Y2 21— 2
ll) my, n; =0
l2s My, Ny

which is the same as obtained in § 3'4, pp. 44-45.

3. Regarding a cylinder as a cone whose vertex is a point at
infinity, we can deduce the equation of the cylinder whose guiding
curve is

az®+ 2hxy +by*+2gx+2fy +¢=0, 2=0 (1)
and the direction ratios of whose generators are I, m, n, from the
equation of the cone whose guiding curve is (1) and whose vertex is
(% B, 7).

A. 4. Sphere in Homogeneous co-ordinates. Changing z, ¥, z to
x/w, y/w, z[w respectively in the general cquation of a sphere, we see
that

224y 224 2 faw -+ 2gyw 4 2h2w 4+ dw?=0, (1)
is the general equation of a sphere in Homogeneous cartesian co-
ordinates.

A. 41. Section of a sphere by the plane at infinity. Putting
w=0 in (1), we see that the section of (1) by the plane at infinity is
the curve

2?2+ 9% +22=0, w=0. ...(2)

From the fact that the equations (2) do not involve the arbitrary
constants f, g, h, d, we deduce that every sphere meels the plane at
infinity in the same curve. The plane curve (2) which lics on every
sphere is known as “The absolute circle,” or the “Circle at infinity.”

We shall now show that

Every surface of the second degree which contains the circle at
infinily s a sphere.

To prove this, we consider the general second degree equation
ax? +by? + 2t +2fyz + 292z + 2hay + 2prw + 2qyw +2rzw +dw?=0. ...(3)

Putting w=0, we obtain

ax®+by®+ c2*+2 fyz+2gzx-+ 2hay =0
which will be identical with #*+y?+22=0, if, and only if,
a=b=c and f=0, g=0, h=0,

20 if () ia a snhera.
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A. 5. Relationship of perpendicularity in terms of conjugacy.

Let I, m, n, and I', m', n', be the direction ratios of two lines.
The points at infinity

(¢, m, n, 0), (', m', n’, 0)
on these two lines will be conjugate with regard to the circle at
infinity, if
U 4+mm'+nn'=0

i.e., if the two lines are perpendicular.

Thus, we see that two lines are perpendicular if the points at
infinity on them are conjugate with regard to the circle at infinity.

The lines at infinity
ax+by+cez=0=w; a'z+b'y+c'2=0=w,
on the two planes
ax+by+cz+dw=0,d'z+by+c'24+dw=0,
will be conjugate for the circle at infinity, if
aa’+bb' 4+ cc' =0,
i.e., if the two planes are perpendicular.

Thus we see that two planes are perpendicular if the lines al infinit
on them are conjugate with respect to the circle at infinity.

It may also be casily shown in a similar manner thal a line s
perpendicular to a plane if the point at infinity on the line is the pole
of the line at infinity on the plane with regard to the circle at infinity.



CHAPTER VIII
THE CONICOID

The general equation of the second degree

8'1. The locus of the general equation
ax’+by‘3+cz'.+ 2fyz+2gzx + 2hay + 2ux+ 2vy + 2wz + d =0,
of the second degree in z, y, z is called a conicoid or a quadric.

It is easy to show that every straight line meets a surface whose
equation is of the second degree in two points and consequently
every plane section of such a surface is a conic. This property
justifies the name ‘‘Conicoid” as applied to such a surface.

The general equation of second degree contains nine effective
constants and, therefore, a conicoid can be determined to satisfy nine
conditions each of which gives rise to one relation between the
constants, e.g., & conicoid can be determined so as to pass through
nine given points no four of which are coplanar.

The general equation of the second degree can, by transfor-
mation of co-ordinate axes, be reduced to any ono of the following
forms ; the actual reduction being given in Chapter XI. (The name of
the particular surface which is the locus of the equation is written
along with it.)
22/a+ y?/b2 -t 2/c?=1, Ellipsoid.

. x?/a?+y?/b*+2%[c?= —1, Imaginary ellipsoid.
z%/a? +y*/b—2%/c?=1, Hyperboloid of one sheet.
x?/a®—y?[b®—2?/c?=1, Hyperboloid of two sheets.
2%/a? +y?/b*+2%[c?=0, Imaginary cone.
2%/a?+y?/b*—2%/c?=0, Cone.
x?/a®+y?[b®=2z/c, Elliptic paraboloid.
. 2%[a*—y?[b®=22z/c, Hyperboli¢c paraboloid.
22/a®+y*/b*=1, Elliptic cylinder.
x%/a®—y?[l*=1, Hyperbolic cylinder.

11. 22/a®+y?/b*=—1, Imaginary cylinder.

12. 2%/a®—y?[b2=0, Pair of intersecting planes.

13. 2%/a?4y*/b®*=0, Pair of Imaginary planes,

14. y®=4dax, Parabolic cylinder.

15. y?=a? Two real parallel planes.

16. y*=—a? Two imaginary planes.

17. 4*=0, Two coincident planes.

The equations representing cones and cylinders have already
been considered and the reader is familiar with the nature of the
surfaces represented by them.

-
SeRNANE LN
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In this chapter we propose to discuss the nature and some of the
important geometrical properties of the surfaces represented by the
equations 1, 2, 3, 4, 7, 8,

82. Shapes of some surfaces.
8-21. The Ellipsoid
x2 y'.’. ZZ _

R

1.

Z

Fig. 26

The following facts enable us to trace the locus of this equation.

(2) If the co-ordinates x, y, z of any point satisfy the equation,
then so do also the co-ordinates —x,—y, —z. But these points are on
a straight line through the origin and are equidistant from the origin.
Hence the origin bisects every chord which passes through it and is,
on this account, called the centre of the surface.

(2z) If the point with co-ordinates z, y, 2z lies on the surface,
then so does also the point wx,y, —z. But the line joining these
points is bisected at right angles by the XOY plane. Hence the X0Y
plane bisects every chord perpendicular to it and the surface is
symmetrical with respect to this plane.

Similarly, the surface is symmetrical with respect to the YO0Z
and the ZOX planes.

These three planes are called Principal Planes in as much as they
bisect all chords perpendicular to them. Tho three lines of inter-
section of the three principal planes taken in pairs are called
Principal axes. Co-ordinate axes are the principal axes in the
present case.

(#42) x cannot take a value which is numerically greater than a,
for otherwise %% or 22 would be negative. Similarly ¥ and z cannot
be numerically greater than b and ¢ respectively.

Hence the surface lies between the planes

r=a,t=—a; y=b, y=—b;2=c,z2=—c
and so is a closed surface.
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(2v) The X-axis meets the surface in the two points (e, 0, 0)
and (—a, 0, 0). Thus the surface intercepts a length 2a on X-axis.
Similarly the lengths intercepted on Y and Z-axes are 2b and 2¢
respectively. Lengths 2a, 2b, 2¢ intercepted on the principal axes
are called the lengths of the axes of the ellipsoid.

(v) The sections of the surface by the planes z=Fk which are
parallel to the XOY plane arc similar ellipses having equations

CU?' y2 kZ

=1 =k (1)
k lying between —c and ¢. These ellipses have their centres on Z-axis
and diminish in size as % varies from 0 to ¢. The cllipsoid may,
therefore, be gencrated by the variable ellipse (1) as k varies from
—ctoec.

It may similarly be shown that the sections by planes parallel
to the other co-ordinate plancs are also ellipses and the ellipsoid may
be supposed to be generated by them.

Note. The surface represented by the equation

22[a2+y2[b2422[ct= —1.
which is not satisfied by any real values of x, y, = is unaginary.
8:22. The hyperboloid of one sheet
2 2 2
X4y -z g,
a2 b* ¢

z

il

g, 27

(¢) The origin bisects all chords through it and is, therefore, the
centre of the surface.

(1) The co-ordinate planes bisect all chords perpendicular to
them and are, therefore. the planes of symmetry or the Principal
Planes of the surface. The co-ordinate axes are its Principal axes.
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(z32) Tho X-axis mects the surface in points (a, 0, 0), (—a, 0, 0)
and thus the surface intercepts length 2¢ on X-axis. Similarly the
length intercepted on Y-axis is 2b, whereas Z-axis does not meet the
surface in real points.

(tv) The sections by planes z==k which are parallel to the X0Y
plane are the similar ellipses

2 2? k2
%+%?:l+;§’z:k ...(1)

whose centres lie on Z-axis and which increase in size as % increases.
There is no limit to the increase of k. The surface may, therefore, be
generated by the variable ellipse (1) where k& varies from -- oo to 4 co.
Again, sections by the planes x =k and y=Fk are hyperbolas
2

yr 2R 1 k? o - xt 2P 1 k -
AT T T T T T Y
respectively.
Ex. Traco tho surfaces
. a2 22 22 . r2 y2 »2
O =it =)~ St =
a b c a b c

8:23. The hyperboloid of two sheets

x* yr oz

T

(¢) Origin is the centre; co-ordinate planes are the principal
planes ; and co-ordinate axes the principal axes of the surface.

(7t) X-axis meets the surface in the points (a,0,0) and (—a,0,0)
whereas the ¥ and Z-axes meet the surface in imaginary points.

(¢1t) The sections by the planes z=k and y=Fk are the hyperbolas

1.

x2 P k? x®  2? k?
@ Tt ek =t =k
respectively.
VA
Y
Fig. 28
The plane =k cuts the surface in the ellipse
v + l =_ki_1 z=k
bt et ot T

which is imaginary for —a<<k<<a. Thus thero is no portion of the
surface included between the planes 2=—a, z=a. When k*>a® the
section is a real ellipse which increases in size as k* increases.
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The surface, therefore, consists of two detached portions.
Ex. Trace the surfaces
a2 g2 2R 22 g2 22

@ @t~ O Tt

=1

8:24. Central Conicoids. The four equations considered above

are all included in the form
ax®+byt+cz*=1. (1)

The surface is an ellipsoid if a, b, ¢ are all positive, virtual
cllipsoid, if all are negative, hyperboloid of one sheet, if two are
positive and one negative ; and finally hyperboloid of two sheets if
two are negative and one positive.

All these surfaces have a cenlre and three principal planes and are,
therefore, known as central conicoids.

On the basis of the preceding discussion, the reader would do
well to give precise definitions of (§) Centre, (i7) Principal plane and
(12) Principal axis of a conicoid.

In what follows, we shall consider the equation (1) and the
geometrical results deducible from 1t will, therefore, hold in the case
of all the central conicoids.

Ex. Show that the surface represented by the equation

a2 byt 242 429z v 4 2hay =d
is a central conicoid ; origin bemg the centre.

Note. Cone is also a central conicoid, vertex being the centre ; tlus fact is
clear from tho general equation of & cone with its vertex at the onigin.

8:3. Interscction of a line with a conicoid. 7o find the points
of intersection of the line
oo _y—f_z=Y '
I m " ... (2)
with the central conicoid
ax*+-by?+c2?=1. ...(12)
Any point
(Ir4+o, mr+p, nr+7)
on the line (7) shall also lie on the surface (i7), if
a(lr-+ @)+ bmr 4 B c(nr +¥)2=1,
or X al?+bm?+ cn?)+2r(ale+ bmB +cny) 4 (@x2+ b2 4y —1)=0.
o (4)
Let 7y, 7, be the two roots of (4). Then
(Iry 4o, mry+B8, nry+7), (Iry4-o, mry+8, nr,+7)

are the two points of intersection.
Hence every line meets a central conicoid in two points.

We also see that any plane section of central conicoid is a conic
for every line in the plane meets the curve of intersection in two
points only.

The two values r; and r, of r obtained from equation (4) are the
measures of the distances of the points of intersection P and @ from

hhel‘POint (¢, B, 7) provided I, m, n are the actual direction cosines of
e line.
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Note. The equation (A) of this articde will frequently be used mn what
follows.

Ex. 1. Find the points of intersection of the line
—4@+5)=(y—4)=7(:—11)
with the conicoid
12,2 17y24-7:2="7.
[dns. (1,2, —=3), (-2, 3, 4).
2. TProve that the sum of tho squares of the reciprocals of any three
mutually perpendicular semi-diameters of a central conicoid 1s constant.

3. Any three mutually orthogonal lines drawn thiough a fixed pomnt C
meet the quadric

ar4-byl4c:2=
in Py, Py ; Qq, Q3 ; Iy, Ry, respectively ; prove that
PyPry? 1022 By Re?
CP2.0P2 7 (Q2.0Q02 " (R 2.0 12

I 1 1

and cPrepy T QT orcn,

ale constants,

8:31. Tangent lines and tangent planc at a point.

Let
rx—o_y—B 2=Y ;
I~ m  n e (6)
be any line through the point («, B, ¥) of the surface
ax® 4 by*+ ¢cz*==1, )
so that
ax?- b4 cy*=1. . (2i)

One root of the equation (A4) § 83 is, therefore, zero.
The line (2) will touch the conicoid (i7) at («, B, ¥) if both the
values of r given by the equation () § 8'3 are zero.
The second value will also be zero, if
alo+bmB +cny =0, ... (1v)
which is thus the condition for the line (¢) to be a tangent line to the
surface (22) at («, 3, 7).
The locus of the tangent lines to the surface, at («, B, ),
obtained by eliminating I, m, n between (2) and (di), is
an(z—a)+ 0By - B) + ¢¥ (z—7)=0,
or
aox 0By + cYe=aw®+ bp*4-cy?=—1,
which is a plane.
Hence the tangent lines at («, 8, 7) lic in the plane
acx+ bRy cYz =1,
which is, therefore, the tangent plane at («, §, ¥) to the conicoid
ax®+by*+cz=1.

Note. A tangent line at any pomt 1s a line which mects the surface in two
coincident pownts and the tangent plane at a pomnt 1s the lecus of tangent lhnes
at the pont.
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8:32. Condition of Tangency. 7o find the condition that the plane

le+my~+nz=p, «.(7)
should touch the conicoid
ax?+ by +c2?=1. oo (W)
If («, B, ) be the point of contact, the tangent plane
aox+ 0By + cyz=1, ...(u3)

thereat should be the same as the plane (7).
Comparing the two Lqud,tionh (¢) and (i), we get
m n
o= -—, -,
ap B cp
and since
ax®+bp%+cy=1,

we obtain the required condition

Also the point of contact, then, is

(_l,_ L,
ap bp ’ cep/’
Thus we deduce that the planes
Ix+my+nz= 4 +/(I* a+m?b+n%c)
touch the conicoid (i7) for all values of I, m, n.

8:33. Director Sphere. 7o find the locus of the point of inter-
section of three mutually perpendicular tangent planes.

Let
La tmy +nz= \/ (ll +"1 )
lyx +may + naz=\/(-2~‘+”y +’1c"‘~ , e (i)
2 2 2
lyz+may +ngz= \/(%+";3+"7“) .. (i)

be three mutually perpendicular tangent planes so that
Zhymy=Zmyn;=3n,l,=0,
2l2=2m,® =Zn,® =1. ...(iv)
The co-ordinates of the point of intersection satisfy the thrce
equations and its locus is, therefore, obtained by the elimination of
llr My, Ny 5 lz’ my, Ny la, m3, M.
This is easily done by squaring and adding the three equations
and using the relations (i), so that we obtain
x24y*+z:=1/a+1/b+1jc,
as the required locus which is a concentric sphere called the Direcior
sphere of the given quadric.
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Examples

1. Find the equations to the tangent plunes to
Ta®— 3y —22+4-21=0,
which pass through the line,
Tx—6y+9=3, z=3.
Any plane
Tx—6y+9+k(z—3)=0,
i.e., Ta—6y |hz=3k—9,
through the given line will touch the given surface
Tat— 3yt —22+421=0

.e., — ity 2=,
2 P I X
if ) '71 +( 1()) + f» = (3k - 9)2
— 3 7 21
i.e., if 28249k 4--0.

This gives
h=—4, —1.

Therefore the required planes are

Tr—by—dz+21=0,

Tr— Gy—iz4+322=0.
2. Obtain the tangent plancs to the ellipsoid

a?ja®+ y*lb* + 2¥fe* =1,
which are parallel to the plane
le § my + na=0.

If 2r is the distance between lwo parallel tangenl planes to the

ellipsoid, prove that the line through the origin and perpendicular to the
planes lies on the cone
(@ =1 -y (0* — ) 4 22 (2 —r2) =0.
(D.U. Hons., 1947, 1959)
The tangent planes parallel to the planc
=0,
are
Tle=+4+/Za’ ...(1)
The distance between these parallel planes which is twice the
distance of either from the origin is
24/3a%2 [/ 312
Thus we have
2/ 2a’l?

RV A

S(a®—r)t=0.
»  the locus of the line
xfl=y/m=z/n,
which is perpendicular to the plane (1), is
Z(a®~ r)a?=0,

== _7',

or
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3. The tangent planes to an ellipsoid at the points Py, Py, Py, P,
form a tetrahedron A1A,A3A, where Ay is the vertex which is not on
the tangent plane at Py. Prove that the planes

A, APy, A APy, A,4,P,
have a line in common.
The tangent planes at points
Pl(xl’ Y1 zl)’ P2(x23 Yo, 22)’ Pa(‘fr:” Y3 23)’ 1)4(3'4: Y 24)
to the ellipsoid
@t |yt 22
2 +-b?+:2~=1,
are
(i) 12’21 zczgzl, (1) T2y W—“r“"z

(33i) xx3+JJa+223 1, (iv) ‘C‘E4+Jyl +224

respectively. Thc point A, is the inbcrscctlon of the planes
(1), (@), (iv)
and 4, is the intersection of the planes
(2), (132), ().
Thus the line 4,4, is the line of intersection of the planes (i)
and (). Also P, is (x,, ¥y, 2,)

We may now easily show that the equation of the plane 4,4,P,

s Nk S ):(2‘5”_4_ )( ToXs _ )
( a? 1)(" a? 1 a? Zaz ).

Similibrly the two planes 4,.13P; and 4;.44P, are

(21 )(2m ) ~(25m )(25 ),
(s Y1 )= (s ()

From these it follows that these three planes all pass through
the line

(35 )35 )-( (450 )
RS

Exercises

1. Show that the tangent planes at the extremitios of any diameter
of a contral conicoid are parallel.

2, Show that the plane 3w+ 12y—6:—17-=0 touches the conicoid
322—6y2+922417=0, and find the pomnt of contact.

i8

Hence the result.

[Ans. (-1, 2,2/3).
3. Find the equations to the tangent planes to the surface
428—5y24 7224 13=0,
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parallel to the plane
4x+20y—212=0,
Find their points of contact also,
[Ans. 4x4-20y—212413=0; (&1, F4, F3).
4. TFind the equations to the two planes which contain the line given by
7e410y—30=0, 5y—32=0
and touch the ellipsoid
72:24-5y2-322=60, (A.U. 1930)
[dns. Tr+45y+32—30=0, 14045y+92—60=0.
5. P, Q are any two points on a central conicoid. Show that the plane
through the centre and the line of intersection of the tangent planes at P, Q will
bisect PQ. Also show that if the planes through the centre parallel to the
tangent planes at P, Q cut the chord I’Q in P’, Q’, then
PP'=QQ’.
6. Prove that the locus of the foot of the central perpendicular on varying
tangent planes of the ellipsoid
xz2[a%+ y2/b2 { 22/02:_ 1,
is the surfaco
(x24+y2+22)2=a2024 b2y 24222, (B. U. 1915)
7. Find the locus of the perpendiculars from the origin to the tangent
planes to the surface

22[a24 y2[b2422[c2=1
which cut off from its axes intercepts the sum of whose reciprocals is equal to a
constant 1/k.

[Ans.  a2e24b2y24c22=k2(r4y4-2)2,
8. Show that the lines through («, 8, y) drawn perpendicular to the
tangent planes to
a2la2+ y2/02 4222 =]
which pass through it generate the cone
(e =)+ B(y—B) +v(z—7) =2 (-a) 24 B2y — B) 2 ().
9. If P 18 the pont on the ellipsoid 224 2§24 4:2=1 such that the

perpendicular from the origin on the tangent plane at P is of unit length, show
that P lies on ono or other of the planes 3y = 2.

8:34. Normal.

Def. T'he normal at any point of a guadric is the line through the
point perpendicular to the tangent plane thereat.

The equation of the tangent plane at («, B, ¥) to the surface
ax?+-by*+c? =1, ... (2)
is
acx+bly+cyz=1. (7))
The equations to the normal at («, 8, ¥), therefore, are

_071_—= E— =W ...(“1/)
so that aa, bB, ¢Y are the direction ratios of the normal.

If. p, is the length of the perpendicular from the origin to the
tangent plane (¢¢), we have

I R
aza4+bzpz+cz}.z Va8
or (axp)®+(0Bp)*+(cYp)*=1,

which shows that axp, bfp, c¥p are the actual direction cosines of
the normal at («, 8, 7).
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8'35. Number of normals from a given point,

If the normal (iii) at a point (¢, B, ¥) passes through a given
point (f, g, %), then,

f—a_g—B8_h=7 _
ax b3 T~ ¢y =", (say)
. . ,f,ﬁ h .
°* a_l+ar’ T l+br’7 1+cr’ -+ (i)
Since («, B, ¥) lies on the conicoid (¢), we have the relation
af? by? ch*
(e Fado: 4oy 0 )

which, being an equation of the sixth degree, gives six values of 7,
to each of which there corresponds a point (x, B, ¥), as obtained
from (iv).

Therefore there arc six points on a central quadric the normals
at which pass through a given point, i.e., through a given point, six
normals, in gencral, can be drawn to a central quadric.

8:36. Cubic curve through the feet of normals. 7The feet of the
six normals from a given point to a central quadric are the intersections
of the quadric with a certain cubic curce.

Consider the curve whose parametric equations are
- f g __h .
Tltar y_l+br’ z“l—}—cr’ - (00)
where 7 is the parameter.

The points (x, y, z) on this curve, arising from those values of r
which are the roots of the equation (v) are the six feet of the normals
from the point (f, g, h).

Again, the points of intersection of this curve with any plane

Ax+4+By+Cz+ D=0,
are given by
A B
f o4 9+
l4+ar 1+40b6r
which determines three values of 7. Hence the curve (vi) cuts any
plane in three points and is, as such, a cubic curve.

Therefore, the six feet of the normals from (f, g, &) are the
intersections of the conicoid and the cubic curve (vg).

8:37. Quadric cone through six concurrent normals. 7he six
normals drawn from any point to a central quadric are the generators
of a quadric cone.

We first prove that the lines drawn from (f, g, &) to intersect
the cubic curve (i) generate a quadric cone.

If any line

+D=O,

v=f _y—g_z=h

e .. (vid)
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through (f, g, k) intersects the cubic curve, we have

S Y h

1—{-ar_f 146r Y 1‘;{—‘01;-"’
l =T m n
afjl _ bglm__ ch/n
or l4ar l+br 14or
whence climinating r, we get

Y =0+ =)+ La—t)=0
{ m n ’

which is the condition for the line (vi7) to intersect the cubic
curve (vt).

Eliminating I, m, n between the equations of the line and this
condition, we get
af(b—c) +bg(c —a) +gh(af-9) ~0,
x—f y—yg z—h
which represents a cone of the second degree generated by lines
drawn from (f, g, &) to intersect the cubic curve.

As the six feet of the normals drawn from (f, g, &) to the quadric
lie on the cubic curve, the normals are, in particular, the generators of
this cone of the second degree.

Note. 'Theimportance of this result lies in the fact that while five given
concurrent lines determine a unique quadric cone, the six normals through a
powmnt he on a quadric cone, i.e , the quadric cone through any of the five normals
throuyh a point ulso contains the sex normals through the point.

8:38. The general equation of the conicoid through the six feet
of the normals,
The co-ordinates (a, 8, ¥) of the foot of any of the six normals
from (f, g, k) satisfy the relations
a—f_B—g_Y—h
ao b3 cY -
Hence we see that the feet of the normals lie on the three
cylinders
ax(y—g) =by(x—f) or (a—blay—agr+bfy=0,
by(z- h)=cz(y—g) or (b—clyz—bhy+cgz=0,
cz(x—f)=ax(z—h) or (c—a)zx—cfz+ahx=0.
The six feet of the normals are the common points of the three
cylinders and the conicoid
ax?4-by*+ czt=1,
The equation
ax*+ by +c2?—1 +k [2y{a—b) —agz+ bfy]+
ko[yz(b—c) —bhy +cgz] + ks[zx(c—a)—¢fz+aka] =0
is satisfied by the six feet of the normals and contains three arbitrary

constants k,, k;, k3. Therefore it represents the gencral equation of
the conicoid through them.

PR
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Examples

1. The normal at any point P of a central conicoid meets the three
principal planes at Gy, Gy, Gy ; show that P@G,, P'G,, PGy, are in a
constant ratio.

The equations of the normal at (e, {3, Y) are
z—a_y-B__z—
aocp bep c'}’p
Now since aap, bPp, c¥Yp, are the actual direction cosines each
of these fractions represents the distance between the points

(«, B,7) and (z, y, 2).
Thus the distance P{,, of the point P(x, B, ¥) from the point G,
where the normal mects the co-ordinate plane =0 is
—1/ap.
Similarly PG,= —1/bp, PG;,— ——l/cp
K PQ@, : PG, : PG, B/
2. Show that the lines drawn. from the origin parallel to the
normals to
ax?+by?+cz=1.
at its points of intersection with the planes
lx+my+nz=p,
generate the cone
DAL Py e
Let f, g, k be any point on the curve of intersection of
ax?+by*+c2?=1, le+my + nz=p. (D)
The normal to the quadric at (f, g, A) is
x—f_y—g_z-h
af by ok

The linc through the origin parallel to this normal is

x Yy =z
af bj Tk
Also (f, g, h) satisfies the two equations (1) so that we have
af?+bg*+cht=1, If + mg+nh=np. ...(3)

The required locus is obtained by eliminating f, g, » between
(2) and (3).

The equations (3) give

' 2
af+bgP+ ch'~’=(lf + ””Hﬂh), (4)
p

which is a second degreec homogencous expression in f, g, A.  From
(2) and (4), we can easily obtain the required locus.

3. Prove that two normals to the ellipsoid

+y +<——1
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lie in the plane
lx+ my+nz=0,
and the line joining their feet has direction cosines proportional to
a®(b*—c®)mn, b¥(c? - a®)nl, c*(a®—b*)lm.

Also obtain the co-ordinates of these points. (M.T.)
Let (f, g, h) be any point on the ellipsoid. The normal at the
point is
e—f_y—g_z2—h

j/w g/b hlc?
This lies in the given plane. if
Iif+mg+nh=0,
Ifja2+ mgb* + nh[c2=0.

These give

Cfle _gb L Me ., VIR
amn(b®—c?)  bnl(ct—a®)  clm(a*--b?) v Zatm*n2(b? - c?)?
1
=4

V2armin?(b*—c?)?’
Therefore the required two points are
a?mn (b - c?) b*nl(c?—a?) ctm(a®—0?)
[i"’ d ] +- - d T + - d"' ]

where d=/Za®m*n*(b2—c?).

The direction cosines of the line joining these points are propor-
tional to

a®mn(b*—c), ete.
4. Prove that for all values of A, the normals to the conicoid
v Gl
at R L
which pass through a given point (x, B, Y) meet the plane z=0 tn points
on the conic
(b2—c?)Ba+(c2—a?)ay + (a®*—b%)ay=0, 2==0.

It can be shown that the equation of the quadric cone containing
the normals to

@’ +7\ b2+7\ 1
drawn from the point («, B, V) is
. B TR g g-27
Zeia o:(bz_H\ C,H)x_a -0, (§ 837)
ie. s4e=b)
x—a

Thus it mcets the plane z=0, where
2__ —_
“(‘;_: ) @(; g %) —(b2—a?)=0,
or  a(y—PB)(c*—b?)+B(xr—a)(a®—c?) —(z—a)(y—B)(b"—a®)=0,
or (b*—c®)Bz + (c2—a®)ay + (a®—b%)xy=0.
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Exercises
1. If a point ¢ be taken on the normal at any point 2 of the clhipsowd
22/u?+y2/b2422[c2==1 such that
3PG=PG,+PG,+ PGy
show that the locus of ¢ 18
a®z? b2y2 c2:2 1
(2a2=h2c2)2 ' (202—c2—a )2 (2E_aZ—b22 9
2. If alength PQ be taken on the normal at any point P of the ellipsoid
a2/al4y2/b2422/ct=1
such that PQ=k?/p where k is a constant and p is the length of the perpcndicu-
lar from the origin to the tangent plane at P, the locus of Q 1s
a2 b2y2 c2:2
(a2 +k2)27" (b24k2)2 (czq_’kz)z:
3. Show that, in general, two normals to the ellipsoid
a2/a24 y2/b2+22/c2=1
he in a given plane. Determine the co-ordinates of the two points on the ellip-
soid the normals at which lie in the plane
by—cz=}1(b2—c?).

1.

[Ans. (E4A/1a, 1), }c).
4. Show that the locus of points on a central quadrie, the normals at
which intersect a given diameter is the curve of intersection with a cone having
the principal axes of the quadric as generators,
5. Show that tho normals at the points (xy, ¥y, 1), and (xg, ¥g, 2g) to
22[a24-y2[b2+422[c?=1
intersect, if
(b2 —c?)ry , (2—a?)y; | (a2—b2) 7 _
=T Y2 n—zp
and that if (f, g, &) be their point of intersection,

1 1 1
alf (——L———) = bzg(~—~——--——) =c2h(71——_—~1—).
1 T Y1 Y 1 e

Deduce that  the points on the surface, normals at which intersect tho
normal at a given point, lio on a quadric cone having its vertex at tho given
point.

6. DProve that six normals drawn from any point toa central conicoid
meet a principal plane n six points which he on a rectangular hyperbola.

7. The normals at six points on a2/a2+4y2/b2+:2/c2=1 meet in the point
( f> g, k) ; show that the mean position of the six points is

[7-[gb§grc2—2a2)g2 —q(c24a2—2b2)p2 —h(a2+b2—2c2)c2]
3(a2—b%)(a2—c?) * 3(bT=c?)(b2—a?) ’ 3(cZ—ad)(ct—b?) |
8:4. Plane of contact. The tangent plane
axx' +byy’ +cx2' =1,
gn.ft (x', ', 2’) to the quadric ax®*+by®+c2?=1, passes through («,B,7),
i

0,

aox’ 4+ bRy’ +cyz'=1.
This shows that the points on the quadric the tangent planes at
which pass through the point (x, 8, ¥) lie on the plane
acx+bRy +cYz=1,
which is called the plane of contact for the point («, 8, ¥).
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8'5. The polar plane of a point. If any secant APQ through a
given point A meets a conicoid in P and  and a point R be taken on
this line such that points A and R divide the line PQ) internally and
externally in the same ratio, then the locus of R is a plane called the
polar plane of A.

It may be easily scen that if the points A and R divide PQ
internally and externally in the same ratio, then the points P, @ divide
AR also internally and externally in the same ratio.

] RLet A, be a point («, 3, ¥) and let (2, y, 2) be the co-ordinates
of R.
The co-ordinates of the point which divides AR in the ratio
A:lare
Ax+to AyH4-B Az4Y
A+1 0 A1 ?\+I>'
This will lie on the conicoid
ox?+hy?+ c2t=1,
for values of A which are the roots of the equation
Ao Ay 4 B\? Az+7\?
(7\+1 ) +o (‘A:Clﬁ) to ('A+1 )=
e., N(ax?+by®+ cz®—1) + 2N axx + bRy + c¥Y2—1)
+ (a2 4624y —1)=0. ...(1)

The two roots Ay, A, of this equation are the ratios in which the
points P, @ divide the line AR. Since P, @ divide AR internally and
externally in the same ratio, we have

A+ A=0,
so that, {from (1),
axx-+bly+cyz—1=0. .. (2)

Now (2) is the relation between the co-ordinates (z, y, 2) of the
point B.  Being of the first degree, the equation (2) represents a
plane.

Thus the polar plane of the point («, B, Y) 1with respect to the
conicoid

ax?-+ byt +c2t=1.

awr+0y+cyz=1.

Any point is called the pole of its polar plane.

Note. The reader acquamnted with cross ratios and, in particular, harmo-
nic cross ratios, would know that the fact that the points P, @ divide AR
internally and externally in the same ratio1s also expressed by the statement

(AR, PQ)=—1.
This is further equivalent to the relation,
2 1 1

AR=APTIQ

s

Cor. The polar plane of a point on a conicoid coincides with
the tangent plane thereat and that of a point outside it coincides with
the plane of contact for that point.
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Ex. 1. Show that the point of intersection of the tangent planes at three
points on a quadric is the plane of the plane formed by their points of contact.

Ex. 2. Find the pole of the plane lr+my+4nz=p with respect to the
quadric ax2+by24c:2=1. [Ans. lap, m[bp, n[cp).

8'51. Conjugate points and conjugate planes.

It is easy to show, that if the polar plane of a point P passes
through another point @, then the polar plane of @ passes through P.
Two such points are called Conjugate points.

Also, it can be shown that if the poleof a plane « lies on another
plane B, then the pole of B lies on «.

Two such planes are called Conjugate planes.
8'52. Polar lines. Consider any line
v-a_y—B_z=Y

l m n
The polar plane of any point (lr+a, mr+ B, nr+7) on this lir
is a(lr+ @)z +b(mr+E)y +e(nr+¥)z=1,

or
aox + bBy +c¥z-—-1-+-r(ale+bmy +cnz)=0,
which clearly passes through the line of intersection of the planes
axx+bBy+cYz—1=0,
and
alx+bmy +cnz=0
for all values of r.
Thus the polar planes of all the points on a line 7 jpass through
another line 7',

Now, as the polar planes of any arbitrary point P on [ passes
through every point of [’, therefore the polar planes of any point on '
will pass through the point P on land, as P is arbitrary, it passes
through every point on [, i.e., passes through /.

Hence if the polar plane of any point on a line I passes through
the line I’, then the polar plane of any point on !’ passes through 1.

Two such lines are said to be polar lines with respect to the
conicoid.

To find the polar line of any given line, we have only to find the
line of intersection of the polar planes of any two points on it.

»8:53. Conjugate lines.
... -bet 1, m, be any two lines and I', m’, their polar lines. Let m’
intersect 1-at a point P.

We shall now show that the line I’ also intersects the line m.

As P lies on m’ and also on [, its polar plane contains the polar
lines m and I’ of m' and [ respectively ¢.e., the lines m and I’ are
coplanar and hence they intersect.

Hence if a line [ intersects the polar of a line m, then the line m
intersects the polar of the line /.

Two such lines I and m are Conjugate lines.
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Example
Find the locus of straiyht lines drawn through a fixed point (a,B,Y)
at right angles to their polars with respect to
azx®+ by?+c22=1. (P.U. 1937)
Let
v—a_y-B_z=Y
] pon po (1)

be any line perpendicular to its polar line. Now the polar line of (1)
is the intersection of the planes

aex+bBy+cYz=1,
alx+bmy+cnz=0.

If A, u, v be the direction ratios of this line, we have
aocA+bBp+cyv=0,

alA4-bmp.+env=0.
These give

_ah e v
np—mY IY—na ma—PBl

Because of perpendicularity, we have

IN-mp+nv=0.
. Unp—my)  m(ly —na) | n(ma—I8)_
a b c
1 1y, /11 /11
or - amn (o ) enl (= Y= )=,

e Tca DREAC e s

Eliminating I, m, n between (1) and (2), we sce that the required
locus is

o 1 1 B 1 1 Y 1 1
e ) LA G s CE S
z—a\ b c y—B\ ¢ /] z—Y\ a b
Exercises
1. Prove that the locus of the poles of the tangent plancs of
ax24byl+cz2=1,
with respect to
ar?+4By2+y22=1,
is the conicoid
2,2 B2,2 12,2
ale? | B +0=1

a b
2. Show that the locus of the poles of the plane
le+my+nz=p,
with respect to the system of conicoids
=2 y? 22
+ Y + 1,

PLI N FO RN RS
where ) is the parameter, is a straight line perpendicular to the given plane.
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3. Show that the polar line of
. NAz—1)[2=(y—2)/3=(2—3)/4
with respect to the quadric
222924322 —4=0,
is
(+46)/3=(y—2)[3=(z—2)/1.
4. Find the locus of straight hines drawn through a fixed point (f, g, A)
whose polar lines with respect to the quadrics
ax?4-by2+cz2=1 and ax?4Py2+yz2=1
are coplanar.
[Ans. zﬁ"‘:%“_if‘i&f =0,
5. Show that any normal to the conicoid
T R
pa+q pbtq petq
is perpendicular to its polar line with respect to the conicoid
2 2 2
_’ia_-f.i.-f-%:]. (B. U. 1920)

6. Find the conditions that the lines
r—a_y—B_z—y x—o'_y—B'_z—y
r—z ==Y

b
l m n U m’ n

should be (%) polar, (%) conjugate with respect to the coincoid
ax24-by24-c22=1.
[Ans, (7) Zaaa'=1, Faa'l=0, Jaal'=0, Jall’=0
(22) (Zaal') (Taa'l) =(Tall')(Taaa’—1).
8:61. The enveloping cone. Def. The locus of tangent lines to
a quadric through any point is called the enveloping cone.
To find the enveloping cone of the conicoid
ax’+by®+4 c2?=1,
with its vertex at («, B, 7).
Any line
r—o_y—B_z-Y .
T m ...(2)
through («, 8, 7) will meet the surface in two coincident points if the
equation (A) of §8°3 has equal roots, i.e., if
(alo+bmB+cnY)*=(al®4-bm? 1 cn?)(ax®+bB2 +cY2—1) ...(i)
Eliminating [, m, n between () and (¢7), we obtain
{ax(z - @)+ bB(y—pB)+cY(z—7)]
= [a(z—a)+ b(y—B)2 + cle—Y)*](au?+ BR2-+c¥?—1),
which is the required equation of the enveloping cone.
If we write
S=ax?+ by +c2?—1, §;=ac’4-b3%+cy2 -1, T)=aux+bPy+cyz—1,
we see that the equation of the enveloping cone can briefly be written

as
(Ty—81)%=(8—2T,+8,)8,,

88,=T,?,
ie., (ax?+byt+c2?—1" o4 bB2HcY?—1) = (anz+bBy+crz—1)2,

or
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Note. Obviously the enveloping cone passes through the points common
¢o the conicoid and the polar plane axx+bBy+czy=1 of the vertex (, B, y).

Thus the enveloping cone may be regarded as a cone whose vertex is the
given point and guiding curve is the section of the conicoid by its polar plane,

Exercises

1. A point P moves so that the section of the enveloping cone of
22/a%+4y2/b24-22/c2=] with P as vertex by the plane z2=0 is a circle ; show thas
P lies on one of the conics

2 2 2
y z PO
pimgz Ta=ho=0 aop
2. If the section of the enveloping cone of the ellipsoid
22/a2+y2[b2422/c2=1,

whose vertex is P by the plane z=0 1s a rectangular hyperbola, show that the
{ocus of P is

22
+ ?2—=ls y=0.

m2+y2 22
a2 452" ¥
3. Find the locus of points from which three mutually perpendicular
tangent lines can be drawn to the conicoid ax2-+4by2+c22=1.
[Ans. a(b+ c)x2+b(c+a)y2+cla+b)22=a+b+c.
4. A parr of perpendicular tangent planes ta the ellipsoid
x2ja?+y2[b2+22[c2=]1,
;passes through the fixed point (0, 0, k). Show that their line of intersoction lies
on the cone

=1. (dgra, 1938)

@2(b2 4 02— E2) 4+ 12(c2+a2— k2) 4 (2— k) 2(a2 4 b2) =0,
(D. U. Hons. 1949)

[The required locus is the locus of the line of intersection of perpendicular
':S.ngerlzt); ]planes to the enveloping cone of the given ellipsoid with vertex at
8:62. Enveloping Cylinder. Def. 7T'he locus of tangent lines to a
quadric parallel to any given line is called enveloping cylinder.
To find the enveloping cylinder of the conicoid
ax?+byt+c2t=1,
with its generalors parallel to the line

r_Y_
I~ m n

m
Let (o, B, 7) be any point on the enveloping cylinder, so that the
equations of the generator through it are

r—a y—PB 2z—7 .
l - == m =>T- .--(Z)

As in § 861, the line (i) will touch the conicoid, if|
(alo+bmB +cny)?=(al>+bm?+cn?) (ax?+ bR +-cy2—1).
Therefore the locus of («, B, ¥) is the surface
(ax®+by?+c2*—1)(al2 +bm?+cn?) = (alz+ bmy +cnz)?,
which is the required equation of the enveloping cylinder.
Note. Equation of Enveloping cylinder deduced from that of Eaveloping
cone. Use of elements at infinity. Since all the lines parallel to the line
zfl=y[/m=z|n
pass through the point (I, m, n, 0) which is, in fact, the point at infinity on each
member of this system of parallel lines, we see that the enveloping cylinder is
sthe enveloping cone with vertex (%, m, n, 0).
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The homogeneous equation of the surface being
ax?4-by2+c:2—12=0,

the equation of the enveloping cylinder is

(ax24 by2+cz2—12) (@l24+bn 2+ cn2—0) = (alv+bmy 4 cnz—1.0)2

(S8,=12)
so that in terms of ordinary cartesian co-ordinates, this equation is
(aa?+4-by2+c:2—1) (al2+bm2+cn?) = (ale+bmy+cnz)2.

Note, Clearly the generaters of the enveloping cylinder touch the quadric
at pomnts whero it is met by the plane «lu+bmy+cnz=0 which is known as the
plane of contact.

Exercises

1. Show that the envcloping cyhinders of the ellipsoid

ax24by4-c:2=1,
with generators perpendicular to Z-axis meet the plane =0 n parabolas.

2. Envelopmng cylinders of the quadric a24-by24-c:2=1 meet the plane
2=0 1 rectangular bypcerbola ; show that the central perpendiculars to their
planes of contact generate the cone

b2ea24a2ey2+-abla+1):2=0.
3. Prove that the envdeping ¢y hinders of the ellipsoid
a2 y3 22
st toz=l

«

whose generators are parallel to the lmes,

r Y _ 7
Td Ey (2= ¢’
meet the jlane z=0 in circle s, (. U. 1937)»

8:71. Locus of chords bisected at a given point. Section with a
given centre.
Let the given point be (x, 8, ¥).
If any chord
r—o__ y— 2=
y—P_==7 ()

l m n

of the quadric aa®+by®+cz?=1 is bisected at («, B, ¥), the two roots
r; and r, of the equation (A) of § 8:3 are equal and opposite so that.
ry+7r,=0, and therefore
ala~+bmB-t-cny =0. . (2)

Therefore the required locus, obtained by eliminating I, m, »,.

between (1) and (2), is
aa(z—a)+b3(y—p)+c¥ (z—7)=0,
which is a plane and can briefly be written as
Tl =S1.

The section of the quadric by this plane is a conic whose centre:
is («, B, 7) ; for this point bisects all chords of the conic through it.

Cor. The plane which cuts ax®+by?+cz®=1, in a conic whose

oentre i8 (a, B, V) ts.
Sa0x=Sax2.
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Example
Triads of tangent planes at right angles are drawn to the ellipsoid
x%[a? + y2[b*+2%[c?=1. Show that the locus of the centre of section of the
surface by the plane through their points of contact is

] . _ x2 yz zz 2
P 4yrte =+ b+ 5 ) (@b,

Suppose that (x, 8, ¥) is the centre of section of the surface by
a plane through the points of contact of a triad of mutually perpen-
dicular tangent planes. The pole of this section must thus be a point
of the director sphere
224 Y2+ 2t =a+ b2+ 2
The equation of the section is 7',=5, i.e.,

ar Py, Yz _ o BT, Y2 .
?4_%_;_6_2_;2. Ef+?' ... (2)
If (f, g, k) be its pole, the equation (¢) must be the same as
fr gy | bz i
az""‘bg‘}"—cT:l ---(”)

Comparing (z) and (3), we have

o B Y
I=s@iay I= ety ")
Since
[P+ + R =a®+b*+d?,
we have

P PR =[S a2 4 %)
Replacing «, B, ¥ by x, y, z respectively, we have the required
Tesult.

Exercises

1. Tind tho equation to the plane which cuts the surface
a2—2y24322=4
in a conic whose centre is at the point (5, 7, 6).
[Ans. Sx—14y+4182=35.
2. Find the centres of the conics
(2) 4049y 4-42=—15, 2r2—3y24422=1;
(1) 2x~2y—52+5=0, 3x2+2y2—1522=4,
[dAns, () (2, =3, 1) () (=2,3, —1).
3. Prove that the plane through the three extremities of the different axes

of a central conicoid cuis 1t 1n o conic whose centre coincides with the centroid
of the triangle formed by thosc extremities.

4. Show that the centre of the conic
le+my4-nz=p, ax?4-by?4cz2=1
is the point

( Ip mp np )
apo?’ bpo? " epo?)’
where 124-m2+4n2=1 and py=+/2!%/a.
5. A variable plane makes intercepts on the axes of a central conicoid

whose sum is zero. Show that the locus of the centro of the section determined
by it is a cone which has the axes of the conicoid as its generators.
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6. Find the locus of the centres of sections which pass through a givem
point,

7. Show that the centres of sections of az2-4-by2+4-c22=1 by planes which
are at a constant distance, p, from the origin lie on the surface

(axB4-by?4-c22) =p?(a2234-b2y24c222).

8. Find the locus of centres of sections of ax2+by2+cz2=1, which touch

ox?4By34yz2=1,
[Ans. a2e~1x24-b2B—1yt 4 c2y122=(az?4-by2+c22)2,

8:72. Locus of midpoints of a system of parallel chords. Let
!, m, n be proportional to the direction cosines of a given system of
parallel chords and let («, 8, 7) be the midpoint of any one of them.

As the chord

l
of the quadric is bisected at («, B, Y), we have, as in § 871,
ale+bmB+cny=0.
Now [, m, n, being fixed, the locus of the midpoints («, 8, ¥) of
the parallel chords is the plane
alz+bmy-+cnz=0,
which clearly passes through the centre of the quadric and is known
as the diametral plane conjugate to the direction I, m, n.

Conversely any plane Az+ By-+Cz=0 through the centre is the
diametral plane conjugate to the direction I, m, n given by

r—o _Yy— B_z_
m n

Thus every central plane is a diametral plane conjugale lo some
direction.

Note. If P be any point on the conicoid, thon the plane bisecting chords
parallel to OP is called the diametral plane of OP.

Note. Another method. Use of elements at infinity. We know that the
mid-point of any line AB 1s the harmonic conjugate of the point at infinity on
the line w.r. to A and B, Thus the locus of the mid-points of a system of paralled
chords 1is the polar plane of the point at infinity common to the chords of the system.

We know that (I, m, n, 0) is the pomnt at infinity lying on a line whose
direction ratios are [, m, n, 1ts polar plane w.r. to the conicoid,
ax?+by24cz2—w2=0,
expressed in cartesian homogeneous co-ordinates, is
alz+bmy+cnz—w.0=0,
t.e., alz4-bmy—+cnz=0,

Exercises

1. P(1, 3, 2) is a point on the conicoid,
22 —2y24-3224-5=0.
Find the locus of the mid-points of chords drawn parallel to OP,
[Ans. z—6y4-62=0.
2. Find the equation of the chord of the quadric 422—5y2+622="7 through
(2, 3, 4) which is bisected by the plane 22—5y-+432=0,
[Ans. (z—2)=3}(y—3)=(z—4).
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8'8. Conjugate diameters and diametral planes.
In what follows, we shall confine our attention to the ellipsoid only.

Let Py, y1, ;) be a.ny pomt on the elhpsmd
2y
2 + bﬂ +
The equation of the diametral plane bisecting chords parallel to
OP is
le Y zzl -0
b* ’
Let Q(x,, y,, 25) be any point on the section of the ellipsoid by
this plane so that we have
Z42, 212
;22_*_1/;)?:2 + 1 2 —0,
which is the condition that the dlametral plane. of OP should pass
through @ and, by symmetry, it is also the condition that the dia-
metral plane of OQ should pass through P.
Thus if the diametral plane of OP passes through @, then the dia-
metral plane of OQ also passes through P.
Let R(xs, y3, 23) be one of the two points where the line of
intersection of the diametral planes of OP and 0@ meetsthe conicoid.
Since R is on the diametral planes OP and 0@, the diametral plane

. 22,
a: +y?/a 3 3 _0
of OR passes through P and Q.

Thus we obtain the following two sets of relations :—

Loy YalYs = 202;
az+ o+ R0, )

:v3x1

+y3yl 23 1 _0’

a2+bz+ =1, ((4), o (B)

r3® | yst | 2’ _ 1% YiYe 3122
et a=1 W T T

The three semi-diameters OP, 0Q, OR, wkzck are such that the
plane containing any two is the diametral plane of the third are called
conjugate semi-diameters.

The co-ordinates of the extremities of the conjugate semi-
diameters are connected by the relations 4 and B above.

The three diametral planes POQ, QOR, ROP which are such that
each is the diametral plane of the line of intersection of the other two are
called Conjugate planes.

We shall now obtain two more sets of relations C, D, equivalent
to the relations A4, B.

By virtue of the relations (4), we see that

T Y1 2L %y Y2 R T3 Ys 2

a’ b ¢ ’a’ b’ ¢ 'a b ¢’
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can be considered as the direction cosines of some three straight
lines and the relations (B) show that these three straight lines are
also mutually perpendicular.

Hence as in § 5°2,
Ty T2 T3 . Y1 Y2 Y3, 21 R 2
=y Ty T Y T3y TTy T s T s T
a a a b b b ¢ c c
are also the direction cosines of three mutually perpendicular
straight lines. Therefore, we have

2+ 2?25t =al, Y21+ Y22+ ys23=0,
Y2+ y222+ Y2=0% b (C), 221+225+2523=0, ¢ (D)
2424zt =ct Y1+ ZaYe+ 2aYs=0.

Properties of Conjugate Semi-diameters

8:81. The sum of the squares of three conjugate semi-diamelers is
constant.

Adding the relations (C), we get
OP?4-0Q2+ OR?=a?+b*4-c?,

which is constant.

8:82. The volume of the parallelopiped formed by three conjugate
semi-diameters as coterminous edges is constant.
The results (B) give

Tja b z/c
YR TYts BT ET TalY—Tely
be ca ab
N '\/@xlzlaz)

= j‘:]')
s Y2*3 " Ys%2 2
\/ ( be )
Yoz~ YaZe \?
for ,\/ z ( be )

is the sine of the angle between two perpendicular lines whose
direction cosines are

T Y Fgq T Y2

—E‘, b ) c a 3 b ’ .
Y2z~ Ys%2 Y ReW3—23%p A1 _ | OlY3—TuY
=4 2B v Il 4 o, L= babL S
=5 Ty TE ca c = * ab
Now the volume of the parallelopiped whose coterminous edges
are OP, 0Q, OR

=6 X volume of the tetrahedron OPQR
{0, 0, 0,1]
|

! Ty, Y1 21, 1

E X3, ?/z’ Rg, 1

al&

Z3, Ys» 23, 1
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Ty, Y1 21
—| T2, Y2, 22

T3, Ys, 23

! J
= (y2z3-~ Ya%) -+ Y1(29%3—2a25) + 21 (X283 — X3Ya)
oy bex? | cayy® | abz?
== a & b = c
2
= +abc3, % = +4abc, which is a constant.

The same result can also be proved in the following manner :

2

[ %15 Y15 21 Ty, Y1, 21 Zz?, Sy, Tz
2

Tos Y 22 | yo| Tos Yo 2 | Zny, 2yl Zyin

- 2

T3, Ys, %3 Z3, Y3, %3 Srzm, Zyz, 22

(By the rule of multiplication of determinants)
=a?b%c?, from (C) and (D).
883. The sum of the squares of the areas of the faces of the paral-

delopiped formed with any three conjugate semi-diametirs as coterminous
edges 18 constant.

Let A4;, Ay, Ay, be the areas of the triangles OQR, ORP, OPQ,
and let I;, mi, ny;, (i=1, 2, 3) be the direction cosines of the normals
to the planes respectively.

Now the projection of the triangle OQR on the YZ plane is a
triangle with vertices (0, 0, 0), (0, ¥,, 2,), (0, ¥3, 23) whose area is
3 (Y223—¥s2,). Also this is 4,7;.

bex
Ay =}(ys23—Ys22) = '—2;:‘-
Similarly
A1m1=i2‘;—%—, A= igg? .

Squaring, we have
g2ttt | cfaly® | a?h®?
17 4a? 4b? 4c?
Similarly projecting the areas ORP and OPQ on the co-ordinate
pianes, we get

4,00 | eyt | athiay?
27 4q? 4b? 4c® ’
bzczx32 czazysa a262z32

g 002" at0%zs"
451= 4a? 4b? 4c?
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Adding we get
A+ A2+ A =13(b%*+c*at4-a%?),

which is & constant.

884, The sum of the squares of the projections of three semi-
conjugate diameters on any line or plane is constant.

Let I, m, n, be the direction cosines of any given line so that
};i];e sum of the squares of the projections of OP, 0@, OR on this

e is

= (lzy+my;+n2)? +(ley +mys +n2,) 2+ (lvg+mys +nzg)?

=0T 2+ m2Zy 2+ 02Tz 2+ 2imZa, Yy +2mnZy 2y + 20l 2z,

=a??+b*m? 4 c?n?,
which is a constant.

Again, let I, m, n be the direction cosines of the normal to any
given plane so that the sum of the squares of the projection of OP,
0@, OR on this plane is

=0P?— (lzy+my, +nz,)?+ 0Q*— (lxy +my, +nz,)*
+OR?— (lzg+my;+nz,)®
=a?+4-b24-c?—al2—b*m?—cn?
=a2(m?+-n?) +b{(n+12) 4+ *(24m?),
which is a constant.
Examples

1. Show that the equation of the plane through the extremities
(xka Yk zk): k=1; 2: 3s
of the conjugate semi-diameters of the ellipsoid
22 la® 4?02+ 2%/c? =1,
18
et 2t as) | Yt satys) | 2Etata)
a? b? c? ’
If any plane
le+my+nz=p
passes through the three extremities, then
Iy +my, +nz1=p,
lwy+my,+nzy=np,
leg+mys+nzg=p.
Multiplying by x4, ,, 5, respectively, we obtain
la?=p3ex,.
Similarly
mb=p2y,,
and
net=p2z,.
Hence the required equation.
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2. Find the locus of the equal conjugate diameters of the ellipsoid

22 yl 22
ZT+7)? +-c—§-=l.

Let OP, 0Q, OR be three equal conjugate semi-diameters. We
have

OP*+0Q*+OR?*=a*+b%+c? ; OP?=0Q*=O0R?.

OP%=1(a24b%+c2).
Let P be the point (x;, ¥, 2;). We require the locus of the line
x Yy _ 2
—_— T T cee 1
Y1 o2 ()
where ’
2+ +22=3(a?+b2+c?), -(2)
z,? T 3

From (2) and (3), we obtain the homogeneous relation

T AT e Ty
SRS e
Eliminating @y, ¥1, 2; from (1) and (4), we obtain the required
locus, viz.

z
FTETET atege
3. Show that if the cone
A2+ By + C22+2Fy2+2GQzx+ 2Hxy =0,
has three of its generators along conjugate diameters of the ellipsoid

at |y 22
L+l

2 y‘l +£2_=§(‘/€2+y2+z2)

then
Aa?+ Bb?+Cc?=0.

Let OP, 0Q, OR, where P, Q, R are the extremities of conjugate
semi-diameters, be generators of the given cone.

Let

(xls Y zl), (xZ, Yo, 22)’ (.’L’3, Y3, 23)
be the co-ordinates of these points. Since these points lie on the
given cone, we have
Az2+ By > 402>+ 2Fy,2, +2G2,2, + 2Hzy, =0,
and two similar results,

Adding these three results and making use of the relations C and
D of § 8'8, we obtain the given relation.

4. With any point on the surface of any ellipsoid as centre, a
sphere is described such that the tangent planes can be drawn to it from
the cenlre of the ellipsoid which are conjugate diametral planes of the
ellipsoid. Show that its radius is the same for all positions of its centre.



172 ANALYTICAL SOLID GEOMETRY

Consider any point (f, g, h) on the ellipsoid

y
az + =L

Let the three conjugate dlametml planes
9_3%1_{_3_/_2/_1_{_&:0 Q«xz+yyz+~z2 xx3+?/y3+ 223

‘be tangent planes to a sphere with centre (f, g, &) and radius . The
distance of (f, g, ») from each of the three planes being equal to 7,

‘we have
j((‘lelg )4) or rele——<‘z fx1)
< 2) .
\/((3247 %) or 7‘2?9';24 =(3 J;ﬁ:) ’
z . .
el o (s 12,

Adding and making use of the relations C and D of § 8'8, we
have

or 7*2= (Ea.“z)‘l.
Hence the result.

Exercises
1. Show that the lines
A . R A A R
1 4 3 4 1 =9 26 —28 43

are three mutually conjugate diamebers of the ellipsoid

7/2 +——a—-l

2. Find the equations of the diameter in the plane a4-y+:=0, conjugate
to x=—3}y=4%2 with respect to the conicord 3w2+4y2—222=1. What are the
equations of the third conjugate diameter ?

4 oz, ® _ Yy =z
[’”T" 9 5 34 42 3°
3. Show that for the ellipsoid a24-4y2+522=1, the two diameters
jr=—3y=42 and x=0, 2y=>5z are conjugate. Obtain the equation of the third
conjugate diameter. Ans. z[16=y=—2z[2.

4. If py, ps, P3 ; ™1, Ty, T3, be the projections of three conjugate diameters
on any two given hines, then p;x; - pymy+pgmg is constant.

5. If three conjugate diameters vary so that OP, 0Q lie respectively in
the fixed planes

le Gex Bay , vez _

“lx By " bz_'_

e

show that the locus of OR is the cone
Za?(Byz—v1y)(Baz—v2y) =0,
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[The required locus of OR is obtained from the fact that the lines of inter-
section of the diametral plane of OR with the given planes are conjugate lines.]

6. From a fixed point H perpendiculars H 1, HB, HC are drawn to the
conjugate diameters OP, 0Q, OR respectively ; show that

. OP2 HA%40Q%*HB2+O0R2 HC?
18 constant.
7. OP, 0Q, OR are conjugate diameters of an ellipsoid
a?/a2+y2/b2+22c2=1.
At @ and R tangent lines are drawn parallel to OP and p,, p, are their

distances from O, The perpendicular from O to the tangent plane at right
angles to OP is p.

Prove that
PP+p12+pt=a?+b2+cl,
(D.U. Hons, 1945)

8. Show that the plane lx+my-+nz=p will pass through the extremities
of conjugate semi-diameters if

a2 +-b2m24-c2n2=3p2,
9. Show that the locus of the centre of the section of the ellipsoid
x2ja2+4y2[b24-22[c2=1,
by the plane PQR is the ellipsoid
x2/a24y2[b2422/c2=1/3.
0 Prove that this locus comcides with the locus of the controid of the triangle
PQR.
10. Provethat the plane PQR touches the ellipsoid
z2ja4y2[b2422/c2=1/3,
at the centroid of the triangle PQR. (D.U. Hons. 1948)

11. Find the locus of the foot of the perpendicular from the centre of the
ellipsoid to the planc PQR.
[Ans. a2024b2y24c222=3(22+y2+422)2,

12. If one of the three extremities P(zy, %1, 2;) of conjugate diameters be
kept fixed, show that the locus of the line jomming the centre to the centroid of
the triangle PQR is the cone

22 Y2 2?2 rry Yy, 221\2
(3 +3) - (G +5+3) -
13. If (21, Y1, 21)s (T2s Y2» 22)s (@3, Y3, 23) be the extremities of three conju-
gate diameters of the ellipsol
x2/a+y2[b2+22[c2=1,
show that the equation of the plane through the three points
. (1, %9, 73), (Y1, Y2» ¥3)» (215 23, 23)
is
o2 W) WIS § Zg  Ya , % %3 , Ys , 2,
(B+5 H)er (R R ) (SR 2)=
and that it touches the sphere
(224+y2+22) (a—24b~2+4c"2)=1.
14. The enveloping cone from a point P to the ellipsoid Yz2/a2=1 has:

three generating lines parallel to conjugate diamesers of the ellipsoid ; show that
the locus of P is the ellipsoid
2 42 2 3
atpEta=3 % (B.U. 1958)
15. Show that any two sets of conjugate diamecters of the ellipsoid lie on a
quadric cone, (Deduce from Example 3, page 171).
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Paraboloids

89. Having discussed the nature and geometrical properties of
«central conicoids, we now proceed to the consideration of paraboloids.

891. The Elliptic Paraboloids 2?/a®+y2/b®=2z/c.

We have the following particulars about this surface :

Z

Fig. 29

(#) The co-ordinate planes x=0 and y=0 bisect chords perpendi-
-cular to them and are, therefore, its two planes of symmetry or
Principal planes.

(#) z cannot be negative, and hence there is no part of the
surface on the negative side of the plane z=0. We have taken
-¢ positive.

(#4t) The sections by the planes z=k, (k>0), parallel to the XY
plane, are similar ellipses

x| oyt 2k .
67+%E :?—, 2=k ...(Z)

whose centres lie on Z-axis and which increase in size as k increases;
there being no limit to the increase of k. The surface may thus be
supposed to be generated by the variable ellipse (¢).
Hence the surface is entirely on the positive side of the plane
2=0, and extends to infinity.
(tv) The section of the surface by planes parallel to the YZ and
.ZX planes are clearly parabolas.
The Fig. 29 shows the nature of the surface.
Ex. Trace the surface x2/a2+4y2/b2=—2z/c. (¢>0)
8:92. The Hyperbolic Paraboloid z?/a?— y*/b?=2z/c.
() The co-ordinate planes z=0, y=0 are the two Principal
‘planes.



LINE AND A PARABOLOID 176

(#t) The sections by the planes z=Fk are the similar hyperbolas

2 gt 2k
Fr=g =k
with their centres on Z-axis. -

Fig. 30.
If k& be positive, the real axis of the hyperbola is parallel to
X-axis, and if k£ be negative, the real axis is parallel to Y-axis.

The section by the plane 2=0 is the pair of lines

%:%—, 2=0 and %—:-—‘Z«
(112) The section by the planes parallel to YZ and ZX planes are
parabolas.
The Fig. 30 shows the nature of the surface.

Note. The two equations considered in the last two articles are clearly
both included in the form

, 2=0.

ax?4-by2="2cz,
This equation represents an elliptic paraboloid if a and b are both positive

or,both negative, and a hyperbolic paraboloid if one 1s positive and the other
negative.

Hence for an elliptic paraboloid ab is positive but, for hyperbolic parabo-
loid, ab is negative,

The geometrical results deducible from the equation ax2+4 by2=2cz will
hold for both the types of paraboloids.

Note. The reader would do well to give precise definitions of (¢) vertex,
.(¢%) principal planes, (¢#¢) axis of a paraboloid.

8-93. Intersection of a line with a paraboloid.

The points of intersection of the line

r—a_y—B_z-Y
T T m w7
with the paraboloid
ax?+by?=2cz,
are
(ir+o, mr+4B, nr4+7%)
for the two values of r which are the roots of the quadric equation
r2(al®+4bm?) 4 2r(ale+dmB —cn) + (ax4bp2—2¢Y) =0 ...(A)

We thus see that every line meets a paraboloid in two points.

It follows from this that the plane sections of paraboloids are
.CONiCs.
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Also, if [=m=0, one value of » is infinite and hence any line
parallel to Z-axis meets the paraboloid in one point at an infinite
distance from (a, B, 7¥) and so meets it in one finite point only. Such
lines are called diameters of the paraboloid.

In particular, Z-axis meets the surface at the origin only.

894. From the equation (A) § 893 above, we deduce certain
results similar to those obtained for central conicoids. The proofs of
some of them are left as an exercise to the student.

1. The tangent plane to ax®*-by* =2¢z at any point («, 8,7) on
the surface is

axx+b3y=c(z+7).

In . particular, z=0 is the tangent plane at the origin and Z-axis
is the normal thereat.

The origin O is called the vertex of the paraboloid and Z-axis,
the axis of the paraboloid.

2. Condition of Tangency. 71'he condition that the plane

le-+my+nz=p,
may touch the paraboloid
axz?+byt=2cz, (1)
28 . .
Bm 2np_ ,
a b c
and the point of contact, then, is
—le —mec —pY
<?m" o’ n /J
Thus the plane
2n(lx+my+nz)+c(lPla+m?[b) =0,
touches the surface (1) for all values of 1, m, n.

3. Locus of the point of intersection of the three mutually
perpendicular tangent planes.

If

2 2
Qn,(l,x+m,y+nrz)+c(%—+%’~)=0, (r=1, 2, 3)

be three mutually perpendicular tangent planes, the locus of their
point of intersection is obtained by eliminating I,, m,, n,, which is
done by adding the three equations and is, therefore,

1 1
21+c<-;' ‘l"—l;—):O,
and is a plane at right angles to the Z-axis; the axis of the
paraboloid.

4. Equations of the normal at («, B, 7) are
x—a=y:—p_z—'y

ax b —c’
5, The polar plane of the point (x, B, ) is
axz +bBy=c(Y +2).
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6. The equation of the enveloping cone with the point (x, B, ¥)
as its vertex is 8S,=T,2, s.e.,
(ax®+by®—2c2) (aa?+bB:—2¢Y) = (anx + bBy —cz—cY)®.
Its plane of conlact with the paraboloid is the polar plane
aox+bly—cz—cY =0
of the vertex («, B, 7).

7. The equation of the enwveloping cylinder having its generators
parallel to the line

is
(ax®+by®— 2¢z)(al® +bm?) = (alx+ bmy —cn)2.
Its plane of contact is the plane
alx+bmy—cn=0.

8. The locus of chords bisected at a point (x, B, V) is the plane

T1=Sl, i.e.,
ax(x—a) +03(y —F) —c(z—7)=0.

This plane will meet the paraboloid in & conic whose centre is

at (o, B, 7).

9. The locus of mid-point of a system of parallel chords with
direction ratios I, m, n, is the plane

alx+bmy -ecn=0

which is parallel to Z-axis, the axis of the paraboloid. The plane is
called a diamelral plane conjugate to the given direction.

Any plane Az+ By + D=0 parallel to the axis of the paraboloid
is easily seen, by comparison, to be the diametral plane for the
system of parallel chords with direction ratios

4Ala, Blb, —D|c.

Any planc parallel to the axis of a paraboloid is, thus, a dia-
metral planc.

Exercises
1. Show that
(¢) the plane 2x—4y—2z4-3=0 touches the paraboloid
22—2y2=3z ;
(¢%) the plane 82—6y—z=>5 touches the paraboloid
22/2—y2[3=2 ;
and find the co-ordinates of the points of contact. (D.U. Hons. 1958)
[Ans. (¢) (3,3, —3), (¢) (8,9, &).
2, Show that the equation to the two tangent planes to the surface
az24-by2=2z,
which passes through the line
. udlz4+my+nz—p=0, v'=l'c+mn'y+ny—p'=0,
is
ul _l;’_+mT=_ 2n’p’) ~ 2uw! (W +mn'—np’—n’p)+4u’'? (—l‘:—+~”;)—2 —2np )=0.
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3. Tangent planes at two points P and Q of a paraboloid meet in the line
RS ; show that the plane through RS and the middle point of PQ is parallel to
the axis of the paraboloid,

4. Find the equation of the plane which cuts the paraboloid
r2—3y2=z2
in a conic with its centre at the point (2, 3, 4).
[Ans. 4x—8y—z+5=0,
5. Show that the locus of the centres of a system of parallel plane sections
of a paraboloid is a diameter,
6. Show that the centre of the conic

ax24-by2=2z, lx+my+nz=p,

(-, -2
Tan’ T n’n2)’
2 m2
h 2 4
where k p + R +np.

is the point

7. Find the chord through the powmnt (2, 3, 4) which is bisected by the
diametral plane 10x—24y=21 of the paraboloid 522—6y2="17z.

[Ans.  (x—2)=3}(y—3)=H(z—4)-
8:95. Number of normals from a given point.

If the normal at («, B, ¥) passes through a given point (f, g, &),
then

fmoa_g—B_h=7_
b —e )
f . .
so that =4 B= 1+br’ Y=h+cr. e (7)
Since («, B, ) lies on the para,bolmd, we have the relation
f? 3 .
(I—-Far)z_*- b(1+b )2 2¢(h+cr), o (20)

which, being an equation of the fifth degree in r, gives five values of
r, to each of which there corresponds a point («, B, ¥), from (2).

Therefore there are five points on a paraboloid the normals at
which pass through a given point, i.e., through a given point five
normals, in general, can be drawn to a paraboloid.

Cor. 1. As in §8-36, page, 195, it can be shown that the feet of
the five normals from the point, (f, g, k) to the surface are the points
of intersection of the surface with the cubic curve

_f g
=1 ar Y= 1+b , 2=h+cr, oee (i)
where r is the parameter.
Cor. 2. Lines drawn from (f, g, #) to intersect the cubic curve
(i1t) generate the quadric cone
f c(b—a) 0
z—f"y—yg g ab(z—h)
and, in particular, this cone contains the five normals from ( f, g, k)
as its generators.
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8'96. Conjugate diametral planes.
Consider any two diametral planes

lx+my+p=0, ...(s)
and
lUz+m'y+p'=0. ... (37)
The plane (¢) bisects chords parallel to the line

z y 2z
l/_azm/b=:j)/—c' ...('m)

which will be parallel to the plane (i7), if
;L+’$=o. .. (i)

The symmetry of the result shows that the plane (¢) is also
parallel to the chords bisected by the plane ().

Thus if « and B be two diametral planes, such that the plane a is
parallel to the chords bisected by the plane B, then B is parallel to the
chords bisecled by «.

Two such planes are called Conjugate diametral planes.

Equation (iw) is the condition for the diametral planes (¢) and
(it) to be conjugate.

Ex. Show that the diametral planes
z+43y+43, 2x—y=1
are conjugate for the paraboloid -

2x24-3y2=4z2,



CHAPTER IX
PLANE SECTIONS OF CONICOIDS

9‘1. We have seen that all plane sections of a conicoid are
conics. We now proceed to determine the nature, the lengths, and
the direction ratios of the axes of any plane section of a given
conicoid.

We shall first consider the sections of central conicoids, and then:
of paraboloids.

While determining the nature of plane sections of conicoids, we
shall assume that the orthogonal projection of a parabola is another
parabola, of a hyperbola another hyperbola and of an ellipse is
another ellipse or in some cases a circle.

9:2. Nature of the plane section of a central conicoid. 70 deler-
mane the nature of the section of the ceniral conicoid.
ax®+-by?+ c2?=1, (1)
by the plane
lx+my+nz=p. e (2)
The equation to the cylinder passing through the section and
having its generators parallel to Z-axis, obtained by eliminating z
from (1) and (2), is
¥ (an?+ cl?)+ 2clmay + y2(bn?+cm?) — 2¢pla — 2cpmy + (cp®—n?)=0.
The plane z=0 which is perpendicular to the generating lines of
the cylinder cuts it in the conic whose equations are
z=0,
z¥(an?+ cl?)+ 2elmxy+ y* (bn® -+ cm®) — 2cpla— 2cpmy + (cp?— n?)=0,,
and which is the projection of the given section on the plane
2=0,
The projection and, therefore, also the given section is a parabola,,
hyperbola or ellipse according as

cl’m? { ; (an®+cl?) (bn®+cm?)
<

or bcl?+ cam®+abn? [ <0.

L>
Thus we find that the section is
a parabola 3 ==
a hyperbola paccording as bel*+ cam?® -+ abn?< <O

an ellipse J L>.
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921, Axes of central plane section. 7o determine the lengths
and direction cosines of the section of the central conicoid

ax?+-by?+c2?=1, (1)
by the ceniral plane
lz+my+nz=0. -(2)
Take a concentric sphere
2?22 =12, ...(3)

The extremities of all the semi-diameters of length r of the
«conicoid lie on the curve of intersection of the conicoid and the sphere.

The lines joining the origin to the points on this curve form a
cone whose equation, obtained by making (1) and (3) homogeneous,
is

(@rt—1)a2-+ (br2 — 1)y +(cr?—1)22=0. ...(4)

The plane (2) cuts this cone in two generators which determine
the directions of two equal diameters of length 27 of the section and
which are, therefore, equally inclined to the axes of the section.

In case 2r becomes the length of either axis of the section, the
generators coincide and, therefore, the plane touches the cone, the
generator of contact being one of the axes.

Now, the condition for the plane (2) to touch the cone (4) is

12 m? n2
ar*—1 +br2d~'— 1 er2—1 =0.
or  (bel>+cam?+abn?)ri—[(b 4 )24 (c+a)m?+ (@ +b)n?]r?
+ (P +mP+n?)=0, .(5)

which is a quadric in #* and has two roots 7?2, r,* which are the
squares of the semi-axes of the section.
If A, u, v be the direction ratios of the axis of length 2r, the

plane (2) touches the cone (4) along the line

x Yy z

—=t= ...(6

p=t= (6)
and is, therefore, identical with

(@ =1)Az+ (br2—1)py +(cr®—1)vz=0,
which is the equation of the tangent plane at any point of the line
{6) so that we have
AMar®~1)_p(br2 —1)_v(cr*—1)
l m n

which determine the direction ratios of the axis of length 2r ; r being
given by the equation (5).
9:22. Areas of plane sections.
If the plane section be an ellipse,
V(P4 mn%)
4/ (bcl>+cam®4-abn?) °

its area=mnrry=m
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If, p, be the length of the perpendicular from the origin to the
tangent plane to the conicoid,

CR
lx+my+nz=,\/<-i—+7—nb—-+l )

c
which is parallel to the given plane lz-+my-+nz=0, we have

\/ ( 12 m2 n2>
¢/ +/(bcl*4-cam®-+-abn?) 1
W (l’+m2+n2) BRIV (L R i ) abc

so that

the area=

- n ——

pV/(abc)

9:23. Condition for the section to be a rectangular hyperbola.
For a rectangular hyperbola, we have

2472 =0,
and hence
(b4-¢)I2+ (c+a)m?+ (a+ b)n2=0.
Ex. Obtain the condition that the section of the conicoid
ax 2+bJ2+022~

by the plane lr+my-+4nz=p should be a parabola, an ellipse, a hyperbola or &
circle from the equation 5 of § 9-21

(For a circle r12=ry?)
[Ans. The conditions for a circlo are
1=0, m2(c—a)=n2(a—>b) ; or m=0, n2(a—b)=I12(b—c) ;
or n=0, 12(b—c)=m?(c—a).

924, To find the condition for two lines
T Yy z x Yy z 1)

L G mm
to be the axes of the section by the plane through the same.
The quadric is
ax®+by?+c2?=1
As each of the two lines in (1) will bisect chords of the section
parallel to the other, we see that each of them must belong to the
diametral plane conjugate to the other.

Now the diametral plane conjugate to
r _y _ 2z

is
alyx+bmyy+cnyz=0,
and the condition for the same to contain the second line is
al,l,+bm;m,+cn;n,=0. . (2)
The condition (2) is the one sought.
In addition to (2), we also have
Ly +mymg+nyny=0,
for the axes are necessarily perpendicular.
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Examples
1. Planes are drawn through the origin so as to cut the quadric
ax?+4by?+c2?=1
in rectangular hyperbolas. Prove that the normals to the planes through
the origin lie on a quadric cone.
Consider any plane
lx+my+nz=0 (1)
through the origin. The condition for this plane to cut the given
quadric in a rectangular hyperbola is

b+ )2+ (c+a)m*+ (a+b)n?=0. «.(2)
The normal to the plane (1) through the origin is

Eliminating 1, m, n between (2) and (3), we see that the normals, in
question, lie on the surface
(b+¢)2*+(c+a)y*+(a +b)22=0,
which is a quadric cone.
2. Lines are drawn from the centre of the quadric
ax?4-by?+cz’=1,
proportional to the area of the perpendicular central section ; show that
the locus of their extremities is a quadric

2 2 2
z~ + ¥ + L =constani.
a b c

Consider any central plane section
lx+my +nz=0. «.(1)
The area of the conic in which this plane cuts the given
quadric is
=r/pV/ abe=4
where, p, the length of the perpendicular from the origin to the
tangent plane parallel to the plane (1) is given by

VA
I2
- \/212 T \/( 27)’
where we have supposed that [, m, n are actual direction cosines.
We require the locus of the point (z, y, z) where
x=14k, y=mAk, z=ndk ;
k being the constant of proportionality.

S x= i k= k', etc.,

\/ (3 vae) \/ (=%)
where k'=mk+/abc.
——+——— p —k'2

Hence the result.
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3. Show thal the azes cof the sections of the surface
ax+by*+ c2?2=1,

which pass through the line

lie on the cone

(b—o)(mz —ny) | (c—a)(nz—L)

4+ (@=b)(y—mx) _

e S 0.
x y 2
Let
T=Y_* ;
L m n -+ ()
Tr_Y¥_ % e
I, my mny @)
be the principal axes of any section through the given line
‘}:ZL _7?. ... (i)
The axes being perpendicular to each other, we have
L, +mymy+nim,=0. ... ()
Also as in § 924, page 182, we have
al,ly+bmymy+cnygn,=0. .. (v)
Also the lines (¢), (4t) and (i17) are coplanar. Therefore
i ll: mb ny
Ly, my, My =0, ... (vi)
| i
‘ l, m, n l
or
1y (myn—mny) + my (gl —nly) +ny(lym—1Imy) = 0.
Eliminating 1, m;, n, from (i), (v) and (vi), we have
E l29 mzy ’nz
|
} aly, bm,, cny =0. .. (v12)
| man—mny, nyl—mnly, lym —Imy
Now, eliminating Iy, m,, n, from (ii) and (vi), we obtain the

locus as required.

4. One azis of a central section of the conicoid
ax*+ by*+c2®=1,
lies in the plane
ux+vy+wz=0.
Show that the other lies on the cone
(b—c)uyz+(c—a)vzz+ (a —b)wry=0

(C.U. 1914)
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r

£t

I —7—7‘;——7—7: ’ —l:-;n_;—- Ny
bg the two axes of a central section such that the second lies in the
given plane for which we have the condition

uly+vmy+wn,=0. oeuft)
Also, as in § 9-24,
L+ mmy+nm,=0 «oe(22)
alyly +bmymy+cnyn,=0. ... (191)
Eliminating Iy, m,, ny from (1), (é¢) and (747), we have

u, v, w (

b, my, = 0,

aly, bmy, cn, |

or
umn,(b—c) +vnyl, (c —a) +wlmi(a—b)=0.
With the help of this condition, we sce that the locus of the axis
. z(ly=y[m,= 2|n,
3 the cone

(b—c)uyz+ (c—a)vex + (a —b)wxy=0.

Exercises

1. Show that the section of the ellipsoid
9xr24-6y24-1422=3,
by the plane
r+y+42=0,
is an ellipse with semi-axes 1/2 and 4/(9/22). Also obtain their equations.
[dns. de=y=—%z; z[4=—y[b=z.
2. Show that the curve
224-Ty2—102249=0, x+2y+3z=
is 2 hyperbola whose transverse axis 18 6 and the direction cosines of whose axes
are proportional to (6, 3, —4) and (17, —22, 9).
3. A;, 4y, Ag are the areas of three mutually perpendicular central
sections of an ellipsoid ; show that 4;—2+ 4,724 4372 is constant,
4. Show that all plane sections of
ax?4-by24cz2=1
which are rectangular hyperbolas and which pass through the point («, B, )
touch the cone
(x=m)? (y—B)%  (2—v)?

RN,

[ ct+a 7 a+bd
5. Any plane whose normal lies on the cone
bea?4-cay?+abz2=0,
cuts the surface
ax?+by?+cz2=1,
in a parabols,
6. The director circle of a plane central section of the ellipsoid
wZ/a2+y2/b2+z2/62= 1
has a radius of constant length ¢, Show that the plane section touches the cone
z2 y? 22 _
a2(52+c2._,-2)+b2(cz+a2_,2)+é2(_&2+b2:72)’_0'
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7. If a length PQ be taken on the normal at any point P of the ellipsoid
a2fa?+y?|b3+22fe2=1,
equal in length to I24 [rabc where [ is a constant and A4 is the area of the sectiom
of the ellipsoid by the diametral plane of OP, show that the locus of Q is
atr? | ByR o %22,
(a2+lz)2+(Ziq'_le)z"'(cz_'_lz)z_ ‘
8. Prove that if Iy, my, ny ; lp, mg, ng are the direction ratios of the
principal axes of any plane section of the quadric

ax24-by2+4 c22=1,

then
by _mimy_mng
b—c c—a a—=b"
9. Find the equation of the central plane section of the quadric
ax?+by24-c22=1
which has one of its axes along the line
x[l=y[m=z[n.
[Ans. Z[m2(a—b)+n2(a—c)]lx=0.
10. Show that central plane sections of an ellipsoid of constant area touch
a quadric cone.

9-3. Axes of non-central plane sections. T'o determine the lengths
and direction ratios of the section of the central conicoid
ax?+by+ cz=1, (1)
by the plane
le4+my+nz=p. e (2)
Centre of the plane section, now, is not the origin. If («, 8, ¥)
is the centre of the section, the plane (2) is also represented by the
equation
aoz+by+cYz=an’+bp%+cY?,
so that we get
oY _ax®+ b +cy?

b
T =_”% - » ——=k, (say).
Ik mk nk
oo a=7: B=—b_’ 72—6—.
Hence
Pt ey R (b at
. p  p\aTbd T/’
or
S A———
i2la+m?b+ntlc
If we write
, 12 m? n?
Po=Gtpt 5
we get

b mp ﬁﬂ)
apy* ’ bpo”’ cpy’
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as the co-ordinates of the centre of the section. The equation of the
conicoid referred to this point as origin is

o typz) +o(v + i) +e( +%)—1

or
az? +by2+cz‘3+~—wp~~ (lxz+my +n2) + e (3)
Also, the equation of the plane (2) becomes
lxe+my+nz=0. we(4)
Now the conic
ax?+by? +czz+ 5 (lz+my+nz)=1 —T lz+my+nz=0, ...(8)

is the same as the conic
ax®4-by?+c2= 1——pf lx+my—+nz=0, ...(6)

for, points whose co-ordinates satisfy the equations (5) also satisfy
the equations (6).

Putting

2
1—%—012,

0
and replacing the a, b, ¢ by a/d?, b/d?, c/d® respectively in the equa-
tions (5) and (6) of the previous article, we get

l m? n
—afé—““arz'“‘* w0 (7
=1 H—1 gL

(ar2 ) bra 1) (672‘1) (8)

which give the lengths 71, T2 a.nd the dzrectzon ratios 1, m,n respectively
at the corresponding semi-axes of the section.

9:31. Area of the plane section. If the section be an ellipse,.
we have its area
—7177‘17‘2

l2+m2+n2
=3
md \/(bclz—{-camz—}-abn’)
124m? 4 n?
=T (1 l2/a+m’/b+n3/c)\/ bcl2+ca,m2+abn’)

9-32. Parallel plane sections. Comparing the equations (7)
and (8) with the equations (5) and (6) of the previous article, we see
that if «, 3 be the lengths of the semi-axes of the section by the-
central plane

lz+my+nz=0, «..(9):
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then the semi-axes of the section by the parallel plane
lx+my+nz=p ...(10)

a\/(l—éé) andﬁ\/< 1—-52)

and the corresponding axes are parallel.

Thus we see that parallel plane sections of a central conicoid are
similar and simslarly situated conics.

Again, if 4, and A4 are the areas of the sections by the planes
(9) and (10), we have

are da and dB,
or

AO ':RG.B,
e a (1P
and A=rdtaf=4g( 1 - )-

Thus ) \
2= (—gh):

Note. p[pg can easily be seen to be the ratio of the lengths of the per-
pendiculars from the centre to the given plane and to tho parallel tangent plane,

Examples

1. Show that the area of the section of an ellipsoid by a plane
which passes through the extremities of three conjugate semi-diameters is
tn a constant ratio to the area of the parallel central section.

Consider the ellipsoid

@y A
'a’é +‘I;‘2'+’C’2‘ =1.
Let P(zy, yy, 21), Q(x5, Y2, 25), B(xs, ¥3, 23) be the co-ordina.teS -of
the extremities of three conjugate semi-diameters of the ellipsoid.
The equation of the plane PQR is

BTy Nt Yy thta, ), (1)
The central plane parallel to (1) is
i b PR S o tyaﬁ?d%ﬁz:o, . (2)

Re-writing these equations as
lz+my+nz=1, lx+my +nz=0,
we see that the ratio of the areas of the two sections

1
—(1-5m) (5 932)
Again
Sa?l2= z(ﬂ_tx_;j' %)” _ 3

making use of relations C, D of § 8'8.
Hence the result.



CIRCULAR SECTIONS 189

2. Find the angle between the asymptotes of the conic
ax?+ by +ct=1, le+my+nz=np.
Let 6 be the required angle.

If r,%, 7,% be the squares of the semi-axes of the conic, we have

ta.n— ,\/‘r’,

47! 7_'?
( 2+7 ‘)a
_ —4(P*+m?+n)(bel? + cam?+ abn?)
T [0+)P+(c+a)mi+(a+b)nt T

Exercises
1. Find the.fengths and directions of the axes of the section of the ellipsoid
9224 6y2+1422=3 by the plane z+y+z=1.
[Ans. & v/ (22)44, (4, —5, 1), (2, 1, —3).
2. Show that the plane x+y+42=1 cuts the quadric
1122—13y2—4:2=
in a hyperbola and find the direction ratios of its axes.
[Ans. —3,1,2;1, =5, 4,
3. Show that the plane x+2y-+3z=4 cuts the conicoid
224 y2—2:2=1
in a parabola, the direction cosines of whose axis are proportional to 1, 4, —3.
4. The ellipsoid a24-2y2+4322=1 1s cut by parallel planes
2u+4-3y+42=2, 2u+3y+4z2=3;
show that the areas of the sections madse by the planes are in the ratio 59 : 29.
5. Find the locus of the centres of the sections of the ellipsoid
a2ja+ y2fb2+:2/c2=1,
which are of constant area wk2,

22 oy 22 22 g2 22 \2 22 y2 2
2¢2 (-4 T —_— L =) =k ——F+—F—-]).
[Ans. a2b2c (a‘ + o + pry )(1 PR Y Rt ) k (az b2 + cz)
94, Circular Sections. 7'o delermine the circular sections of the
ellipsoid

or tan?g=

xﬁ y2 z‘.’.
a—z+32—+—c—§—=l. eee(1)
Writing the equation of the ellipsoid in the form
= (x’+y’+z’—a’)+y (bz - —) +2! ) 0

we see that the two planes
1 1 1 1
(g =)+ (e e ) =0 (2
meet the ellipsoid where they meet the sphere
x!+y2 +22__a2
but as a plane necessarily cuts a sphere in a circle, we find that the
planes (2) cut the ellipsoid (1) in circles.



4190 ANALYTICAL SOLID GEOMETRY

Similarly, if we re-write the equation (1) in the forms

'IT(x2+?/2+zz—b2)+x2 (;‘2‘ b”>+ (cz bz) 0, @

FErt-te (=5 )+i(—)=0 @
we find that the planes
“%%—% (? w)o

and

cut the ellipsoid in circles.

Thus there are three pairs of central planes which cut an ellipsoid
in circles.

If a®>b?>c?, the second of these equations only gives real planes
so that in this case the real pair of central planes of circular sections
is

2 V(@b £ =/ (b~ ") =0. ..(5)
Since parallel sections are similar, the two systems of planes
TV @b+ =/ (=) =D,
and
x 2
TV @8- V(B =)=,

which are parallel to those given by the equations (5) cut the ellipsoid in
circles for all values of N and p.

9:41. Any two circular sections of an ellipsoid of opposite systems
lie on a sphere.

Let 2 V(@=b)+= /(3 e =A

and =2 V(@—t)—Z v )=,

be the equations of the planes of any two circular sections of opposite
systems.

The conicoid
2 ¥y, 2 z 2 _p2y g * 20
L+ it (Ev@e-m+ L yer-o-1)x

2 V=t —Z /e —n )=0, ..()
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-which passes through the two circular sections for all values of k, will
tepresent a sphere, if k can be chosen so that

1 —b? 1 k(b —c?
L e
N ow, k= 1/ bsa
«clearly satisfies these two equations,

Substituting this value of £ in (1), we get
2__1e —_
Y N Qi@liﬁﬂ. %) (A_E)l( e )z+7\P* b2=0,

wwhich represents the sphere through the two cu‘cular sections.
Hence the proposition is proved.

Exercises
1. Show that the real central circular scctions of the hyperboloids
Y2 22 22 g2 22
=18 — ==
az ~ bd 2 ‘md 2 b 2 !

are given by the planes

fbi_ v (@2—t2)x = ¢/ (a2+c2) =0 and % V(@402 ——Z—\/(lﬂ—c?-) =0.

Also show that any two circular sections of opposite systems in the case of
cither hyperboloid lioc on a sphere.

2, Find the real circular sections of the following conicoids :

(2) 2x24-11y24-22=1. [Ans. By+z=2, 3y—z=p.
(4¢) 1022—2y2+42242=0, [Ans. 4/3x+y=2], ¢/3x—y=H,
(192) 1522—y2—10224-4=0. [dAns. 4x43z=2, 4x—3z=p,

3. Find the equation of the sphere which contains the two circular sections
.of the ellipsoid x2—3y2+2:2=4 through the pomt (1, 2, 3).

[Ans. a24-y2422—16y+624-T7=0.
4, Find the radius of the circle in which the plane

L V(@—b)+ -y (p2—c)=2
-cuts the ellipsoid
x? oy
b2
[Ans. by/[1—2A%/(a2—c2)].
[Hint. Obtain the equation of the sphere which passes through the given

-circle and any circle of the opposite system and determine the radius of the
circle in which the given plane cuts it.]

5. Show that the circular-sections of the ellipsoid

¥ 22
wtta=!
-passing through one extremity of X -axis are both of radius, », where
7 p2_c?
8 gi—c?

6. Prove that the radius of s circular section of the ellipsoid at a distance
_p from the centre is b\/(l-—p?b’/a’cﬁ)
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7. Show that the locus of the centres of the spheres which pass through.
the origin and cut the ellipsoid

y2? + 22 -1
az + b2 =
in a pair of real circles is the hyperbola
a2x® 22

T b2 =
Py y S v il O"

8. If p;, pa, p3 be the lengths of the perpendiculars from the extremities
Py, P,, P4 of conjugate semi-diameters on one of the planes of central circular
sections of the ellipsoid,

v2a?+y2[b24:2c=1],
then show that

P12+ Do+ paZ=a2c2[b2, (B.U. 1931)

9. A cone is drawn with 1ts vertex at the centre of the ellipsoid
x2/a2+4y2/b2422/c2=1 and its base is a circular section of the ellipsoid. If the

cone contains three mutually perpendicular generators, prove that the distance
of the soction from the centre of the ellipsoid 1s

abe
4/ (b2c2+c2a2+u2b2) °
942, Umbilics.

Def. A point on a quadric such that the planes parallel to the

tangent plane at the point determine circular sections on the surface
is called an wmbilic.

Clearly, wmbilic is a point-circle which lies on a quadric.

The umbilics are the extremities of the diameters which pass
through the centres of the systems of circular sections.

To determine the real umbilics of the ellipsoid,

x? 1/-
@ T ?z L.
If f, g, b be an umbilic, the tanvent plane
fx gy
=L

at the point is parallel to either of the central circular sections

V@) & -/ (P ) =0.

. oo N h
& g=0and V(@ =5 + N G—o)
f:-. PR
But 7 + bE +———-l
Hence
_ a\/(a’ 0\/(62—02)
f_' v(az 02) 9= 0 h= \/(az___cs)

These are the co-ordinates of the four real umbilics.

Exercises
1. Show that the hyperboloid of one sheet has no real umbilics,
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2. Find the real umbilics of the hyperboloid
22y 23
I
=aq/(a%+b2) £cy/(b%—c?)
Ldne. =amsey* & “yarray
3. Find the umbilics of the ellipsoid 222+ 3y2+4-622=6.
[4ns. (%346, 0, £34/2).
4. Show that the four real umbilics of an ellipsoid lie upon a circle.
5. Prove that the perpendicular distance from the centre to the tangent
planc at an umbilic of the ellipsoid 18 ac/b. (U.P. 1937)
9-5. Sections of paraboloids. 7o determine the nature of the
section of the paraboloid
ax?+by?=2cz,
by the plane
lx+my+nz=p.
Let 1540 so that the plane is not perpendicular to the YZ plane.
As in § 9°3, the equations of the projection of the section on the YZ
plane are
=0,
(am®--bl2)y2 4 2amnyz+an?2? -- 2apmy — 2(apn -+ cl*)z + ap?=0
The projection and, therefore, also the section is an ellipse,
parabola, or hyperbola according as

< >
azmzn”—anz(am’+bl2){=0 or abn’l? {-:0.
> <
Thus for a parabola n=0. If ns£0, the section will be an ellipse
or hyperbola according as ab is positive or negative that is according
as the paraboloid is elliptie or hyperbolic.
If I=0 and m50 then, by projecting on the XZ plane, we get a
similar result.
If I=m=0 then n cannot be equal to zero and the section is then
clearly an ellipse or hyperbola according as ab is positive or negative.
Thus we have proved that all the sections of a paraboloid which
are parallel to the axis of the surface are parabolas : all other sections
of an elliptic paraboloid are ellipses and of an hyperbolic paraboloid are
hyperbolas.
9'51. Axes of plane sections of paraboloids. 7o deiermine the
lengths and the direction ratios of the section of the paraboloid
ax?+by?=2cz, vee(1)
by the plane
lz4+my+nz=p. eee(2)
Let («, B, ) be the centre of the section so that the plane (2) is
also represented by the equation
aox +bBy—cz=an?+4-bB%:—cY.
Comparison gives
ax b —c aa’-}-bﬁz—cy

l‘mn P
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lc me
Therefore == B=— ™
2, 72 2

and cY=a024bp*+ %: ;‘:—2— —i——-{_%_}_ﬁ:ﬁ).

If we write

kz_l_a_ m? | np
a ' D ¢’

we find that the centre of the section is

(_Lc_ _me @)
an’  bn’ nt/
The equation of the paraboloid referred to this point as the

origin is
lc\?2 me\? ke
o(o=gr) +o(v=50) =2(=+35)
or ax®+ by“——%c (lz+my+n2) —-c—(k—c%ﬂ'i=0.

Also, the equation of the plane (2) now becomes
lx+my+nz=0.
Now the conic

ax’+by2—%(lx+my+nz)—c(k—:t~n-@=0 } .3
lx+my+nz=0
is the same as the conic
2 2__Clkc+mnp)
ax®+ by = lz+my+nz=0.

Let us write
2 2
pot=clko+np) =c( ==+ 4 2np ).
The semi-diameters of length r of the conicoid
_p’
az®+by —n—"z,

are the generators of the cone

2 2 2 2
aar:’—}-b7,42=1—7292 . ﬁ:’l;zj‘__{_’
i.e., 22 (an®r?—po?) + 32 (bn?r2:— po?) — 2 pt =0 .. (4)
The plane
le+my+nz=0,
will touch this cone if
2 2 2
! - % =0, ...(5)

aniri— Poz niri— Poz— Z_’;i=

or
abnbrt— nrip(a+b)n®+ am? + b2l + pot (12 +m?+n?) =0,
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which is a quadratic equation in 72 and has two roots 2, r,2, which
are the squares of the semi-axes of the section.

Also, if A, @, v be the direction ratios, of the axis of length 2r,
the plane (2) touches the cone (4) along the line

x _y 2
Ao v
-and is, therefore, identical with
(an®r®—py2)Az+ (bn?r2— py2)uy —vpetz =0,
so that we have
(an®?—p))A _ (bn®r—pet)_ —po® (6)
l m n '
which determine the direction ratios of the axis of length 27 ; r being
given from the equation (5).
9:52, The section will be rectangular hyperbola, if

7,2 7,2=0.

This requires
(a-+b)n%4-am?4-bl2=0.
Ex. Obtain the conclusion of § 95 with the help of equation
{5) of this article,
9:53. Area of the section.
If the section be elliptic, its area
=TIy

npo [z2+m2+n ]

2 2 2 2
n3

954, 1If 9 be the angle between the asymptotes of the section,
then as in § Ex. 2, page 189.

—driry? _ —dabn®(i*+m? +n?)
(r+72)? [(a+b)n2+am?+bl2]?
-which being independent of p, we deduce that the angle between the
asymptotes of parallel plane sections is the same.
Thus we see that parallel plane sections of a paraboloid are similar.

tan20=

Exercises

1. Show that the section of the paraboloid
ax?4by2=2cz,
by a tangent plane to the cone
22, y2 , 22 0
b @ atb
ds a rectangular hyperbola.
2. Prove that the axis of the section of the conicoid az2+4by2=2z by the
plane lz+my+nz=0 lie on the cone
b _am | (a=b)n
z y z

=0.
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3. If the area of the section of
azx24-by2=2cz,
be constant and equal to wk2, the locus of the centre is
(a2224b2y2+4c2)(ax2—by2—2cz)2=abc2k4,

9'6. Circular sections of paraboloids. 7o defermine the oirculas-

sections of the paraboloid
ax®+by*=2cz. (L)
The equation (1) can be written in the forms

o gt 42— 22) g (0—a)—azr=0,

Way 42— ) +atla—b)—bat=0.

Therefore, as before, the two pairs of planes
y2(b—a)—azt=0, (2
and
2} (a—b)—bz%=0, «.(3)
determine circular sections through the origin.
If a or b is negative and the other positive, neither of the equa-
tions (2) and (3) gives real planes.
Hence hyperbolic paraboloids have no real circular sections.
Of the two pairs of planes (2) and (3), one will be real if ¢ and b
are of the same sign.
In case a>b>0,
22 (a—0)—b22=0,
gives real circular sections through the origin and the two real systems.
of circular sections are given by

x4/ (a—0)+1/bz=A\, 24/ (a—b)— 4/bz=.
Exercises

1. Show that any two circular sections of opposite systems of an elliptic-
paraboloid lie on a sphere,

2. Find the real circular sections of the paraboloid :
(¢) 13y24422=2z, [Anse 2243y=A,
(80) 2245224-4y=0, [Ans. y422=2,.
9:61. Umbilics of a paraboloid. To defermine the umbilics of
the paraboloid
axt+byt=2cz, a>b>0.
Circular sections are determined by the planes
24/ (a—b)++/bz=A, 24/(a—b)—4/bz=p..
If f, g, b be an umbilic, the tangent plane
afx+bgy—c(z+h)=0
thereat is parallel to‘either of the circular sections.
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g=0and f=+ %\/(a;b).

Also,
af?+bg?=2ch.
Therefore,
_(@=b)e
h= 2ab °

s [0/ (5200, %520

are the two real umbilics of the paraboloid.
Ex. 1. Find the umbilics of the paraboloids

197

2~

(3) 4224-5y2=40z. (45) 25424 16y2=2z,

[dns. () (0, 2, 3);

(45) (2£3/100, 0, 9/800),



CHAPTER X
GENERATING LINES OF CONICOIDS

10°1. Generating lines of the hyperboloid of one sheet. We
re-write the equation

2ty 2

at e e 1, <. (1)
of a hyperboloid of one sheet in the form

2 2? 2

P R

(D))

This may again be written in either of the two forms

xr_* Y
a c {:b‘ @)
Ty sz
b a c
z_ =z v
or a yc = bz~ . ...(3)
+5 ot e

We consider, now, the two families of lines obtained by putting
the equal fractions (2) and (3) equal to arbitrary constants A and p
respectively.

Z_Za(i-Darda(Z+L), L@

Lz p(14+d 231 Y—p(Z+L). ...(B)

To each value of the constant A, corresponds a member of the
family of lines (A) and to each value of the constant p corresponds
a member of the family of lines (B).

Now it will be shown that every point of each of the lines (4) and
(B) lies on the hyperboloid (1).

If (x9, Yoo %) be any point of a member of the family (A4)
obtained for some value A, of A; we have

Zo R0 _ Y% Yo_» (%o 4 %
_“?‘7“'(1 b)’1+b N e

a
On eliminating 7\0 from these, we obtain
o? %’ 02 Yoo 2°
FEo e

which relation shows that (x,, 9o, %) i8 a point of the hyperboloid (1).
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A similar proof holds for the family of lines (B).

Thus as A and p vary, we get two families of lines (4) and (B)
each member of each of which lies wholly on the hyperboloid. These
two families of lines are called two systems of generating lines (or
generdtors) of the hyperboloid.

‘We shall now proceed to discuss some properties of these systems
of generating lines.

10°11. Through every point of the hyperboloid there passes one
generator of each system.

Let (z,, 9o, 2,) be any point of the hyperboloid so that we have

2y?

2 Yo
;02—-*—*6%‘-——25 =1. ...(4)
Now the line

Sorea (=) e (5 42,

will pass through the point (24, o, ) if, and only if, A has a value
equal to each of the two fractions

( o, )Kl ?!o) ) ( 1+%0_ / _Ze +ico_) ...(5)

Now, by virtue of the relation (4), these two fractions are equal.

Thus the member of the system (A4) corresponding to either of
the equal values (5) of A will pass through the given point (z,, ¥, 2)-
Similarly it can be shown that the member of the system (B)
corresponding to either of the equal values

2= J(0e3) (=) )

of, ., passes through the given point (zy, ¥, o).

a b

10°12. No two generators of the same system tntersect.

Let
0 £t (1- ). 0 1s Lon(D 2

a
x 2z

N v y x  z
(vi2) a =\ ( 1 ) (tv) 14 =— 7\2( a + p ),
be any two dlﬁ'erent generators of the A system.

Subtracting (7¢¢) from (7), we obtain

(Ar—=Ay) ( l——%—)=0 or y=b, for A;#£A,,
Again, from (i2) and (4v), we obtain

1 1 Y\_ _
(X:—K)( 1 +~b—)——0 or y—"'b, fOI‘ Al;éAg,

Thus we see that these four equations are inconsistent and
accordingly the two lines do not intersect.
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10°13. Any two gencrators belonging to different systems intersect.
Let

) £ _E (1L LY z
® a }\(1 ) () 1 b (a+ >’

[

vy X . 2 x 2z
i) - —=w (1), ) 1= = (5 +5)
be two generators, one of each system.
Firstly, we solve simultaneously the cquations (z), (s) and (:3¢).
Now (i) and (i17) give

A ( 1-%-):;;(14-—-’;—) or y=b ;‘\_%‘;

Substituting this value of y in (¢) and (iz), we obtain
x z 2\ oz 2 2

- T T e A4 @ T Ty
These give, on a,ddmfr and subtracting,
1+Aw l - 7\[1.
An F TN
Now, as may easily be seen, these values of =z, y, z satisfy (iv)
also. Thus the two lines interscct and the point of intersection is

( 14+An b?x—p cl-?xy.

r=a

“Atp ThFR “Ate
Another method. The planes

.i___c.__A( 1'"(7) _LF 14+ ——7\ —-)] 0,

a

x 2
T e (1) [ - (T

pass through the two lines respectively for all values of kand &',

Now, obviously these equations become identical for
k=p and k'=A.

Thus the two lines are coplanar and as such they intersect. Also
the plane through the two lines, obtained by putting k=g or k'=A is
1420w 2 A—p  y 1—Ap 2z
A+(J, . . +A+y. b —_ A—}-p. . ‘E——l. ...(7)

Cor. 1. Now the plane (7) through two generators of the oppo-
site systems is the tangent plane to the hyperboloid (1) at the point
of intersection (6) of the two generators. Since also through every
point of the hyperboloid there pass two generators, one of each
system, we see that the tangent plane at @ point of hyperboloid meets
the hyperboloid in the two generators through the poind.

Cor. 2. Any plane through a generating line is the tangent plane
at some point of the generator. Now like every plane section, the
section of the hyperboloid by any plane through a generator is a

. (6)
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conic of which the given generator is a part. Thus the conic is
degenerate and the residue must also be a line. At the point of
intersection of the lines constituting this degenerate plane section,
the plane will touch the hyperboloid.
Ex. Prove this result analytically also.
Cor. 3. Parametric Equations of the hyperboloid. The co-
.ordinates (6) show that
R G R S P o
R I N T Atp
are the parametric equations of the hyperboloid ; A. u being the iwo
parameters. These co-ordinates satisfy the cquation of the hyper-
boloid for all values of the parameters A and p.

Example

Find the lengths of the side of the skew quadrilateral formed by the
Sfour generalors of the hyperboloid

2 4+y?— 22 =49,

which pass through the two points (10, 5, 1) (14, 2, —2).
(D.U., M.A. 1948)

Re-writing the given equation in the form

(2 —2 )( 9 +z> (T=y)(T+y),

we see that the equations of the two systems of generating lines of
-the hyperboloid are

=M=y, A 542 |=T+y; (i)

x ra ..
—é——z=y.(7+y), y.L~§v+z ]=7——y. .. (%0)

The generators () and (i7) pass through the points
(10, 5, 1) and (14, 2, —2)

for
7\=2: k=3 and 7\=%’ (J-=1
respectively.
The two pairs of generators through the two points, therefore,
.are
[.2 —2z=2(7T—y), 2 [——+z]—7+y oo (122)
{
z .
|51+, i[5+ =1y e (i)
z
J' S—a=3—9), 3 [ Sz J=T+y . )
- =z =7— e (vi
L2 T+y, 5tz =T—y (v)
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Solving in pairs (i), (vi) and (i), (v), we see that the two other
vertices of the skew quadrilateral formed by the four generators are
(14’ %:—%)’ (221: :JL%, %%)'

The lengths of the sides are now easily seen to be

V/(98)/16, 1/(308)/3, v/2/3, /(7970)/16.

Exercises

1. Write down the equations of the two systems of generating lines of the
following hyperboloid and determine the pair of lines of the systems which pass
through the given point.

() a2+49y2—22=9, (3, 1/3, —1).
(48) 22/9—y2[16+22/4=1, (—1, 4/3, 2).
[Ans. (3) x4-3uy—z=3\, Az—3y+Ar2=3 ; x+6y—2z=6,2x—3y+2:=3
r—3uy—2z=3y, pr+3y+pz=3 ; x—3y—z=3, x+3y+2=3
(%) 4z—3y+6r2=12), Aao+3hy—62=12; 2=2, 4x+3y=0
dx—3y—6uz=12u, 4pz+3py+62=12;
4z—3y+22+4+4=0, 4v+4+3y—8z436=0.
10:2. To find the equations of the two generating lines through any
point (@ cos 0, b sin 0, 0), of the principal elliptic section
23ad+y?b*=1, 2=0,
of the hyperboloid by the plane 2=0.
Let .
z—acos §_y—bsinf_2-0
l m n

be any generator through the point
(@ cos @, b sin g, 0).
The point

(Ir4+a cos 6, mr4b sin 0, nr)
on the generator is a point of the hyperboloid for all values of r.
Thus the equation

(Ir+a cos §)? | (mr-+b sin §)* n?r?
5 + — =L

o b c?
] B om: w7, lcos 9, msinf
1.e., ?‘*' I;;—GT:'T +27',: @ +*—B'—‘]-O:

in r must be an identity. This will be so if
?  m? n?

@ty e
and
l cos 0+m sin 0==0.
o b

These give
1 m

r
asing —bcos§d +c
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Thus we obtain
z—acos §_y—bsing =z
ToaoR0 Y- oMmb_ 2 . (C)
a sin 6 —bcos § ¢
as the two required generators.

Note. Since every generator of either system meets the plane z=0 at a
point of the principal elliptic section, we see that the two systems of lines
obtained from (C) as ¢ varies from 0 to 2rx are the two systems of generators
of the hyperboloid, The form (C) of the equations of two systems of generators
is often found more useful than the forms () and (B) obtained in § 10°1.

Ex. Show that (4) and (B) are equivalent to (C) for
A=tan ({7—40), w=cot (4w —140).

10:3. To show that the projections of the generators of a hyper-
boloid on any principal plane are tangents to the section of the
hyperboloid by the principal plane.

Consider any generator

x—acos §__y—Dbsing

asing  —bcosg

II
o'[ N

The equation

a sin 0 —bcos g

represents the plane through the generator perpendicular to the X0Y
plane so that the projection of the generator on the XOY plane is

x—a cos §__y—bsin §
A R Y T 2=0
a sin —b cos ¢
or zeosf_ ysing_, . _,
a b

which is clearly a tangent line to the section
2} ja?+y?b2=1, 2=0
of the hyperboloid by the principal plane z=0 at the point
(a cos @, b sin g, 0).
Again
x-acosf_ z
asing ¢
is the plane through the generator perpendicular to the XOZ plane so:
that the projection of the generator on the X0OZ plane is
x—acosf_ 2

2

asing ¢’ y=0
or
rsecfh =z
a ———c—tan 0=1,y=0
which is clearly the tangent to the section
x® 2P
e a=hy=0

of the hyperboloid by the principal plane y=0 at the point
(a sec 8, 0, ¢ tan §).
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Similarly we may show that the projections of the generators on
the principal plane x=0 touch the corresponding section.

Example
Show thot points of intersection R, S of the generators of opposite
-systems drawn through the poinis
(@ cos 6, b sin 6, 0), (a cos @, b sin ¢, 0)
of the principal elliptic section of the hyperboloid
x?a?+ y b2 — 2%t =1

cos §(0+4) sin §(6+4)
' b W o)
( Pcos 4(6—9)’ cos 4(8—¢)’ +0os $Ho—9)
The question can, of course, be solved by solving simultaneously

the equations of the generators obtained in § 10°2, but we shall give
-another method which is perhaps simpler.

Let R (x,, y1, z1) be either of the two points of intersection of the
-generators.

The tangent plane

-are

T Yh_ 2y
@ T a
-at R meets the plane z=0 of the principal elliptic section in the line
azy | yy

which is the line joining the points P, @ whose equation is known to be
zoos Hotd) Ly sin HOLD)_ o y(p—g), 2=0.

Comparing these equations, we obtain
_glosde+4) _sin $(0+9)
N1=%0s 1(0—g) 91=b o5 3(0—=¢)
Also we have

22?4y 20—z b =1.
Substituting these values of z, and ¥, in this relation, we obtain

z3=c tan }(—¢)= ;}:c(s:—i)r;—i—((-%:—ig.

Exercises

1. R, § are the points of intersection of generators of opposite systems
.drawn at the extremities P, @ of semi-conjugate diameters of the principal
-elliptic section ; show that

(4) the locus of the points R, S are the ellipses
x2/a2+y2[b2=2, 2==cC;
(é%) the perimeter of the skew quadrilateral PSQR taken in order, is con-
stant and equal to 2 (a2+b2+2¢2) ;
(#%%) cot2a+cot?p=(a2+b2)/c2 where
[/ BPS=2qand / RQS=28;
«(#v) the volume of the tetrahedron PSQR is constant and equal to
4abc.
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2. The generators through a point P on the hyperboloid
x2[a?+y2[b2—z2[c2=1
meet the principal elliptic section in points whose eccoentric angles differ by a.

constant 2« ; show that the locus of P 18 the curve of intersection of the hyper--
boloid with the cone

x2/a?4y2[b2=22/c? cosx.
3. If the generators through a point P on the hyperboloid
22)a24-y2b2—22[c2=1,
meet the principal elliptic section in two points such that the eccentric angle of

one 18 three times that of the other, prove that P lies on the curve of intersection
of the hyperboloid with the cylinder

y2(224c2)=4b222,
4. Show that the generators through any one of the ends of an equi-
conjugate diameter of the principal elliptic section of the hyperboloid
22/a2+y2[b2—22/c2=1,
are inclined to each other at an angle of 60°if a2+4+b2=6¢2, Find also the
condition for the generators to be perpendicular to each other.
[Ars. a2+4b2=2c2,
5. A variable generator of the hyperboloid
22/a2+y2[b2—22[ct=1,
intersects generators of the same system through the extremities of a diameter
of the principal elliptic section in points P and P’ ; show that

3p Zpil@®=ypyplbiipipr_ 2.

6. Show that the shortest distance between generators of the same system.
drawn at one end of each of the major and minor axes of the principal elliptic-
section of the hyperboloid

22)ad+y2[b2—22)c2=1,
is
2abc[+/ (a2b2+b2c2+-c2a?),
7. Show that the shortest distance between generators of the same-

system drawn at the extremities of the diameters of the principal elliptic section.
of the hyperboloid

#2/a?+y2)b2—z2[c2=1,
aro parallel to the X0Y plane and lie on the surfaces
abz(x2+y?) = 4= (a2—b2)cxy.

8. Show that the lnes through the origin drawn parallel to the line of"
shortest distance between generators of the same system through the ends of
semi-conjugate diameters of the principal elliptic section of the hyperboloid,

x2/a+y2[b2—22/c2=1,
generate the cone
a2x24-b2y2—2¢2:2=0,

9. A variable generator meets two generators of the system through
the extremities B and B’ of the minor axis of the principal elliptic section of"
the hyperboloid

22[a2+y2[b2—22[c2=1,
in P and P, prove that

BP.B’P’=b%+¢2,
10. Q is a point on a generator at any point P of the principal circular-

section of the hyperboloid

(22 +y2)—a222=qa2?,
such that PQ=r ; show that the angle between the tangent plane at P and Q is-
tan-1 (7/c). .
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11. The generators through a point P on the hyperboloid
a2/a2-y2b2—22fc2=1,
‘meet the plane 2=0 in 4, B and the volume of the tetrahedron formed by the
-generators through A4 and B is constant and equal to abc/4 ; show that the locus
of P is either of the ellipses
22/a24y2[b2=4, 2=4-4/3c.
10°4. To find the locus of the points of intersection of perpendi-
cular generators of the hyperboloid

xt[a?+y? (b2 —22[c? =1, ..(1)
Let (2,, ¥1, 2;) be any point the generators through which are
perpendicular.
The generators are the lines in which the tangent plane
XXy | Y 2z
e e B (2)

.at the point meets the surface. On making (1) homogeneous with
-the help of (2), we obta.m the equation
x’ xx y 2z; \?
- L=+, (3)
The curve of intersection of (1) and (2) being a pair of lines, the
.cone with its vertex at the origin and with the curve of intersection
.of (1) and (2), a8 the guiding curve, represented by the equation (3),
reduces to a pair of planes.
If, I, m, n be the direction ratios of either of the two generators,
we have, since they lie on the planes (2) and (3),

ley, my, nz
'(lTl—f—le-—?jl:O, ...(4)
and
B m® nt sz, my, nz\?
dti—a=(G+p—a -+ (5)

Now, (5), with the help of (4), reduces to

2 md nt?
Eliminating = from (4) and (5), we obtain
;2 2mcx
B (@=L 2 (11— ctyt) =0,

If I, my, ny, 3 g, Ma, My be the direction ratios of the two gene-
rators, this gives

il_ l2 _ bzzlz_czylz at
my  my b " a’zt—cx,?
or 4 llla PP Y ”mlmz = T r T
at(bz®—cyr) b(a’z®—c’zy’)  o'(aPy,*+cPay)
Since Lly+mmg+nyn, =0,

we obtain
at(b%2%—c'y,?) +b%(a%2,% - c’2,%) + ¢ (ay,® + b, 2) =0,
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or
bsclez(cn_bz) +a262y12(02_a2) +a2bzz,2(a”+ bz) =O,
or
2 2 2
=) I + @—) I — @+ 4 =o.
‘We re-write it as

2 2 2
(a0 —c?) %+(a’+b2—-cg) —%‘,——(a’—i—b’—c’)%=x1’+y12+21”,

x 2 2 z 2
or @+ ) (5 + 5 — T )=t ottt
Since now the point (z,, y;, 2;) lies on the hyperboloid, this

reduces to
x,2+y12+z12=a2+b*—c2.

Thus we see that the point of intersection of perpendicular
generators lies on the curve of intersection of the hyperboloid and the
director sphere

2242+ 2l =a% 40—

Another method. Let P4, PB be two perpendicular generators
through P and PC be the normal at P so that it is perpendicular to
the tangent plane determined by P4 and PB. The lines P4, PB, PC
are mutually perpendicular and as such the three planes CPA, APB,
BPC determined by them, taken in pairs, are also mutually perpendi-
cular.

The plane CPA through the generator P4 is the tangent plane
.at some point of P4 and the plane CPB through the generator PB is
the tangent plane at some point of PB. Also the plane APB is the
tangent plane at P.

Thus the three planes CPA, APB and BPC are the mutually
perpendicular tangent planes and as such their point of intersection
P lies on the director sphere. Thus the locus of P is the curve of
intersection of the hyperboloid with its director sphere.

Example
Show that the angle § between the generators through any point P on
a hyperboloid is given by
cot §=p(r—a®—b%*+c?)/2abc,
where, p, 18 the perpendicular from the centre to the tangent plane at P
and, r, 18 the distance of P from the centre. (D.U., M.A. 1947, 59)
The tangent plane at P(x,, ¥,, 2,) is
2z
%ﬁl %y,i—c—.;=1. (1)
As in § 104, it can be shown that the direction ratios I, m, n, of the
two generators through this point are given by the equations
lx, my, nz
@t a0
2 m? n?
dtE e =0
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Proceeding as in example 1, on page 169, we can show that
angle 6 between the llnes is given by

\/[ W 21 )( iL'I;ic*‘ b“c“a2+c4a’b2):]

2 | 4 Ty 4+-Y1"
St )+b2 )Gty
Now, p, the ]ength of the perpendicular from the centre to the:
tangent plane (1) at (zy, ¥y, zl) is given by

\/Zx‘

Also the denomma.tor of the expression for tan ¢

tan § =

2

or > =20
T a2 P

2
1 2__ 2 g2 z? 2y pe 3
agbzc,[ (b at) a0+ 2 b

+ @2yt 42,2}
1 .. 2
= g ,,[() —a?—bi+c?) ]

\/[( ~ ) Coe =)

rP—a?— b"-i—cz)/a’b’c"'
=2abc/p(r?—a?—b2+c?).

10'5. Central point. Line of Striction. Parameter of Distri-
bution of a generator.

Def. 1. The central point of any given generator, 1, is the limiting
position of its point of intersection with the line of shortest distance
between it and another generator, m, of the same system ; the limit
being taken when, m, tends to coincide with 1.

With some sacrifice of precision, one may say that the central
point of a given generator is the point of intersection of the generator
and the shortest distance between it and a consecutive generator of
the system.

Def. 2. The locus of central poinis of generators is called line of
striction,

Def. 3. The parameter of distribution of a generator, 1, is
lim(58/8) where, 8s, is the shortest distance and, 5, the angle between [
and another generator m of the same system, the limit being taken when
the generator m {ends to coincide with the gemerator 1.
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10°51. To determine the central point of a generator.
We consider generators of the system
z—a cos§ y—b sing
Casing T —bcosd
Let any generator, [, of this system be

Il

2
Cc

z—a cos? y—b sing

z
Nt B ANtk SR (1
a 8ing —b cose c (1)

We, now, consider any other generator, m
x—a cose’ _y= bsin® 2z @)

asing’ ~ —bcosgp” | ¢
of the same system.

Let the shortest distance between these generators meet them
in P and () respectively so that we have to ﬁnd the limiting position
Og Zi;he point P on the generator [ when ¢’—>¢. Let C be the limit
o

Since P is a chord of the hyperboloid, its limit will be a tangent
line CD at the point C. ILetl, m, n be the direction ratios of the
shortest distance PQ and [, m,, n, be those of its limit. We have

al sinp —bm cos? +en=0,
al sing’ —bm cose’+cn=0.
al bm cn

cos?’—cosp  sing’—sing  sin (¢'—q)

or
al bm  _ en
—sin}(@'+¢) cos (9'+9) cos }(¢'—q)
Let ¢'—o.
Thus we obtain
aly bmy __cng
“sin?  cosp 1
Let

[a(r sinp+cose), b(sing—r cos?), cr] . (3)
be the central point C on the generator (1). The equation of the
tangent plane at C is

E(}[‘Sir}q{+cos<pi);+ Y(sing—r cosp) _ 2r
a b c
Since the line CD with dircction ratios I, m,, n,, lies on this
tangent plane, we have
__ sing(r sin?+cosep) + cosp(sin?—r cosp)

at b2 'CT=O-

9 2
T[sm @ +cos', ? 4 1 1 ] l:b' = Jsmqa cosQ

=1.

or
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or
_ c*(a®—b?) sing cos?
(a®b?+a’c? cos’p+b%?sin’)

80 that we have obtained 7.
Substituting this value of r in (3), we see that the co-ordinates
of the central point C(z, y, 2) are given by
a®(b2+c?)cosg __ b¥(c*+a?) sing c3(a?—b?) sing cosp
=T % » V= % ) = %

where
k=a?b?+}a®c? cos?p-}-b2c? sinyp.
Eliminating ¢, we see that the line of siriction is the curve of
intersection of the hyperboloid with the cone
ae(b2+cz)z b6(02+a2)2_68(b2_a2)2 _
x& yz 22 =0.
Ex. Find the central point for a generator of the second system and show
that the line of striction is the same for either system.
10'52. To determine the parameter of distribution of the
generator, l.
If 8} be the angle between the generators (1) and (2) of § 10°51,
we have
4)_\#/A[b’c“(coscp —cosg)? +p’a2(smcp —sing)? +a2b"’sm2(<p —9)]

a? sing sing’ +b? cose cosp’ 4 ¢?
9 g , /[b2 2sin%3 (e +<P)+c2a, cos?$(¢’+¢) +a%b’cos?§ (o’ - —o)]
=2sin §(o'— a* sing sing’+ b2 cose coso’ +c?

We write ¢ =¢ 4 8¢ so that 8¢9—0 as ¢"->¢. Then, from above,
we obtain ,
dy _/[bPc? sin*p +a’c? cos®p+a®h?]

do a? sin2p + b7 cos?p+c?

Again we shall now find the S.D., 8s, between the two generators.
Now the equation of the plane throuﬂh (l) parallel to (2) is

| x—a cosy, y—bsing, =z
a sin?, —b cosp, ¢ |=0
a 8ing’, —bcosp’ ¢

so that on cancelling a common factor sin }(¢"—9), we obtain
—bex sin} (¢’ +¢) +cay cos}(9’+)+abz cosi(p’—9)
+abe sin} (e’ —¢)=0.
The S.D., 5s, which is the distance of the point
.(a cosg’, b sing’, 0)
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from this plane is given by
Ss— 2abe sin (e’ —¢)
V/[b%¢? sin*}(@" +¢) +c*a® cos®}(¢"+ @) + a%h? cos’}(p'—o)]
Again putting ¢’ =¢ 43¢, we obtain .
ds abe
de  4/[b%® sin*?+c®a*cos’p+a®b?]’
ds  ds/dp _ abc(a® sin*p+b? cos’p+c?)

** db = ddjde ~ bc® sin®p+c%a? cos’p+a?
10°6. Hyperbolic paraboloid. We re-write the equation
22/a?—y?[b%=22/c w.(1)

of a hyperbolic paraboloid in the form

Yy fx .,y _2
|:a b][a+b c

which may again be re-written in either of the two forms

)

xr_ Y
a b _ 2
2 z, Yy’
c a+b
x_ ¥ 2
a b_ ¢
2 oz Y
)

Now, as in § 10°1 it can be shown that as A and p vary, each
member of each of the system of lines

r_Yy_M o, l 2z . ¥y
a b ¢’ 2=A 7] b _ - (4)
i-— _;I./-——‘ _.z ——3 _{F— ~y~
P 5 =2u, Pl + ) ...(B)

lies wholly on the hyperbolic paraboloid (1).

Thus we see that a hyperbolic paraboloid also admils of two systems
of generating lines.

As in the case of hyperboloid of one sheet, it can be shown that
the following results hold good for the two systems of generating
lines of a hyperbolic paraboloid alsq.

1. Through every point of a hyperbolic paraboloid there passes
one member of each system.

2. No two members of the same system intersect.

3. Any two generators belonging to different systems intersect
.and the plane through them is the tangent plane at their point of inter-
section.

4. The tangent plane at any point meets the paraboloid tn two
.generators through the point.
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5. The locus of the point of intersection of perpendicular generators
18 the curve of intersection of the paraboloid with the plane

20z +a?—b2=0,
An important Note. Since the generator
X

1= 2o 4B

z y
=Al £ 4+ Y
=7+ 5]
which is parallel to the plane

LY _

a T =0
whatever value A may have, we deduce that all the generators belong-
ing to one system of the hyperbolic paraboloid

x?a?—y? (b =2z]c,
are parallel to the plane

zja+y[b=0.

It may similarly be seen that the generators of the second system
are also parallel to a plane, viz.,

zja—y/b=0.
Example

lies in the plane

Show that the polar lines with respect to the sphere
w2+y’+z2=a3
of the generators of the quadric
—y’=2az.
all lie on the quadric
2t —y’=—2az,
Re-writing the equation
2t —y*=2qz,
as
(* = y)(x+y)=2az
we sec that the two systems of generators of this quadric are
x—y=2\a g r—y=2pz }
a+y=z/A ) at+y=afp )
Symmetric form of the A generator is
z—Aa_y+ha_ 2

11 2
The polar plane of any point
(r4+Aa, r—2Aa, 2rN),
on the A generator w.r.t. the sphere
22+ y*+22=qa?

is
(r+Aa)z+(r—Aa)y+2rhz=aqa?,
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i.e.
’ r(@+y+20A2) +a(Az—hy—a)=0
so that the polar line of the A generator is
z+y+2A2=0, Az - Ay —a=0.

Eliminating A between these, we sce that these-polar lines lic on

the quadric
x?—y?=—2az.
We may similarly treat the p generators.

Exercises
1. Obtain equations for the two systems of generating lines on the
thyperbolic paraboloid
22y
2T E

and hence express thoe co-ordinates of a point on tho surface as functions of two
arameters. Kind the direction cosines of the generators through («, 0,y) and
show that tho cosines of the angle between them 1s

(a2—b2+47)[(a?+b2+).
2. Show that the projections of the gencrators of a hyperbolic paraboloid
on any principal plane are tangents to the scction by the plano.

3. Find the locus of the perpendiculars from the vertex of the paraboloid
x2fa—y?[b2=2z/c
to the generators of one system.
[ns. 224 y2+42224 (a24b2)zy/ab=0.
10°7. Central point. Line of striction. Parameter of Distri-
bution.

10°71. To determine the central point of any generator of the
system of gemerators

D)

a c
Let any generator, I, of this system be
BV P o (2L, 1
Ty o + b -1
We, now, consider any other generator, m, of the same system
Z Y PZaep(Z4 L),
a b ¢’” p(a+b +(2)

The direction ratios of these generators are
a, —b, 2¢/p ; a, —b, 2¢/p’.
If I, m, n be the direction ratios of the line of S.D. between
{1) and (2), we have
al—bm+2cn[p =0,
al—bm+2cn/p'=0.
These give
1/a, 1/b, 0
as the direction ratios of the line of S.D. Being independent of p and
', we see that the line of S.D. is parallel to a fixed line.
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Let (2;, y1, 2;) be the central point of (1). Asin § 10°51, the
limiting position of the line of S.D. is a line contained in the ta,ngent
plane

xxy yy_ 1
a?! — g (Ew)
at (25, ¥y, 2)-

Thus we have

g Y
=0 - (3)
Also since (zy, ¥y, 2,) lies on (1), we have
ﬁ -21_.22_! Q=
a b =P ( T ) - (4)
Solving (3) and (4), we obtam \
2a3 2b3 _ 2¢(a®—b?)

Ty= 1= .
T p@ 6y T pla b 1T pla 1Y)
Eliminating p, we see that the line of striction is the curve of
intersection of the surface with the plane
z[a®+y[b3=0.
Ex. Find the central point of a generator of the second system and show
that the corresponding line of striction is the curve of intersection of the surface

with the plane
x/ad4y[b3=0.

10:72. To determine the parameter of distribution.
Let 8 and 8s be the angle and the S.D. between (1) and (2).
We have
2412 (' —
tan 5y 20V (@+6) (' =)

(0424-172)-{-4:02
Let p'=p+5p so that 8p->0 as p'—p.
. 4y _ 2oy +¥) "

dp pZ(a3+bZ)+462
Now the plane through the generator (1) and parallel to (2) is

x y_ 2
et
Also taking z=0, we see that (a/p’, b/p’, 0) is a point on (2).
2 2
Y 2(p’ —plad
&_\/@L Iy "or Va5 -+(6)
P
.. as before
ds _ 2ab
%_EVW+M
__ab[pHa?+b%) +4¢%
W cp*(a®+b?)

which is the parameter of distribution.
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Ex. For the generator of the paraboloid
z2/a2—y2[b2=2z
given by

z y z Yy oz
i e et e S Wl
prove that the parameter of distribution is
ab(a?+b2+422)/(a2+b2)
and the central point is
238\ —2b3\ 2(a2—b2)\2
[;2‘.].’52 P @262’ a2b2 ]
Prove that the central points of the systems of generators lie on the planes
z[a8 £ y[b3=0. (D.U., M.A))

10'8. General Consideration. We have seen that hyperboloid
of one sheet and hyperbolic paraboloid each admit two systems of
generators such that through each point of the surface there passes
one member of each system and that two members of opposite
systems intersect but no two members of the same system intersect.
Also we know that through each point of a cone or a cylinder there
passes one generator. Thus hyperboloids of one sheet, hyperbolic
paraboloids, cones and cylinders are ruled surfaces inasmuch as they
can be generated by straight lines.

We now proceed to examine the case of the general quadric in
relation to the existence of generators.

10-81. Condition for a line to be a generator. A straight line
will be a generator of a quadric if three points of the line lie on the
quadric.

Let the quadric be

ax®+by? +c2?+2fyz+ 2922+ 2hary + 2ux+ 2vy + 2wz +d=0. ...(1)

The line

z—a_ y—f 2=

T m n
will be a generator of the quadric, if the point

(Ir+a, mr+B, nr+7)
on the line lies on the quadric for all values of », i.e., the equation
obtained on substituting these co-ordinates for z,y,2 in (1) is an
identity. As this equation is a quadric in r, it will be an identity
if it is satisfied for three values of r, i.e., if three points of the line
lie on the quadric.

Cor. 1, The quadric equation in r obtained above will be an
identity if the co-efficients of #* and r and the constant term are
separately zero. This gives

al2++bm?+cn? 42 fmn+2gnl 4+ 2hlm=0 «.(2)
laox+hB+gY)+m(ha+bB +fY)+n(gx+fB+cY)=0 --(3)
ax®+bp%+cY2+2fBY +29Ya+2had +-2ux 4208 4- 2wy +d=0 ...(4)

The condition (4) simply means that the point («, B, 7) lies on
the quadric.



216 ANALYTICAL SOLID GEOMETRY

Since (2) is a homogencous quadric equation and (3) is a homo-
gencous linear equation in [, m, n, these two cquations will determine
two sets of values of I, m, n. Thus we deduce that through every point
on a quadric there pass two lines, real, coincident or imaginary lying
wholly on the quadric.

Cor. 2. A quadric can be drawn so as to contatn three mutually
skew lines as generators, for the quadric determined by nine points,
three on each line, will contain the three lines as generators.

10°9. Quadrics with real and distinct pairs of generating lines.

10°91. Of all real central quadrics, hyperbolotd of one sheet only
possesses two real and distinct generators through a point.

Let

ax?+4by*+c2t=1
be any central quadric.
The direction ratios I, m, n of any generator
z—e __y—B _z2=Y
I m n

of the quadric through the point («, B, ) are given by the equations
al?+4-bm?4-cn?=0,
aloe+bmpB +cenyY=0.
Eliminating » from these, we obtain
a(ax® +cY?) B+ 2abaplm+-b(ba%4-cy*)m*=0.
Its roots will be real and distinct if, and only if,
40%h%a}Bt —4ab(aa? +cY?) (bB2+cY?) >0,
t.e., if
—4abcy*(ae2+bB24cY?)>0.
Since aa24-bB24-cY2=1, we see that the roots will be real and
distinet, if and only if,
abc is negative.
Now this will be the case if a, b, ¢ are all negative or one nega-

tive and two positive. In the former case the quadric itself is imagi-
nary and in the latter it is a hyperboloid of one sheet.

1092, Of the two paraboloids, hyperbolic paraboloid only possesses
two real and distinct generators through a point.
In the case of the paraboloid
ax®+by?:=2cz,
the direction ratios, I, m, n of the generating lines through a point
(«, B, ) of the surface are given by
al®+bm?=0, (1)
ala+bmB —ne=0. ...(2)
The equation (1) shows that for real values of I and m, we must

have a and b with opposite signs, i.e., the paraboloid must be
hyperbolic.
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10°10. Lines intersecting three lines. An infinite number of lines
can be drawn meeting three given mutually skew lines. For the quadric
through the three given mutually skew lines @, b, ¢, the three lines
will be generators of one system and all the other generators of the
other system will intersect a, b, and c.

In fact the quadric through three given mutually skew lines can be
determined as the locus of lines which intersect the three given lines.

Thus the locus determined in § 441 on page 65 is really the
equation of the quadric through the three lines

w,=0=v, ; r=1, 2, 3.

Exercises

1. Find the equation of the quadric containing the three lines
y=b, z=—c;z2=c,x=—a ; r=a,y=—0b,
Also obtain the equations of its two systems of generators, (See Ex. 2,
page 65).
[Ans. ayz4-bzz+cxy+abe=0 ; y—b+A(z+c)=0, b(x+a)—r(az+cz)=0.
u(az4-cx)— (z4-¢)=0, ub(r+a)+(y—b)=0,
2. Find the equations of the hyperboloid through the three lines
y—z=1,2=0; z—r=1, y=0; z—y=1, 2=0.
Also obtain the equations of its two systems of generators.
[Ans, 22492422 22y—2yz—22x=1; z—y—1=%z, M(z—y+1)=2z4+2y—z,
z—y—1=2(22+2y—2), Mz—y+1)=2.
3. The generators of onoe system of a hyperbolic paraboloid are parallel
to the plane lx+4my4-nz=0 and the lines
ax+by=0==z+4c; ax—by=0=z—c
are two members of the samo systom.

Show that the equation of the paraboloid is
abz(lz+my+nz)=c(a2mz+b2ly+aben).
(See Ex. 3, p. 65)

4. Show that two straight lines can be drawn intersecting four given
mutually skew lines,

Examples

1. From a fized point A(f, g, h) perpendiculars are let fall on
three conjugate diameters of the ellipsoid

m% y2 22
& tEtaE=l

prove that the plane passing through the feet of the perpendiculars goes
through the fized point
_af by oh 4]
[avsire aire sisTal (B.U.)
Let P(x,, ¥y, 21), @(Zss Ya» 22), R(23, 3, 23) be the extremities of
their conjugate semi-diameters.
Equations of OP are

2 Yy _ 2

oy &
8o that (r2,, ry,, r2;) are the general co-ordinates of any point on this
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line. The line joining (f, g, ) and (rz,, ry;, r2,) will be perpendicular
to OP, if

(roy—f )21+ (ryy—g)y1 + (rzy—h)2, =0,

p Tt Hh2
z2+y 42,2
Therefore, the foot of the perpendicular L from (f, g, k) to OP is:
3, 2, 3, )
Exla 1) lezyb lez T/
Similarly, the feet M, N of the perpendiculars to 0Q, OR are
Xfx, Zfx, Zfx, )’

'fagxz, 2;‘223/2’ T2 2]

Sfr, Zfr, Zfrg
g;;zxs, “Exag 35 2;&223 ),
The plane LMN is

t.e., if,

and

z, Y, 2, 1
_zf;x} g&l Efxl P l
zx 9 1 2&012 b} zx 2“1y
=O,
Zfzy Zfx, Zfz,
fx—zz s Egz Y2 2:1222 22, 1
Zfxy Zfx, Ef_“f_a 1

S T B 2
Tog2 T8 TprYe 3y ®

z, Y, 2, 1
z,2fx,, ni2fey, 2Xfr, Iz
or =0.
Ty 2f2,, Y22fxgy 2,5fxy, Zx,?

235f%3, YasZfTy, 232fxy, Zx4?

Adding third and fourth rows to the second and making use of
the relation in § 88, this becomes

x, Y, 2, 1
a?f, by, ch, Sal
@y 2y, Ya2fzy,  22fx;, Ty

w3 2fxs, Ys2fry, 292fxy, Zag?
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z, Y, 2, 1
a’f/Za®, bg/Zad, c*h/Zat, 1
or =0,
xlzfxlx Z/azfa’s, zizth th’

%32fx3, YsZfxs, 23Zfry, Zax,d

This form of the equation of the plane clearly shows that it.
passes through the point

atf b9 c*h
Za?’ Za?’ ETz’)
2. Show that the normals to the ellipsoid
T .
atpta=h
at all points of a central circular section are parallel to'a fixed plane..
Find the angle which this plane makes with the plane of the section.
Consider the central circular section

22 yz 22 - v(az_bz)x+ \/(bz_cz)z=0.

@teta=h T :
The direction ratios of the normal to the ellipsoid at any point
(f, g, k) of the section are

fla?, g[b% hfc*.
Also we have the relation

,\/(a’ﬁ_bz)f-*- :\/(b‘l__rczi) h=0

a c -

which we re-write as
h
ay/(ad—b?) . Efg +0. —b-‘%+ ov/(Br—e?) . 2 =0.
This relation shows that the normals are parallel to the fixed!
plane
ay/(a?—b¥)z+0y +cv/ (b2 —c?)z=0.

If, 9, be the angle between this plane and the plane of the section,.
we have

(a2 =)+ (B —c?)

O A o]

_ a*—c?
_'\/[ b’(?lf—'al‘z‘)(“"02)(“z+cz’bz)]
ac

bV (@ +cE=b%)
S @=cos Y ac/by/(a®+c2—b?)].

cos =
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3. The generators through a point P on the hyperboloid
x?/'a2+y2/b2_z2/62=1
meet the principal plane =0 in points A and B such that ihe median
of the triangle PAB through P is parallel to the fixed plane
le+my+nz=0;
show that P lies on the curve of intersection of the hyperboloid with the
surface
2(lx+my)+n(c?+22)=0
The equations of the line AB where the tangent plane

L

I
at P (x5, y1, 21) of the hyperboloid, containing as it does the genera-
tors through P, meets the plane =0 are

Si=1,2=0. (1)
Let (f, g, 0) be the mld-pomt of AB. The equations of the
chord of the principal elliptical section
*la’*+y?[b*=1, 2=0,
swith (f, g, 0) as its middle point is

2
£f+“”’=f2+—b;,z 0 (2)

Comparing (1) and (2), we have

S A AN
1=f2lqt gt ow Y1 fijadi 4 g?lb

These give
.’.rl 271
. _— (3
U S [ T @
g=— Y e(4)

@, % a4y, % [b? 1+2,2/c?
Also the median of the /\ PA4B through P being parallel to
lx+my+ nz=0,
we have

lz1—f)+mly,—g) +nz;=0. ...(3)

Eliminating f, g from (3), (4) and (5) we obtain
2, (e, +my,) +n(c®42,2)=0.

Thus we have the result as required.
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1. Prove that if 0 is the angle between the central radius to the point
P(x, y, z) on the ellipsoid

2% | y?
wrEpta=t

and normal at P,
1 1
20=Sy222 (- —_—_\.
tan20=3y2z (b'-" c2)
2. Prove that the common tangents of the three ellipsoids

22y | 22 22 | 42 | 22 22 | 42 | 22
=ttt mhata=L atateE=t

2 2 2
\/ (=) (B.U. 1956y

and that the points of contact of the planes lie on a sphere of radius

ad+4bt4-ct
\/ (ea) T

3. Show that if threo central radii of an ellipsoid be mutually perpendi-
cular, the plane passing through their extremities will envelope a sphere.
4, Prove that six normals can be drawn from any point P to a central

quadric surface and that those six normals are generators of a quadric cone with
vertex at P,

Prove that the conic in which the cone meets any one of the principal
plancs of the quadric surface remains fixed when P moves along a straight line
perpendicular to that plane. (Birmingham)

5. Show that the length of the normal chord at any point (z, y, z) of the
ellipsoid

touch a sphere of radius

a2 Y2, 22 1
@ tEta=b
is 2¢4/4p2 where
1 a2 g2 + =2
PE af bt e
1 a2 g2 22

B oad T E T (M.T.)

6. Ifpy, pe, p3, and =y, my, w3 be the perpendiculars from the extremities

P,, Py, P;, of conjugate semi-diameters on the two central circular sections of
the ellipsoid

x2 | y? | 22

@ttt

2>
then
a2c?(a?+4c242b2)
T at—ez
7. Show that the locus of points on the quadric ax2+4by2+4c22=1, the
normals at which intersect the straight line

z—a_u—f _z—y

P17 +Peme+PaTy=

! ”m n
is the curve of intersection with the quadric,
U(b—c)yz+m(c—a)zz+n(a—>b)xy — (nB—my)ar— (Iy—na)by — (ma—IB)cz=0.
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8. If ry, rg, rg, 74, 75, 7g, are the lengths of the normals drawn from any
fpoint to a central conicoid and p;, ps, P3, Pg» Ps, Pg» 8Te the lengths of the
-perpendiculars from its centre to the tangent planes at their feet,

. Pp1r1+peratpgrstperst s Pst+Dere
\is constant,

9. Two planes are drawn through the six feet of the normals drawn to the
-ellipsoid 22/{a2+4y2[b%2+4-22/c2=1 from & given point ( f, g, ») ; each plane containing
three ; prove that if («, 8, v), (¢/, 8’, y") be the poles of these planes with respect
ito the ellipsoid then,

aa’ +a2=Pp’'+b2=yy' +c?

Slata’)+g(B+8)+A(y+y')=0.
10. If three of the feet of the normals from a point to the ellipsoid
z22[a2+4y2[b2422[c2=1

and

die on the plane
lx+my+nz=p,
show that the equation of the plane through the other threo is
z y z 1
a?l +b2m+c2n +—p——0'

Also, show that if one of the planes contains the extremities of three
.conjugate semi-diameters, the other plane cuts the co-ordinate planes in triangle
‘whose centroid lies on a coaxal ellipsoid. (B.U. 1929)

11. Pairs of planes are drawn which are conjugate with respect to the
-ellipsoid 22/a2+y2/b2+22/c2=1, the first member of each pair passing through
the line

y=mz, 2=k
and the second member of each pair passing through tho line

y=—mzx, 2=—k;
‘prove that the line of intersection of the two members of any pair lie on the
surface (b2—a2m?) (22—k2) + (y2—m2x2) (c2+k2)=0. (Bm. U. 1926)

12. The normal to the ellipsoid x2/a24-y2[b2+22/c?2=1 at & point P meets
the plane z=0 at G' and GO is drawn perpendicular to this plane and cqual to
GP, Show that the locus of @ is the surface

x2 y? 22
;9—62+ bz—c2+ c? .a—] ’

show also that if, NV is the foot of the perpendicular from P to the principal
plane on which @ lies and the normal at @ to its locus meets this plane at K,
then @ is the midpoint of KN. (L.U. 1914)
13. Through a gwven point («, B,y) planes aro drawn parallel to three
conjugate diametral planes of the ellipsoid x2/a2+4%y2/b2+22/c2=1, Show that
the sum of the ratios of the areas of the sections by these planes to the areas of

the parallel central planes is

o2 p2 2
a? 62~ e
14. If A, Ay, Ag, are tho areas of tho sections of the ellipsoid
@?{ad-+y2fb2+22ct=1
by the diametral planes of three mutually perpendicular semi-diameters of
dengths ry, rg, 3, show that
Alz A22+ Aaz_ 2 b2c2  c2a?  a2b?
7'12 T22 732—1.: (_a_z‘ —52— —CT‘—)'
15. If through a given point ( f, g, &) lines be drawn each of which 15 an
.axis of some plane section of
ar2+-by2+c22=1,
such lines describe the cone
af (b—c) , by (c—a) -
a—f + Y—g + z‘:la——()'
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16. If a plane lr+my-4nz=p cuts the surface ax2-+by2-4cz2=1 in a
parabolic section, prove that the direction cosines of its axis are proportional
to l/a, m|b, n/c and the co-ordinates of the vertex of the parabola satisfy the

equation
ax by (1 1 cz (1 1
(“ - —‘) '77{(7" ‘a‘)+ 7(7— T)-"-
(4.U. 1920)
17. Prove that the generating lines through any point P on the section
z=c of the hyperboloid x2/a24-y2/b2—22/c2=1 meet the principal section by the
plane z=0 at the ends of a pair of conjugate diameters. (M.T.)
18. The generators of opposite systems drawn through the extremities
A, B of semi-conjugate diameters of the principal elliptic section of the hyper-
‘boloid »2/a2+y2/b2—22/c2=1 meet in P ; show that the median through P of
the triangle PARB lies on the cone
2x2  2y2 z 2
Tt =(G=1)
19. Prove that tangent planes to x2/a2+y2/b2—22/c2=1 which are parallel
to the tangent planes to

22 Y2 22
I S U =0
BT 2 a2 ¢ a2 b2
meet the surface in perpendicular generators, (P.U., M.A. 1938)

20. Show that the generators of the surface z2+%2—22=1 which intersect
on XOY plane are at right angles.

21. Show that the points on the quadric
ax2+by2+c224-d=0,
at which the generators are perpendicular lie on the cylinder
(c—a)x2+4(c—b)y2+cd(a+b)/ab=0. (M.T.)
22, If (a cos 0 sec ¢, b sin 0 sec @, ¢ tan @) is a point on the generating

Lt {1+W} =_{1__}
of the hyperboloid 22/a2+4y2/b2—z2/c2=1, prove that for points along the gene-
rator, 0 —¢ is constant. (P.U., M.A. 1943)
23. Show that the most general quadric surface which has the lines
=0, y=0;2=0, 2=c ; y=0, 2=—c

Sy(z—c)+gx(z-+c)+hay=0,

where f, g, h are arbitrary constants. (M.T.)

24. TFind equations in symmetrical form for the line of intersection of the
two planes whose equations are

w+y=2()\+ EL)(Z— 1), (x—y)=2()‘—y')(z—' 1),

where A and @ are constants, Find also the co-ordinates of the point in which
this line meets the plane z=0.

If now A and u are taken to be variable parameters connected by the rela-
tion A24-p.2=1, show that line traces out a right circular cone,

line

as generators is



CHAPTER XI
GENERAL EQUATION OF THE SECOND DEGREE
Reduction to canonical forms and Classification of Quadrics

11'1. A quadric has been defined as the locus of a point satis-
fying an equation of the second degree. Thus a quadric is the locus
of a point satisfying an equation of the type
Flz, y, 2)=ax®+ by +cz2+2fyz+2gzx + 2hay + 2uz+ 2vy + 2wz +d=0
which we may re-write as

Z(ax®+2fyz)+25ux+d=0, eee(1)
splitting the set of all terms into three homogeneous sub-sets.

We have considered so far special forms of the equations of the
second degree in order to discuss geometrical properties of the various
types of quadrics. In this chapter we shall see how the general
equation of a second degree can be reduced to simpler forms and also-
thus classify the types of quadrics.

Firstly we shall proceed to determine the equations of various
loci associated with a quadric given by a general second degree
equation. In this connection we shall start obtaining a quadric in
r, which will play a very important role in connection with the
determination of the equations of these loci.

Consider any point («, B, ¥) and any line through the same with.
direction cosines (I, m, n). The co-ordinates of the point on this
line at a distance 7 from («, 8, ¥) are

(Ir+a, mr+-3, nr+7).
This point will lie on the quadric
F(z, y, 2)=X(ax*+2fyz)+ 25 uxr+d=0,
for values of r satisfying the equation
T[a(lr+a)24-2f (mr +B) (nr+ )1+ 2Zu(lr+ o) +d=0.
t.e.,
r22(al?+2fmn) + 2r[l(ax+ A3+ gY +u) +m(ha4-R 7Y +v)
+nlga-+fB-+cY +w)]+F(a, B, ¥)=0 . (2)

which is a quadric, in . Thus if r;, , be the roots of this quadric,
the two points of intersection of the line with the quadric are

(Irit+o, mri+B, nr1+7), (Iry+a, mry+B, nry+7).
Note, It may be noted that the equation (2) can be written as
F oF oF
2 2 1 0F - : ._) =0
P23 (ala-+ 2fmm) +r( e +n )+ E 8 |
where 0F |9, 0F[0B. 0F |9y denote the values of the partial derivative of ¥ w. r..
to x, y, z respectively at the point («, B, v).
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11'11. Tangent plane at (x, B, ¥). Suppose that the point
(«, 8, 7) lies on the quadric so that

F(x, 8,7)=0
and accordingly one root of the quadric equation (2) is zero. The
vanishing of one value of 7 is also a simple consequence of the fact
that one of the two points of intersection of the quadric with every line
through a point of the quadric coincides with the point in question.

A line through («, B, ¥) with direction cosines [, m, n will be a
tangent line if the second point of intersection also coincides with
(¢, B, 7) d.e., if the second value of 7, as given by (2), is also zero.
This will be so if the co-efficient of 7 is also zero, 1.e.,

l(ao+hB +gY +u) +m(ha+0B+fY +v)+n(ga+fB+cy+w)=0 ...(3)
which is thus the condition for the line
z—a_y—B_z=Y
T m n ~(4)
to be a tangent line at (x, B, ”). The locus of the tangent lines
through («, 8, 7), obtained on eliminating I, m, n between (3) and
(4) is,
Z(x—a)(ax+h3+gY +u)=0,
t.e., Zx(ae+hB+gY +u)=Za(ax+rB+gY +u).
Adding ue+ 9B +wY+d to both sides, we get
sz(ax+hp +gY +u)+ (ua+vB+wy +d)=F(«, B, ¥)=0.
Thus the locus of the tangent lines at («, B, 7) is
Sx(ax+hB+9Y +u)+ (va+v3+wY +d)=0,
which is a plane called the tangent plane at (x, B, 7).
11'12. Normal at («, 8, 7). The line through («, 8, 7), perpendi-
cular to the tangent plane thereat, viz.,
r—a _ y—B _ z—Y
axt+hp+gY+u ha+0B+fY+v ga+fB+cy+w’
is the normal at (x, B, 7).
11°13. Enveloping cone from a point. Suppose now that («, 8, )
is any point necessarily on the quadric. Then any line through
(o, B, ¥) with direction lines (I, m, n) will touch the quadric i.e., meet

the same in two coincident points, if the two roots of the quadric
equation in r, are equal. The condition for this is

(ZUaaAt-mB+gY +uw)2=[Z(al*+2fmn)] F(a, B, ¥) . (5)
The locus of the line . .

C B —B 2=Y7
et -

through («, B, 7) touching the quadric, obtained on eliminating

1, m, n, between (5) and (6) is

[Z(z—a)(ax+k3+9Y +u)]* :
= [Ba(e—a)*+2f(y—B)z—)IF (%, B, ) ...7)
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To put this equation in a convenient form, we write
S=F(z, y, 2), S8, =F(a, B,7),
T=sx(ax+hB+gY +u)+ (et v8+wy+d).
Then (7) can be re-written as
(T—8,)*=8,(S+8,—2T)

1.6, S8,=T2
which is the equation of the enveloping cone of the quadric §=0
with the point («, B, ¥) as its vertex.

11°'14. Enveloping Cylinder. Suppose now that (I, m, n) are
given and we require the locus of tangent lines with direction cosines
(I, m, n). If (x, B, 7) be any point on any such tangent line, we
have the condition

[SHaccthB+gY +u)P=[Z(al* 4+ 2fmn)|F (o, B, ¥)
as obtained in § 11°'13 above. Thus the required locus is
[Sla+hy+gz+u)|2=2(al*+2fmn) F(z, y, 2),

known as Enveloping Cylinder.

11-15. Section with a given centre. Suppose now that («, 8, ¥)
is a given point. Then any chord with direction cosines I, m, n
through («, 3, 7) will be bisected thereat if the sum of the two roots
of the r-quadratic (2) is zero, i.e.,

Zl(ax+ hB+gY +u)=0, «.(8)
so that the locus of the chord
T—a_ y—B_z2=Y
= m = «.(9)

through («, B, ¥) and bisected thereat, obtained on eliminating I, m, n
from (8) and (9) is
Z(x—a)(ax+hB+gY+u)=0,
which, we may re-write as,
T=28,.

Clearly the plane 7'=S,, meets the quadric in a conic with its centre
at (%, B, ).

11'16. Polar plane of a point. If any line through A(«, B, ¥)
meet the quadric in @, B and a point P is taken on the line such
that the points 4 and P divide @R, internally and externally in the
same ratio, then the locus of P for different lines through 4 is a
plane called the polar plane of 4 with réspect to the quadric. It is
easily seen that if 4 and P divide QR internally and externally in
the same ratio then the points Q@ and R also divide AP internally
and externally in the same ratio.

Consider any line through A(«, B, ¥) and let P be the point
(z, ¥, 2). The point dividing AP in the ratio A : 1 is
(ets duts dety
AL ? AL AL S
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1t will lie on the quadric
s(ax*+ 2fyz)+25ux+d=0,

it o i)+ (R ) ] +em(te) +a=o

3.e., N2 F(z, y, 2)+2A\[z(aa+hB+gY +u) + y(ha+ 8B +fY +v)
+ 2(ga+fB+cY +w) + (ua+ v +wY + d)] + F(a, B, ¥)=0.
The two values of A give the two ratios in which the points @
and R divide AP. In order that @ and R may divide AP internally
and externally in the same ra.tlo, the sum of the two values of A
should be zero, i.e.,
z(ax+hB+gY +u)+y(ha+bB4-FY + v) +2(ge+fB+c¥Y +w) +
(wa+ 0B +wyY+d)=0, ...(10)
which is the required locus of the point P(z, y? z).
Thus (10) is the required equation of the polar plane.

Note. The notions of conjugate points, conjugate planes, conjugate lines
and polar lines can be introduced as in the case of particular forms of equations
in the preceding chapters,

11-21. Some preliminaries to reduction and classification. In
this section we shall state some points which will prove useful in the
problem of reduction and classification.

In the following discussions, the determinant

a h g
Aoob f
g [ ¢

to be denoted by D will play an important part.
We may verify that
D=abc + 2fgh—af 2— bg®>—ch?.
As before, A, B, C, F, G, H will denote the co-factors of a, b, ¢,
J> 9, b respectively in D so that we have
A=bc—f? B=ca—g?, C=ab—h?;
F=gh—af, G=hf—bg, H=[fg—ch.
It can be easily verified that
BC—F? =aD, CA—G* =bD, AB-H* =cD ,
GH— AF=fD, HF —BG=g4D, FG—CH=*hD, }
Also we have
aA+hH+9G=D, hA+bH+fG=0, gA+fH+cG=0;
aG+hF+9C =0, hG+bF+fC =0, gQ@+fF+cC=D.
11°22. If D=0, then we have
BC= F?, CA=G?, AB=H:
GH=AF, HF=BG, FG=CH.
“These follow from the relation (1) in § 1121 above.

(1)
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Ex. If D=0 and A=0, prove that H=0, G=0. Also prove that if D=0
and H==0 then

either A=0,H=0,@=0 or H=0,B=0,F=0,

Further prove that if D=0, 4A=0, B=0, then F, G, H must all be zero but C may
or may not be zero.

11-23. If D=0 and A+ B+ C=0, then
A, B,C,F,G, H
are all zero.
As D=0, we have
BC=F? CA=G* AB=H?,
so that 4, B, C are all of the same sign. Since, also A+4B-+C=0,
we deduce that

A=0, B=0, C=0,
Also then
F?=BC=0 so0 that F=0.
Similarly G=0, H=0.
1124, The two planes
P+ qy+rz+8=0
DX+ oY +7:2+8,=0

will be
(2) same if
D1 /21 9 " " 8
= 0’ = 0, = 0’,.
D2 92 92 T2 T2 83

(4¢) parallel but not same if

y 2 A1 A 5 5 8
=0, =0, #0.

P2 93 ds 73 72 Sa

(#4¢) neither parallel nor same, s.e., will intersect in a straight line

P1 /31 U3} L4
#0 or #0.
P s qa Ty

11°25. Three homogeneous linear equations
az + byy+e¢,2=0,
ax+ by +¢32=0,
azx+bsy+¢3z=0,
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will possess a non-zero solution, f.e., a solution wherefor z, y, z are
not all zero, if and only if,

a, b, cy
ag bg 02 =0.
a3 bs C3

11°3. Diametral plane conjugate to a given direction. We know
{Refer equation (2) p. 223] that if I, m, n, be the direction cosines of
any chord and (z, ¥, 2) the midpoint of the same, then we have
oF oF oF
l—4+m—+ n_—
oz + oy + 0z
Thus if I, m, » be supposed given, then the equation of the locus of
the midpoints (z, y, 2) of parallel chords with direction cosines
i, m, n is given by (1) above. This locus is a plane called the
diametral plane conjugate to the direction I, m,n. We can re-write the
equation (1) of the diametral plane conjugate to I, m, n as
x(al+hm 1 gn)+y(hl+bm +fn) +2(g1 +fm~+cn) + (wl 4+ vm-+wn) =0.
...(2)
Note. In this connection we should remember that there does not neces-
sarily correspond a diametral plano conjugate to every given direction. Thus
we see from above that there is no diametral plane conjugate to the direction

I, m, n if these are such that the co-efficient of z, 7, z in the equation (2) are
all zero,

<.e.,

=0. (1)

al+hm-+4gn=0,

hl4+bm+fn=0,

gl+fm—+cn=0,
As l, m, n are not all zero, this can of course happen only 1f
a h g

D=| k b f

g f ¢ |
11°4. Principal Directions and Principal Planes. A direction
I, m, n is said to be principal, if it is perpendicular to the diametral
plane conjugate to the same. Also then the corresponding conjugate
diametral plane is called a principal plane.

Thus, I, m, n will be a principal direction if and only if the
direction ratios
al+km--gn, bl +bm-+fn, gl+fm+cn

of the normal to the corresponding conjugate diametral plane are
proportional to

=0,

I, m, n,
7.e., there exists a number A such that
al+hm+gn=IA,
Al 4-bm+fn=mA,
gl+fm—+cn=nA.
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We re-write these as

(a—N)Il+hm+gn=0, (1)
hl4-(b—A)m~+frn=0, ...(2)
gl+fm=+(c—AN)n=0. ...(3)

These three linear homogeneous equations in I, m, n will possess.
a non-zero solution in /, m, » if and only if,

a—A h q
h b-A f =0.
g f c—A

On expanding this determinant, we see that A must be a root of
the cubic
N—A(a+b+c)+MA+B+C)—D=0. ve(4)
This cubic is known as the Discriminating cubic and each root of
the same is called a characteristic root.

The equation (4) has three roots which may not all be distinct.
Also to each root of (4) corresponds at least one principal direction
I, m, n obtained on solving any two of the equations (1), (2) and (3).

Note 1. Ifl, m,n be a principal direction corresponding to any root A of

the discriminating cubic, then we may easily see that the equation of the
corresponding principal plane, takes the form

Az +my+nz)+ (d+vm+wn)=0,
This equation shows that we can have no principal plane corresponding to
A=0 if A=0 is a root of the discriminating cubic. In spite of this, however, we
shall find it useful to say that [, m, n is a principal direction corresponding
to A=0. This every direction I, m, n satisfying the equations (1), (2), (3)
corresponding to a root A of the discriminating cubic (4) will be called & principal
direction,

Note 2. In the following, we shall prove three important results concerning
the nature of the root of the discriminating cubic and the corresponding
principal directions,

11'41. Theorem I. The roots of the discriminating cubic are all
real.

Suppose that A is any root of the discriminating cubic (4) and
!, m. n any non-zero set of values of I, m, n satisfying the correspond-
ing equations (1), (2), (3).

Here it should be remembered that we cannot regard I, m, n as
real, for A is not yet proved to be real.

In the following, the complex conjugate of any number will be
expressed by putting a bar over the same. Thus I/, m, n will denote
the complex conjugates of I, m, n respectively.

Now we have
al+hm—+-gn=IA,
hl+bm—+fn=mA,
gl+fm~+cn=nA.
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Multiplying these by I, m, n respectively and adding, we obtain
Zal'l 43 f(mn+m n)=AZl T . (5)

Now a, b, ¢, f, g, h are all real. Also I, m m, n ;being the products
of pairs of conjugate complex numbers, are real. Further we notice

that m 7 is the conjugate complex of m n so that

mn+mn
is real.
Similarly
nl+nl, Im+im
are real.

Finally = I 1 is a non-zero real number.

Thus A, being the ratio of two real numbers from (5), is
necessarily a real number.

Hence the roots of the discriminating cubic are all real. Also,
therefore, I, m, n corresponding to each A are real.

11'42. Theorem II. 7T'he two principal directions corresponding
to any two distinct rools of the discriminating cubic are perpendicular.

Suppose that

}\11 )\2
are two distinct roots, and
by, my, my 5 L, Mg, My

are the two corresponding principal directions.

We then have

(6) ah+hmy+gm =ML,  (9) aly+hmytgny=N,,
(7) Rl+bmy+fry=Am,, (10) Aly+bmy+fr,=Am,,
8) gli+fmy+ceny=Nn,, (11) gly+fmy+cng=NA;ny.

Multiplying (6), (7), (8) by I;, mg, n, respectivély and adding we
obtain
Zally+Zf imyng +mony) =N 201, ...(12)
Also multiplying (9), (10), (11) by I,, m,, n, respectively and
adding, we obtain
Salgly+Zf (myng +myn,) =N 21,1, ...(13)
From (12) and (13), we obtain
ML, =731,
so that
(AM—A9)301,=0.
Hence
Z1l,=0, for A, —A,£0.
Thus the two directions are perpendicular. Hence the theorem.

11'43. Theorem IIl. For every quadric, there exists at least one
set of three mutually perpendicular principal directions.

We have to consider the following three cases :

(A) When the roots of the discriminating cubic are all distinct.
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(B) When two roots are equal and the third is different from
these.

(C) When the three roots are all equal.
These three cases will be considered one by one.

(A) The roots being distinct, there will correspond a principal
direction I, m, n satisfying (1), (2), (3) on page 230 to each of these and
by theorem II these three directions will be mutually perpendicular.
The three prmclpal directions are unique in this case.

(B) Let A be a root of the discriminating cubic repeated twice so
that besides satisfying (4), on page 230 wviz.,

A —Aa+b+c)+MA+B+C)—D=0 ...(4)

it also satisfies
3N —2N(a+b+c)+ (A+B+0C)=0, ...(14)
which is obtained on differentiating the cubic w.r.t. A.
We can re-write (14) as
[(b—=A)(c—N) —f21+[(c—N) (a—A) - g*1+[(a—A) (b—A) — k] =0.
It has been shown in § 11-23, p. 227 that if
D=0, A+B+C=0,
then
4,B,C, F,Q, H,
are all zero.
Since, as may be easily seen, the relations (4) and (14) above
can be obtained on replacing
a, b, ¢ by a—A\, b—A, c—A
respectively in the relations
D=0, A+B+C=0,
we see that corresponding to the vanishing of 4, B, C, F, G, H, we
have here

O=AN(c—N=f2 (c—N(@a—A)=g% (a—A)(b—A)=h? ;] (15)
(a —Nf=gh, (b —Ng=hf, (c—Nh=fy.

These relations show that the equations (1), (2), (3) on page 230
for the determination of I, m, n, corresponding to A are all equivalent.
[Refer § 11-24, page 228]

Thus we see that if A is a twice repeated root, then every direction
l, m, n satisfying the single relation,

(a—A)+hm—+gn=0 ...(16)
for any equivalent relation (2), (3)]
8 a principal direction corresponding to A.

Suppose now that I, m, n is* any direction satisfying (16).
Further we determine a direction l,, m,, 7, satisfying (16) and per-
pendicular to I}, m, n;. Thus I, m,, n, are determined from

(a—A)ly+kmg+gny=0,
lllz + m1m2+nln2= 0.

*If desired, I;, m;, n; may be selected further so as to satisfy some addi-
tional suitable condition.
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Thus we have obtained two perpendicular principal directions
3, my, mq ; 1y, Mg, m, corresponding to the twice repeated root A.

Also let I3, mq, ng be the principal direction corresponding to the
third root A;. By Theorem II, this direction I3, m;, n;, wili be
perpendicular to each of the two perpendicular principal directions
ll: my, Ny 5 l2: My, Ng.

Thus the theorem is true in this case.

Note. It isimportant to notice that in the case every direction perpendi-
cular to the principal direction corresponding to the non-repeated root 23 is
a principal direction for the twice-repeated root A,

(C) Suppose now that all the three roots are equal to A.
In this case 7\ satisfies the three equations

—A(a+b+¢)+NA+B+C)—D=0, ..(4)
3A2—2\(a+b+c)+ (A +B+0)=0, ..(14)
3A—(a+b+c)=0 ...(17)

In this case also the relation (15), page 232 as deduced from (4)
and (14) are true.

We re-write (17) as

(@—2)+ (=N +(c—N)=0.
Also by (15),

@=N(c—N=f? (c—N(a—N)=g* (a—N)(b-A)=h?
so that
a—MN, b—A, c—A

must all have the same sign. Thus as in § 1123, page 228, we
deduce that

a—A=0, b—A=0, e—A=0
so that

A=a=b=c.

Also then it follows that f=0, g=0, A=0.

We now see that in this case the equations

(@a—A)l+hm—+gn=0, hl4+(b—ANm-+fn=0, gl + fm~4(c—A)n=0
for the determination of the principal direction are identically
satisfied, 4.e., they are true for every value of I, m, n, so that every
direction is a principal direction.

Thus in this case also a quadric bas a set of three mutually
perpendicular principal directions. In fact, any set of three mutually
perpendicular directions is a set of three mutually perpendicular
principal directions in this case.

The reader may observe that the quadric is a sphere in this last
case.

Examples

Find a set of three mutually perpendicular principal directions
for the following conicoids :

1. 3a2+5y2+ 32 —2yz+22x—2xy+ 22=

2. 82+ 7y?+32'—8yz+42x—122y+22z—8y+1=0.

3. 622+43y?*+322—2yz+ 422 —4ay—3y+52=0.
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1. We have
a=3, b=5, ¢=3, f=—1,9=1, h= 1.
Therefore the discriminating cubic is

3—A —1 1
-1 5-A -1 |=0,
1 -1 3-—A

t.e., —A3+4+11A2—36A+36=0..
Its roots are
A=2, 3, 6.
The principal direction corresponding to A=2 is given by
l—m—+n=0,
—14+3m—n=0,
l—m+n=0.
These give l:m:n=1:0:—1.
Thus the principal direction corresponding to A=2 is given by
1 1
—= 0, — — 5.
V2 V2
Again the principal direction corresponding to A=3 is given by
0l—m+4n=0,
—l4+2m—n=0,
l—m+0n=0,
so that
lim:n=1:1:1,
and we have the principal direction
11 1
V3 V¥ W3
Finally the principal direction corresponding to A=06 is given

by
—3l—m+n=0,

—l—m—n=0,
l—m—3n=0,
wherefrom we may see that this principal direction is

1 2 1
(Ve —ve ve)
The principal plane corresponding to A being
Mlz+my+nz) + (ul+vm+wn) =0,
we may see that the three principal planes are

2x—22—1=0,

3z+3y+32+1=0,

6x—12y+ 62+41=0.
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2. We have
a=8, b="7, ¢c=3, f=—4, g=2, h=—86.
Therefore the discriminating cubic is

8§—A —6 2
—6 T—A  —4 |=0,

7.6.,
—A3+18A2—45A=0.
S A=0, 3, 15.
Thus 0, 3, 15 are three distinct characteristic roots.
The principal direction I, m, n corresponding to A=0 is given by

8] —6m+2n=0,
—6l4Tm—4n=0,
2l—4m~+3n=0.

Solving these, we see that
l:m:n=1:2:2,
Thus the principal direction corresponding to A=0 is given by
1232
8s 3, 8
Again the principal direction corresponding to A=3 is given by
5l—6m+2n=0,
—6l+4m—4n=0,
2l—4m -+ 0n=0.
These give
l:m:n=2:1: -2,
so that the corresponding principal direction is given by
%7 %’ _§-
Finally the principal direction corresponding to A=15 is given by
—1N—6m+ 2n=0,
—6l—8m— 4n=0,
2l—4m —12n=0.
which give
l:m:n=2:-2:1,
8o that the corresponding principal direction is given by
3> "_'%a %
- The reader may verify that the three directions are mutually
perpendicular.
The principal plane corresponding to A being

Az +my+nz)+ (ul+vm—+wn) =0,
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we may see that the two principal planes corresponding to the non-
zero values 3, 15 of A are

3(2x+y—22) +(—2)=0, i.e., 62+3y—62—2=0
and
15(22—2y+2) +10=0, i.e., 6z —6y+32+2=0
3. We have
a=6,b=3,c=3, f=—1,9=2, h=—2.
‘The discriminating cubic is

6—A  —2 2
—2 3—-A  —1 |=0,
2  —1 3-A
s.e., — A3+ 1222 —36A+32=0,

whose roots are 2, 2, 8. Thus two roots are equal. Firstly we
-consider the non-repeated root 8. The principal direction correspond-
dng to this is given by

—21—2m+42n=0,
—2l—b5m— 2=0,
20— m —5n=0.

These give
l:m:n=2:-1:1
80 that the principal direction corresponding to A=8 is given by
2 1 1
V6 W6 W6
Again the principal direction corresponding to A=2 is given by
41— 2m—+42n=0,
—2l4+ m— n=0,
21— m+ n=0.
Tt is easily seen that these three equations for the determination of
d, m, n are all equivalent. This fact had been generally established

in Theorem III for principal directions corresponding to twice
repeated characteristic roots.
. Thus every I, m, n satisfying the single equation
2l—m +n=0 (1)
.determines a principal direction. Consider any set of values of
d, m, n, satisfying (1) say
—~1, —1, 1.
‘We write
Lyimy:n=—1:—-1:1

Then we determine I, m,, n, satisfying (1) and perpendicular to

'11! my, Ny.
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Thus
2ly—my+ng=0.
—l3—my+ny=0.
These give
ly:mg:img=0:1:1.
Thus we have obtained a set of three mutually perpendicular
principal directions given by
2 1 1 -1 -11,1 1
VYLV RRVE SV RV Ve VS |
The choice of principal directions is not unique in the present’
case as two characueristic roots are equal.

Note. It may be verified that every direction perpendicular to the
principal direction corresponding to the non-repeated root 8 is a principab

direction for the twice repeated root 2. [Refer note at the end of § 11'43 B,
page 231.]

Exercises

Examine the following quadrics for principal directions and principak
planes,

1. 422—y2—2242yz—8x—4y+82=0,

2. x242yz—4x46y422=0.

3. 4y2—4dyzt+dzz—day—2z+2y—1=0,
4, 322—y2—2246yz—6x+6y—22—2=0,

Answers
1 1

1
Vz’ -2% 7z v
Principal planes : x=1, y—~2+43=0.

1. Principal directions : 1, 0, 0 ; 0,

2. Principal directions ; (0, v iy \/ 2) and every direction perpendicular

to it,

Principal tlanes: y—z—2=0 and any plane through the line,,
y+24+4=0,2=2,

1 1 1 =2
3. Principal directions 1 1 1

1
V3 3 V3 ye V6 ve ya®TyE
Principal planes. Any plane at right angle to x=y=2—14 ;
2(x—2y+2)=1, 2(x—z)+l =0,
s L 1 1
4. Principal directions : ‘\/2 ‘/ 5 ;1,0,0;0, V2 vE
Principal planes ; y+2+1=0, z=1, y—zl=1.
11°5. Centre. We know that if a point (2, y, 2) is the midpoint
of a chord with direction cosines I, m, n of a quadric

F(z, y, 2)=0,
then we have . .
2 8
la;-i- % 82 =0. (1)
This shows that if (2, y, 2) is such that

oF _ oF _ oF
o oy ' oz
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then the condition (1) is satisfied, whatever values I, m, » may have,
1.e., every chord through (z, y, 2) is bisected thereat. Such a point is
known as a Centre of the quadric. We can re-write these as

az+hy-+gz+u=0, we(2)
hx+by+fz+v=0, «e(3)
9z +fy+cz+w=0. v (4)

It should be remembered that a quadric may or may not have
4 centre ; also it may have more than one centre — a line of centres
or a plane of cenires, depending upon the nature of the solutions of
the three equations (2), (3), (4).

In the following, we shall consider the different cases regarding
the possible solutions of these equations. This discussion will be
facilitated a good deal, if, regarding z, y, z as variables, we consider
the three planes represented by these eguations. We have thus to
.examine the nature of the points of intersection, if any, of these three
planes to be called Central planes.

11°51. Case of Unique Centre. Multiplying the equations (2),
(3), (4) by 4, H, G, respectively and adding, we obtain

Dz+4-(Au+Hv+Gw)=0 (Refer § 11-21, page 227]

Again, on multiplying (2), (3), (4) by H, B, F, and by G, F, C

and adding separately we obtain
Dy+(Hu+ Bv+Fw)=0,
Dz+(Gu+ Fv+Cw)=0.

If D0, we obtain from these

z=—(Au+Hv+Gw)/D,
y=—(Hu+ Bv+Fw)|D,
z=—(Gu+ Fv+Cw)/D.

Substituting these in (2), (3), (4) we may easily verify that the
same are satisfied.

Thus if D #0, the quadric has a wunique cenire (x, y, z) where
(2, ¥, z) have the values given above.

11'52. Now suppose that D=0. Then, we have,

Aaz-+hy+gz-+u)+H(ha +by +fz+v) + Glgr+fy+cz+0)

=Au+ Hv+GQuw.
[Refer § 11-21, p. 226].

This shows that the three equations cannot have a common

solution, i.e., the quadric will not have a centre if
Au+ Hv+ GQuw+£0.

Considering H, B, F and G, F, C as sets of multipliers instead
of 4, H, G, we may similarly see that the quadric will not have a
centre if

Hu+ Bv+Fw+0 or if Gu+Fv+4Cw+£0.

Thus we see that the quadric will not have a centre if D=0 and

any one of
Au+Hy+4Gw, Hu+ Bv+Fw, Gu+ Fv+Cw
8 not zero.
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11-53. We now suppose that
D=0 as well as Au+Hv + Gw=0.
Then we have
A(ax+hy+ gz +u)+ H(hz+by+fz+ v) + G (g2 +fy+cz+ w)=0.
(i) Thus if 450, we have

ax+hy+gz+u=—% (hx+by+fz+v) -—%(gw+fy+cz+w)-

(72) Also if As£0, the two planes
hx+-by+fz4+v=0
gx+fy-+cz+w=0,
are neither same nor parallel so that they intersect in a line. This is
because

=A+#0. [Refer § 11-24, p. 228]
c

From (i) and (4¢), we deduce that the plane
ar+hy+gz+u=0
passes through the line of intersection of the two intersecting planes
hx+by+fz+v=0, gz+fy+cz+w=0.
Thus in case
D=0, Au+Hv+GQuw=0, A#£0,

the three central planes all pass through one line so that we have a line of
centres. .
We may similarly see that the quadric will have a line of centres
if D=0, Hu+4-Bv+ Fw=0, B0,
or if D=0, Gu+Fv+4Cw=0, Cz£0,

Note 1. We can show that if D=0 and 4540 and Au+Hv+4Gw=0, then
we must also simultaneously have

Hu+Bv+Fw=0, Qu+Fv+Guw=0.
In fact we have
A(Hu+Bv4Fw)=H(Au+ Hv+Gw)
and
A(Gu+Fv4Cw)=G6(Au+Hv+Cw),
the equalities holding for all values of , v and w. Thus if 440, we have

Hu+Bv+Fw=—‘I4i(Au+Hv+Gw),

Gu+Fv+Cw=%(Au+Hv+ Guw).

The result stated now follows,

It may be remembered that if A=0 then also H=0, G=0, so that
_Au+Hv+Gws0. In this case when 4=0, H=0, @=0, we may not have

Hu+Bv+Fw=0 or Qu+Fv+Cw=0.
For example consider
x24-2y2+4 22y + 22—y +22+4-3=0,
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Here
a=1,b=2,¢=0,f=0, ¢=0, h=1, u=1, v=§, w=1,
80 that
A=0, B=0,0=1, F=0, =0, H=0, D=0.
Thus we have Au+Hv+Gw=0 but Gu-+Fv+Cws40,

Note 2. The cases treated above in §§ 11562 and 1153 cover the cases
when D=0 and one at least of 4, B, C is not zero.

If we suppose that 4, B, C are all zero, then it follows that F, @, H are-
also all zero, for
F2=BC, G2=CA, H2=A4B.
In the next sub-section we consider the case when 4, B, C, F, G, H are all:
zero, The vanishing of D then follows from the vanishing of these co-factors in.
as much as we have

D=Aa+Hh+ Gy,
so that D=0even if 4, H, G only are known to be zero,
" 11'54. Suppose now that A, B, C, F, G, H are all zero.
In this case we have D=0 also.
We have, in this case,
1) i flaz+ hy+gz+u)—g(hz 4 by +fz +v)=fu—gv,
Sflax+ hy+gz+u)—hige+ fy + cz +w) = fu— hw.
These show that if
Ju— gv#0 or fu—hw=£0,
then the quadric cannot have a centre.
11'55. Suppose now that
fu—gv=0 and fu—hw=0,
i.e., fu=gv=hw.
Then if g#0, k40, we have, from (1) above in § 11:54 that

hx+ by+fz+v§§(ax+ by +g9z+u),

a1y + ezt wmL(aa +hy +gru),

so that every point of the plane
ax+hy+gz+u=0
is also a point of the other two central planes. Thus we have a plane
of centres in this case.
Similarly we may show that if
Ju=gv=hw
and some two of f, g, h are not zero, then the quadric has a plane of
centres.
Note. It can be easily seen that if 4, B, C. F, G, H are zero and one of
f, g, b is known to be zero, then one more of f, g, h must also be zero. For
instance, suppose that f=0. Then, because,
0=F=gh—af,
it follows that either g or 2 must also be zero. Thus the case treated here can.
be stated as follows :
If A, B, C, F, G, H are all zero, none of f, g, h is zero and fu=gv=hw, then
the quadric has a line of centres.
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The case where one and, therefore, two of f, g, h are zero is treated here
below,

11:56. Now suppose that two of f, g, h are zero in addition to 4, B,
C, F, G, I being all zero and fu=gv=~hw. Let g=0=k and f#O.
In this case we see from (1) above, § 11'54, p. 240 that
ax+hy—+gz+u=0
8o that a=0, k=0, ¢=0, u=0.
The vanishing of % also follows from the fact that
fu=gv = hw and ¢g=0, h=0, f+0.
Consider now the two central planes
hx+by+fz+v=0,
gr+fy+cz+w=0,
the co-efficients of the third central plane being all zero. As % and
g are both zero, we can re-write these as

by + fz4v=0,

fy+eczt+w=0.
Here
2 S
| ;:bc_j"z:A-:_O, ; l:fw’cv.
f e J ic w'

Thus, if fw—cv+£0, the quadric has no centre and if fw—cv=0,
the quadric has a plane of centres.

We can obtain similar conditions when
f=0=h, g#0
or when f=0="¢, h0.
11'57. Now suppose that f, g, h are all zero in addition to the
vanishing of A, B, C, F, G, H.
In this case two of @, b, ¢ must be zero. Suppose that b=c=0
and as%(. Then the first of the three central planes is

ar+u=0

and the other two are

0z+ 0y +0z+v=0

0z~ 0y +0z+w=0.

Thus if v5£0 or w0 the quadric has no centre and if v=0=w,
the quadric has a plane of centres.
Summary of the various cases

1. Ds0. TUnique centre.

2. D=0, Au+Hv+Gw+#0. No centre.
D=0, Hu+Bv+Fw+#0. No centre.
(D=0, Gu+Fv+Cw+#0. No centre.

3. D=0, Au+Hv+Fw=0. A#0, Line of centres.
D=0, Hu+Bv+Gw=0. B0, Line of centres.
D=0, Gu+Fv+Cw=0. C5#0, Line of centres.
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4, A,B,C,F, G, H all zero and fus4gv or gvs£hw. No centre.
A, B

6. A, B,C,F,Q, H all zero, fu=gv=hw, f#0, g#0, h#0. Plane
of centres.

6. A, B,C,F,G,Hall zero, fu=gv=hw, g=0, h=0, f#£0, fw—cv#0.
No centre.

7. A,B,C,F,Q, H all zero, fu=gv=hw, g=0, h=0, f#0, fu—cv=0
Plane of centres.
We may have results similar to (6) and (7) when f=0, g=0,
h+£0 or when h=0, f=0, g#0.
8. A,B,C,F,G, Hall zero; f, g, hall zero. Then two ofa,b,c
must be zero and one none-zero. Then we have no centre if
a0, v=£0, or w#0
and a plane of centres if
a#0, v=0=w.
We have similar results when 5540 or ¢#0.
Note. The results given above need not be committed to memory.
Exercises

Examine the following quadrics for centre :

1. 22—yz4zxtay—2y4-22+42=0,
[Ans. Unique centre (1, 1, —1),

2. 222—2yz—2zx+42xy+3z—y—22z+41=0.
[Ans. Line of centres ; —T— ,=__}/_"Ig= ?_z;}-_l .
3. 4224-9y2+4-423+ 122y 4 12y2+ 820+ 3x+4y+2=0,
[Ans. No centre,
4, 224y2422—2xy—2yz+4 2224 x—y+2=0,
[Ans. Plane of centres ; 2z—2y+22+4-1=0,
5. 422-2y2—2:24-byz+4-2z8+4-2xy—ax+2y+22—1=0,
[Ans. No centre,
6. 2224 2y24522—2yz—2zx—4xy—ldxr—14y 4162+ 6=0,
[Ans. Line of centres ; z=3—y, 2+ 1=0.
7. 182242y242022—1220+12yz+4 22 —22y—624-1=0,
[Ans. No centre,
8. 4x?—y2422242xy—3yz+120—11y+62+4=0,
[Ans, Unique centre : (—1, —2, —3)
11'6. Transformation of Co-ordinates. Before we take up the

problem of the actual reduction and classification, we shall consider
two important cases of transformation of co-ordinates.

11°61. The form of the equation of a quadric referred to centre
as origin. We suppose that the given quadric has a centre. Let
(x, B, 7) be the centre of the quadric with equation,

F(z, y, 2)=mZ(ax?+2fyz) +22uz+4-d=0.

Consider now a new system of co-ordinate axes parallel to the
given system and with its origin at («, B, 7). The equation of the
quadric w. r. ¢. the new system, obtained on replacing z, y, z by z+«,
y+B, 217 respectively, is

2[a(z +)*+2f(y+B)(z+7)]+ 22u(z +a) +-d=0,
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d.e.,
S (aa®4-2fyz) +2x(ax+hB +gY +u) 4- 2y (ha+ bR +fY +v)
+22(gat [+ ey +w)+F(a, B, 7)=0.
As («, B, 7) is a centre, we have
ae+h+gY +u=0, ha+b3 +fY +v=0, ga+fB+c¥ +w=0.

Further, as may be easily seen,

F(a, B, V) =w(ax+hB+gY +u)+L(ha+0B 1Y +v)
+7(go+fB+cY +w) + (ua+vB +wy +d)

=ux+v3 4wy +d.
Thus the required new equation is
Z(ax? +2fy2) + (wa+vB +wy +d) =0.
so that the second degree homogeneous part has remained

unchanged.

Note 1. Tho discussion above is applicable whether the quadric has one
centre, aline of centres or a plane of centres, In case the quadric has more
than one centre, then (x, 8, y) may denote any one of the centres.

Note 2, The co-ordinates w. r, ¢. the old as well as noew systems of axes
has both been denoted by the same symbols. z, ¥, z.

11'62. The form of the equation of a quadric, when the co-ordi-
nate axes are parallel to a set of three mutually perpendicular princi-
pal directions. Suppose that

111 mls nls H la: 'm2; n2’ la: ms, ')’L3 -(1)
are the direction cosines of three mutually perpendicular principal
directions corresponding to the three roots

)\1, 7‘2) }\3
of the discriminating cubic. Here one or two of these roots may be
Zero.

We take now a new co-ordinate system through the same origin
such that the axes of the new system are parallel to the directions
given by (1) above.

The equation referred to the new system of axes is obtained on
replacing

z, Y, 2
by
Lix+ Ly 413z, mz+my-+mgz, nix4-ny+ns2
respeetively.

As homogeneous linear expressions are to be substituted for
x, ¥, 2, we may note that a homogeneous expression of any degree
will be transformed to a homogeneous expression of the same degree,

Thus we may separately consider the transforms of the homo-
geneous parts

Z(ax®+2fyz) and 2Zux.

We shall now prove a very important result, viz., that the transform

S(ax?+2fyz) eee(1)
AR ALY AR
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On direct substitution, we may sce that the co-efficient of 2® in
the transform of (1) is

al 2 4-bm 24 cn 2 +2fmyn, + 2gnyly + 2hlym,
=1 (aly+kmy +gny) +my(kly + bmy + fry) + 1y (gl +Fmy + eny)
=L(A0L) + my(Amy) + ny(Any) [by § 114, p. 229}
=M(l2+mP4n,?) =M.

Similarly the co-efficients of y? and 22 in the transform can be

shown to be
A, and A,
respectively.

Again the co-efficient of 2yz in the transform of (1)
=alyly+bmgmg+cngn,~+f(myng +many) + g(naly+ngly) -+ h(lyma -+ 13ims)
=ly(aly+ hma—+gng) +my(hly =+ bimg + fry) +no(gla+-fms +cng)
=Ny (lol3-+memy+nyng)=0.

Similarly the co-efficients of zz and xy in the transform can be

seen to be zero.

Thus the transform of
(axt+2fyz)

L NR Ry WLy WL
Firally we see that the transform of
Z(aa® +2fyz)+ 22ux+d

is

ANy - Mgz 2u (b e+ Ly + ls2) +
2v(m @+ myy+ mg2) + 2w(n iz + ngy +nq2) + &
=A@® 4 Ay + A2 4 22 (uly + vmy+wn,)

+ 2y (uly+ vy + wny) + 22(uly+vmg+wng) -+ d.

11*7. FKeduction to canonical forms and classification.

We shall now consider the several cases one by onc.

1171, Casel. When D=£0. In this case the quadric has @

unique centre and no root of the discriminating cubic is zero.

Shifting the origin to the centre («, B, ¥), the equation takes the
form

. S(aa? +2fyz) + (ua+vp+wY +d)=0. (§ 11'61 p. 242)
Now rotating the axes so that the axes of the new system are

parallel to the set of three mutually perpendicular principal dir cctxons
we sec that the equation becomes

Ax2+4 A2+ Aoz’ + (ua + v+ wY +d) =0,
which is the required canonical form.
Below we shall find an elegant form for the constant term.
We have
ax+hB+ gy +u=0, (1)
ha+b63 +fY-+v=0, (2}
g%t b3-+¢Y+d=0. . (3)
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(&
=
(1}

Also we write
ux+v3+wy +d==~k,

d.e., wa+vB+wY +(d—k)=0. N EY)
Eliminating o, 8, ¥ from (1), (2), (3) and (4) we obtain
la h g u |
i h b f v {_0
Pg f ¢ d |~
) v w  (d—k) [
i.e.,
o h q U
| a h g
A AL Y A S !:o
9. S e w foc
l u v w d g |
SEAY
k= 5 (D+£0)

where we have represented the fourth order determinant on the left
by /.
Finally, therefore, the equation assumes the form

N
A

AP A0 4 g2+ D

This equation ripreseats various types of surfaces as shown in  the
following table. It may be remembered that the word ‘roots’ refers to
«characteristic roots,

A=0 i roots all>0 or <0

A =0 | Two roots>0 and one<0

A=0 . Two roots<0 and one>-0

=0.

Imagnary cone,
Real cone,
Real cone.

A/D>0 | Roots all>0 Imagmary ellipsoid.
A/D>0 I Roots all<0 i Real cllipsond.

A/D>0 ‘ Two roots>0 and one<0 } Hyperboloid of two sheets.
A/D>0 { Two roots<0 and one>0 | Hyperboloid of one sheet.
A/D<O i Roots all>0 | Real ellipsoid.

A/D<O i Roots all<0 Imagmary ellipsoid.
AID<O [ Two roots>0 and ono<0 | Hyperboloid of one sheet,
A/D<O i Two roots<0 and one>0 | Hyperboloid of two sheets,

11'72. Case II. When D=0, Au+Hv+Gw+#0. In this case the
quadric has no centre and the discriminating cubic has one zero root and
fwo mon-zero-roots.

We denote the non-zero roots by A;, A,.  The third root A;=0.

We rotate the co-ordinate axes through the same origin so that
new axes are parallel to the set of three mutually perpendicular
principal directions.

The new equation takes the form

Ax? + Agy? 42 (uly +vm 4-wn,) + 2y (uly+ vm 4 wny)
+2z(uly+4-vmg+wng) +d=0; «..(1)
g, my, ng corresponding to A;=0.
Here we notice that
uly +vmg+wng=0,
Let, if possible,
ulg+vmg+wng=0. «..(2)
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We also have
hlg+bmg+frg=0. ... (3y
gls+fmg+cng=0. .- (4)
As g, mg, ng are not all zero, we have from (2), (3), (4).
% v w

A b f|=0,

g f e
7.€., Au+Hov+GQuw=0,
which is contradictory to the given condition.
Denoting the co-efficients of z, y, z by p, ¢, r, we re-write (1) as
M2 A2+ 2px+2qy +2rz+d =0 where r#£0,

te, A ( x'*‘{“)z‘*‘?\z( ?/+’7%!)2 +2r [z-{— 217 - %—%>]=0

o that shifting the origin to the point

[_ P4 _ L( e )]
AT A o AN
we see that the equation takes the form
Mat++A g2+ 2r2=0,

where r=ulg+vmgz+wny#£0.

This is the required canonical form in the present case.

This equation represents:an elliptic or hyperbolic paraboloid
according as A, A, are of the same or opposite signs.

Axis and vertex of a paraboloid. It is known that z-axis is the
axis and (0, 0, 0) is the vertex of the paraboloid

v A2 A2 +2r2=0.

Also the “principsl directions of the paraboloid are those of the
co-ordinate axes; the principal direction corresponding to the charac-
teristic root zero being that of z-axis and the principal direction
corresponding to the non-zero roots A;, A, being those of z-axis and
y-axis respectively. Further it can be easily seen that the principal
planes corresponding to the non-zero characteristic roots are the
planes =0, y=0 whose intersection z-axis is the axis of the paraboloid.
Thus we have the following important and useful result :

The line of intersection of the principal planes corresponding to the
non-zero characteristic roots is the axis and the point where it meets the
paraboloid s the vertex. Also the axis is parallel to the principal
direction corresponding to the characteristic root zero.

11°73. Case IIL3?When D=0, Au+ Hv+Gw=0, 45#0. In this
case the quadric has a line of centres and the discriminating cubic has
one zero and two non-zero roots.

We may see that 4+ B+C+0, for if it were so, then we would
have 4, B, C all zero and the condition A#0 would be contradicted.
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Since D=0 and 4+ B+C+#0, the discriminating cubic would have
only one zero root.

Let (a«, B, Y) be any centre. Shifting the origin to («, B, 7) and
rotating the axes so that the new axes are parallel to the set of
mutually perpendicular principal directions, we see that the equation

becomes
M2+ Ny 4 (ua+vB4wY +d) =0,
which is the required canonical form.
We may, as follows, obtain an expression for the constant term
in a form free from a, B, Y.
In this case the central planes all pass through one line.
*We select the two lines
hx+by+fz+v=0.
gx+fy 4+ cz4+w=0.
Now (a«, B, ¥) is any point satisfying these two equations.
Taking a=0, we have
b@ +fy +’U= 09
fB+cY+ w=0.

WB+wY +(d—k)=0.

Also we write

These give
| b f v
I c w |=0,
v w d—k
go that
b f v
k-—}? Vi c

“
v w d l
i

Thus the required canonical form is
A+ AR+ E=0.

The equation represents various types of surfaces as shown in the follow
table :

k=0 Roots both>0 or <0 Imaginary pair of planes
k=0 One root>0 and other<0 Pair of intersecting planes
k>0 Roots both>0 Imaginary cylinder

k>0 Roots both<0 Elliptic cylinder

k>0 One root>0 and other <0 Hyperbolic cylinder

k<0 Roots both>0 Elliptic cylinder

k<0 Roots both<0 Imaginary cylinder

k<0 One root>0 and other<0 Hyperbolic cylinder

*These are so selected that they are not the same. The condition 440
ensures the non-sameness of these two planes.
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Cor. 1. Axis of a cylinder. The z-axis is known to be the axis
of the cylinder
M4 A2+ k=0, k#£0.
As in the case of a paraboloid, we have the following result
regarding the axis of a cylinder.

The axis of a cylinder is the line of intersection of the principal
planes corresponding to the mon-zero characteristic roots. Also it is
parallel to the principal direction corresponding to the characteristic root
zero. The axis ts also the line of centres.

Cor. 2. Planes bisecting angles between two planes. It may be
secn that planes bisecting angles between the two planes

A2 +H2A% =0
are
=0, y=0.

Thus we have that

The two principal planes corresponding to the two non-zero
characteristic roots are the two bisecting planes.

Cor. 3. The equation

Z(az®+2fyz)=0

will represent a pair of planes if D=0.

11'74. Case IV. When A, B, C, F, G, H are all zero and fus£gv.

In this case the quadric has no centre and two roots of the discrimi-
nating cubic are zero and one non-zero.

We rotate the axes so that the new axes are parallel to the three
mutually perpendicular principal directions. The new equation
takes the form

M4 2x(uly + vmy +wn,) + 2y (uly+vmy +wny) + 22(uls -+ vmg + wng)

As the two roots A,, A4 are equal, both being 0, we know that
ly, My, My, is any direction satisfying
al+hm—+gn=0. ...(1)

We suppose that [,, m,, n, are so chosen that these satisfy (1)
and

uly+vmy+wng = 0. «.(2)
Then I3, m4, n,y, are chosen so as to satisfy (1) and
Lyly+mymp+ngng,=0.
Denoting the co-efficients of 2 and z by p, r, we re-write the
equation as

M2t 2pz+2rz4+-d=0, ...(3)
the co-efficient by y being zero by (2).
Again we re-write (3) as

7\,[: x+—%]2+2rz+(d—§€-)=0. - (4)
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Also we may see that 7#0 for otherwise the quadric will have a
centre. Again, we re-write (4) as

7\1< :1;+-7«\p1>2+2r[ z+;§;(d—%§)]=0,

Shifting the origin to

_r _-1_< - ﬁ)]
we see that the equation becomes
7\12?2"*' 2TZ:O,

which is the required canonical form.

The equation represents a parabolic cylinder in this case.

1175. Case V. When A, B, C, F, G, H are all zero, fu=gv==hw,
and no one of f, g, h is zero.

In this case the quadric has a plane of centres and the discriminat-
ing cubic has two zero and one non-zero root.

Let («, B, ¥) be any centre. Shifting the origin to («, 8, ¥) and
rotating the axes so that the axes of the new system are parallel to
a set of three mutually perpendicular principal directions, we see
that the equation becomes

A+ (w3 +wh+d) =0.

The equation represents a pair of parallel or same planes.

Note. The case when some two or all of f, g, h are zero can be easily
considered and 1t can be shown that we shall have a parabolic cylinder in case
the quadric does not have a centrc and a pair of parallel planes if the quadric
has a plane of centres.

11:8. Quadrics of revolution. Firstly we shall prove a lemma
concerning surfaces of revolution obtained on revolving a plane curve
about an axis of co-ordinates.

Lemma. The equation of a surface of revolution obtained on revolv-
ang a plane curve about z-axis 1s of the form

V(Y428 =f().

Consider any surface of revolution obtained on revolving a curve

about z-axis. Let the equations of the section of this surface by the

plane 2=0 be YAr

y=f(x): 2=0, ...(1) /

If P be any point on the curve
and M the foot of the perpendicular P
from P on 2-axis, we have
OM =z, MP=y

so that we can re-write y=f(x) as

MP=f(OM). . (2) 0 M X
Now this relation remains unchanged Fig. 31

as the curve revolves about 2-axis so
that P describes a circle with M as its centre.
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In terms of the co-ordinates (z, y, z) of the point P in any
position, we have B
MP=+Vy3+2*, O0M==x -
so that we can now re-write (2) as
V(P +22) =f(x).
Hence the result.

Similarly the equations of the surfaces of revolution obtained
on revolving plane curves about y-axis and z-axis are of the form
V(@2 +at)=¢ (y),
. V@ +y) =1 (2)
respectively.
Cor. A quadric is a surface of revolution, if and only if it has
equal mon-zero characteristic roots. To see the truth of this result, we

examine the various canonical forms which we have obtained. These
are as follows :

Case 1 ANy + A2t A\ [D=0, (1)
Case II Az Ay2+2r2=0, ..(2)
Case IIL A AR+ k=0, .(3)
Case 1V At 4-2r2=0, < (4)
Case V At +Ek=0. ...(B)

On comparison with the equations of the surfaces of revolution,
we see that for the surface (1) to be that of revolution we must have
two of A, Ay, A equal and for the surfaces (2) and (3) to be of re-
volution we must have A;=MA,. The quadrics (4) and (5) cannot be
surfaces of revolution.

Clearly the equation (1) will represent a sphere if the characteristic
roots A;, A,, A; are all equal.

Hence the result.
11'81. Conditions for the general equation of the second degree
to represent a quadric of revolution. We have been in § 11'43 (B),

p. 232 that if the discriminating cubic has two roots each equal
to A, then,

(6—M(c—AN)=f2 (c—A)(@a—N)=¢% (a—A)(b—A)=h? . ¥
gh=(a—MN)f, if=(b—N)g, fg=(c—A) h. .1
It can be shown that if these conditions are satisfied, then we

can deduce the relations (4) and (14) of § 11'43 (B) p. 232 so that
these conditions are sufficient also.

The required conditions will be obtained on eliminating A.
1182, Firstly suppose that none of f, g, h is zero. We can show
that in this case the set of conditions I is deducible from II so that I

is not an independent set of conditions and can, as such, be ignored.
Let us assume the set II.

Now since
gh=(a—N)f,
and hf=(b—N)g,
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we get on multiplication
fgh*=(a =N)(b—) fg.
Dividing by fg#0, we obtain
(@—2A)(b—A)=h1.
We may similarly deduce other conditions of the set I from II.
Now from II, we have

so that

is the required set of conditions for the general equation of the
sccond degree to represent a surface of revolution in case none of
S, g, his zero. These conditions can clearly be re-written as
F|f=Glg=H|/h.
Cor. Assuming the conditions to be satisfied, we shall now
obtain the equations of the axis of revolution.

Replacing .
a, b c
by SR WL S W 2
f g
we get

-y _ 2\ .2 x ¥, 2\
F(x, y, 2)=Na? 442 +2 )+fgh<7+—g—+—’;) + 2uz+2vy+2wy+d

2
=A(@?+y2+2%) 4 2ux +2vy +2wz+d+fgh(_';. +_g.+_’zT>

This form of the equation shows that any plane parallel to the
plane
x Yy , 2
—+-7-+—=—=0 (1
7ty T 1)
cuts the surface in a circle. The axis of revolution, being the locus
of the centres of the circular sections, is the line through the centre
of the sphere
A@? +y%+2%) + 2uz+2vy + 2wz 4-d=0
perpendicular to the plane (1). Thus the axis of revolution is
‘u_, _‘U_ 2 = }.U__
z+ A _ y+ A _ TTA
f — lg — 1l
11°83. We shall now consider the case when some one of f, g,
18 zero.
Suppose that f=0, Then since
gh=(a—Nf
we see that when f=0, we must have either g=0 or A=0.
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Putting f=0=g inI and 11, we obtain
c=A, (a—c)(b—c)=h?
and taking f=0=h, we obtain
b=A, (c—b)(a—b)=9p2
Thus we have the alternative sets of conditions,
f=0=g, (a—c)b—c)=h* A=c . (1)
f=0=h, (c=b)(a—b)=g? A=b ...(2)

Starting with g=0, we shall obtain the alternative sets of

conditions (1) and
g=0=h, (b—a)(c—a)=f2, A=a. ..(3)

Thus if f, g, & are not all non-zero, we have three alternative
sets of conditions (1), (2) and (3).

Axis of revolution. Suppose that the conditions (1) are satisfied.
Since (a—c)(b—c)=h* we must have a - ¢, b —¢ both of the same sign.
Suppose that they are both positive.

We have

ax®+ by*+ c2®+2 fyz + 2gzx+ 2hay

=(a—)z'+-(b—c)y*+c(2? + y*+2%) +:24/[(a—c) (D —c)2y)

: =[V(a- c)r L/ (b—cJylP+o(x®+ y*+27).

Thus

F(z, y, 2) =c(z® +y*+2%) 4 2ux + 20y + 2wz +d

+[V(a—c)r £/ (0—0)yP
where the sign is + or — according as % is positive or negative.

Thus planes parallel to

Via—c)rLt (b—c)y=0 (4)
cut the surface in circular sections. Hence the axis of revolution is
the line through the centic

(—u/ec, —v[c, —w/c)
of the sphere
c(xB+y? + &) 4 2uz 4- 20y + 2wz + d=0 ;
perpendicular to (4). Thus the axis of revolution is
r+ulc _ y+ofc _
Via—o) "k y/(p—op Tl =0:
The other alternatives may be similarly discussed.

119. Reduction of equations with numerical co-efficients. We
shall now discuss the procedure to be followed when we have to
reduce any given equation with numerical co-efficients to canonical
form. It will be seen that when 4, B, C, F, Q, H are all zero, thgn
we need not follow the method given in § 1174 and instead obtain
the required reduction by the method given below.

When A, B, C, F, G, H are all zero. We shall first show that
‘when 4, B, C, F, @, II are all zero, then the sccond degree homogeneous

part
Z(az’+2fyz)
must be a perfect square.
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Since we have
be=f?, ca=g¢?, ab="h?,
we sec that a, b, ¢ must all be of the same sign. Without any loss
of generality, we may suppose that a, b, ¢ are all positive, for other-

wise we could throughout multiply with —1 and have the same
rendered positive.

Again, because
gh=af, hf=Ug, fy=ch,
we see that f, g, h are either all positive or two negative, one positive.
Thus we have
S(azt+2fyz) =(v/ax =t v/by£+/c2)?,
so that the second degree terms form a perfect square,
Let the given equation be
(Vax+1/by+1/c2)?+2(uzx +vy-+wz)4-d=0.
Case I. Suppose first that
Va:4b:iye=uv:w
so that there exists a number k such that
Va=uk, v/b=vk, \/c=wk.
Then the given equation can be re-written as ~
kA (ux + vy +wz)2+2(ux + vy +wz) +d =0, (1)
so that the given equation represents a pair of parallel planes whose
separate equations can be obtained on solving (1) as a quadric for
UL+ vy +wz.
Case II. Now suppose that the set of numbers +/a, v/, V¢ is
not proportional to the set u, v, w so that

Vo AV/b#Eu i vor /b ycEv:w.
We re-write the given equation as
(Vax++/by+ /cz+N)>2+2(u— v/ ah)z+2(v — /DA y+2(w—+/cA)z
+(d—A)=0, ...(2)
and choose A such that the two planes
Vax+4/by—++/cz=0,
(u—A/aN)+a(v—/bN)y +(w—+/cA)z2=0
are perpendicular to each other. This requires

(w—1/aN)va+(v— v bA) Vb4 (w—4/cA)4/c=0

¢.e.,

uyva+vy/b+wr/c=Ma+b+c)
or

_uvatvy/b+wy/c

A= atbio ,fora+b+cs#£0.
Having chosen A, we re-write (2) as
var+vbyta/cz+ 7\)“’
V(a+b+c)

2 A0z 4 2y A —v)y + 2/ A —w)zt (W —d)
B 23/ [(vaA—u)* (v BA— )2+ (v/ A —w)F]
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where
e ALV AA—u)* +(V BA—0)*+ (/A —w)?]
I a+b+c

Taking
vazrt+vby+vez+h
v(a+b+o)

Av/aA—u) +2AVIA—0)y +2AVA—watN—d_

2v[(Varh=u)p+ (VO - v)* 4 (yVeh—w)?]  —
we see that the given equation takes the form

Yi=kX,

so that the surface is a parabolic cylinder.

The following procedure is suggested for the reduction of numeri-
.cal equations when the second degree terms do not form a perfect
square.

1. Find the discriminating cubic and solve.

2. If no characteristic root is zero, then put down the centre
giving equations and solve.

If («, B, ¥) is the centre and A, A,, Ay are the characteristic roots,
then the reduced equation is

M2t +Ay Mgz + (uat- 8 + wY 4+ d) =0.

3. If one characteristic root is zero, find the principal direction
1, m, n corresponding to the zero characteristic root by solving two of
the three equations

al+hm+gn=0,
hl4-bdm+fn=0,
gl+fm+cn=0.

Then find ul4vm +wn. If this is not zero, the reduced equation
is

A4+ Ny2+-2(ul +vm +wn)z=0 ;
A1, Ay being the non-zero characteristic roots.

4. If ul+vm+wn=0, find the centre giving equations. In this
case we have a line of centres and only two of the three centre giving
equations will be independent. Find any point («, B, ¥) satisfying
two of the three equations. Then

M2+ A2+ (ua+oB +wY +d)=0

i8 the required reduced equation.

Note. If one characteristic root is zero and two non-zero, then the line of
intersection of the two principal planes corresponding to the two non-zero roots
is the axis, if the quadric is a paraboloid or an elliptic or hyperbolic cylinder
and the line of intersection of the planes if the quadric is a pair of intersecting
planes,

In the case of elliptis and hyperbolic cylinder, one pair of intersecting
planes, the line of centres is also the axis.



EXAMPLES . 256

Examples
1. Reduce the equation
222 —Ty?+222—10yz—8zx— 102y + 62+ 12y —62+2=0
fo a canonical form.
The discriminating cubic is
A3+ 3N —90A+4216=0.

This shows that D=—2165~0. The roots of the discriminating
cubic are

3, 6,—12.
Again the centre giving equations are
2x¢—5y—424-3=0,
5x+Ty+52—6=9,
4x+5y—22+3=0.
Solving these we see that the centre is
(%’ ‘_%» ﬁ)-
Denoting this by («, 8 ¥), we have
uo+vB+wy+d=-—3.
Thus the canonical form of the equation is
3224 6y2—1222—3=0
.84,
22422 —42%=1, - ...(1)
‘which shows that the given quadric is a hyperboloid of one sheet.
The equation (1) represents the given quadric when the origin

of co-ordinates is its centre and the co-ordinate axes are parallel to

the principal directions ¢.e., (1) is an equation referred to principal
.axes as co-ordinate axes.

2. Reduce to canonical form the equation of the quadric

22—y +4yz+4az—3=0.
The discriminating cubic is

A3—OA=0
so that the characteristic roots are
0, 3, —3.

Thus. D=0.

The direction cosines I, m, n of the principal direction correspond-
ing to A=0 are given by
2144n=0,
—2m+4-4n=0,
4l+4m=0.
These give
l:m:n=2:—-2:—1
Thus in this case we have
ul+vm+wn=0,
:80 that we proceed to find the centre giving equations.
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These are
2x+42=0,
--2y +42=0,
4y -+ 42=0.

These three planes meet in a line. Clearly (0,0, 0) is a point
on it. Denoting this by («, 8, A), we have
ue+vB+wy+d=—3.
Thus the canonical form of the equation is
3% —3y%=0,
i.e., x2—y?=0.
The given cquation, thercfore, represents a pair of intersecting

planes.
Note. The fact that the given equation is free from first degree terms
also shows that (0, 0, 0) 1s a centre of the given quadric.

3. Show that
2224 242+ 22+ 2y — 22— day + .+ y=0,
~represents a paraboloid.  Oblain its reduced « quation. (D.U. 1951}
The discriminating cubie is
A —5A?=2A=0
Its roots are
0,3+Vv2l  s5-ve2l
2 2
This shows that D=0. The direction cosines I, m, n of the
principal direction corresponding to A==0 arc given by

4l —4m—2n=0, (1)
—4l+4m+2n=0, «..(2)
— 24 2m+2n==0., (3)

Clearly (1) and (2) are the same. Solving (2) and (3),
obtain

1 1
l—-72, m= 72, n —-O.
ul+vm+wn:—_—1‘)¢0.

12
Thus the reduced equation is
/21 —/21
§+2‘ 21 42y 5 2‘/ 1 ¥/ 22=0
4. Discuss the nature of the surface whose equation is
4o —y*— 2%+ 2y2—8x —4y-+82—2=0

and find the co- ordmate.s of its vertex and equations to ifs axis.
(Lucknow, 1949

It may be shown that the roots of the discriminating cubic are
0, —2, 4.
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The direction cosines I, m, n of the principal direction corres-
ponding to the root, 0, are given by

81=0,
—2m~+2n=0,
—2m—+2n=0.
These give =0, m=1/4/2, n=1/4/2.
2
Then ul+vm+wn=m¢0.

Thus the quadric is a paraboloid.
We now proceed to find the axis and the vertex.
The direction cosines [, m, n, of the principal direction corres-
ponding to A=—2 are given by
61+0m-+0n=0,
0l4+m—+4n=0,
0l+m-+n=0.
1 1
vz "TT v
so that the corresponding principal plane is
—2(y—2)+(—2—4)=0,
i.e., y—2+3=0. ...(1)
Again the direction cosines of the principal direction corresponding
to A=4 are given by

These give =0, m=

0l+0m+0n=0,
0l —5m-+n=0,
0l+m—5n=0.
These give
l:m:n=1:0:0
so that the corresponding principal plane is
4x—4=0
t.e.,
z=1. «.(2)
Thus
y—2+3=0, z=1,
is the required axis of the paraboloid.

The vertex is the point where the axis meets the paraboloid.
Re-writing the equations of the axis in the form

z—1_y+3_ =2
o o1 1
we see that any point
(l, 7‘—3, r))
on the axis will lie on the surface for
’ r=4%,

80 that the vertex 48 the point
(1: —%a %)-
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5. Prove that
522+ 5y*+ 822+ 8yz + 8z — 22y +12x —12y4-6=0
represents a cylinder whose cross-section is an ellipse of eccentricity 1[1/2.
Find also the equations of the axis of the cylinder. (Calcutta, 1953)
The discriminating cubic is
AS—18A2+T2A=0
so that the values of A are
0, 6, 12.
The direction cosine I, m, n of the principal direction correspon-
ding to A=0 are given by
l—5m—4n=0

5l—m+4-4n=0
80 that
=1 -1, __1
V3 V3 V3
Thus
ul+vm+wn=§3—§§—-:/0§=0.

We have, therefore, to proceed to put down centre giving
equations. These are -

10z —2y +82+4+12=0, (1)
—22+4+10y+82—12=0, e (2)
82 + 8y+162=0. ..(3)

‘Clearly (3) can be obtained on adding (1) and (2) so that as expected,
these three equations are equivalent to only two. Putting z2=0 in
(1) and (2), we obtain
r=—1, y=1, 2z=0,
g0 that (=1, 1, 0) is a centre. Thus
ue+vp+wyY+d=—6—646=—6,
Hence the reduced equation is
122%+4-6y*—6=0,
i.e., 2224 y%=1.
The cross-section is
22t +y =1, z=0.
Its eccentricity is now easily seen to be 1/4/2.

The line of centres is the axis of the cylinder so that the equa-
itions of the axis are

S5x—y+42+6=0, z4+y +22 = 0.
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6. Show that the equation
224-2y2=1
represents a quadric of revolution and find the axis of revolution.
The discriminating cubic is
(I-2)(A*~1)=0,
ie., A+1)(A—1)3=0,
so that the characteristic roots are
—1,1, 1.
Two of the characteristic roots being equal, we see that the given
equation represents a quadric of revolution.
Further re-writing the equation as
(#*+y*+2%) —(y—2)’=L.
2.e., (P42 +22—1)—(y—=)2=0,
we see that the planes parallel to
y—2=0 ...(1)
cut the quadric in circles. Thus the axis of revolution which is the
line through the centre of the sphere

2?4yt +42t=1
perpendicular to the line (1) is
z—0_y—0_z2—0
0 1 1’
i.e., =0, y=z.

7. Prove that
224y? 22—y —2x—2ay—3x—6y —92+21=0

represents a paraboloid of revolution and find the co-ordinates of its
Jocus. (D.U. 1954)

The discriminating cubic is

— 4N 1202 —9A=0
so that the characteristic roots are
0,3 %

Two values of A being equal, the given quadric is a surface of

revolution.

The direction cosines [, m, » of the principal direction corres-
ponding to A=0 are given by any two of the three equations

I—3m—4n=0,
—3l+m—3n=0,
—3}—4m+4n=0.

These give
l:m:n=1:1:1.

I1=1/4/3, m=1/4/3, n=1/[4/8,
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Now we have
ul—l—v7n+wn::-—i -.1 3. 1 _9 ; 1

2 TW3 V3 2 T43
9
E—T\'/V?’%O:

Thus the quadric is a paraboloid of revolution and the reduced
equation is

3 2,3 »
—2—:1: + 3 Y -2, '\/32=0’
t.e., 22+ yt=44/32.

This form of the equation shows that the latus rectum of the
generating parabola is 44/3.

With respect to the given system of co-ordinate axes, the direction
ratios of the axis of the paraboloid which is also the axis of revolution
are

-

1,1, 1.
We re-write the given equations in the form
2?4 y? 42— (x +y+2)2— (2*+ %+ 2%)] — 32— 6y — 92 4-21=0
"ie., 3 (224 2+ 22) — 3w — 6y—92+ 21 — 3 (x+y +2)*=0
or 2 +y 422 —2r—4y—62+14—}(x+y+2)*=0.

Thus the axis of revolution, being the line through the centre of
the sphere

224yt +22—22—4y — 62+ 14=0,
and perpendicular to the plane
z+y+2z=0,

z—1 y—2 2-3
S ()
! which is the axis of the paraboloid.

The vertex is the point where this axis
meets the paraboloid. It can be shown
that any point

(r+1, r+2, r+3)

!
5 on the axis will be on the paraboloid if
r=—1. .
(0:1,2) Thus (0, 1, 2) is the vertex of the

Fig. 32 paraboloid.
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The required focus is the point on the axis (1) at a distance 4/3
from (0, 1, 2). Re-writing the equations of the axis in the form

z—0 y—1 2—2
TVERSTE R eV X
we see that the point on the axis at a distance 4/3 from (0, 1, 2) is
(1,2, 3).
Thus (1, 2, 3) is the required focus.

8. If
ax?+byd+ c22+ 2fyz+ 2922+ 2hay =0,
represents a pair of planes, prove that the planes bisecting the angles
between them are
ax+hy+ gz hx+by+-fz gr+fy+cz

x Y ] =0.

F G H-
As the given equation represents a pair of planes, wemust have D=0.
The line of intersection of the two planes is parallel to the
principal direction corresponding to the characteristic root zero so
that if I, m, n be the direction cosines of this line we have
al+hm+4gn=0,
hl+bm+ fn=0.
These give

As FG=CH we see on replacing C by FG[H, that [, m,n are
proportional to F-1, G-, H.

This result can also be obtained if we regard the line of intersec-
tion as the line of centres.

Now we know that the two bisecting planes are the principal
planes corresponding to the two non-zero characteristic roots.

Suppose that (z, y, 2) is any point on either bisecting plape.
Let this bisecting plane, as a principal plane, bisect chords with
direction cosines I, m;, n; and perpendicular to the plane. The
-equation of the plane being
biaw+hy+g2)+my(hat-by+f) + g tfy+e9=0,  ...()
we see that any point (z, y, z) on the bisecting plane satisfies this
-equation.
Further the plane being normal to the line with direction cosines
41, my, m,, its equation is also
La+myy+nz=0, -(2)
8o that (x, y, 2) satisfies (2) also.
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Finally, the principal direction l;, m,, n, corresponding to a non-
zero characteristic root being perpendicular to that corresponding to
the zero characteristic root, we have

llF—l+m1G_1+an-1=0. -..(3)
From (1), (2) and (3), we have
az+hy+gz  hx+by+fz  grt+fytez

x Y 2z =0.

F1 G H~
Hence the result.
9. Prove that if
ad+4b84-c*=3abc and u+v+w+£0,
ax®+by®+-c2? 4 2ayz+ 2bzx + 2cxy + 2ux + 2vy + 2wz +d=0
represents either a parabolic cylinder or a hyperbolic paraboloid.

(D. U. 1952»
The discriminating cubic of the given quadric is

A —A%(a 4 b+c)+A(ab+be+ca—a?— b2 —c?) — (3abc—ad—b*—c%) =0,
so that under one of the given conditions, one root is zero.
We have
0=a+b%+c— 3abc=(a+b-+c) (a®+b*+c*—ab—cb—ca)
8o that either
a+b+c=0, oo (1)

a?+ b2+ c:—ab—bc—ca=0. e (2)
The condition (2) is equivalent to
(@—b)2+(b—c)*+(c—a)?=0
i.e., a=b=c. «oe(3)

Assuming (2) to be satisfied, we see that the given equation takes
the form

or

a(z+y+2)*+2(uxr4-vy+wz) +d=0
which is a parabolic cylinder, if
UF£V Oor VFEW.
Suppose now that the condition (1) is satisfied so that one root
only of the discriminating cubic is zero.

The direction cosines I, m, n of the principal direction correspond-
ing to the zero root are given by
al+cm~+bn=0,
cl+bm+an=0,
go that
l m n

ac—b® be—a® ab—ct

As

a+b+4c=0, we may see that
ac—b*=bc—at=ab—c?.
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Thus the principal direction corresponding to the zero root is
given by

1 1 1

V3’ v3’y3

Also
1

%(u+v+w)#0.

Thus in this case the quadric is a paraboloid. This paraboloid
is hyperbolic for the two non-zero characteristic roots given by
AL (ab+4be+ca—al—b2—c?)=0
are of opposite signs,

ul+vm+wn=

Exercises
1. Show that

422 —y2—224-2yz—8xr—4y+82—2=0
represents a paraboloid. Find the reduced equation and the co-ordinates of
the vertex, (Lucknow 1952)
2. Reduce to its principal axes :
2y2—2yz+2zx —2xy —x—2y+32—2=0
and state the nature of the surface represented by the equation.
(Lucknow, Hons, 1952)
3. Find the nature of the surface ropresented by the equation
22+ 2y2—322—4yz+ 820 — 122y +1=0,

(P.U. 1949)
4. TFind the reduced equation of

(3) x2+2yz—4ax+6y+22=0,
(#) x2—y2+4-2yz—2x2—x—y-+-2=0,
(1) yz+za+ay—Tz—6y—>52—25=0,
() 4y2—4yz+4-dzx—4ay—2x+42y—1=0,
(v) 222+42y2+422+42y2—2z2—4zy+x+y=0. (Lucknow 1947)
(vi) (@ cos a—y sin a)2+4(y cos a+z sin a)2+42y=1,
(vit) 3x2+46yz—y2—22—6246y—22—2=0, (M.U. 1947)
(viie) 4a2+y2+22—4ay—2yz+4za—12x+6y—624-8=0.
(tz) a2+4y2+422—2xy—2yz+222+2—4y+241=0.
5. Show that the equation
a(z—2) (@—y) +b(z—y) (y—2)+o(y—2) (2—2) =0,

represents two planes whose line of intersection is equally inclined to the three
co-ordinate axes,

6. Show that the equation
2yz+2zx4-20y=1

represents a hyperboloid of revolution. Is this an hyperboloid of one or two
sheets ?
7. Show that the quadric
2y2+4420—62—8y+224-5=0.

is a cone and obtain its reduced equation. Show further that this is a right
circular cone with its axis of revolution parallel to the line

z+2=0=y,
8. Show that the quadric with generators
y=l,2==1;z2=1, 2=—1;2=1, y=—1
is a hyperboloid of revolution,
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9. Find the reduced equation of the quadric with generators

2—1=0=y—1,
z=0=y—z,
z—2=0=2.

10. Prove that every quadric of the linear system determined by the two

equations
y2—zx42=0, 22+y2+2rz=0

is a cone,
11. Discuss the nature of the quadrics represented by the equation
222+ (m24-2)(y2+22)—4(yz+ 22+ xy) =m2—2m 42
a8 m varies from — o t0 4+ .
Obtain the reduced equation of the quadric corresponding to m=1,
12. Show that there is only one paraboloid in the system of quadrics
S(ax2—2fyz)+2Zur+d+Nle+my+nz+p]2=0,
In Qat}vicular, show that if f, g, h, u, v, w are all zero, the equation of this
paraboloid is

2 2 2
aa?4by?+c22+d (T"' 5t %)—(lx+my+n2+p)2=0-

Further prove that its axis is parallel to the line
ar _ by ¢z

] m n
13. If the general equation
S(ax2+2fyz) +2Tur+d=0,
represents & right circular cylinder, prove that

a h g h b f g f ¢
—_ — ——=0;——— —_— — y —_— _— —_— =
7 + 7 + 7 7 + 7 + T 0; 7 + p + A 0;
u v w
T+ 7+ ——h—=0- (M.U. 1953}

14. Show that the condition for the quadrie
2 2 2
(= y=B2+ 4 (Sg + St Sy =1 )=0

to be a cone is

2 p2 2
aptEnT 02:-)\ =1
15. Prove that the principal axes of the conicoid
ax?4-by2+cz224-2fyz+4-2g2x+ 2hxy =1
are given by the equations
z( A +F)=ylgr+G) =2(h\+H), (r=1, 2, 3)
where A, Ay, Ag are the roots of the equation

a—\x h g
. h b—r  f |=0
g f c—X

and F=gh—af, G=hf—bg, H=fg—ch.
Algo show that the cone which touches the co-ordinate planes and the
principal planes of the above conicoid is
VI(gH—-h@)2)++/ [ (RF—fH)y}++/(fG—gF)z]=0. (B.U, 1953)
16. If the feet of the six normals from P to the ellipsoid '
N 28 ya 22 ..
@ttt
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1ie upon a concentric conicoid of revolution, prove that the locus of P is the cone
Y222 222 + x2y2 -0
a?(b2—c?) ' b%(c?—a2) ' c2(a2—b2)
.and that the axes of symmetry of the conicoids lie on the cone
a2(b2—c2)x2+4-b2(c2—a2)y2+c2(a2—b2)22=0 (B.U, 1953)
17. Prove that the equation
ax?4-by2+c22+2fyz+2gza+ 2hay =0
will represent & right circular cone whose verticle angle is 0, provided that

af—gh bq—hf ch—fg_ (a+b+c)(1+cos )

f g n . (1+3cos 0)
18. Given the ellipsoid of revolution
7/2+22
a2 + b2 =L

(a2>b2), show that the cone whose vertex is one of the foci of the ollipse z=0,
2 2
z_z. +%— =1 and whose base is any plane section of the ellipsoid is a surface of

revolution, (D.U. 1948)
19. Prove that if

F(z, y, 2)=3(a22+2fy2) + 2Zuz+d=0,
ropresents a paraboloid of revolution, we have
agh+£(g2+12) =bhf+g(h2+f2) =cfg+h(f2+¢2) =0
and that if it represents a right circular cylinder, we have also
5+ g =0 (D.U. 1950, 53)
Answers
1. 222—y2+44/22=0, (1, --Z— s -Z—) .
2. 322—y2=4. Hyperbolic cylinder.
3. 3x246y2—9224+1=0. Hyperboloid of the two sheets,
4, (¢) x24y2—22=10.
(12) 322—3y2=2z.
(463) 222 —y2—22=102,
() 6x2—2y2=1.
) 2T 02 02V g oo,
(v9) (1+sm o cos m)x2+(l—sin @ co8 «)y2+z sin 2u/ (1 —sin2 x cos? «)=0,
if sin a»€0, cos ax£0.
224y2=2 if sin =0 and y2+22=2 if cos a=0.
(vi7) 2x2+3y2—422=4,
(vitd) 302—34/62+4=0.

(ix) 3y2=4/6x.
6. Hyperboloid of two sheets,
1. x2=y2+z2

VE+1 , vB=1 , 2
9, Ay y24 \/52 =0.
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Yor m>2, ellipsoid
For m<<—2, ellipsoid
For m=2, pair of imaginary planes
For m=—2, elliptic cylinder
For 1 <m <2, hyperboloid of two sheets
Far —2<m<<1, hyperboloid of one sheet
For m=1, cone
The reduced equation for the last case is
10x2+4 (344/33)y2 = (4/33—3)=2.



APPENDIX
Spherical Polar and Cylindrical Coordinates.

Various systems of coordinates have been devised to meet.
different types of problems which arise in Geometry and in various
applications of the same. Cartesian system which is one of these has
already been introduced and this is the one system with which we
have been concerned all along. It is now proposed to introduce two
more systems, viz. :

1. Cylindrical Polar,

2. Spherical Polar
which are often found useful in various applications.

Cylindrical Polar Coordinates.

Let P be any given point.

Draw PN perpendicular to the XY-plane, N being the foot of the-
z perpendicular.
! We write
P(r;6,3) ON=r, / XON=¢, NP=z.

Then r, g, z are called the
cylindrical polar coordinates of the
L3 point P.

It will be seen that r, 9 are

x A_~- the usual polar coordinates of the

9 T /4% projection N in the XY-plane of the

~ ¢y point P referred to O as the pole
. / and OX as the initial line.

Y If @, y, z be the cartesian.
N(1;6,0)  coordinates of P referred to 0X,
/ 0Y, OZ as the three axes, we may
Y easily obtain the following formulae
Fig. 33 giving relations between =z, y, 2
and 7, 6, z.
x=r cos §, y=r sin 0, z=z.
Ex. What are the surfaces represented by
(¢) r=constant ;
(7¢) 6=constant ;
(727) z=-constant,

Spherical Polar Coordinates.

Let N be the foot of the perpendicular from P on the XY-plane.
We write

OP=r, [ POZ=0, L XON=¢
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It may be easily seen that ¢ can also be described as the angle
between the planes

POZ and X0Z,
Then r, 6, ¢ are known as A
the spherical polar coordinates

of P.

We now obtain the for- f (1:6,)
mulae of transformation between [
z, ¥, 2 and r, 6, 9. o =z 6

|
Draw N4 1 0X x
We have / OPN =g. P '
1
1

From the right-angled tri- S
angle OPN, we have .
2=NP=OP cos ¢ \(L/
=7 cos 0. N
ON=O0P sin /OPN Y
= sin @ Fig. 34
Again, from the right angled triangle OAN, we have
2=0A4=0N cos ¢=r sin  cos ¢
y=NA=ON sin ¢=r sin ¢ sin ¢
"Thus we have the following formulae of transformation.
x=r sin § cos ¢, y=r sin § sin ¢, z=r cos §.
Surfaces represented by
(¢) r=constant ;
(¢) §=constant ;
'(1¢3) d=-constant.
The reader may easily verify that
(¢) r=constant represents a sphere with its centre at the origin,

(¢3) §==constant represents a right circular cone with its vertex
at the origin and OZ as its axis,
(1) $=constant represents a semi-plane through 0Z.
It may be easily verified that if a pointr, §, ¢ varies in the
interior of a sphere whose centre is at the origin and the radius is
.a : then r varies from 0 to @ ; ¢ varies from 0 to 2w ; § varies from
0 to m.
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