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PREFACE TO THE TWELFTH EDITION

A Chapter on General Equation of the second degree and reduc-

tion to canonical forms and classification has been added. It is

hoped that the treatment is natural and simple and as such will

appeal to the imagination of the students.

Hans Raj College, SHANTI NARAYAN
Delhi University,

January, 1961.

PREFACE TO THE FIRST EDITION

This book is intended as an introduction to Analytical Solid

Geometry and covers as much of the subject as is generally expected
of students going up for the B.A., B.Sc., Pass and Honours exami-

nations of our Universities.

I have endeavoured to develop the subject in a systematic and

logical manner. To help the beginner, elementary parts of the

subject have been presented in as simple and lucid a manner as

possible and fairly large number of solved examples to illustrate

various types have been introduced. The books already existing
in the market cover a rather extensive ground and consequently

comparatively lesser attention is paid to the introductory portion
than is necessary for a beginner.

The book contains numerous exercises of varied types in a graded
form. Some of these have been selected from various examination

papers and standard works to whose publishers and authors I offer

my best thanks.

I am extremely indebted to Professor Sita Ram Gupta, M.A.,

P.E.S., of the Government College, Lahore, who very kindly went

through the manuscript with great care and keen interest and

suggested a large number of extremely valuable improvements.

I shall be very grateful for any suggestions for improvements or

corrections of text or examples.

LAHORE : SHANTI NARAYAN

June, 1939.
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CHAPTER I

CO-ORDINATES

Introduction. In plane the position of a point is determined by
two numbers x, y, obtained with reference to two straight lines in the

plane generally at right angles. The position of a point in space is,

however, determined by three numbers x, y, z. We now proceed to

explain as to how this is done.

1-1. Co-ordinates of a point in space. Let X'OX, Z'OZ be two

perpendicular straight lines. Through 0, their point of intersection,

X

Y

Z

e
Y'

M

O

Fig. 1

called the origin, draw a line Y'OY perpendicular to the XOZ plane
so that we have three mutually perpendicular straight lines

X'OX, TOY, Z'OZ
known as rectangular co-ordinate axes. (The plane XOZ containing
the lines X'OX and Z'OZ may be imagined as the plane of the paper ;

the line OY as pointing towards the reader and OY' behind the paper).
The positive directions of the axes are indicated by arrow heads.
These three axes, taken in pairs, determine three planes,

XOY, YOZ and ZOX
or briefly XY, YZ, ZX planes mutually at right angles, known as

rectangular co-ordinate planes.

Through any point, P, in space, draw three planes parallel to the

three co-ordinate planes (being also perpendicular to the corresponding
axes) to moot the a.xes in A

y B, C.

Let QA=x, OB=y and 0(7=?,
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These three numbers, x, y, z, determined by the point P, are

called the co-ordinates of P.

Any one of these x, y, z, will be positive or negative according
as it is measured from O, along the corresponding axis, in the positive
or negative direction.

Conversely, given three numbers, x, y, z, we can find a point
whose co-ordinates are x, y, z. To do this, we proceed as follows :

(f) Measure OA, OB, 00, along OX, 07, OZ equal to x, y, z

respectively.

(ii) Draw through A, B, C planes parallel to the co-ordinate

planes YZ, ZX and XY respectively.

The point where these three planes intersect is the required

point P.

Note. The three co-ordinate planes divide the whole space in eight com-

partments which are known as eight octants and since each of the co-ordinates
of a point may be positive or negative, there are 23

(
=

8) points whose co-ordi-

nates have the same numerical values and which lie in the eight octants, one in

each.

1*11. Further explanation about co-ordinates. In 1*1 above,
we have learnt that in order to obtain the co-ordinates of a point P,
we have to draw three planes through P respectively parallel to the

three co-ordinate planes. The three planes through P and the three

co-ordinate planes determine a parallelepiped whose consideration

leads to three other useful constructions for determining the co-

ordinates of P.

The parallelopiped, in question, has six rectangular faces

PMAN, LCOB
; PNBL, MAOC ; PLCM, NBOA

(See Fig. 1).

(i) We have

x=OA=CM=LP = perpendicular from P on the YZ plane ;

y=OB=ANMP perpendicular from P on the ZX plane ;

z=OC=AM=NP = perpendicular from P on the XY plane.

Thus the co-ordinates x, y;
z of any point P, are the perpendicular

distances of P from the three rectangular co-ordinate planes YZ, ZX and
XY respectively.

(ii) Since PA lies in the plane PMAN which is perpendicular to

the line OA* 9 therefore

Similarly PBOB and PC OC.

Thus the co-ordinates x, y, z of any point P are also the distances

from the origin of the feet A, B, C of the perpendiculars from the point
to the co-ordinate axes X'X, Y'Y and Z'Z respectively.

* A line perpendicular to a plane is perpendicular to every }jne in the

plane.
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Ex. What are the perpendicular distances of a point (xt y, z) from the
co-ordinate axes ? [Ans. ^/(y

2+z2
), </(z*+x*) t

<

(Hi) We have

AN^OB =y ;

Thus (Fig. 2) if we draw PNJ_Z7
plane meeting it at N .and NA

\\
OY

meeting OX at A, we have

Exercises

1. In fig. 1, write down the co-ordinates of A, B, C ; L, M , N when the
co-ordinates of P are (#, y, z}.

2. Show that for every point (x, y, z) on the ZX plane, 2/
= 0.

3. Show that for every point (x, ?/, z) on the F-axis, #=0, z=0.

4. What is the locus of a point for which

(i) :r = 0, (n) 2/=0, (Hi) z=0.

(iv) x a, (v) y by (vi) z= c.

5. What is the locus of a point for which

(i) 2/=0, z=0, (ii) 2=0, a;=0, (Hi] ic=0, 2/=0.

(iv) yb,z c, (v) z~c,x=a, (vi) x~a, yb.
6. P ?9 any point (x, y, z), and a, p, y are the anyles which OP makes with

x-avis, 2/-rm".v and z-axis respectively ; show that

cos a==x/r, cos p=7//r, cos Y=2/r,
inhere rOP.

7. Find the lengths of the edges of the rectangular parallelopiped formed
by planes drawn through the points (1, 2, 3) and (4, 7, 6) parallel to the co-

ordinate planes. [Ans. 3, 5, 3.

N/T2. Distance between two points. To find the distance between
the points P(XI, yl9 Zj) and Q(x2 , ?/2 ,

z2 ).

Through the points P, Q draw planes parallel to the co-ordinate

planes to form a rectangular parallelopiped whose one diagonal is PQ.

Then
Fig. 3

APCM
, NBLQ ;

LCPB9 QMAN ; SPAN, LCMQ
are the three

pairs
of parallel faces of this parallelopiped,



ANALYTICAL SOLID GEOMETRY

Now _ANQ is a rt. angle. Therefore,

Also AQ lies in the plane QMAN which is perpendicular to the

line PA. Therefore

AQPA.
Hence

Now, PA is the distance between the planes drawn through the

points P and Q parallel to the FZ-planc and is, therefore, equal to

the difference between their # co-ordinates.

Similarly AN=y2 y1 ,

and NQ=z2
~- zlB

Hence PQ2-(x2-x1)H(y2~y1)
2+ (z2~z1)

2
.

Thus the distance between the points

(
xi> 2/i, *i) and (x2 , y29 z2 )

is

*v/ Cor. Distance from the origin. When P coincides with the origin

0, we have x1=^yl=z1=0 so that we obtain,

Note. The reader should notice the similarity of the formula obtained
above for the distance between two points with the corresponding formula in

plane co-ordinate geometry. Also refer 1*3.

Exercises

1. Find the distance between the points (4, 3, G) and (2, 1, 3),

[Ans. 7.

2. Show that the points (0, 7, 10), ( 1, 6, 6), (4, 9, 6) form an isosceles

right-angled triangle.

3. Show that the three points (2, 3, 5), (1, 2, 3), (7, 0, 1) are collinear.

4. Show that the points (3, 2, 2), ( 1, 1, 3), (0, 5, 6), (2, 1, 2) lie on a

sphere whose centre is (1, 3, 4). Find also its radius. [Ans. 3.

5. Find the co-ordinates of the point equidistant from the four points

(a, 0, 0), (0, 6, 0), (0, 0, c) and (0, 0, 0). [Ana. (a, i&, Jc).

>/r3. Division of the join of two points. To find the co-ordinates

of the point dividing the line joining

P(XI> Vi* *i) and Q(x2 , y^ za ),

in the ratio m : n.

Let R (x, y, z) be the point dividing PQ in the ratio m : n.

Draw PL, QM, RN perpendiculars to the XY-plane.

The lines PL, QM, EN clearly lie in one plane so that the points
L, M, N 9 lie in a straight line which is the intersection of this plane
with the .XY-plane.

The line through R parallel to the line LM shall lie in the same

plane. Let it intersect PL and QM at H and K respectively.
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The triangles HPR and QRK are similar so that we have

^^^^^^MQ-WR^z^z
_~

m+n
Similarly, by drawing perpendiculars to

the XZ and YZ planes, we obtain

J m+n m+n
The point R divides PQ internally or

externally according as the ratio m : n is

positive or negative.

Thus the co-ordinates of the point which
divides the join of the points (xl5 y^ Zj) and

(#a UK Za) in the ratio m : n are

M
L

Fig. 4

\ m+n m+n m+n /

/ Cor. 1. Co-ordinates of the middle point. In case R is the

middle point of PQ, we have

m : n : : I : I

so that

Cor. 2. Co-ordinates of any point on the join of two points.

Putting k for m\n, we see that the co-ordinates of the point R which
divides PQ in the ratio k : 1 are

l+k
'

~l+k~
'

'

l+k\

%

To every value of k there corresponds a point R on the line PQ
and to every point R on the line PQ corresponds some value of k, viz.

PR/RQ.
Thus we see that the point

fkx2+x1 Tcyt+Vi kzt+_zi\ ...

( l+k
9

l+k
'

l+k )
"iW

lies on the line PQ whatever value k may have and conversely any
given point on the line PQ is obtained by giving some suitable value

to k. This idea is sometimes expressed by saying that (i) are the

general co-ordinates of any point of the line joining P(xly ylt zj and

Exercises

/I. Find the co-ordinates of the points which divide the line joining the

points (2, 4, 3), (4, 5, 6) in the ratios

(t) (1 : -4) and (w) (2 : 1).

[An*, (i) (4, -7, 6) ; (n) (-2, 2, -3).

2. A (3, 2, 0), B (6, 3, 2), C (-9, 6, -3) are three points forming a

triangle. AD the bisector of the angle BAC, meets BG at D. Find the

co-ordinates of D. iAn '

(?f, fl, H)-
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3. Find the ratio in which the line joining the points

(2, 4, 5), (3, 5, -4)
\a divided by the YZ-plane.

The general co-ordinates of any point on the line joining the given points are

\l+ k
'

1 + fc

'

1-ffc /
'"

This point will lie on the YZ plane, if, and only if, its x co-ordinate is

zero, i.e.,

Hence the required ratio= 2 : 3. Putting &= 2/3 in (t), wo see that the

point of intersection is (0, 2, 23).
/ 4. Find the ratio in which the XY-plane divides the join of

(-3, 4, -8) and (5, -6, 4).

Also obtain the point of intersection of the line with the plane.
[Ana. 2 ; (7/3, -8/3, 0).

5. The three points X(0, 0, 0), B(2, 3, 3) C( 2, 3, 3), are collinear.

Find in what ratio each point divides the segment joining the other two.

[Ana. ABIBC=, BC/CA^2, CA/AB^l.
6. Show that the following sets of points are collinear :

(t) (2,5, -4), (1,4, -3), (4, 7, -6).

() (5, 4, 2), (6, 2, -1), (8, -2, -7).
7. Find the ratios in which the join of the points (3, 2, 1), (1, 3, 2) is

divided by the locus of the equation

3*2--722/2-j- 12822^3. [Ana. -2 : 1 ; 1 : -2.

8. -4(4, 8, 12), J5(2, 4, 6), C(3, 5, 4), Z>(5, 8, 5) are the four points ; show
that the lines AB and CD intersect.

9. Show that the point (1, 1, 2), is common to the lines which join

(6, -7, 0) to (16, -19, -4) and (0, 3, -6) to (2, -5, 10).

10. Show that the co-ordinates of any point on the plane determined by
the three points (xlt y^ t z), (x2 , j/2 , z2), and (#3 , 7/3 ,

z3), may be expressed in the
form

. ^

l+m-\-n
~~

'

l+m+n
'

l+m+n )
*

11. Show that the centroid of the triangle whoso vertices are (xr , yr ,
zr) ;

r=l, 2, 3, is

/s

v

1*4. Tetrahedron. Tetrahedron is a figure bounded by four

planes. It has four vertices, each vertex arising as a point of inter-

section of three of the four planes. It has six edges ;
each edge arising

as the line of intersection of two of the four planes. (
4C2=6).

To construct a tetrahedron, we start with three points A, B, C,

and any point D, not lying on the plane determined by the points

A, B, G. Then the four faces of the

tetrahedron are the four triangles,

ABC, BCD,CAD,ABD-,
the four vertices are the points

A, B, C, D
and the six edges are the lines

Fig. 5 AB, CD ; BC, AD ; CA, BD.
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The two edges AB, CD joining separately the points, A, B and
C, D are called a pair of opposite edges. Similarly BC 9

AD and CA,
BD are the two other pairs of opposite edges.

Exercises

1. The four lines drawn from the vertices of any tetrahedron to the
centroids of the opposite faces meet m a point which is at three-fourths of the
distance from each vertex to the opposite face.

2. Show that the throe lines joining the mid-points of opposite edges of a
tetrahedron moot in a point.

1-5. Angle between two lines. The meaning of the angle
between two intersecting, i.e., coplanar lines, is already known to the

student. We now give the definition of the angle between two non-

coplanar lines, also sometimes called skew lines.

Def. The angle between two non-coplanar, i.e., non-intersecting
lines is the angle between two intersecting lines drawn from any point

parallel to each of the given lines.

Note 1. To justify the definition of angle between two non-coplanar lines,
as given above, it is necessary to show that this angle is independent of the

position of the point through which the parallel lines are drawn, but here wo
simply assume this result.

Note 2. The angles between a given line and the co-ordinate axes are
the angles which the line drawn through the origin parallel to the given lino

makes with the axes.

^ 1'6. Direction cosines of a line. If a, p, J be the angles which

any line makes with the positive directions of the axes, then cos a,

cos (3, cos y are called the direction cosines of the given line and are

generally denoted by I, m, n respectively.

Ex. What are the direction cosines of the axes of co-ordinates ?

[Ans. 1, 0, 0; 0, 1,0; 0, 0, 1.

/ 1*61. A useful relation. // be the origin and (x y y y z) the co-

ordinates of a point P, then

xlr, ymr, z=nry

where Z, m, n are the direction cosines of OP and r, is the length of OP.

Through P draw PLJ_#-axis so

that OL=x. From the rt. angled

triangle OLP,

we have

X . i

i.e., =6 or x=lr.

Similarly we have

2/=mr, z=nr. Fig. 6

^1*7. Relation between direction cosines. // l,m and n are the

direction cosines of any line, then

i.e., the sum of the squares of the direction cosines of every line is one.
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Let OP be drawn through the origin parallel to the given line so
that Z, m t n are the cosines of the angles which OP makes with OX ,

07, OZ respectively. (Refer Fig. 6)

Let (x, y, z) be the co-ordinates of any point P on this line.

Let OP=r.

x=lr, y=mr, znr.

Squaring and adding, we obtain

But

!
2+m2+n2=l.

Cor. If a, 6, c be three numbers proportional to the actual direction

cosines Z, ra, n of a line, we have

V=T=T=
V(0

2+&a+c8
)

==4~~~

XTf

where the same sign, positive or negative, is to be chosen throughout.
*+ Direction Ratios. From above, we see that a set of three numbers

which are proportional to the actual direction cosines are sufficient to

specify the direction of a line. Such numbers are called the direction

ratios. Thus if a, 6, c be the direction ratios of a line, its direction

cosines are

Note. It is easy to see that if a line OP ^through the origin makes

angles a, P, Y with OX, Y, OZ, then the line OP obtained by producing OP

Fig. 7

backwards through will make angles TT a, TT 3, TC Y with OX, OY, OZ.
Thus if

cos a=Z, cos (3=w, cos Y=W
are the direction cosines of OP, then

COS(TC a)=. Z, COS(TT 3)
= m, COS(TC Y) n

are the direction cosines of OP', i.e., the line OP produced backwards.
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Thus if we ignore the two senses of a line, we can think of the direction
cosines /, m, n or /, m, n determining the direction of one and the same
line. This explains the ambiguity in sign obtained above.

Note. The student should always make a distinction between direction
cosines and direction ratios. It is only when /, ?//, n are direction cosines, that
we have the relation

Exercises

1. 6, 2, ,3 are proportional to the direction cosines of a line. What are
their actual values ? [Ana. (6/7, 2/7, 3/7).

2. What are the direction cosines of lines equally inclined to the axes?
How many such lines are there ? [Ana. (l/\/3, l/<\/3, dbl/V 3 ) J 4 -

3. The co-ordinates of a point P are (3, 12, 4). Find the direction cosines
of the line OP. [Ana. (3/13, 12/13, 4/13).

4. The direction cosines I, m, n, of two lines are connected by the relations

...($)

Q. ...(ii)
Find them ?

Eliminating n between (i) and (ii) ; we get

or

This equation gives two values of l/m and hence there are two lines. The
two roots of (m) are 1 and j.

If Ii, m>i, ni and 1%, W 2 n 2 ^e ^ne direction cosines of two lines, we have

mi in 2 2

Alsov

and . J2+ 2+ 2=0 or .+ 1 + . = 0,^ ' ' *
.

__ _ _
"T -2 V6' ""Ve'

mi~V^ ni
V6'

5. The direction cosines of two linos are determined by the relations

(i) /-5m+3n=0, 7/ 2 -fSw^-Sn^O ;

find them ?

rx ,.v
1 2 3 112

[Ana. (*) -TT-T, - -, -7T7 7^' ~7^ ' "7^
\/14 \/14 v!4 -yb -yo -yO

, . x
1 3 4 1 2 3

1 '

V26 V26 V26 V 14 A/1 4 V^4

1*8. Projection on a Straight line.

1*81. Projection of a point on a line. The foot of the perpendi-
cular P from a given point A on a given straight line BC is called the
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orthogonal projection (or simply projection for the purpose of this

book) of the point on the line and is the same point -where

the plane through the given point and

perpendicular to the given line meets the

line.

Thus in Fig. 1, page 1, A is the projec-_- ^ tion of P on Z-axis ;
also B and C are the

B P c
projections of P on F-axis and Z-axis respec-

Fig. 8. tively.

1-82. Projection of a segment of a line on another line. The

projection of a segment AB of a line on any line CD is the segment
A'B' of CD where A', B' are the projections of A, B respectively on

the line CD.

Clearly A'B' is the intercept made on CD by planes through

A, B each perpendicular to CD.

Ex. The co-ordinates of a point P are (x, y, z). What are the projections
of OP on the co-ordinate axes ? [Ana. x, y, z.

Theorem. The projection of a given segment AB of a line on any
line CD is AB cos 0, where is the angle between AB and CD.

Let the planes through A and B perpendicular to the line CD
meet it in A', B' respectively so that A'B' is the projection of AB.

Through A draw a line AP \\
CD to meet the plane through

Bat P.

AP
II
CD.Now,

Also BP lies in the plane which is

Hence =ABco*0

D

Fig. 9

Clearly A'B'PA is a rectangle so that we have

AP=A'B'.

Hence A'B f=AB cos 6.

Cor. Direction cosines of the join of two points.

To find the direction cosines of the line joining the two points
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Let L
9
M be the feet of the perpendiculars drawn from P, Q to

the JC-axis respectively so that

OL=X
Projection of PQ on X-axis=ZJlf

Also if I, m, n be the direction cosines of PQ, the projection of

PQ on X-a,xis=l.PQ.

LPQ=x2 Xi.

Similarly projecting PQ on 7-axis and Z-axis, we get

_ ==
I m ~~

n

Thus the, direction cosines of the line joining the two points

fa, 2/i, *i) and (x2 , 2/2 ,
z2 )

are proportional to

xtxi, 2/2-2/i, *2 *!

Exercises

1. Find tho direction cosines of the lines joining the points

() (4, 3, -5) and (-2, 1, -8). [Ana. (6/7, 2/7, 3/7),

(n) (7, -5, 9) and (5, -3, 8). [Ans. (2/3, -2/3, 1/3)

2. Show that the points (1, 2, 3), (2, 3, 4), (0, 7, 10) are collmear.

3. The projections of a line on the axes are 12, 4, 3. Find the length and
the direction cosines of the line. [Ana. 13 ; (12/13, 4/13, 3/13)

1*83. Projection of a broken line (consisting of several continuous

segments). If Ply P2 ,
P3 ,

.........
,
Pn be any number of points in space,

then the sum of the projections of

PlPl> ^2^3) ...... > ^n-l^n
on any line is equal to the projection of PiPn on the same line.

Let &,&,&, ......,Qn
ft

be the projections of the points ~Uonated by
P

19 P*> P., ...... > Pn Mr- N- Sreeka
on the given line. Then M.Sc.(Maths) (

Ci#2=Proiection of PI?*,

Q*Qa~ P*PZ>

and so on.

Also QiQn=projection of PiPn .

As Qi, Q2 > Qz ....... > Qn H cm the same line we have, for all

relative positions of these points on the line, the relation

Qi

Hence the theorem.
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v/ l*84. Projection of the join of two points on a line. To show that

the projection of the line joining

on a line with direction cosines Z, m, n is

Through P, Q draw planes parallel to the co-ordinate planes to

form a rectangular parallelopiped whose one diagonal is PQ. (See

Fig. 3, Page 3).

Now

The lines PA, AN, NQ are respectively parallel to #-axis, y-axis,
z-axis. Therefore, their respective projections on the line with
direction cosines I, m, n are

fa Xj)l 9 (ya 2/i)w, (32 z i) n -

As the projection of PQ on any line is equal to the sum of the

projections of PA, AN, NQ on. that line, therefore the required pro-

jection is

(xa xjl+fya yi)m+(z2 zjn,

Exercises

1. A(6, 3, 2), (5, 1, 4), C(3, -4, 7), >(0, 2, 5) are four points. Find the

projections of AB on CD and of CD on /!#. [4 /is. 13/7 ; 13/3.

2. Show by projection that if P, <2, ti, S are the points (6, 6, 0),

(1, ;-7, 6), (3, 4, 4,) (2, -9, 2) respectively then P^_[_#.
v/l*9. Angle between two lines. To find the angle between lines

whose direction cosines are (^, ral5 %) and (/2 ,
m2 ,

n
2).

Let OP1? OP2 ,
be lines through the origin parallel to the given

lines so that the cosines of the angles which OPl and OP2 make with

Z

Fig. 10

the axes are Zx ,
ml9 HI and 72 ,

mt ,
n2 , respectively and the angle

between the given lines is the angle between OP\ and OP%. Let this

angle be 0.

Let the co-ordinates of P2 be (x2t yz ,
z2).
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The projection of the line OP2 joining

0(0, 0, 0) and P2 (x2 , y,, z2 )

on the line OP\ whose direction cosines are

is xt

Also this projection is OP2 cos 0.

OPt cos O^
But a?2=Za.0P2 , y^m^.OP^ z2=n2.OP2 . (1-61)

OP2 COS 0=(y
or cos =

Ijlg

Second Method. Suppose OPr^ 0P2=r2 .

Let the co-ordinates of Pj, P2 ,
be (a^, y1? 2^) and (a:2 , /2 ,

2;2 )

respectively.

Then ^1
= ^1, 2/1=^^1, Zi^r^, (1*61)

and

We have

Also from Trigonometry, we have

PiPf^rf+rf-toft cos tf ...()

Therefore, from (i) and (n), we obtain

r^+-Sva cos 0=PiP2
2

i.e., COS 0=^24-^1

Cor. 1. Sin and tan 0. The expressions for sin and tan in

a convenient form are obtained as follows :

sin
20=l cos2

sin 0=
sin0

and tan0=-B
=== -------

v7~7
----

cos 6 2/^2

Cor. 2. If the direction cosines of two lines be proportional to

1, &!, cl5 and 2 ,
52) C

2' tnen their actual values are

I 2 _L
> -L- it o

i T, 2 I >. 2\* -1-

BO that if 9 be the angle between the given lines, we have
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cos 0= ~

The expression for tan e is of the same form whether we use
direction cosines or direction ratios.

Cor. 3. Conditions for perpendicularity and parallelism.

(i) When the given lines are perpendicular,
0=90 so that cos 0=0.'

This gives
a1a2 -fb1

b2+c1c2 =0.

(ii) When the given lines are parallel,

0=0 so that sin 0=0.
This gives

which is true only when

ajftj o261=0, &iC2 62^=0, CjO, 6284=0,

-^-^ A.
aa b2 eg

This result is also otherwise evident, for, the lines through the
origin drawn parallel to the parallel lines coincide and, therefore, their
direction cosines must be the same and hence direction ratios propor-
tional.

Exercises

1. Find the angles between the lines whose direction ratios are

'(t) 5, -12, 13 ; -3, 4, 5. [Ans . cog-l(j/65)
(ii) 1,1,2;V3-1,-V3-1,4. [Ans. w/3.'

2. Show that the angle between the lines whose direction cosines are triven
by the relations in Ex. 4, P. 9 is TT.

fe

/
3. Find the direction cosines of the line which is perpendicular to the lines

with direction cosines proportional to (7, 2, 2), (0, 2, 1).
Sol. If I, m, n be the direction cosines of the line perpendicular to the

given lines, we have

Z(0)+m(2)-fn(l)=0, i.e., OZ-f2m+n=0.

These give == _!!L == _!L.

l
2 2 1 2'-

V[22+ "(-"lT
a"+2] ~T' w=

F' n==
T"'

4. Show that a line can be found perpendicular to the three lines with
direction cosines proportional to (2, 1, 5), (4, -2, 2), (-6, 4, -1). Hence show
that if these three lines be concurrent, they are also coplanar.

5.
^

li t mv nx ; /2 , ^2* n 2 re the direction cosines of two mutually perpendi-
cular lines. Show that the direction cosines of the line perpendicular to them bofa
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Sol. If lt in, n be the direction refines of the required line, wo have

111+ nvm-i -f nn-i 0,

112 -fmm2 -fnn2
= 0.

These give

where 8 is the angle between the given lines. As 0=90, we have sin 0=1. Hence
the result.

6. li, Wj, n t and 12 ,
m 2 , n 2 arc the direction ratios of two intersecting lines.

Show that lines through the intersection of these two with direction ratios

Ii+kl2 , nii+kmty HI~\ kn2

are coplanar with them ; k being any number whatsoever.

(Show that they all have a common perpendicular direction.)

7. Show that three concurrent lines with direction cosines

(Il9 m lt wj), (12> m 2 , n2 ), (J3 , wi8 ,
n8 )

are coplanar if,

h,

n2

m3 ,

=0.

8. Show that the join of points (1,2, 3), (4, 5, 7) is parallel to the join of
tho points (-4, 3, -6), (2, 9, 2).

9. Show that the points

(4, 7, 8) ; (2, 3, 4) ; (-1, -2, 1) ; (1, 2, 5)

are the vertices of a parallelogram.

10. Show that the points

(5, -1, 1), (7, -4, 7), (1, -6, 10), (-1, -3, 4)

are tho vertices of a rhombus.

11. Show that the points.

(0,4,1), (2,3, -1), (4,5,0), (2,6,2)
are the vertices of a square.

^12. -4(1, 8, 4), B(0, 11,4), (7(2, 3, 1) are throe points and D is tho foot
of the perpendicular from A on BC . Find the co-ordinates of D.

[Ans. (4, 5, 2).

13. Find the point in which the join of (9, 4, 5) and (11, 0, 1) is met
by the perpendicular from the origin. [Ans. (1, 2, 2).

14. A(~ 1, 2, 3), B(5, 0, 6), C'(0, 4, 1) are three points. Show that
the direction cosines of the bisectors of the angle BAG are proportional to

(25, 8, 5) and (-11, 20, 23).

[Hint. Find the co-ordinates of the points which divide BC in the ratio

AB : AC.}
< 15. Find the angle between the lines whose direction cosines are given by

the equations 3J-f-ra-|-5w=0 and 6mn2nl-\-5lmQ. [Ans. cos-1 ^
, 16. Show that the pair of lines whose direction cosines are given by

32w 4lri-\-mn= Q, Z-f 2w-j-3/i=0 are perpendicular.

17. Show that the Straight lines whose direction cosines are given by the

equations

are perpendicular or parallel according as

= Q or
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Sol. Eliminating /, between the given relations, we have

?/(&/// 4-c/?)
2

,

. n
-

,

- +vw2
-r-w>n

a=0
a"

or (b*u+a* (i)''*+ 2Hbc>nn-\-(c2u+a2w)n*=Q ...(i)

If tho lines be parallel, their dueotion cosmos are equal so that the two
values of mjn must be equal. The condition for this is

+-- + ---0.
a ' v

~
w

Again, if Il9 w 1} rij and 12 ,
w< 2 7? 2 be the direction cosines of the two lines.

then equation (i) giv es

?J?1 ?2 7' ?
l
?/'2 C

n l
/l z w

]
?? 2 6

or

Similarly the elimination of /?, gives, (or by symmetry)

For perpendicular lines

Thus the condition for perpendicularity is

a*(v-\-w} + bz
(w+u) + c2

(?/+ ?;)
= 0.

18. Show that the straight lines whose direction cosines are given by

are perpendicular if

and parallel if

19. /i, mj, ni ; 72 , w?2 , n 2 are the direction cosines of two concurrent lines.

Show that the direction cosines of the lines bisecting the angles between them are

proportional to

Sol. Let the lines concur at the origin O and let OA, OB be the two lines.

Take points A, B on the two lines such that (X4=0J3=r, say. Also take a

Fig. 11

point A' on AO produced such that AO=--OA'. Let (7, C" be the mid-points of
AB and A'B. Then O(7, OO' are the required bisectors. The result, now,
follows from the fact that the co-ordinates of A, B, A'

respectively are

(fy-, my, ny) ; (Z2r, w2r, n2r) ; (-ly, ~Wjr, -nxr),
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20. // the edges of a rectangular parallelepiped are a, b, c show that the

angles between the four diagonals are given by

Sol. Take one of the vertices O of the parallelopiped as origin and the
three rectangular faces through it as tho three rectangular co-ordinate planes.
(See Fig. 7, Page 1).

Let(M=a, OB=b, OC=c
The lines OP, AL, BM, ON are the four diagonals.
The co-ordinates of A, B, C are (a, 0, 0) ; (0, 6, 0) ; (0, 0, c).

L, M, N are (0, 6, c) ; (a, 0, c) ; (a, 6, 0).

0, Pare (0,0, 0) ; (a, b, c).

Direction cosines of OP are
-,%r-$> -,*-* ~7^>'>V%a V2>a V2a

Direction cosines of AL are "1-

are
2

,
-

n a b
_C^V are -^ , -^ ,

The angle between OP and CN t therefore, is

Similarly tho angle between any one of the six pairs of diagonals can be
found.

21. A line makes angles a, p, y, S with the four diagonals of a cube ; prove
that cos2 a+ cos2 p-f cos2 y+cos2 5= 4/3. (P.U. 1932)

(Choose axes as in Ex. 20 above and suppose that the direction cosines of
the given lino are I, m, n. )

22. 0,A,B, C, are four points not lying in the same plane and such that

OAJ^Bd and OB^JIA. Prove that OC^AB. What well-known theorem does this

become if four points arc co-planar ?

The result of this example may also be stated thus :

"// two pairs of opposite edges of a tetrahedron be at right angles, then so is

the third."

Take as origin and any three mutually perpendicular lines through as
co-ordinato axes.

Let
(.r lf T/J, Zj), (,r2 , 7/2 z2), (#3, 2/3,

z3 )
be the co-ordinates of the points

A y By C respectively.

As OA^BC, we have

As OB_[_CA, we have
r2( r3-#l) +2

Adding (?')
and (iV), we obtain

which shows that 0(7
\ AB.

23. If, in a tetrahedron OABC,

then its pairs of opposite edges are at right angles.

24. /j, mj, % and /2 W 2 n2 are tvvo directions inclined at an angle 9, to
each other. Show that the direction

_

2 cos i 9
'

2 cos
<p

'

2 cos J 9
bisects tho angle between these two directions.
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Show that these direction cosines are the actual values.

25. Show that the direction equally inclined to the three mutually per-

pendicular directions

lit W'i HI J /2> Z>
W 2 > ^3

??? 3> n3

is given by the direction cosines

/26. Show that the area of the triangle whose vortices are the origin and
the points (x^ yj, Zj), and (.r2 , 2/ 2 , 22 )

is

iVCC^a-Wi) 2^^!^-^!) 2-!-^!^-^^) 2
]. (B.U.1958)

27. /i, wi
lf
w

l ; /2 w j 2 ?*2 J ^3 7?? 3 ?? 3

are the direction cosines of three mutually perpendicular linos
; show that

*1, hy J3 ; Wt. 7"2 W'3 ! 7? 1 ^? 2 ^3

are also the direction cosines of three mutually perpendicular lines. Hence
show that



CHAPTER II

THE PLANE

^2*1. General equation of first degree. Every equation of the first

degree in x, y y
z represents a plane.

The most general equation of the first degree in x, y, z is

where a, 6, c are not all zero.

The locus of this equation will be a plane if every point of the
line joining any two points on the locus also lies on the locus.

To show this, we take any two points

on the locus, so that we have-

O
y ...(i)

0. ...(ii)

Multiplying (ii) by k and adding to (z), we get

The relation (iii) shows that the point

_

V 1+k
'

l+k
'

1-f k

is also on the locus. But, for different values of k, these are the

general co-ordinates of any point on the line PQ. Thus every point
on the straight line joining any two arbitrary points on the locus also

lies on the locus.

The given equation, therefore, represents a plane.

Hence every equation of the first degree in x, y, z represents
a plane.

Ex Find the co-ordinates of the points where the plane

ax+by+cz+d Q

meets the three co-ordinate axes.

** 2*2. Normal form of the equation of a plane. To find the equation
of a plane in terms of p, the length of the normal from the origin to it

and Z, m, n the direction cosines of that normal ; (p is to be always
regarded positive).

Let OK be the normal from O to the given plane ; K being the
foot of the normal.

Then OK=p and I, m, n are its direction cosines.

Take any point P(x, y, z) on the plane.

Now, PKOK, for it lies in the plane which is
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Therefore the projection of OP on

Fig. 12

Also the projection of the line OP joining

0(0, 0, 0) and P(x9 y, z),

on the line OK whose direction cosines are

I, m, n >

is

l(x-Q)+ m(y~-0)+n(z-0)=lx+my+nz. (1*84, p. 14)

Hence lx+my+nz=p.
This equation, being satisfied by the co-ordinates of any point

P(x, y, z) on the given plane, represents the plane and is known as

the normal form of the equation of a plane.

Cor. The equation of any plane is of the first degree in x, y, z.

This is the converse of the theorem proved in 2'1.

Ex. Find the equation of the piano containing the lines through the

origin with direction cosines proportional to (1, 2, 2) and (2, 3, 1).

[Ans. 4cc 5y 7z=0.

^2-3. Transformation to the Normal form. To transform the

Aquation

to the normal form

As these two equations represent the same plane, we have

p m n

Thus, djp=\/(a2+b2
-{-c

z

) and as p, according to our con-

vention, is to be always positive, we shall take positive or negative

sign with the radical according as, d, is negative or positive.

Thus, if d be positive,
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If d be negative, we have only to change the signs of all these.

Thus the normal form of the equation ax-\-by-\-cz-\-d=0 is

be p 8itive :

' if d be ncgative '

^ 2*31. Direction cosines of normal to a plane. From above we
deduce a very important fact that the direction cosines of normal to

any plane are proportional to the co-efficients of x, y, z in its equation
or, that the direction ratios of the normal to a plane are the co-

efficients of x, y, z in its equation.

Thus,

a, 6, c

are the direction ratios of the normal to the plane

Ex. 1. Find the direction cosmos of the normals to the planes

(t) a-3/+ 65= 7. () .H-2/+22-l = 0.

(Ans. (t) 2/7, -3/7, 6/7, (it) 1/3, 2/3, 2/3.

Ex. 2. Show that the normals to the planes

are inclined to each other at an angle 90.

V' 2*32. Angle between two planes. Angle between two planes is

equal to the angle between the normals to them from any point.
Thus the angle between the two planes

ax-\-by-{-cz-\-dQ, and ax -\-b$-\- cLz-\-dl
~

is equal to the angle between the lines with direction ratios

a, 6, c,

ai> bi> s\>

and is, therefore_,

^ 2'33. Parallelism and perpendicularity of two planes. Two
planes are parallel or perpendicular according as the normals to them
are parallel or perpendicular. Thus the two planes

ax+by+cz+d=0 and ax+ 1$ f cLz + di=Q
will be parallel^ if

a/a1=b/b1=c/c1 ;

and will be perpendicular, if

aa1 +bb1+cc1=0.

Exercises

/I. Find the angles between the planes

(l) 2x-y+2z 3, 3a;+62/-f22=4. [Ana. CO8~* (4/21).

(ft) 2*~t/+z=6, x+y+2z=7. [Ana. w/3.

(ttt)
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2. Show that the equations

Q, by-\-cz+p~Q, cz-\-ax-\-q=0
represent planes respectively perpendicular to XY, YZ, ZX planes.

3. Show that ax-}-l>y-\-cz-\-d=^Q represents plane.s, perpendicular respec-

tively to 'YZ, ZX, XY planes, if a, 6, c separately vanish. (Similar to Ex. 2).

4. Show that the piano
tT-f22/-3z-f-4=

is perpendicular to each of the planes

*
2'4. Determination of a plane under given conditions. The general

equation ax-\-by-\-cz-\-d= of a plane contains three arbitrary cons-

tants (ratios of the co-efficients a, b, c, d) and, therefore, a plane can
be found to satisfy three conditions each giving rise to only one
relation between the constants. The three constants can then be
determined from the three resulting relations.

We give below a few sets of conditions which determine a plane :

(i) passing through three iion-collinear points ;

(ii) passing through two given points and perpendicular to a given
plane ;

(in) passing through a given point and perpendicular to two given
planes.

^ 2'41. Intercept form of the equation of a plane. To find the

equation of a plane in terms of the intercepts a, b
3
c which it makes on

the axes.

Let the equation of the plane be

Ax+By+Cz+D=Q. ...(1)

The co-ordinates of the point in which this plane meets the
X-axis are given to be (a, 0, 0). Substituting these in equation (1),

we obtain

A 1= -.

Similarly

-JL= L ~.-?_=_L
D ~b

; D T"
The equation (1) can be re-written as

A B C .

-^"-fl"--^ 1
'

so that, after substitution, we obtain

A+ +_*=!,
a b c

5

as the required equation of the plane.
Note. The fact that a plane makes intercepts a, 6, c, on the three axes is

equivalent to the statement that it passes through the three points (a, 0, 0),

(0, b, 0), (0, 0, c), so that what we have really done here is to determine the three
ratios of the co-efficients in (1) in order that the same may pass through these

points.
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Ex. 1. Find the intercepts of the plane 2x 3y -f4z= 12 on the co-ordinate

axes. [Ans. 6, 4, 3.

Ex. 2. A piano meets the co-ordinate axes at A, B, C such that the

eentroid of the triangle ABC is the point (a, b, c) ;
show that the equation of the

plane is #/-f #/6-fz/c=3.
Ex. 3. Prove that a variable plane which moves so that the sum of the

reciprocals of its intercepts on the three co-ordinate axes is constant, passes
through a fixed point.

2*42. Plane through three points. To find the equation of the

plane passing through the three non-collinear points

(*i, y\> *i), (**> y*> **}, (#3, 2/3, a)-

Let the required equation of the plane be

As the given points lie on the plane, we have

Eliminating a, l) 3 c, d from (i) (iv), we have

"<. y, *>

'

2/2,

which is the required equation of the plane.

Note. In actual numerical exercises, the student would find it more con-
venient to follow the method of the first exorcise below.

Exercises

v 1. Find the equation of the plane through

P(2, 2, -1), C(3, 4, 2), JR(7, 0, 6).

The general equation of a plane through P(2, 2, 1) is

a(x2) + b(y 2)-f-c(-f-l)=0 (Refer 4, 2-5, #. 25) ...(t)

It will pass through Q and 7?, if

5a-2&+ 7c=0.

These give
a b c

W=T=
=ii

Substituting these values in (t), we have

as the required equation.

/12. Find the equation of the plane through the three points (1, 1, 1),

(1, 1, 1), (7, 3, 5) and show that it is perpendicular to the XZ plane.
[Ans. 3*-4
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/3. Obtain the equation of the plane passing through the point (2, 2, 2)
and containing the line joining the points (1, 1, 1) and (1, 1,2).

Olns. a 3*/-6z+8=0.
4. If, from the point F(a, b, c), perpendiculars PL, PM be drawn to YZ

and ZX planes, find the equation of the plane OLM. [Ans. bcx+cayabzQ.
v/5. Show that the four points (6, 3, 2), (3, 2, 4), (5, 7, 3) and

(13, 17, 1) are coplanar.

-6. Show that the join of points (6, 4, 4), (0, 0, 4) intersects the join
of (-1, 2, 3), (1,2, 5).

7. Show that ( 1,4, 3) is the cireumoentre of the triangle formed by
the points (3, 2, 5), (3, 8, 5), (-3, 2, 1).

. V8. Find the equation of the plane through the points

(2, 2, 1) and (9, 3, 6)

and perpendicular to the plane

Any plane through (2, 2, 1) is

(*-2)-f&(7/-2)+c(c~l)=0. .. (t)

It will pass through (9, 3, 0) if

a(9-2) + 6(3-2) -fc(G-l) =

The plane (i) will be perpendicular to the given plane if

2-f GH-Gc-O. ...(Hi)

From (ii) and (Hi), we have

a b c a b c

^24
===

-32
=

40"
r T^ 4~

==
-5*

Substituting in
(*"),

we see that the equation of the required plane is

or 3-r-f 4?/ 5z*=*9.

9. Show that the equations of the three planes passing through the points,

(1, 2, 4), (3, 4, 5) and perpendicular to XY, YZ, ZX planes are x+ 2/-j-l
=

;

x 22+7=0 ; y+ 2z=*6 respectively.

10. Obtain the equation of the plane through the point ( 1, 3, 2) and
perpendicular to the two planes #-f 2?/-f-2z=5 ; 3#-{-3?/-f 2z= 8.

[Ans. 2x-4y+3z+ 8= Q.

* 11. Find the equation of the plane through A ( 1, 1, 1) and 5(1, 1, 1)
and perpendicular to the plane x-{-2y+ 2z=5. [Ans. 2x+2y 32+3=0.

12. Find the equations of the two planes through the points (0, 4, 3),

(6, 4, 3) other than the plane through the origin, which cut off from the axes

intercepts whose sum is zero. (M.T.)
[Ans. 2x 37/ 6z=6 ; Qx+3y-2z=\S.

13. A variable plane is at a constant distance p from the origin and meets
the axes in A, B, C. Show that the locus of the centroid of the tetrahedron
OABC* is a;-2+ 2/-2_^2-2 == i6J9-2.

v'l'S. Systems of planes. The Equation of a plane satisfying
two conditions will involve one arbitrary constant which can be
chosen in an infinite number of ways, thus giving rise to an infinite

number of planes, called a system of planes.

The arbitrary constant which is different for different members
of the system is called a parameter.

Similarly the equation of a plane satisfying one condition will

involve two parameters.

The following are the equations of a few systems of planes
involving one or two arbitrary constants.



1. The equation

represents a system of planes parallel to the plane
.

k being the parameter. ( 2*33, p. 21).

2. The equation

ax-}-by-\-cz-{-k Q

represents a system of planes perpendicular to the line with direction

ratios a, b, c
; k being the parameter. (2*31, >. 21).

3. The equation

(ax + by+cz+ty+kfax-}- 6Jy+ c12+^1 )
=

...(1)

represents a system of planes passing through the line of intersection

of the planes

ax+bycz+d^Q, ...(2)

Oia?+6 Jy+c12+d!l=0 ; ...(3)

k being the parameter, for

(i) the equation, being of the first degree in x, y, z, represents a

plane ;

(ii) it is evidently satisfied by the co-ordinates of the points which

satisfy (2) and (3), whatever value k may have.

4. The system of planes passing through the point (xly y^ zj is

where the required two parameters are the two ratios of the co -effi-

cients A, B, C
; for, the equation is of the first degree and is clearly

satisfied by the point (xl3 yl3 z^ 3
whatever be the values of the ratios

of the co -efficients.

/ Exercises

k
*

V/i, Find the equation of the plane passing through the intersection of tJie

planes

a+2/+z= 6 and 2a^f- 3i/-f42+5=0
and the point (1, 1, 1).

The plane
a+2/+z-6+ fc(2z+3*/+42+5) = 0, ...(i)

passes through the intersection of the given planes for nil values of k.

It will pass through (1, 1, 1) if

Putting A;=3/1 4 in (i), we obtain

2(Xr-f23#-f26z 69=0,
which is the required equation of the plane.

/2 Obtain the equation of the plane through the intersection of the planes

#+2#-f3z+4=0 and4^+3?/-f2z+ l=0
and the origin. [Ans. 3#-f2#-fs=0.

*+ 3. Find the equation of the plane passing through the line of intersection of
the planes

2# y=0 and 32 y=Q
and perpendicular to the plane

y 3z=8.
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The plane
2x-y+k(3zy) = 0, i.e., 2x- (1 -%+3fc2=0,

passes througli the line of intersection of the given planes whatever 1c may be.
It will be perpendicular to

if 2-4-(l+fc)'5+3fc( 3)=0, i.e.

*--*-A,- u .

Thus the required equation is

i.e., 28.c 17?/-f 9z = 0.

/ 4. Find the equation of the piano which is perpendicular to the plane

and which contains the line of intersection of the planes
x+2</+3z-4= 0, 2.r-fy-2+6=0. (L.tf. 1934)

[An*. 5U-+ 15?/-5(b+ 173= 0.

^5. The plane x 2*/-f 32=0 is rotated through a right angle about its line

of intersection with the plane 2.t'+ 3# 4^ 5=0, find the equation of the plane in

its new position. [Ans. 22x + 5y 4,235= 0.

6. Find the equation of the plane through the intersection, of the planes

and perpendicular to the XY plane.
s [Ans. x(aci

,

"^ 7. Obtain the equation of the plane through the point (x^, y-, z^) and parallel
to the plane ax+by+cz-\-d=Q.

The plane

is parallel to the given plane for all values of k.

It will pass through (x lt ylt z{), if

Subtracting, wo get

a(

which is the required equation.
/ 8. Find the equation of the plane through the point (2, 3, 4) and parallel

to the plane 5x 6?/-f 7z=3. [Ans. 5x6y+lz= 2Q.

9. Find the equation of the plane that passes through (3, 3, 1) and is

normal to the line joining the points (3, 4, 1) and (2, 1, 6).

[Ans. x+5y 6z-f-19=0.

10. Obtain the equation of the plane that bisects the line joining (1, 2, 3),

(3, 4, 5), at right angles.
*S 11. aj+2y-2-3= 0, 3.r-2/ + 2z-l=0,

2x2y+ 3z 2=0, x t/-j-2-}-l
=

are four planes. Show tJiat the line of intersection of the first two planes is coplanar
with the line of intersection of the latter two and find the equation of the plane
containing the two lines.

The planes

*+2y-2-3+A;(3*-2/+22-l) =
and 2*-22/+32-2+A/(a;-2/-f-z-f-l)==0

and

separately contain the two lines. The two lines will be, coplanar if, for some
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?

values of k and A;', they become identical. This requires

2-fc _-\+2k_-3-k

0. ...(m)
(i) and (M) give

fc-3/2, fc'= 6,

and fc=2. fc'=--2.

Of these two sets of valuer, fc= 3/2 and fc'= 5 satisfy (Hi) also. Thus
the two planes become identical for k= 3/2 and 7c'= 5. Hence the two lines

are coplanar and the equation of the plane containing them is

12. Show that the line of intersection of the planes

7JJ-4J/4- 7^+16= 0, 4s4-3y-224- 3=0
is coplanar with the lino of intersection of

x 3^/4- 43 + 6= 0, a 3/4-24-1
= 0.

Obtain the equation of the plane through both.

[A ns. 3.r ly+3z+ 13=0.

13. A variable plane passes through a fixed point (a, 6, c) and meets
the co-ordinate axes in A, B, C. Show that the locus of the point common to
the planes through A, B, C parallel to the co-ordinate planes is

\ 2*6 Two sides of a plane. Two points

-4(2*1, y\, *l)> #(*2 2/2, 22

lie, on the same or different sides of the plane
ax + by4-cz~\-d=Q,

according as the expressions

are of the same or different signs.

Let the line AB meet the given plane in a point P and let P
divide AB in the ratio r : 1 so that r is positive or negative according
as P divides AB internally or externally, i.e., according as A and B
lie on the opposite or the same side of the plane.

Since the point P whose co-ordinates are

L+ft ?^5A
r-Li

'

r+ l)V r+1
'

r+ 1 r+ l

lies on the given plane, therefore

or

This shows that r is negative or positive according as

axL+ byi + czi+ d, ax2+ 6t/2+ cz2+d
are of the same or different signs.

Thus the theorem is proved.
Ex. Show that the origin and the point (2, 4, 3) lie on different sides of

the plane o?-f3y 5^4-7 0.



2S ANALYTICAL SOLtD

2*7. Length of the perpendicular from a point to a plane. To

find the perpendicular distance of the point

P(*i* 2/i> *i)

from the plane

lx+my-\-nz=p.

The equation of the plane through P(xlt yl9 z) parallel to the

given plane is

fo-f wy + wz=jp jf

where . lx1 -{-myL -{-nz1 pi.

Let OKK' be the perpendicular from the origin to the two

parallel planes meeting them in K and K' so that

OK=pa,n<10K'=p ]L
.

Draw PL _L given plane.

Then LP=OK'-OK

Cor. To find the length of the perpendicular from (xlt T/I, zj to the

plane ax+by+cz+dO.
The normal form of the given equation of the plane being

_o_ , __
6 _ ,

c
i _ ^ _n

VS*1
"*

VSo^ VS*'* V2a'~
the required length of the perpendicular is

aj^by^+^Zi-fd
V(a3+ b2

-fc
2
)

'

Thus the length of the perpendicular from (xl} yl9 z^) to the plane
ax -\-by-{-cz -\-d~Q

is obtained by substituting

x
i> yi, 2i,for x, y, z,

respectively in the expression,

a

and dividing the same by

Exercises

/I. Find the distances of the points (2, 3, 4) and (1, 1, 4) from the plane
0. [Ana. 1 ; 16/7.

^2. Show that the distance between the parallel planes
2x 2^/+2-f-3=0 and 4# 4y4-2z-f 5=

is 1/6.

(The distance between two parallel planes is the distance of any point on
one from the other) .

3. Find the locus of the point whose distance from the origin is three times
its distance from the plane 2# ^-f2z=3.

[Ana. 3a;H3*2
~4o^+8a?z-42/z-12#-f6t/-- 12,2-4-9=0.
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4. Show that (1/8, 1/8, 1/8) is in the centre of the tetrahedron formed by
the four planes #=0, 7/

= 0, z= 0, x+2y+ 2z=l.

5. Sum of the distances of any number of fixed points from a variable

plane is zero
;
show that the plane passes through a fixed point.

6. A variable plane which remains at a constant distance, 3p, from the

origin cuts the co-ordinate axes at A, B, C. Show that the locus of centroid of
the triangle ABC is

2*71. Bisectors of angles between two planes. To find the equa-
tions of the bisectors of the angles between the planes

If (x, y, z) be any point on any one of the planes bisecting the

angles between the planes, then the perpendiculars from this point
to the two planes must be equal (in magnitude).
Hence

are the equations of the two bisecting planes.

Of these two bisecting planes, one bisects the acute and the other

the obtuse angle between the given planes.

The bisector of the acute angle makes with either of the planes
an angle which is less than 45 and the bisector of the obtuse angle
makes with either of them an angle which is greater than 45. This

gives a test for determining which angle, acute or obtuse, each

bisecting plane bisects.

Ex. Find the equations of the plan ex bisecting the angles between the planes

a-+2// + 2^-3 = 0, ...(t)

3.r-Ky-hl:h+ l=0. ...(it)

and specify the one which bisects the acute angle.

The equations of the two bisecting planes are

.r -}- 27/4-23 3__ J

or 2x+ 7.?/-5;-2U-0, ...(in)

and 1 l.r -H9//+ 31:;- 18= 0.
...(it-)

If 8 be the angle between the planes (?) and (Hi), we have

_
so that tan 8= \/14/"2, which being greater than 1, we see that is greater than
45. Hence (Hi) bisects the obtuse angle, and consequently, (V) bisects the
acute angle.

Note. Sometimes wo distinguish between the two bisecting planes by
finding that plane which bisects the angle between the given planes containing
the origin. To do this, wo express the equations of the given planes so that d
and di are positive. Consider the equation

<1l

2
)

"' ( }

Since, by virtue of the equality (A), the expressions ax -\-by-\-cz-\-d and
a 1.t;+61?/-f CiS-l-f/x must ha\e the same sign (denominators being both positive),
the points (.r, y t z) on the locus lie on the origin or the non-origin side of both
the planes, i.e., the points on the locus lie in the angle between the planes

containing the origin. Thus the equation (A) represents the plane bisecting
that angle between the planes which contains the origin.
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ax 4- by -\-cz-\-d~

Similarly,

represents the plane bisecting the other angle between the given planes.

Exercises

1. Find the bisector of the acute nnglc between the planes

2*-2/+ 22-f 3= 0, 3.r-2?H 6:+ 8= 0.

[Ans.

2. Show that the plane

bisects the obtuse angle between the planes

33+ 4y_r>3+ l=0, ff.e+]2y 13* = 0.

3. Find the bisector of that angle between the planes

which contains the origin. [Ans. G7u: 162#-|-47z-f 44= 0.

^2*8. Joint equation of two planes. To find the condition so that

the homogeneous second degree equation

ax>+by*+cz*+2fyz+2gzx+2hxy=0 ...(I)

may represent two planes.

Let the two planes represented by (1) be

Ix-\-rny -\-nz- 0, and I'x + m'y-^-n'z 0.

There cannot appear constant terms in the equations of the

planes, for, otherwise, their joint equation will not be homogeneous.
We have

ax*+ by*+ cz*+ 2fyz+ 2gzx+ 2hxy~(lx+my+ nz) (I'x+ m'y+n'z)

so that comparing co-efficients, we obtain

a= ll', b mm') c - nn

and 2/ m'n -f mri
'

3 2g In + I'n, 2h= Im + I'm.

In order to find the required condition, we have to eliminate

I, ra, n
;
V m'

9 n' from the above six relations and this can be easily
effected as follows. We have

z, r, o

ra, ra',

r&, ft',

i', z, o

ra', ra,

ri, n,

Zr -f Z'Z, l'm+ lm', l'n+ In'

Im +Z'ra, ram' + m'm, m'n-{-mn'

n'l -\-nl' } rim+nm', rin+nri

_ Q

g

? />

=S(abc+2fgh-af*~bg*-ch
2
)
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Hence

is the required condition.

Cor. Angle between planes. If Q be the angle between the

planes represented by (1), we have

tan e=
IV -\-mrn' -\-nri

^ 2V (/HV+W-ab-bc-ca)~~
a+b+c

The planes will be at right angles if a+b + c=0, for then is 90.

Ex. Show that the following equations represent pairs of planes and also
find the angles between each pair.

(?) 12#2_2#2_G-2_2.r?/-f 7?/z+6za;=0. [Ans. cos~1
(4/21).

(n) 2^2-2^H4*H^~+%~+^?/=0. [vln*. cos~i(4/9).

2*9. Orthogonal projection on a plane. Determination of Plane
Areas. Def. The foot of the perpendicular drawn from any point
P to a given plane, TT, is called the orthogonal projection of the point P
on the plane TT.

This plane, TC, is called the plane of the projection.

Thus (Fig. 1, p. 1) L, M ,
N are respectively the orthogonal

projections of the point P on. the YZ, ZX and XY planes.

The projection of a curve on the plane of projection is the locus

of the projection on the plane of any point on the curve.

The projection of the area enclosed by a plane curve is the area

enclosed by the projection of the curve on the plane of projection.

In particular, the projection of a straight line is the locus of the

foot of the perpendicular drawn from any point on it to the plane of

the projection.

2*91. The following simple results of Pure solid geometry are

assumed without proof :

(1) The projection of a straight line is a straight line.

(2^ If a line AB in a plane, be perpendicular to the line of inter-

section of this plane with the plane of projection, then the length of

its projection is AB cos 6 ;
Q being the angle between the two planes.

In case AB is parallel to the plane of projection, then the length
of the projection is the same as that of AB.

(3) The projection of the area, A, enclosed by any curve in a

plane is A cos
; being the angle between the plane of the area

and the plane of projection.

Theorem. // A X9 Ay ,
A z be the areas of the projections of an area,

A, on the three co-ordinate planes, then

Let /, m, n be the direction cosines of the normal to the plane of

the area A.
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Since I is the cosine of the angle between the YZ plane and the

plane of the area A, therefore

Similarly, A y m.A,
and Azn.A.
Hence Ax*+Ay*+A z

2=A2
(l

2+m*+n*)=A*.
Exercises

Find the area of the triangle whose vertices are the points

(1, 2, 3), (-2, 1, -4), (3, 4, -2). (D.U. Hons., 1947}

To find the area A of this triangle, we find tho areas A x ,
A V ,

A
z

projection of tho same ori the co-ordinate planes.
The vertices of the projection of tho triangle on the XY plane are

(1,2,0), (-2, 1,0), (3,4,0),

,

Vjl.

of the

so that

Similarly,

==2.

29

and

Therefore, the area of the triangle

'*+

1 =_.
1

2. Find the areas of the triangles whose vertices are tho points

(i) (a, 0, 0), (0, 6, 0), (0, 0, c).

(ii) (xl9 yl9 2j), (^2 , ?/2 ,
c 2 ), (.r3 , 7/3, z3 ).

3. From a point P(x
f

, y
f

, c'), a plane is drawn at right angles to OP to
meet the co-ordinate axes at A, B, C ; prove that the area of the triangle ABC
is r^lZx'y'z', where r is the measure of OP.

2*10. Volume of a tetrahedron. To find the volume of a tetrahedron

in terms of the co-ordinates

(#1> 2/l Zl)> (*2 2/2, Z2)> (#3> 2/3, *3) (*4 2/4
24)

o/ ^5 vertices A, B, C, D.

Let F be the volume of the tetrahedron ABCD.

\ P Then

where p is the length of the perpendicular
AL from any vertex A to the opposite face

BCD ;
and /\ is the area of the triangle

Fig. 13
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The equation of the plane BCD is

= 0.

..(it)

^/4 , ^ 4 ,
^4 ,

* .

If A*, Ay Az be the areas of the projections of A
XY planes respectively, we obtain

2/2,

2/3,

on the YZ

1

1

#4, 2/4,

2/2,

2/3,
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=*A ?=*

Therefore, denominator of p=[
From (i) and (if), we see that the required volume

> yi, *i> i

11 ? i
> y%> zi> x

, 2/4, 24, 1

Exercises

1. The vertices of a tetrahedron are (0, 1, 2), (3, 0, 1), (4, 3, 6), (2, 3, 2) ;

show that its volume is 6.

2. A, B, C are three fixed points and a variable point P moves so that

the volume of the tetrahedron PABC is constant
;
show that the locus of the

point P is a plane paralKl to the plane ABC.

3. A variable plane makes with the co-ordinate planes a tetrahedron of

constant volume 64fc3 . Find

(i) the locus of the centroid of the tetrahedron. [Ans. xyz*=6k*.

(ii) the locus of the foot of the perpendicular from the origin to the

plane. [Ans. (a;
2

-t-2/
a
-|-z

2
)
3 -=384A:3.r?/z.

4. Find the volume of the tetrahedron in terms of three edges which meet in a

point and of the angles ichich they make with each other. (P.U. 1939)

Let OABC be a tetrahedron.

Let

CM=a, OB=b, OC=c.
Lot

Fig. 14

and Z_AOB=v.
We take as origin and any system

of three mutually perpendicular lines

through O as co-ordinate axes. Let the
* direction cosines of OA, OB, OC be

Therefore, the co-ordinates of A, J5, C are

(l\a, m^fiy ^i^O (^2^> ^tjby n2b) j (^jC, w3c, ;

Therefore, the volume of the tetrahedron OABC

0, 0, 0, 1

(1-61)

Now

7?? 3c, w3c,
, n3c

a6c

6

ni

n2

m3 , n3



EXERCISES

1, cosv, cos(i

cosv, 1, cosX

cos V, COS X, 1

Therefore, the volume of the tetrahedron OABO

1, cos v, cos \L

a&c

6
COS V, 1, COS X

COS
[JL,

COS X, 1

5. Show that the volume of the tetrahedron, the equations of whose faces are

V=0,r-(l,2,3.4)

where A w the determinant

j^ D%, .D3 , Z>4 are tJie co-factors of d, d%, <73 , d respectively in the determi-

nant A-
Let (a?!, yi, z{) be the point of intersection of the three planes

arx-{-bry-\-crz-\-dr=Q, r= (2, 3, 4),

so that
(ar lf yi, z) is one of the vertices of the tetrahedron.

Let (#2, 2/2 ,
z2 ), (^3,2/3,23), (#4> 2/4> 24) be the other vertices, similarly

obtained.

\Ve write

i.e.,

Also, we have

Eliminating xi9 2/1, ! from (1), (2), (3), (4), we have

i+ (<
71
- 7

...(2)

...(3)

...(4)

#3
*
3 , c3 ,

04, 64* C4>

0^2* 62, C2

a3> 63, C3

Cf4 , 64,
C4

= 0,

=0,
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Similarly

&

a3xt+ b3^3+ c3 z3+d3=Jc3=-^-

,, _ A

We, now, have

C2 (

.
C3> (

, 2/1, -1, k l9 0,0,0

0, A- 2 , 0,

0, 0, fr3 ,0

0, 0, 0, *4

Therefore the required volume = - 3

6. Find the volume of the tetrahedron formed by planes whose equations

2/4-2=0, z4-#=0, ^4-?/r=0 and x+y+z= 1. (P. C7. 79^2)

f^?i*. 2/3.



CHAPTER III

RIGHT LINE

3*1. Equations of a line. A line may be determined as the

intersection of any two planes through it.

Now, if

ax+by -\-cz-\~d ^0 and a ix+ ^j^+Ci.
<2+^1

=
be the equations of any two planes through the given line, then these

two equations, taken together, give the equations of the line. This
follows from the fact that any point on the line lies on both these

planes and, therefore, its co-ordinates satisfy both the equations and

conversely, any point whose co-ordinates satisfy the two equations
lies on both these planes, and, therefore, on the line.

Thus, a straight line in space is represented by two equations of the

first degree in x, y, z.

Of course any given line can be represented by different pairs of

first degree equations, for we may take any pair of planes through
the line and the equations of the same will constitute the equations
of the line.

In particular, as the .X-axis is the intersection of the XZ and
XY planes, its equations are ?/~0, z= taken together. Similarly
the equations of the }

r
-axis are # 0, z and of the Z-axis are

x=Q, y=0.
. Ex. Find the intersection of the line

with the plane
0. [Ana. (2,5,1)

~/3*ll. Symmetrical form of the equations of a line. To find the

equations^ of the line passing through a given point A(xly yl9 Zj), and

having direction cosines, I, m, n.

Let P (r, y, z) be any point on the line and let AP=r.

Projecting AP on the co-ordinate axes, we obtain

x Xi=lr, yyl=mr 9
z Zinr ...()

so that for all points (#, y, z) on the given line,

I m
Thus

are the two required equations of the line.

Clearly, the equations (ii) of the line are not altered if we replace
the direction cosines I, m> n by three numbers proportional to them.
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so that it suffices to use direction ratios in place of direction cosines

while writing down the equations of a line.

Cor. From the relations (i), we have

x=xi +lr, y^yi+mr, z=z1 +nr,
which are the general co-ordinates of any point on the line in terms

of the parameter r.

Any value of r will give some point on the line and any point
on the line arises from some value of r.

It should be noted, that it is only when I, m, n are the actual

direction cosines that r gives the distance between the points

(*a> 2/i> i) and (x, y, 2).

Note 1. The symmetrical form (ii) of the equations of a straight line

proves useful when we are concerned with the direction cosines of the line or

when wo wish to obtain the genoral co-ordinates of any point on the line in

terms of a parameter.
Note 2. The equation

I,

'

m
of first degree, being froo of z, represents a plane through the line drawn

perpendicular of the XO Y plane. Similar statements may be made about the

equations

__ , =
in n n I

The equations -i-i, -i-i
represent a pair of planes through the given line.

^3*12. Line through two points. To find the equations of the line

through the two points

Since

3*8 ~*1, 2/2-2/1, Z2 ~2l
are proportional to the direction cosines of the line, the required

equations are

x2 Xi y2 yj za Zi

Note* Results obtained in Cor. 2 page 6 may be regarded as the para-
metric equations of the line through the two points (arj, t/i, 2j) and (x%, y%, z%)\ X

being the parameter.
Exercises

/I. Find k so that the lines

x I y 2__z 3____
x \_jy-5 26

may be perpendicular to each other. [Ans. 10/7.

2. Find two points on the line

z-2 y+ 3 z 4-6

i~^-~ -2"
** ~2~

on either side of (2, 3, 5) and at a distance 3 from it.

[Ans. (3,-5,-3);(l f -l,-7).



5. Find the co-ordinates of the point of intersection of the line

x+l ?/-f3 22
1

~~
3

~~
-2

with the plane

Let

^^.~T~ 3 ~-2~~'
so that the point

r-l,3r-3, -2r+2
lies on the given line for all values of r.

If it also lies on the given plane, we have

3r 3-fl2r 12- lOr-f- 10=^5 or r=2.

Hence the required point of intersection is (1, 3, 2).

Its distance from the point ( 1, 3, 2) is \/l5(Fwhich is different from
the value 2 of r. (Why ?)

X 4. Find the point whore the line joining (2, 3, 1), (3, 4, 5) cuts the

plane 2jc+y-\-z= 7. [Ans. (1, 2, 7).

'5. Find the distance of the point (1, 5, 10) from the point of inter-

section of the line
(.r 2)

= J(y-f I)
=

j

1
2"(2 2) and the plane

z-t/+ z= 5. (P.U. 1934) [An*. 13.

x 6. Find the distance of the point (3, 4, 5) from the plane

measured along a line with direction cosines proportional to (2, 1, 2).
/ [Ans. 60/7.

>/ 7. Find the image of the point P (/, 3, 4) in the plane

If two points P, Q be euch that the line is bisected perpendicularly by a

plane, then either of the points is the image of the other in the plane.

The line through P perpendicular to the given ^

plane is

_____ ^
so that the co-ordinates of Q are of the form

(2r+l, _ r+3,r+ 4)

Making use of the fact that the mid point

of PQ lies on the given plane, we see that Q
r~- 2

Fig. 15
so that the image of P is (3, 5, 2).

'8. Find the equations to the line through ( 1, 3, 2) and perpendicular to
the plane z-f 2y+ 22=3, the length of the perpendicular and the co-ordinates of
its foot. [Ans. 2 ; (5/3, 5/3, 2/3).

9. Find the co-ordinates of the foot of the perpendicular drawn from the

origin to the plane 2x-f3i/~ 4z-f-l = ; also find the co-ordinates of the point
which is the image of the origin in the plane. (P.U. Supp.)

[Ans. (-2/29, -3/29, 4/29) ; (-4/29, -6/29, 8/29).

10. Find the equations to the line through (#1, ylf zj) perpendicular to
the plane ax+by-\-cz+d~Q and the co-ordinates of its foot. Deduce the

expression for the perpendicular distance of the given point from the given
plane.

[Ana. (ar+xlt 6r+j/1 , cr-f zj) where r= (ax1 -f-62/ 14-cz1 +d)/(a
2
-f&Hc2

).
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11. Show that the line

i(.t-7) =
intersects the planes

in the same point and deduce that the line is co-planar with the line of inter-
section of the planes.

/12. Show that the line

(.r-3)/3 = (2
intersects the lino

.r+2y+ 3;= 0,

Find their point of intersection. [Ans. (9, 6, 1).

13. Show that the equations to the straight line through (a, 6, c) parallel
to the X-axis are

(.e )/!
=

(?/ &)/0= (z c)/0.

14. Show that

(r-)//=(y-&)/i=Cz-c)/0
is a straight lino perpendicular to the Z-axis.

15. Show that the straight line

Cr-a)/J=(^-p)/M--.(S-r)/
meets the lotus of the equation

a,2l-^+ c~ 2-l.
in two points.

Deduce the conditions for the two points to coincide at (a, (3,

[Ans.

16. P is any point on the plane lx-\-'iny-\-nz=p and a |.oint Q is taken on
the line OP such that OP.OQ=p* ;

show that the locus of Q is

17. A variable plane makes intercepts on the co-ordinate axes the sum of
whose squares is constant and equal to fc

2
. Find the locus of the foot of the

perpendicular from the origin to the plane.
[Ans. Cr-2 + 2/-

2+ 2- 2
)(;r2+2/

2+z2
)
2= fr 2 .

18. Show that the equations of the lines bisecting the angles between the
lines

z-r> a; 3_y+ 4 = s 6

^-2~' ~~4-~-12 "~F"

g 5

"38" 49" ~^\l' ~lT ~2F -"36"*

3*13. It has been seen in 3*11, 3'12, that the equations of a

straight line which we generally employ are of two forms.

One is the symmetrical form deduced from the consideration

that a straight line is completely determined when we know its

direction and the co-ordinates of any one point on it, or when any
two points on the line are given.

The second form is unsymmetrical and is deduced from the con-

sideration that a straight line is the locus of points common to any
two planes through it.

In the next section it will be seen how one form of equations can
be transformed into the other.

3*14. Transformation from unsymmetrical to the symmetrical
form. To transform the equations

of a line to the symmetrical form.
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To transform these to the symmetrical form, we require

(i) the direction ratios of the line, and

(ii) the co-ordinates of any one point on it.

Let Z, m, n be the direction ratios of the line. Since the line

lies in both the planes

ax-\~by-\- cz-}-d Q and a^+ ^j^+CiZ +d^O,
it is perpendicular to the normals to both of them. As the direction

ratios of the normals to the two planes are

a, b, c
;
ai9 61} c^

we have
al -\-bm-\- en= 0,

< __ m _ n

bc^ b^c caic^a ab^ a^b

Now, we require the co-ordinates of any one point on the line

and there is an infinite number of points from which to choose. We,
for the sake of convenience, find the point of intersection of the line

with the plane 2=0. This point which is given by the equations

is

( ~r~
}C

j-
> ~i i!>

\
\ao L

-- a^b ab^ a^b /

Thus, in the symmetrical form, the equations of the given line

are

bci biC c&i Cjd abi a^b

Exercises

1. Find, in a symmetrical form, the equations of the line

and find its direction cosines. (P.U. 1937)
r. a:4-l/3 t/42/3 2121
Ans. - -

2. Obtain the symmetrical form of the equations of the line

x-2y4-32=4, 2^-32/4-42 = 5.

[Ans. (j?4-2)

3, Find out the points of intersection of the line

with the X Y and YZ planes, and hence put down the symmetrical form of its

equations. [Ans. 0*0/2= (y 4)/7= (2 5)/5.

4. Find the equation of the plane through the point (I, 1, 1) and per-
r endicular to the line

[Ans. a:-6i/ I

5. Find the equations of the line through the point (1, 2, 4) parallel to

the line

/ 2=4, x-2y 22=5.
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6. JFind the angle between the lines in which the planes

3x-7y--5z=l t 5#-13#+3z-f2=0
cut the plane

8a?-lly+20 [Ana. 90

7. Find the angle between the lines

/ 2z 3,

8z. (Z/.C7.) [^r?5. 90,

8. Show that the condition for the lines

xaz-}-b t y
to Le perpendicular is

9. What are the symmetrical forms of the equations of the lines

(t) 2/=6, z=o [Ana. xj\
= (y

() x a,by-\-czd [Ans. (ca)/Q=(y-

3*2. To find the angle, between

., T . # #, y y\ zz l
the line _

]= " ^ 1:^ ----l
,

^ m ?^

the plane ax

Angle beween a line and a pl.-me is the complement of the angle
between the line and the noimal to the plane.

Since the direction cosines of the normal to the given plane and
of the given line are proportional to a, 6, c and I, m y

n respectively,
we have

. al+bm+cn

where 6 is the required angle.

The straight line is parallel to the plane, if =
i.e., al+bm + cn=0,
which is also evident from the fact that if a line be parallel to a plane,
it is perpendicular to the normal to it.

Exercises

1. Show that the line |{^ 2)= |(?/~3)= J(2 4) is parallel to the plane

2. Find the equations of the line through the point (2, 3, 4), and parallel
to the planes 2^-h3y-f 4z = 5 and 3x+ 4:y-\-5z= 6.

[Ans. (x+2)= -i(2/-3)= (2-4).

[Hint. The direction ratios, l
t m, n, of the lino arc given by the relations

3. Find the equation of the piano through the points

(1,0, -1), (3,2,2)

and parallel to the line

(z-l)= (l-t/)/2=(z-2)/3. [Ans. 4x-y-2z= 6,

4* Show that the equation of tho plane parallel to the join of

(3,2, -5) and(0, -4, -11)
and passing through tho points

(-2, 1, -3) and (4,3, 3)
is
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5. Find tho equation of tho plane containing the line

'2x5y+ 22= 6, 2*+ 3t/ z=5

and parallel to the line x= y/6= 2/7. [Ans. Qx-\~y 16=0.

6. Prove that the equation of the plane through the line

Wj=tfi#-J-
and parallel to the line

*

is

(D.U. Hons. 1957)

7. Find the equation of the plane through the point (/, g, h t ) and
parallel to the lines x/lr=y/w r =z/nr ; rl, 2. [4nj. 2(# /Xminj W2Wi)s=0.

8. Find the equations of the two planes through the origin which are

parallel to the lino

and distant 5/3 from it ; show that the two planes are perpendicular.
[Ans. 2x-f 2t/+z=0, x 2t/+2z=0.

J'3. Conditions for a line to lie in a plane. To find the conditions

that the line

I m n

may lie in the plane

The line would lie in the given plane, if, and only if, the

co-ordinates

of any point on the line satisfy the equation of the plane for all values

of r so that

rial -\-brn -{- en) f
is an identity.

This gives
al

which are the required two conditions.

These conditions lead to the geometrical facts that a line will lie

in a given plane, if

(i) the normal to the plane is perpendicular to the line,

and (t?) any one point on the line lies in the plane.

Cor. General equation of the plane containing the line

I m n

is A(x-x1)+B(y~y1 ) f 0(3-^) -0,
where

Al+Bm+Cn=Q. ..(1)

Here, A : B : C are the parameters subjected to the condition (1).

Exercises

1. Show that the lino ic-}-10=(8 ,y)/2=z lies in the plane
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and the line $(a? 2)= (y+2)= J(2 3) in the piano

2. Find the equation to the plane through the point (x^ y^. Zi) and through
the line

(*-a)ll=*(y-b)lm= (z-c)ln. (P.U. 1939)

The general equation of the plane containing the given line is

A(xa)+B(yb)+C(ze)= Q,
*

...()

where A, B, C are any numbers subjected to the condition

The plane (t) will pass through (xi, y^ 9 sj), if

Eliminating A, B, C from (i) 9 (ii) and (m), we have

xa, yb, zc

w,

as the required equation.

3. Find the equation of the plane containing tho line

and the point (0, 0, 0). [Ans. 3j;-|-2//-f 0^-12= 0.

4. ^nfi^y-yi ^-nii and za ss= y_-_ya= 2;

~-*,
ll ?HI n lj wa n a

are two straight lines. Find the equation of tho plane containing the first lino

and parallel to tho second. [Ans. 2(---2:i)(m'i
r*2~~~m2nl)~0'

5. Show that the equation of the plane through tho line

xl y+ 6 2 _|_i #_2 ?/-! z+ 4.^^ and parallel to -
2 =^3=-^

is 26.c lly 172 109=0 and show that the point (2, 1, 4) lies on it. What is

the geometrical relation between tho two lines and the plane ?

6. Find the equation of the plane containing the line

and the point (0, 7, 7) and show that tho lino x J(7 1/)= J(z-}-7) lies in tho
same plane. [Ann. x \- y+z= Q.

7. Find the equation of tho piano which contains the lino

(*-l)/2 = -y-l= (3-3)/4
and is perpendicular to tho plane

a+2^/+2= 12.

Deduce the direction cosines of the projection of the given line on the given
plane. (L.U.)

[Ans. 9x 2y5z+4=0 ; 4fc, Ik, 10A% where Jt= ]/v/(165).

8* Find the equations, in the symmetrical form, of the projection of the
line

i(*+
on the plane

a722/

[Ans. (x- J)/10 - (y+ 15/8)/29= (2
-

0)/16.

3*4. Coplanar Lines. Condition for the coplanarity of lines.

To find the condition that the two given straight lines should intersect 9

i.e., be coplanar.
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Let the given straight lines be

45

T~ w/ TO

' " ^
If the lines intersect, they must lie in a plane. Equation of any

plane containing the line (1) is

with the condition

The plane (i) will contain the line (2), if the point (x2) y2 ,
z2 )

lies upon it and the line is perpendicular to the normal to it. ( 3*3).

This requires

Eliminating A, B, C from (ii), (Hi), (iv), we get

=0, -(A)

which is the required condition for the lines to intersect. Again
eliminating A, B, C from (i), (ii), (iv) we get

h, <i> ni

72 ,

/m>2 ,
n2

which is the equation of the plane containing the two lines, in case

they intersect.

Second Method. The condition for intersection may also be
obtained as follows :

are the general co-ordinates of the points on the lines (1) and (2)

respectively.

In case the lines intersect, these points should coincide for some
values of rl and r2 . This requires

(ffi #2) f ^1-^2 ='0,

=0.

Eliminating rls r2 ,
we have

which is the same condition as (A).

Tlo
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Note 1. In general, the equation

x-xlt y-yi, z-z

represents the plane through (1) and parallel to (2), and the equation

r x2 , y 7/2> z Z2

12, 7??2 ^2

represents tho plane through (2) and parallel to (1).

In case the lines are coplanar, the condition (A) shows that tho point

(#2 2/2 ^2) nes on the n*

rst plane and the point (xlt ?/ lf 2^ on the second. These
two planes are then identical and contain both the intersecting lines.

Thus the equation of a plane containing two intersecting line 9 is obtained

by finding the plane through one line and parallel to tho other or, through one
line and any point on the other.

Note 2. Two lines will intersect if, and only if, there exists a point whoso
co-ordinates satisfy the four equations, two of each line. But we know that
three unknowns can be determined so as to satisfy three equations. Thus for

intersection, we require that the four equations should be consistent among
themselves, i.e., the values of the unknowns x, y, z, as obtained from any three

equations, should satisfy the fourth also. The condition of consistency of four

equations containing three unknowns is obtained by eliminating the unknowns.
It is sometimes comparatively more convenient to follow this method to obtain
the condition of intersection or to prove the fact of intersection of two lines.

Note 3. The condition for the lines, whose equations, given in tho unsym-
metrical form, are

to be coplanar, i.e., to intersect, as obtained by eliminating x, y, z from these

equations, is

2, c2 , d2

4 64> C4>

In case, this condition is satisfied, the co-ordinates of the point of intersec-

tion are obtained by solving any three of tho four equations simultaneously.

1. Prove that the lines

Examples

X-I
1

~~
-4"" 7

'

2
~~

-3"" 8

intersect and find the co-ordinates of their point of intersection.

Now,

(r+4, -4r~3, 7r~l) and (2r'+ l, -3/-1, 8/-10)

are the general co-ordinates of points on the two lines respectively.
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They will intersect if the three equations
r-2r'+ 3=0, ... (i)

4r-3r'+2= 0, ... (ii)

7r-8r'+ 9=0, .. (m)

are simultaneously true.

(a) and (ii) give r=l, r'=2 which also, clearly, satisfy (m).
Hence the lines intersect and their point of intersection obtained by
putting r=l, or r'= 2 is (5, 7, 6).

Note. This equation can also be solved by first finding the point

satisfying three equations

. . .

I -4' _4 7
'
"

2 -3'

and then showing that the same point also satisfies the equation

_
~-3

2. Show that the lines

s+j^y+5^ 7

2" 3 r3
'

4
"

5
"

f

ar<? coplanar and find the equation of the plane containing them.

The equation of the plane containing the first line and parallel
to the second is

-5, Z /

3, -3 =
4, 5, -1

or 6# 5y z=0.

which is clearly satisfied by the point ( 1, 1, I), a point on the

second line. Hence this plane contains also the second line. Thus
the two lines are coplanar and the equation of the plane containing
them is

3. Show that the lines

#+f>_ y f 4_z - 7

3x f 27/+Z 2=0*=# 3/f2z 13

are coplanar and find the equation to the plane in ivhich they lie.

The general equation of the plane through the second line is

or

This will be parallel to the first lino

if

3(3+4) + (2-3t)-2(l+2fc)^0, i.e., 4=J.
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Hence the equation of the plane containing the second line and

parallel to the first is

which clearly passes through the point ( 5, 4, 7) and so contains

also the first line.

Thus the two lines are coplanar and lie in the plane

21a;--19?/+22z-125=0.

Exercises

1. Show that the linos

4z 4

are coplanar. Find also the co-ordmates of their point of intersect ion and the

equation of the plane m which they ho.

[Ans. (2, 4, -3) ;
45r 17i/-f-25z+ 53= C.

2. Prove that the linos

- _

2 3
"

8
"

'

~I - 1 1

intersect. Find also their point of intersection and the plane through them.
[Ans. (5, 7, 6) ; lU-= 6i/+5

3. Prove that the lines

rT+ ] _ V+3_2-f 5
t

-T 2_7/ 1 ,-6
3 5" 7

; "~r~ ;f
-

5
-

interscct. Find their point of intersection and Iho plane in which thev lio.

[Ans. (I/I', -1/2, -3/2) ; a?-2

4. Show that the lines

z 5
;

are coplanar.

5. Prove that the lines

intersect and find the co-ordinates of their point of intersection.

[Ana. (3, 1, -2).
6. Prove that the lines

xci__y~-b_z-c , r, a'_yb'__zc r

17 ~'~T'
"

c"
7

~
a "~~b c

intersect and find the co-ordinates of the point of intersection and the equation
of the plane in which they he. [Ann. (a+ a'

t
b+ b' , c+c') ; ^j:(bc' 6

/

c)= 0.

7. Show that the condition that the two straight linos

x n\z+a, y= nz-\-b t
and x= in'z-\-a' ^ y=n'z-\-b

f

should intersect is

(a~-a')(n-n') = (b-b')(m-m
f

).

8* Show that the plane which contains the two parallel lines

-4*-i(y-3)= J(2-2),a?-3
= -J(2/+2)= i

is given by
llz-2/-3z= 3r>.

9. Find the equation of the piano passing through rr//=i//?n=z/7?, and

perpendicular to the plane containing

xlm=y/n=zll and ;r/=2//=z/w. (D. U. Hons. 1949}

\Ans, 2(^^)^=0.
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10. Show that the lino x+a y-\-b=z-\-c intersect the four lines

(i) #=0, ?/-fz=3a ; (M) ?y=0, z+a?=3& ; (tn) 2=0 ;

at right angles if a-f-6-f c= 0.

11. Obtain the condition for the lino

(s-a)/My-p)//*=(z-Y)/
to intersect the locus of the equations a^2

-f-6z/
2
-=l, c=

'

3*5. Number of arbitrary constants in the equations of a straight

line. To show that there are four arbitrary constants in the equations of
a straight line.

A line PQ can be regarded as the intersection of any two planes

through it. In particular, we may take the two planes perpendicular
to two of the co-ordinate planes, say, YZ and ZX planes.

The equations of the planes through PQ perpendicular to the YZ
and ZX planes are respectively of the forms

z= cy-\-d, and z= ax~\-b

which are, therefore, the equations of the line PQ and contain four

arbitrary constants a, b, c 9 d.

Hence the equations of a straight line involve four arbitrary cons-

lants as it is always possible to express them in the above form.

Note. The symmetrical form of the equations of a lino apparently involves
six constants x\, y^, z^ ; I, m, n, but they are really equivalent to four arbitrary
constants only as is shown below :

Z, m t n, which are connected by the relation / 2 -|-7/i
2
-f-n

2=l are equivalent
to two independent constants only.

Also, of the three apparently independent numbers a*j, ?/i
- 1 , only two

are independent as one of them can always be arbitrarity chosen as described
below :

A lino cannot be parallel to all the co-ordinate planes. Let the given line,
in particular, bo not parallel to the YZ piano. If, now, x^ bo assigned any
value, wo may take the point where the line meets the plane x=x at the point
(
xl>Vl> z l)-

Hence wo rrmy give to r1 any value wo please. The three numbers
#l,2/i,3i are, therefore, equivalent to two independent constants only.

The fact that the general equations of a straight line contain

four arbitrary constants may also be seen directly as follows :

&
We see that

^ipi^y-yi y^yi^-**
I m ' m n

are equivalent to

ra m ' n n

respectively, so that

I m mx^ li ny^ mz-

m 9

n m n

are the four arbitrary constants or parameters,
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3*51. Determination of lines satisfying given conditions.

We now consider the various sets of conditions which determine
a line.

We know that the equations of a straight line involve four

arbitrary constants and hence any four geometrical conditions, each

giving rise to one relation between the constants, fix a straight line.

It may be noted that the conditions for a line to intersect a

given line or be perpendicular to it separately involve one relation

between the constants and hence three more relations are required to

fix the line.

A given condition may sometimes give rise to t\\o relations

between the constants as, for instance, the condition of the line

(i) to pass through a given point.

or (ii) to have a given direction.

In such cases only two more relations will be required to fix the

straight line.

Equations of lines have already been discussed under the follow-

ing sets of conditions :

(i) passing through a given point and having a given direction
;

(ii) passing through two given points ;

(Hi) passing through a point and parallel to two given planes ;

(iv) passing through a point and perpendicular to two given
lines.

Some further sets of conditions which determine a line are given
below :

(v) passing through a given point and intersecting two given lines
;

(vi) intersecting two given lines and having a given direction
;

(vii) intersecting a given line at right angles and passing through
a given point ;

(viii) intersecting two given lines at right angles ;

(ix) intersecting a given line parallel to a given line and passing

through a given point ;

(x) passing through a given point and perpendicular to two

given lines
;

and so on.

An Important Note : //
t/ 1 ==0=i'i and ?/ v2>

be two straight lines, then the general equations of a straight line intersecting them
both are

where Xj, X2 are any two constant numbers.

The line w t -fx^j^ 0=?/2+V;2 h'es in the plane w 1+X1vi=0 which again
contains the line w 1=0=??1 .

The two lines

Wl+ AiVi=0=W2-t-Xav2 ; ^1=0=^1
are, therefore, coplanar and hence they intersect/,
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Similarly, tho same line intersects the lino ?/ 2
=0= v2 -

This conclusion will be found very helpful in what follows.

For the sake of illustration, we give below a few examples.

Examples

1. 'Find the equations of the line that intersects the lines

and passes through the point (2, 1, 1).

The line

intersects the two given lines for all values of A1} A2 .

This line will pass through the point (2, 1, 1), if

1+A^O and 1+A2 =0,

i.e., if AJ 1, A2 1.

The required equations, therefore, are

x-\-y+z= 2 and #+ 22=4.

2. Find the equations, to the line that intersects the lines

2s 3

and is parallel to the line

jx == J/ =:
Z

~T "V 3
'

The general equations of the lines intersecting the two given
lines are

which will be parallel to the given line if A
x ,

A 2 be so chosen that the

two planes representing it are separately parallel to the given line.

This requires

and (3+4Aa ) + 2(-l+5A2)+3(l-2A2 )
=

0, i.e., A2=-f
The required equations of the line, therefore, are

4^4.7i/-62 -3= 0, 2#-7t/ + 42+7=0.
3. A line with direction cosines proportional to 2, 7, 2 meets each

of the lines given by the equations

find out the co-ordinates of each of the points of intersection.

P(r 9 ra, r) and P'(2r' a
t
r

r

9 r') are the general co-ordinates of

points on the two given lines

_T ~~r i 2
"~

i i
'

direction cosines of PP' are proportional to

r 2r'+a, r r' a, r r',
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Now, we choose r and r' such that the line PP' has direction cosines

proportional to (2, 1,2).

r 2/+a_r -TJ a= JT--
r

2
-

j- 2
,

which give
r 3a, /=.

Putting r=3a and r'a in the co-ordinates of P and P', we get

(3a, 2a, 3a) and (a, a, a)

which are the required points of intersection.

4. Find the equations of the perpendicular from the point

(3, 1, 11) to the line

l*=J(y-2)= i(*-3).

Obtain also the foot of the perpendicular.

The co-ordinates of any point on the given line are

2r, 3r+2, 4r+3.

This will be the required foot of the perpendicular if the line joining
it to the point (3, 1, 11) be perpendicular to the given line. This

requires

2(2r-3)+3(3r+2-HH4(4r+3-ll) = or r=l.

Therefore the required foot is (2, 5, 7) and the required equations
of the perpendiculars are

.

r -G 4
*

Exercises

1. Find the equations of the perpendicular from

(t) (2, 4, -1) to

(it) (-2,2, -3) t

(tn) (0, 0, 0) to a-f 2?/-f3z+4= 0=2.-f-3?/-f 4?-f 5,

(;) (2, 2, 3) to 2^-fy-fz 7= 0=4^-fs~14.
Obtain also the feet of the perpendiculars.

[4n. (*) x(.r-2)-i(2/-4) =i(=+l). (-4, 1, -3).

(ti) a;+2)=-(y-2)=(s+3) > (4, 1, -2).

(m) -.^2= ^=2/4, (2/3, -1/3, -4/3).

(w) *(a;+2) s=-(y-2)= (2+3;, (4, 1, -2).
2. A line with direction cosines proportional to (7, 4, 1) is drawn to

intersect the lines

^^1
==^17= 2+2 ^+ 3^2/^3=f~ 5

3 i

"

i'
' _$ 2 4

Find the co-ordinates of the points of intersection and the length inter-

cepted on it. [Ans. (7, 5, 0), (0, 1,1), V(66).
3. Find the equations to the line that intersects the lines

#+2/+z=l, 2# i/ 2=2 ; x y 2=3, 2x+4y 2=4
and passes through the point (1, 1, 1). Find also the points of intersection.

(P. 17. 1939)

[Ans. (3-l)/0-(y-.l)/l(s--l)/3 ; (1, J, -J) ; (1, 0, -2).
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4. Find the equations to tho straight lines drawn from the origin to
intersect tho lines

(P. U. 1942)

[Ana. 13z-132/-f-24z=0=8z-12t/+3z.
5. Obtain the equations of the line drawn through the point (1, 0, 1),

and intersecting the lines

x=2y=2z ; 3x+4y=\ ; 4o;+5z=2.

6. Find the equations to the lino drawn parallel to :r/2
=

2//3
= z/4 so as to

intersect the lines

7. Find tho equations of tho lino drawn through the point (4, 3, 1),

parallel to the plane x+2y z 5 so as to intersect the line

Find also the point of intersection.

[Ana. (ar+4)/3--(y-3)= (s 1) ; (2, 1, 3).

8. Find the distance of the point ( 2, 3, 4) from the line

measured parallel to the piano

4a-r-12i/-33+l = 0. [Ans. 17/2.

9. Find tho equations of the straight line through the point (2, 3, 4)

perpendicular to the X -axis and intersecting the line x=yz.
[Ans. #=2, 2y z=2.

10. Find the equations of the straight line through the origin which will

intersect tho lines

and prove that the secant is divided at the origin in tho ratio 1 : 2.

11. Find tho equations of the two lines through the origin which intersect

the line (x-3)/2=y3= z at angles of 60.

[Ans. x=y/2=z ; z= y= z/2.

12. The straight line which passes through the points (11, 11, 18), (2, 1, 3)

is intersected by a straight line drawn through (15, 20, 8) at right angles to

J-axis ;
show that the two lines intersect at tho point (5, 3, 8).

13. A straight line is drawn through tho origin meeting perpendicularly the

straight line through (a, b, c) with direction cosines I, in, n ; prove that tho
direction cosines of the line are proportional to

a Ik, b mk, cnk where ksal-\-bm-\-cn.

14. From the point P(a, 6, c) perpendiculars PA, PB are drawn to the
lines y=2x, z=l and t/ 2.r, 2= 1 ; find the co-ordinates of A and J5.

Prove that, if P moves so that the angle APB is always a right angle, P
always lies on tho surface \2xz 3y2+25z*=-25.

* [Ans. 4[(26+a)/5, (46+ 2a)/5, 1] ; fl[(o-26)/6, (46-2a)/5, -1].

v/3'6. The shortest distance between two lines. To show that tfw

shortest distance between two lines lies along the line meeting them

both at right angles.

Let AJ5, CD be two given lines.

A line is completely determined if it intersects two lines at

right angles. (See 3*51. Case viii).

Thus, there is one and only one line which intersects the two

given lines at right angles*, say, at and H.
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GH is, then, the shortest distance between the two lines for, if,

A, C be any two points, one on each of the two given lines, then GH
is clearly the projection of AC on itself and, therefore,

GH^AC cos 0,

where is the angle between]## and AC.

Hence GIKAC.
*

Thus GH is the shortest distance

between the two lines AB and CD.

3*61. To find the magnitude and the

equations of the line of shortest distance

between two straight tines.

16
If AB, CD bo t\\o given lines and

' Gy

/7 the line which meets them both at

right angles at G and II, then GH is the line of shortest distance
between the given lines and the length Gil is the magnitude.

Let the equations of the given lines be

and let the shortest distance GH lie along the line

x a.__y P_z 7

...(it)

...(Hi)

Line (m) is perpendicular to both the lines (i) and (n). Therefore,
we have

I _ m __ %

n^n^^ I
j
m2 ~-I2ml

1

sm
where is the angle between the given lines.

^Til' - .-

~ n
&m $ sm0 sm ^

The line of shortest distance is perpendicular to both the lines.

Therefore the magnitude of the shortest distance is the projection on
the line of shortest distance of the line joining any two points, one on
each of the given lines (i) and (n).

Taking the projection of the join of (xl9 yl9 Zj), (x29 y2 ,
z2 ) on the

line with direction cosines I, m, n, we see that the shortest^distance

where Z, m, n have the values as given in (iv).

To find the equations of the line of shortest distance, we observe

that it is coplanar with both the given lines.
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The equation of the plane containing the coplanar lines (i) and

(Hi) is

n }

I, w, n

^

and that of the plane containing the coplanar lines (ii) and (Hi) is

I, m.

=0. ...(w)

Thus (v) and (w) are the two equations ofthe line of shortest distance,
where /, m, n are given in (iv).

Note. Other methods of determ>mng Iho shortest distance are given
below where an example has been sol\ed by three different methods.

Examples

1. Find the magnitude and the equations of the line of shortest

distance between the lines :

3

1

3

16
"

7
'

/::: 2_9 s==
2r 5

8 5

First Method

Let /, m, n be the direction cosines of the line of shortest

distance.

As it is perpendicular to the two lines, we have

and

"24 36

m

__
72'

or

Hence

Z=f, w=|, w=f.
The magnitude of the shortest distance is the projection of the

join of the points (8, 9, 10), (15, 29, 5), on the line of the shortest

distance and is, therefore,
= 7.f+38.f-5.f=14.

Again, the equation of the plane containing the first of the two
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given lines and the line of shortest distance is

* 8, y+ 9, z 10

3, -16, 7 =0,

2, 3, I

or

1 llx -f 4?/-41z-490=0.
Also the equation of the plane containing the second line and

the shortest distance line is

xL*)) y ^y, z o

3,

2,

8, -5 1=0,

3, 6

9# ty 2=14.

Hence the equations of the shortest distance line are

or

Second Method

P(3r+8, 16r-9, 7r+10), P'(3r'+ 15, 8r'+ 29, -5r'

are the general co-ordinates of the points on the two lines respec-

tively. The direction cosines of PP' are proportional to

3r-3r'-7, -16r- 8r'-3S, 7r+5r' + 5.

Now PP' will be the required line of shortest distance, if it is

perpendicular to both the given lines, which requires

3(3r-3r'-7)-16( -16r -8r'-38)+7(7r+5r' + 5)
=

0,

and 3(3r-3r
/

~7)+8(-16r-8/-38)-5(7r+5/+5)-0.
or 157r+ 77r' 311-0 and llr f 7r'+25=0
which give r

~
1

,
r'= 2.

Therefore co-ordinates of P and P 1

are

(5, 7, 3) and (9, 13, 15).

Hence, the shortest distance PP'= 14 and its equations are

x _y 7__z 3

Y 3 6"'

This method is sometimes very convenient and is specially useful

when we require also the points where the line of shortest distance

meets the two lines.

Third Method. This method depends upon the following consi-

derations :

Let AB, CD be the given lines and GH, the line of shortest

distance between them.
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Let V denote the plane through AB and parallel to CD and let

*(3' be the plane through CD and parallel to AB.

The line of shortest distance GU 9 being perpendicular to both

AB, CD is normal to the two planes so that the two planes are

parallel. The length OH of the shortest distance is, therefore, the
distance between the parallel planes a and p. This distance between

parallel pianos being the distance of any point on one from the other,
W3 see that it is enough to determine only one plane say 'a' and then
the magnitude of the shortest distance is the distance of any point
on the second line from the plane V.

Again, we easily see that the plane through the lines AB, GH is

perpendicular to the plane V and the plane through CD, GH is

perpendicular to the plane 'P' and, therefore, also to V. Thus GH, the

line of shortest distance, is the line of intersection of the planes separately
drawn through AB, CD perpendicular to the plane V.

We now solve the equation.
The equation of the plane containing the line (i) and parallel to

the line (ii) is

;-8, y+9, 2-10

3, -16, =0

or

3, 8, -5
2*+3*/+6z-49:=0 ...(Hi)

Perpendicular distance of the point (15, 29, 5), lying on the

second line, from this plane

= 30 f 87+30-49
7

which is the required magnitude of the shortest distance.

The equation of the plane through (f) perpendicular to the plane
(fff) is

3, -16, 7

2, 3, 6

or 117z + 42/-4l2-490=:0. ...(iv)

The equation of the plane through (ft) and perpendicular to the

plane (fff) is

a- 15, y-29, 2-5

2,

8, -5

3, 6

=0

or 9# 42/z=14. ...(v)

Hence (ft;), (v) are the equations of the line of shortest distance.
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2. Find the shortest distance between the axis of z and the line

(D.U. Hons. 1948, B.U. 1955)

The third method given on page 56 will prove very convenient in

this case.

Now, any plane through the second given line is

i.e., (a+ka')x+(b+ kb')y+(c+kc')z+(d+kd')= 0. ...(*)

It will be parallel to z-axis whose direction cosines are 0, 0, 1, if

the normal to the plane is J_ z-axis, i.e., if,

i.e., k^ c/c'.

Substituting this value of k in (i), we see that the equation of
the plane through the second line parallel to the first is

The required S.D. is the distance of any point on z-axis from the

plane ().

S.D.= perpendicular from (0, 0, 0), (a point on z-axis)

dc
f

-_d'c~"

V[(c'- a'c~)H (be' 6'c)
2
]

*

Exercises

1. Find the magnitude and the equations of the lino of shortest distance
between the two lines :

_z--9 x+l _yl _z 9
i ____.

-;-y- -|
-

3

.... a:- 3 __ 2/-4_z+2. x-I_y+l_z+ 2
(tt) -_ r g j-, -j 3

- --.

[^4i5. (t) x= y= z
;

(n) (a?-4) = (y-2)/3= -(2 -| 3)/5 ; V^'
r
>.

2. Find the length and the equations of the shortest distance line between

1x 4?/-22=0, x 2/4-2-3=0.

in^. Transform the equations to the symmetrical form.]

[Ans.

3. Find the magnitude and the position of the shortest distance between
the lines

(i)

[^4n. (t)

(t) 7a;22/llz-f20=0=13ic 132+24 ; 17yC/39.

4. Obtain the co-ordinates of the points where the shortest distance

between the lines

a:-23_3/-19 _2-25 a?~12_y-l ^ g-5
^^6 "=T~ 3

' -9 4 2

meets them. [Ans. (11, 11, 31) and (3, 5, 7).



LENGTH OF tHE PERPENDICULAR FROX* A POINT 59

5. Find the co-ordinates of tho point on the join of (3, 7, 13) and
(6, 1, 10) which is nearest to the intersection of the pianos

3xy 32+ 32= and 3x-\-2y I5z 8= 0.

[Ana. (-7, -J, -9).

6. Show that the shortest distance between the lines

i= 2y= l2z and x=i

7. Find the shortest distance between the lines

2 3 4
' 3" 4 5~

'

show also that the lines are co-planar. (P.U. 1926)

8. Find the length and equations of the line of shortest distance between
the lines

-zr'3
""

T"' ^T T
~

r~' '

[Ans. 9 ; 32^+34^+132 108-0, J2^+33z/+ 15z 81-=0.

9. Sliow that the loiigth of tho shortest distance botweon the line

z=^x tan a, y ^0 and any taiigont to the ellipse x 2 sin 2 a+^ 2=a 2
,
^= is constant.

10. Show that tho shortest distance between any two opposite edges of the

tetrahedron formed by the planes

y+z^ 0, 2-fo;=0, ce-f 2/==0, x+y+z=a
is Sa/y'G arid that tho three linos of shortest distance intersect at the point
x-=y=z= a. (D.U. Hons. 1960)

3-7. Length of the perpendicular from a point to a line. To
find the length of the perpendicular from a given point P(XI, yL , zj to a

given line

I m n

If H be the point (a, (3, 7) on
the given line and Q the foot of the

perpendicular from P on it, we have,

But

and .ffQ
=Pr

J
ecti n of HP on the given line

= /(ar!-a)+(yi-P)+n(z-y),

provided I, m, n, are the actual direction cosines.

Fig. 17.

The expression^for PQ2 can be put in an elegant form as follows :

We have, by Lagrange's identity,

n ,
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Exercises

1. Find the length of tho perpendicular from the point (4, 5, 3) to
the line

.r-5_2/-{-2__2-6 .. V(4
3
- - _ 4 5

- [Ant. --

2. Find the locus of the point which moves so that its distance from tho
line #=2/=z is twice its distance from the plane #-fy-f z= l.

[Ana.

3. Find the length of tho porpondicular from the point P(5, 4, 1) upon
the line l(a 1)

=
Jt/
= z. [Ans. V( 2109/ 110 )-

3*8. Intersection of three planes. To find the conditions that

the three planes
arx-\-bry -|-crz+df=0 ; (r=l, 2, 3)

should have a common line of intersection.

If these three planes have a common line of intersection, then

must represent the same plane as

for some value of A.

Comparing (i) and (ii), we get

=*, (suppose)

Eliminating A and k from these four equations, taking them
three by three, we obtain

a2 , -=0, =0, =0,

3> 3 ^3, C3 , $3 dj, C3 ,

which are the required conditions.

Only two of these four conditions are independent for, if the

planes have two points in common, they have the whole line in

common and this fact requires only two conditions.

These four determinants will respectively be denoted by the

letters A> Ai> A?, As-

Note. The following is the Algebraic proof of the fact that only
two of the above four conditions are independent, i.e., if two of these

four determinants vanish the other two must also vanish.

i> b ly cl b3 , c l9 d1

Let a 2 ,
62 ,

a3 ,

=0=

63 , ca , ei

=0



A, _

or a23
Thus we obtain

TRIANGULAR PRISM

A<* -^3

61

2(aldl a^

1

~k*

Similarly it can be proved that

2 ,
d2

= 0.

The same conditions will also be obtained in 3*82 in a

different manner.

3'81. Triangular prism. Def. Three planes a.re, said to form a

triangular prism if the three lines of intersection of the three planes,
taken in pairs, are parallel.

Clearly, the three planes will form a triangular prism if the line

of intersection of two of them be parallel to the third.

3*82. To find the condition that the three planes
arx+bry+crz+ dr -^Q ; (r

=
l, 2, 3)

should form a prism or intersect in a line.

The line of intersection of the first two planes is

Fig. 18. Fig. 19.

The three planes will form a triangular prism if this lines

parallel to the third plane but does not lie in the same.
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Then line (i) will be parallel to the third plane, if

i, bl9

3 , 63 , c3

i.e.,

'

A=0.
Again, the planes will intersect in a line if the line (i) lies in the

plane a3x+ bay+ c-3z+ d^=0. This requires :

(1) this line is parallel to the third plane which gives A 0, and

/f\\ it i /^IU'9 UnU/1 Unll-t IJbiUn _ \ , , . , . , .

(2) the point ( f~~ f>
>

/, __T~/, > ^
J

^ies on ^ w^lcn gives

^3(6^2 ^2^1) i b^a^d^ a^

or

= 0,

tte ttrce planes will intersect in a line, if

A=A3 =0,
t^i'M /orw a triangular prism, if

Note. Three distinct non-parallel planes behave in relation to

each other in any of the following three ways :

(i) They may intersect in a line which requires that two of the

four determinants /\.- Ai> A2> As should vanish.

(ii) They may form a prism which requires that only A should

vanish.

(Hi) They may intersect in a unique finite point which requires

that

Exercises
- '- v^ ;-O r<* l

1. Show hai"$ie following sets of planes intersect in lines :

(ii) 2

2. Show that the following sets of planes form triangular prisms :

(i) a:+y+ + 3= 0,3a;+y-23+ 2= 0, 2x+4y+7z-
f7=Q.

(ii) x-z-l = Q, a?+2/~22-3= > a?-2y+-3= 0.

3. Examine the nature of the intersection of the following sets of planes :

(i) 4x 5ij 22 2= 0, 5x 4y+2z+2= Q, 2^+2?/+8z--l= 0.

(ii) 2x+3y z 2= 0, 3.r+32/+2 4= 0, x ?/+ 2c 5= 0.

(i) prism, (ii) point, (Hi) line, (iv) prism.
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4 4 Prove that the planes

z, y=azi~cx, z=bx-\-ay >

pass through one line if

and show that the line of intersection, then, is

x y z=

5. Show that the planes

bxayn, cybz=l, azcx=m t

will intersect in a line if

al-\- bm-\-cn~O t

and the direction ratios of the line, then, are, a, 6, c.

6. Prove that the three planes

bzcy= b c, cxaz^ca, aybx=ab t

pass through one line (say /), and the three planes

(c-a)s-(a-&)y= 6+c,

(a b)x (b c)z=c-\-a,

(b c)y(ca)x=a+ b,

pass through another line, say (l
f

). Show that the lines / and /' are at right
angles to each other.



CHAPTER IV

INTERPRETATION OF EQUATIONS
LOCI

4*1. In Chapters II and III, it has been shown that any equa-
tion of the first degree in x

9 y9 z represents a plane and two such

equations together represent a straight line.

We now consider the nature of the geometrical loci represented

by the equations of any degree.

4*2. Equation to a surface. Locus of a variable point with its

current co-ordinates x, y, z connected by a single equation/ (x, y, z)
= is

a surface.

Consider any point (a, p, 0) on the XY plane. The line through
this point drawn parallel to the Z-axis, viz., a; a, y=$ meets the

locus in points whose z-co-ordinates are given by the roots of the

equation /(a, (3, 2) 0.

As this equation has a finite number of roots, the number of

points of the locus on every such line is also finite. Hence the locus,
which is the assemblage of all such points for different values of a, p,

must be a surface and not a solid.

Thus the equation f (x, y, z) represents a surface.

4*21. Equations free from one variable. Cylinders. Locus of
the equation f (x, y) is a cylinder with its generators parallel to Z axis.

Consider the curve on the XY plane, whose two dimensional

equation is f(x, y) 0. Let (a, (3) be any point on it so that /(a, (B) 0.

Any point (a, p , z) on the line through this point, drawn parallel
to OZ, therefore, satisfies the equation f (x, y)

= and hence the whole

line lies on its locus.

Thus the locus is the assemblage of lines, parallel to OZ drawn

through the points, on the curve and is, therefore, a cylindrical
surface.

Similarly the loci of the equations

are cylinders with generators parallel to the .X-axis and the F-axis

respectively.
Ex. What surfaces are represented by the equations

(t) je+y 2=a, (n) *2/a
2
-f2/

2
/&

2-l, (in) y^=4ax.

(iv) xy=c*, (v) x*la*-y*lb*= \.

4*22. Equations containing only one variable. Locus of the

equation f(x)
= Q is a system of planes parallel to the YZ plane.

a2>
a3 ...........................

an be the roots of the equation
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then this equation is equivalent to

(x ct^x <x2 ) ......... (z-an)=0
and, therefore, represents the planes

which are parallel to the YZ plane.

Similarly the loci of the equations /(?/)-= and f(z)=Q, are

systems of planes respectively parallel to the ZX and XY planes.

4*3. Equations to a Curve. Two equations

/(#> y, z)
= 0, <l>(x. y, 2)

=

together represent a curve.

The points, whose co-ordinates satisfy these equations simul-

taneously, are common to the two surfaces separately represented by
them and, therefore, lie on their curve of intersection.

Hence the locus of a point whose current co-ordinates are

connected by two equations is a curve.

Exercises

1. Find out the loci represented by
(') a-*/a*+ 2/2/&2= 1, 2= 0, (ii) y2^ax,z=c,

(Hi) x2+y2^2,z*^c*.
2. Show that the two curves

/(.r, y,s)= 0, 9 (.r, y, s) = ;

f(x,y, z)-*-9(r, y, z)
=

0,/(a-, y, z)-W(*, y, c)
=

are identical.

3. Find the equations to the parabola whose focus is the point (1, 2, 3,),

and directrix the line jc=y= z.

[Ans. x 2+y t2+ z2+2sy+2yz-{-2xz-C>x-\2y--l8z+4:2==Q==x2y+z.

4*4. Surfaces generated by straight lines. Ruled Surfaces. A
straight line subjected to three conditions only, can take up an infinite

number of positions. The locus of these lines is a surface called a
ruled surface.

4*41. To determine the ruled surface generated by a straight line

intersecting three given lines

ul~Q=v1 ; U2=Q= v2 ; ^3= 0=^3,

where ur=arx+bry+crz+ dr , vr~a'rx-\-b' Ty-}-c'rz-\-d'r .

The straight line

intersects the first two lines for all values of A
x ,
A
2 . (Note Page 50)

The condition of intersection of the line (i) with the third given
line is a relation between Al9 A2 , say

/(X 1,A2 )
= 0. ...(ii)

The required ruled surface is, then, obtained by eliminating
A
1 ,
A
2 between (i) and (ii}.

Another method will be indicated in the examples below.
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4'42. Condition for the intersection of a straight line and a curve.

If a straight line intersects a given curve, the co-ordinates of the

points of intersection satisfy the four equations (two for the straight
line and two for the curve) so that the four equations are simul-

taneously valid, i.e., consistent. The condition for consistency is

obtained by eliminating x, y, z from the four equations.

Examples

1. Find the condition that the line

_
I m n

should intersect the curve

xy=^c
2
9
z=0. ...(if)

Eliminating x, y, z from (i) and (ii) y
we obtain

n /\ n

which is the required condition.

2. Find the locus of the line which intersects the three lines

First Method. The line

which intersects the first two of the given lines, will also intersect

the third,

26

Vif "c 2aA2
- c

b
,

..

or c -)-aA2 .

1

Eliminating A
l5 A 2 from (f) and (ii), we obtain

fc(z-f-c) z c
c= , a }yb x-^a

or c(x+a)(y-b)+a(z-c)(y-b)+b(x+a)(z+c)= )

or ayz+ bzx f cxy -f ctbc 0,

which is the required locus.

Second Method.

Let the equations of the variable line intersecting the given lines

be

__
y *

f 1 1.

\ 17
/ m n

so that (a, (3, y) is any point on the line.

- It will intersect the three given lines, if

n
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c-y a4a ,...

r , ...(m)

, a a 6-f p ,.
xand ==

, ...uv)1m
(Note Page 49)

Eliminating /, m, ft, between (u), (m) and (iv), we have

As (a, (3, 7) is any point on the variable line, the required locus

is

or ayz+ bzx+ cxy+ a&c= 0.

3. Two skew lines are given by the equations

ax-}-by=z+c=Q ;
ax by= z c=

;

show that the lines which are perpendicular to the line with direction

cosines proportional to I, m, 71, and which meet the given lines generate
the surface

abz(lx+my + nz)=c(a
2
mx-{-b

z
ly+abcn). (M.T.)

Let the variable line be

x-<x._y~$_z-y ,.

"A
~

(JL

~
v

' -W
This will be perpendicular to the line with direction cosines

proportional to /, m, n,

if

/A+m(jL+?iv=0, ...(ii)

and will intersect the given lines

if

^(r+ c)+6pt(y+c)-v(aa+ 6p)=0. ...(Hi)

and

aA(y-c)-6^(y-c)~v(aa~6p)=0. ...(it;)

Eliminating A, [z,
v from (ii), (Hi), (iv), we have

a(7-c), -b(7-c) 9
aa-6

I, m, ?

or Z(a&ay 62
cp) -7w(a6py-a2

ca) + ?ia&(y
2 c

2
) =0.

The required locus, therefore, is

abz(lx+my+ nz) c(a
2mx f b z

ly+ abcn) .

4. Find the locus of the line which moves parallel to the ZX plane
and meets the curves

xy=c
2
, z=0 ; 2/

2
=4c2, #=0 ;

verify that the locus contains the curves.

Let the variable line be
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#-a= 2/ P= z 7
I m n

This will intersect the two given curves

r o 2
if --
and

The line (i) will be parallel to the ZJf plane
if m0. f .(iv)

Eliminating Z, m, n from (n), (m) and (it;), we obtain

so that ?/
2
(c

2
--.r?/)

= 4c32

is the required locus.

Putting # and z separately equal to zero in this equation we get

y*=4:CZ and xy= c2 and hence the verification.

5. Find the equation of the surface traced out by lines which pass

through a fixed point (a, p, J) and intersect the curve

Any line through (a, p, 7) is

*-a_2/-P
I m

Z, m, 7i, being variables.

It will intersect the given curve

if
n /

Eliminating Z, m, TI between (i) and (u), we get

or aa2-7
which is the required equation to the surface.

Exercises

1. Prove that all linos which intersect the lines

y mx,z= c; y~ mx, zc
and are perpendicular to the X-axis lie on the surface

mxzcy.
2. Find the locus of the lines which are parallel to the plane

and which intersect the line x~y=Q=z and the curve

x^^-^az, ?/-0. [Ana. x*y*=2az.
3. Find the surface generated by straight lines which intersect the lines

2/=0, z=c;#=0, z~ c ;
and are parallel to the plane

8* lx/(z-{-c)+myl(zc)+n~Q.
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4. Show that the equation to the surface generated by straight lines

intersecting the three lines

5. A variable line intersects the three lines

y z= l, #~0 ;
2; #= 1, 2/=0 ;

a;

Show that the locus is

6. Obtain the locus of the straight line which intersects the circle

x*+y*~r* t z-0
and the two straight linos x=Qz-\-a ; ?/=0~z a.

[Ans. a*[jc*(z

7. Prove that the locus of a line which meets the lines

and the circle

is

(D.U. Hons. 1948)

8. A straight line is drawn through a variable point on the ellipse
x2

/a
2
+2/2/&2=l, 2=0 to meet two fixed linos

ymx, z= c ; ynix, z=c.
Find the equation to the surface generated.

[Ans. a*c*}>i2(cy-mxz)*+ b2c2(rncxyz)*=a2bm*(c2z*)2.

4*5. Equations of two skew lines in a simplified form. To find
the, equations of two skew straight lines in a simplified form.

Let the shortest distance between the two given lines AB and
CD meet them at L and M and be of length 2c.

Z

Fig. 20

Through 0, the mid-point of LM, draw OG and OH parallel to
AB and CD.

Take the bisectors of the angles between OG and OH as the X and
Y-axis and LM as Z-axis. These three lines are mutually at right
angles.

If the angle between the given lines be 20, the line OG makes
angles 0, $n6 9 %n with the axes OX, OY, OZ so that the direction
cosines of AB which is parallel to OG are
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cos 0, sin Q, 0.

Also, since OH makes angles 0, irc+ 0, JTT with the axes,

therefore the direction cosines of CD are

cos 0, sin 0, 0.

Finally, the co-ordinates of L, M are

(0, 0, c) and (0, 0, -c)

respectively, for LM=2c.
Thus the equations AB 9 CD are

x y z c
A"7 r~7rcos sin

,=x tan

-t
x y z+c .

and -
r
=

. =-7r- i.e., ?/= #tan 0> 2= c
cos sin00*

respectively.
Note 7. (r, r tan 0, c) and (/?, p tan 0, c) are the general co-ordinates of

points on the two lines
; r and p being the parameters.

Note 2. Solutions to certain problems relating to two non-intersecting

straight lines are often simplified by taking tho equations of the lines m the

simplified form obtained above.

Exercises

1. Find the surface generated by a straight line which meets two given skew
lines at the same angle.

Choosing the axes as in 4-5, tho equations of the two lines can be taken as

^L^JL= Z-T C
(i)

1 m -W
x ?/ z-4-c . ...

and T'-r (T -<**>

so that the points (r, mr9 c) and (p, nip, c) lie on these linos for all values of

r and p.

The line joinng these points is

xr y mr z c , ....
-

r
'j_ -

__ (tii}

r-p m(r+p) 2c
' "* V '

As it makes the same angle with both tho lines (t) arid (n), we have

r

or

From (tu) and (iv), we have

xr z~c , A
2

- == -

2
- and ymr^Q,

so that eliminating r, we obtain

/7?co;~?/2,

as the required locus.

2. A line intersects each of two fixed perpendicular non-intersecting lines

so that the length intercepted is constant ;
show that the locus of the middle

point of the intercept is a circle.

3. A line of constant length has its extremities on two fixed straight
lines ; find the locus of its middle point. (D.U. Hons., 1959)

4. Find the locus of a point which moves so that the perpendiculars
drawn from it to two given skew lines are at right angles.

5. Two skew lines AP, BQ, inclined to one another at an angle of 60, are
intersected by the shortest distance between them at A, B

t respectively, and
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P, Q are points on the lines such that AQ is at right angles to BP ; prove that

AP.BQ=2AB*.
6. Two skew lines AP

y BQ are mot by the shortest distance between them
at A

,
B and P, Q aro points 011 them such that APr, BQ-p. If the planes

APQ and BPQ are perpendiculars show that, pr, is constant.

7. AB and CD are two fixed skew lines. Planes are drawn through them
at right angles to each other. Find the locus of their line of intersection. Show-
that the locus degenerates into two planes if AB is perpendicular to CD.

8. AB, CD are two perpendicular skew lines and the shortest distance
between them meets the same at L aud M ; O is tho mid-point of LM ; P and
P' are variable points on AB and CD such that OP2

-J-OP'
2 is constant. Find

the locus of the line PP'.

9. Prove that the locus of the point which is equidistant from the lines

y mx~02 c, y-t-mxQz~+-c
is the surface

mxy -f- (
1 -fm2

)cz
= .

10. One edge of a tetrahedron is fixed in magnitude as well as position,
and the opposite edge is of given length and lies along a fixed straight line.

Show that the locus of the centroid of the tetrahedron is a straight line.

11. Tho length of two opposite edges of a tetrahedron are a, b ;
the

shortest distance between them is 2c and the angle between them is a ; prove
that its volume is (dbc sin oc)/3.

12. A, B, C and A'', B', C' are two sets of points on two skew lines. Prove
that if

AB : BC^A'B' :B'C' t

the middle points of AA', BB' , CC f are collinear. (M.T.)
13. Lines aro drawn to intersect the linos

y mx= z- c and y-{-mx= z-\-c

and to make a constant angle with z-axis. Show that tho locus of their mid-

points is an ellipse whose eccentricity is

(I_m4)i or (w4-_l)i /m2

according as ?H2<1 or ]> 1.

14. AA 1
is the common perpendicular of two skew lines PQA, P'Q'A' ;

P, Q being any two points on the first lino and P', Q' any two points on the
Keeoiid. Prove that the common perpendicular of AA' and tho lino joining the

mid-points of PP', QQ' bisects AA' . (M.T.)



CHAPTER V

TRANSFORMATION OF CO-ORDINATES

5*1. The co-ordinates of a point in space are always determined

relatively to any assigned system of axes, generally called the frame
of reference and they change with the change in the frame of reference.

We shall now obtain the formulae connecting the co-ordinates of a

point relative to two different frames of reference.

5*11. Change of origin. To change the origin of co-ordinates

without changing the directions of axes.

Let OX, OY, OZ, be the original axes and 0'X'
9 0'Y' 9 O'Z', the

new axes respectively parallel to the original axes. Let the co-ordi-

nates of 0' referred to the original axes be (/, g, h).

Let the co-ordinates of any point P be x, y, z and x' 9 y' 9 z'

referred to the original and the new axes respectively.

Draw PL perpendicular to the parallel planes YOZ and Y'O'Z'

meeting them at L and L' so that

LP=x and L'P=x'.

Now, LL' is equal to the length of the perpendicular from 0' to

the YOZ plane and is, therefore =/.

-P

X

Also

.'.

Similarly

Fig. 21.

LP=LL'+L'P
x=x'+f.

y=y'+g>

Hence, if in the equation to any surface, we change

to x+f, y+g, z+h

respectively, we obtain the equation to the same surface referred to the

point (f, g, h) as origin.
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Ex. Find the equations of the plane 2x+3y-{-z 7 referred to the point
(2, 3, 4) as origin ; directions of the axes remaining the same.

[Ans. 2.r 4-32/4-424-4=0.

5'12. Change of the directions of axes. To change the directions

of axes without changing the origin.

Let /!, mx ,
n

1 ;
Zt ,
m2 . n2 ;

19 < ra3 ,
nz be the respective direction

cosines of the new axes OX'
,
OY'

,
OZ' referred to the original axes

OX, OY, OZ.

Let x, y, z and x
, y' ,

z' be the co-ordinates of any point P
referred to the two systems of axes.

Draw PN _[_ X'OY' plane meeting
it in N' and also N 'L' _[_ OX' meeting it

in L' so that

\j ij
"==- x

\
Jj iV ::zz y \

iV L :=- z .

Now, the projection of OP being
equal to the sum of the projections of

OL', L'N', N'P on OX', we have,

x-^x' +I 2y' +I3z' ,

Similarly y=m 1x'+m2y'-fm3z', } ...(A)

and z-nX +n2y' +n3z

\i VC,

:::f-

(
Fig. 22.

By a method similar to the one adopted, we can show that

x' I1x+m 1y4-n 1
z ;

^
; > ...(B)

The results (A) and (B) can easily be written down with the

help of the following table :

Exercises

1. Find the equation of the surface

with reference to axes through the same origin and with direction cosines

proportional to (-1, 0, 1), (1, -1, 1), (1, 2, 1). [Ans. 2*24-32/24-622^1.

2. Show that the equation lx-\-my+nz= Q becomes 2=0, when referred to

new axes through the same origin with direction cosines

n ~~^_ __
~~nm

//72_L 2\
2 ' ; "-2 "

1 V( ) ; m> n '

Hence show that the curve ax* 4- fy/
2= 2z, lx-i-my~\-nz=Q is a rectangular

hyperbola if (a+b)n*+am*+bl2=Q.
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5*13. The degree of a surface is unaltered "by any transformation

of axes.

Since, for x, y, z we always put expressions of the first degree in

x, y, z, the degree cannot increase.

Also, it cannot decrease for, otherwise, on retransforming it

must increase.

5'2. Relations between the direction cosines of three mutually

perpendicular lines.

Il9 mi, n L ;
/2 ,
m2> nz \ ^3? nh> ns being the direction cosines of

three mutually perpendicular lines OX, OF, OZ, we have the relations

/1
2+m 1

2
-f n1

z= l
;")

/2
a-fw2

2
-f w2

2~l
;
>

Z3
3
-fw3

a+ n3
2 1 ;J

-(A)

3=Q ;

^
...(B)

and /8Z1 +^3W*i+w3%= .J (Cor. 3, Page 17)

Thus these six relations exist between nine direction cosines.

They can also be expressed in another form as shown below.

Now, Il9 Z2 ,
?3 ; Wj, ma ,

w3 ; n l9 n2t n3 are clearly the direction

cosines, of the original axes OX, OY, OZ referred to the new. There-

fore, we have the relations

and

...(C)

The relations A, B, G, D are not independent.

In fact the relations C, D can be algebraically deduced from the

relations A, B and vice versa, without any geometrical considerations

at all.

Cor. // Il9 m1? n ; 12) m2 ,
n2 ; ls ,

ra3 ,
n3 be the direction cosines of

three mutually perpendicular straight lines, then

11, raj, n

12 ,
m2 ,

n

For, if D be the given determinant, we have

Zi, wi, \

12 ,
m2 ,

'
3 > ^3>

X *, m,,
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1,

o,

o,

o,

1,

o, 1

= 1

Hence

5*3. Invariants. //, by any change of rectangular axes without

change of origin, the expression

ax2+ by
2+ cz

2
-f 2fyz -j- 2gzx+ 2hxy

becomes

a'x2
-f &y+ cz2 + 2fyz+ 2g'zx+2h'xy

then

(ii) ab + bc-}-caf
2

g
2 h2= a'b'-\-b'c

f

-t c'a' f'
2

g'* h'
2
,

a h q a h' g'

h b f =

g f

h' V f

9 f' c'

Consider two sets of rectangular axes

Ox, Oy 9
Oz

; OX, 07, OZ

through the same origin 0. Let P be any point so that if (x, y f z),

(X, Y, Z) be the co-ordinates of the same relative to the two systems
of axes, we have

Thus we see that

becomes

Also, as given,

becomes
ax2+ by

2+ cz
2
-f 2fyz+ 2gzx -f 2hxy

a'X2+b'Y2
+c'Z*+2f'YZ+2g'ZX+2h'XY.

Then if A be any constant number, the expression

ax*+by*+cz
2+ 2fyz-+ 2gzx+2hxy+X(x

2+y2
+z>)

becomes

a'X2 +b'Y2+c'Z2+2f'YZ+2g'ZX+2h'XY+'\(X*+Y2
+Z*)

...(1)

...(2)

If now, for any value of A, the expression

(1) becomes a product of two linear factors, then, for the same
value of A, the expression ^-, __, <- > /-^
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(2) must also become a product of two linear factors. This
follows from the fact that the degree of an expression does not

change as a result of the change of axes so that the linear factors of

(1) will become the two linear factors of (2).

Now, by 2*8, P. 37, the values of A for which the expression (1)

and (2) are the products of linear factors are respectively the roots

of the cubic equations

As the equations (3) and (4) have the same roots, we see that

J__ a+b+c = bc+ca + ab-f2

-g*-}>^ ^D^
1 a'+b'~+c' b'c'+ c'a' 4 a'&'-/"

2 - g^-K* D'
'

so that

D=D'.

Note 1. The result obtained above shows that if in relation to

any second degree homogeneous expression

ax2+ by
2+ cz

2
-f 2fyz+ 2gzx+ 2hxy,

x, y, z be subjected to any change of rectangular axes without change
of origin, then

a+b + c, bc+ca+ab-f*-g2-h2
,
D

are invariants.

Note 2. It may be seen that

bc+ ca+ab -f2-g*-h*=A+JB+C,
where A, B, C are the co-factors of a, b, c in the determinant Z).

Ex. Show directly by changing

x, y, z, to x+p, y+q, z+r
respectively that

a + 6-f c, A+B+C, D
are also invariants for change of origin.

[In fact, as may easily be seen, the co-efficients a, 6, c, /, g, h,

are themselves separately invariants for a change of origin without

change in the direction of axes].
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Ex. 1. OA, OB, 00 are three mutually perpendicular lines through
the origin, and their direction cosines are

h> >i> n>i ; h> m2 n2 5 'a> ma> nz-

If OA=OBOC=a, prove that the equation to the plane ABC is

Let the required equation be

lx-{-my -}-nz-\-pQ. (*')

The co-ordinates of A are (a^, am^ cm x).

The plane (^) passes through ^4. Therefore, we have

(//! + w&Wx-f-wijJ-fjp O. ...(u)

Similarly, we have

Q, .. (iz'i)

Multiplying (n), (m), (iv) by Zx ,
Z2 ,

/3 respectively, and adding,
we get

(From relations D. Page 74)

I h+k+h
or = -* ^

?.

jP a

Similarly

- 1 o q
and = --- "-- '

-

p a

Making substitutions, in (i), we get the required result.

Ex. 2. /r ,
7>? r , r? r ; (r=l, 2, 3) arc direction cosines of three mutually per-

pendicular straight lines and

Prove that

a/^3-r-^/w/3+c/W3=-0 and a : 6 : c~ Z Z2^3

Ex. 3. If three rectangular axes be rotated about the line given by
x\l=y\m^=z]n

into new positions and the direction cosines of the new axes referred to the old
are Il9 wlf nx ; /2 , 7?? 2 ,

n2 ; ^3,
w8 ,

n3 ; and, if

then /(w 8 wa )
=

Examples

1. Show that the planes

/orm a triangular prism. Find the area and the lengths of the edges of
its normal section.
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Symmetrical form of the equations of the lines of intersection of

the first two planes is

x l y !__ z

1 ~H9 o"
'

i ^ o

and, as may be easily shown, this line is parallel to the third plane
but does not wholly lie in it. Hence the planes form a prism.

Normal sections of the prism are congruent triangles.

We consider the normal section through the origin. Equation
of the plane of this section is

x 2?/+3z=0. '...(iv)

Co-ordinates of the three vertices of the triangular section are

obtained by solving simultaneously each of three pairs of the given

equations with the equation (iv).

Thus the vertices are

A( 14> 145 T4")> B( Y4, "~l"45 1^4)5 C(l4) 1~45 14.)

Therefore, the lengths of the edges AB, BC, CA are

V 1512 V 101 36 V 3920

14
'

14
'

14
'

Let A be the area of A ABC. The co-ordinates of the projec-
tions A'B'C' of A, B, C, on the XY plane are

Let Az be the area of A A'B'C'. Therefore,

T 4 5 1 4 >

15. l
145 145

Let $ be the angle between the plane (iv) and XOY plane.
Therefore,

A 3
COS = -

-77V

Also Az=A cos 0.

A--^' = 9 V14 3A~cosT 7' -3-=T
2. i^i/idl the equations of the line of the greatest slope on the plane

3# 4y-f5z 5=0
drawn through the point (3, 4, 4) ; f/ive?i fto ^e plane

t horizontal.

Line of greatest slope on a given plane, drawn through a given

point on the plane, is the line through the point perpendicular to the

line of intersection of the given plane with any horizontal plane.

We have, thus, to find the line through ^4(3, 4, 4) perpen-
dicular to the line of intersection of the planes

z 5=0,
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Equations of this line in the symmetrical form are

x + 1 y+2 z~
1
=~

2
^

1
' -W

so that the general co-ordinates of any point P on the line are

r-1, 2r-2, r.

The line AP will be perpendicular to (i), if

l(r 4)+2(2r+2)+ l(r+4) 0, i.e., r=

Thus, the co-ordinates of P are

Hence the line, ^4P, of greatest slope is

#3
-7

~~
1

""
5

3. <7P, (7Q, are conjugate diameters of the ellipse

x*/a*+y
2
lb*^l,z= -c',

C'P', C'Q' are conjugate diameters of the ellipse

x*la
2+y2ltf=l,z=-c ;

drawn in the same direction as CP and CQ. Find the locus of the lines

PQ' or P'Q.

Let P be (a cos 0, b sin 0, c). Therefore, Q, P\Q' are

(-a sin 0, b cos 0, c), (a cos 0, 6 sin 6, c)

(a sin 0, b cos 0, c)

respectively.

Equations of PQ' are

xa cos # 2/~ & sin z c ...

a(cos + sin 6) ^(sin 9 cos 0) 2c

The locus will be obtained on eliminating from the equations ({)

The equations (i) can be written as

x z+ c
,
z c .

a =27 COS +-
2c
sm0 '

Squaring and adding, we obtain

~2c

as the required locus.

It may be shown that the locus of P'Q is the same surface.

4. Shoio that the equations of the planes through the lines which
bisect the angles between the lines

x y z x y z

I

~~
m~~ n V ~~m'~~ri
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and perpendicular to the plane containing them> are

(ll')x+(mm')y+(nri)z=0. (P.U. 1945}
'

Let OA, OB be the given lines. Take points A and B on the

lines such that

OA=OB=r.
Take another point A' on the line OA produced such that is

the mid-point of AA'.

The co-ordinates of A, B, A' are

(Zr, mr, nr), (ZY, m'r, n'r), (lr, mr, nr)

respectively.
' Let P, Q, be the mid-points of AB and A'B respectively so that

OP, OQ are the bisectors ofthe angles between OA and OB. We have

Q=[J(7'-Z)r, i(ra'~m)r, \(ri -n)r\.

Thus the lines OP, OQ arc

The lines 0.4, 05, OP, P$ are all coplanar.

Let OR be normal to this plane.

The lines OP, OQ and OR are mutually perpendicular so that
the

planes POQ (i.e., the plane AOB), QOR, ROP are also mutually
perpendicular.

The plane QOR passes through a bisector OQ and is perpendicular
to the plane AOB so that it is one of the required planes. Being
perpendicular to the line OP, its equation is

Similarly POR is the other required plane. Being perpendicular
to the line OQ, its equation is

(l-r)x+(m-m')y+(n-n')z=0.

Revision Exercises I

1. Find the volume of the tetrahedron formed by the planes
Ix+my -\-nz-p, fce+w2/=0, my+nz 0, nz+lxQ.

(D. U. Hona., 1948}
[Ans.

2. Show that the straight lines

x y z x y z x y z

a
~~

p Y oa
~~

^j3

~
cy /

~~
m

~~
n

'

will lie in one p lane, if

l(6-c)/a+wz(c-o)/p+n(a-6)/Y=0. (P.C7.

[The three lines have a point in common, viz., the origin. They will be

coplanar, if there exists a line through the origin perpendicular to each of them.
If X, (J.,

v be the direction cosines of this line, we have

Xa+[Jip+VY==0, aaX+6pix-fCYV=O, ZX-f-mn-fnv=0.

Eliminating X, ^, v we have the given condition.]
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3. Show that the linos

x
__ y z x y z x

__ y z

a/a~ P/&~Y/C
'

a ~~1*~~ Y
'

~aa~~ P6 ~~"^
are coplaiiar if a= b or bc or c= a,

4. Show that the triangle whose vertices have co-ordinates (a, 6, c),

(6, c, a) and (c, , 6) is an equilateral triangle. Find the co-ordinates of the
vertices of the two regular totrahodra described on the above equilateral triangle
aSbaSe '

(C.V.1915) [-4,,,. (/,/,/) where /^+V(2a
2-2M.

O

5. If two opposite edges of a tetrahedron are equal in length and are at

right angles to the lino joining their middle points, show that the other two pairs
of opposite edges have the same property.

6. Two edges, AB, CD of a tetrahedron ABCD are perpendicular ;
show

that the distance between the mid -points of AD and BC is equal to the distance
between the mid-points of AC and BD.

7. Planes are drawn so as to make ari angle of 60 with the line x=yz
and an angle of 45 with the line a,'= y z. Show that all these planes make
an angle of 60 with the plane ^= 0.

Find the equations of the planes of this family which are 3 units distant
from the point (2, 1, 1). [Ans. 2^-j-(2iv'2) 2/+(2=F V 2

)
2==2 or ~4 -

8. A plane meets a set of three mutually perpendicular planes in the sides

of a triangle whose angles are A, B, C. Show that the first plane makes with
the other three planes angles, the squares of whoso cosines are

cot B cot C, cot C7 cot A, cot A cot B. (B.U. 1926)

9. A triangle the lengths of whose sides a, b and c, is placed so that the
middle points of its sides are 011 the co-ordinate axes. Show that the equation
to its plane is

whore 8a2=6 2 -fc2 2, s^=c^+a^bz
, 8v2 -=a2 -f &2 -c2.

Also show that the co-ordinates of the vertices of the triangle are

(-oc, (3, Y), (a, -P, Y), (, P,
- Y ). (

A -V. 1938)

10. Show that there are two lines which intersect the lines

and also intersect the #-axis perpendicularly. Find the points in which they meet
thez-axis. , [Ans. (2, 0, 0), (74/17, 0, 0).

11. Taking axis OZ, to be vertical, find equations of the line of greatest

slope through the point P(2, 1, 0) 011 the plane

2a?+3y-42-l= 0. [Ans. i(o:-2)

[The required line is the line through P drawn perpendicular to the line of

intersection of the given plane and the horizontal plane z=0.]

12. The plane 3cc-f4^/-f5z=0 is horizontal. Show that the equations of the
line of greatest slope 011 the plane #-f-2^/-f-32~4 through the point (2, 5, 4) are

(*-2)-=(y+5)= -i(z-4).

13. Find the equation of the plane through (0, 1, 1) and (2, 0, 1) which
is parallel to the line joining ( 1, 1, 2), (3, 2, 4). Find also the perpendi-
cular distance between the line and the plane.

[Ana. 6x+lQy+ -ll=0 ; 9/VI37.

14. A straight line is drawn through (a, p, y) perpendicular to each of two
given straight lines which pass through (a, jB, y) and whose direction cosines are

lit mi, HI ; /2 ?^2> n2 Show that the volume of the tetrahedron formed by (a, P, Y)
and the points where the three lines cut x Q is

a3 sin2 G/6]/2(min2~~~m27t i)
where is the angle between the lines. (B.U.)
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15. If OA, OB, 00 have direction cosines lr ,
mrt

nr ; (r=l, 2, 3) and

OA', OB', OC', bisect the angles BOO, COA, AOB ;
the planes AOA' , BOB',

COC' pass through the line

x __ y _ z

16. A point P moves so that three mutually perpendicular lines PA , PJ5,
PC may be drawn cutting the axes OX, OY, OZ at A, B, C and the volume of

the tetrahedron OABC is constant and equal to a3/6. Prove that P lies on the
surface

17. Find the angle between the common line of the planes

and the line joining the points (3, 1, 2), (4, 0, 1). Find also the equations
of the line through the origin which is perpendicular to both the above lines.

[Ana. cos" 1
(10/1/418, a/14= y/ll= z.

18. Show that the image of the line x 1 = 9(# 2)= 3(2+3) in the plane
b:=26 is the line

19. The plane a;/a+ z//6H-s/c=-l meets the axes at A, JB
9
C respectively arid

planes arc drawn through Ojt, OY and OZ mooting Z?CY

,
6Y

^L and ^4# respec-

tively at right angles. Show that these planes are coaxial.

If the common axis meets tho pi MIQ ABO in P and perpendiculars are
drawn from P to tho co-ordinate planes, show that the equation of the plario

through the feet of the perpendiculars is

-5_4- 2/_+JL= 2a^c ___
be ca ~^b &*c 2+ c2a2-f a2&2

20. Prove that

-
a
+A.+ -5-=0

2/ 2 2 x xy
represents a pair of planes whose line of intersection is equally inclined to the

axes. (C.U.1927)
21. From a point P whose co-ordinates are (x, y, z), a perpendicular PM

is drawn to the straight lino through the origin whose direction cosines aro

/, m, n, and is produced to P' such the PM=P'M.
If the co-ordinates of P' are (#', y' 9 z'}, show that-). (P.U.)

22. Show that tho reflection of the plane
<

2,x-\-Sy+z=\ in the line

aj=sy/2=2/3 is the plane 3x-y 262+ 7= 0.

23. Prove that the reflection of the plane

in the plane
ax -f- by -f- cz -}-d

is the plane

2(aa'+bb'+<x')(ax+by+cz+d)^(a*+b*+c2
)(a'x+ b'y+c'z+d'). (M.T.)

24. Find the equations of the straight line through the point (3, 1, 2) to
intersect the straight line

and parallel to the plane 4:X+y+5z=Q. (B.U. 1959)
<

[Ans. -i(x-3)-i(2/~l)= -i(2~2).
25. The line i(a?+6)=i(y-f-lO)= t(z+ 14) is the hypotenuse of an isosceles

right-angled triangle whose opposite vertex is (7, 2, 4). Find the eqations of the

remaining sides. [Ana. i(*-7)= i (2/-2)= i(z-4) ; i(ar-7) = i(2/-2)= i(z-4).



fiXERCtSES 83

26. A straight line AB is drawn through a point (4, 1, 7) and perpendicular
to the plane 2z-}-3?/ 4? 8. Find tho points in winch AB and the axis OX are

intersected by their common normal. (B.U. 1926) [Ans. (6, 4, 3), (6, 0, 0).

27. Find the equations of tho two straight linos through the origin, each
of which intersect the straight line

i(*-3)-(2/-3)= 2

and is inclined at an angle of 00 to it. (L.U. 1937)

[Ans. x\y=^ 2 ; x= y=\z t

28. Find the direction cosines of the projection of the line

upon the plane 2x+y 32=4. [Ans. 2/y'6, 1/^6,

29. Find the equations of the straight line which is the projection on the

plane 3^-f-2?/-{-2=0, of the line of intersection of the planes

30. QP, RP are two lines through a point P with direction cosines propor-
tional to 1, 1, 2 and 1. 1, 1 respectively. Find the equation of the plane
through the origin which is perpendicular to the plane PQR and parallel to the
line QP.

If P is tho point ( 1, 1, 1), find tho co-ordmatos of the foot of the perpen-
dicular from P on this piano. [Ans. 4x2y-{-zO t ( ^ ^ y |^).

31. Show that the shortest distance between any two opposite edges of the

tetrahedron formed by the planes x+y~Q, ?/-f-2=0, z-f# 0, x+y+za is 2a/\/6
arid that the three lines of shortest distance meet at the point x= y=z= a.

32. Prove that the co-ordinates of the points where the shortest distance
line between the lines

x a y b z c , xa' y b' 2 c'
~ -='--~ --- and =- =

I m n I 't)v n

meets the first lino are

a-\-l cosec 2
0(w' cos u) 9 b-\-m cosoc2 O(M' cos 6 u) % c-\-n cosec2

0(?t' cos w),

where 6 is the angle between the given straight lines

u l(a a')-\-m(b b'}-{-n(cc') y

and u'=r(a-a')+ m'(b-b'}+ n'(c-c'}. (B.U. 1920)

33. Prove that the shortest distance between the axis of z and the line

JL+J-=JY 1+ y) f
JL-_=J-(ia c \ b J a c X\ b

for varying, X, generates the surface

abz(x*+y*)= (a
2
-b*)cxy. (B.U. 1929)

34. Prove that through the point (X, Y, Z) one line can be drawn which
intersects the lines y=-x tan a, 2=0 ; y~-x tan a, 2= c and that it meets the

plane XY at the point

x--=(cYZ cot a-c2^)/(Z 2 c2 ), y= (cXZ tan a-c 2
F)/(Z2 c2 ), 2=0. (L.U.)

35 Show that the surface generated by a straight line which intersects
the lines 2/==0, 2 c ; #=0, 2= c and the hyperbola 2=0, cc?/-j-c

2=0 is the
surface 22 xy=c%.

36. A straight line intersects the three lines

2=0,

Prove that it is parallel to the plane x-\-y-f2=0 and its locus is the surface

Y=(). (M.U. 1912)
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37. Show that the pianos

x~y sin d-fz sin 9, y^z sin Q-{-x sin
<[>,
zx sin q-\-y sin 0,

intersect in the line

aL___ # __
z

cos cos 9 cos
(^

'

if + 9-f $= ln.

38. Points P and Q are taken on two given skew lines so that PQ is

always parallel to a given plane.

If R divides PQ in a given ratio, prove that the locus of .ft is a straight line.

39. Find the locus of a point whose distance from a fixed point is in a

constant ratio to its distance measured parallel to a given plane, from a given
line.

[Hint. Take the given plane as XY plane and its intersection with the

given line as origin.]

40. Show that the planes

form a prism and find the area of its normal section. [Ans. 8\/G/3.

41. A straight line meets the co-ordinate planes YOZ, ZOX, XOY in the

points A, B y C respectively. If a, (3, y denote the angles BOO, COA, AOB
respectively, and if the equation of the plane joining the line to is

lx~i-my-t-nz= Q
t
show that

/* cot2
<x=w4 cot2 p =-. nl cot2

y. (M.T.)

42. O is the centroid of the triangle whose vertices are the points in which
the co-ordinate axes meet a plane a. The perpendicular from O to this plane
meets the co-ordinate planes in A, B, C. Prove that_.__

OA^GB^QC OK
where K is the foot of the perpendicular from the origin O to the piano a.

43. Assuming that the equation
ax*+ 67/2+ cz2+ 2fyZ+ 2gzx+ 2hxy=

represents two planes, show that their line of intersection is

Fx=Gy=Hz,
where F

9 (7, H are the minors of/, g, h in the determinant

, h, (j

ff, />

44. Three straight lines mutually at right angles meet in a point P and
two of them intersect the axes of x and y respectively, whiloy the third passes
through a fixed point (0, 0, c) on the axis of z. Show that the equation of the
locus of P is

z2+2/
2+z2 =2cz. (D.U. Hons. 1944}

45. The triangle whose vertices have the rectangular co-ordinates

(5, -4, 3), (4, -1, -2) and (10, -5, 2)

respectively is projected orthogonally on to the plane whose equation is xy =3.
Find the co-ordmates of the vertices and the area of the new triangle.

(M.T. 1950) [Ans. (2, -1, 3), (3, 0, -2), (4, 1, 2), 9/v/2.

46. Prove that the plane through the point (a, (3, y) and the line,

is given by
X,

a
> _

1, 1,

> rz+s

=0.

(D. U. Hons., 1955)



CHAPTER VI

THE SPHERE

6* 11. Def. A sphere is the locus of a point which remains at a
constant distance from a fixed point.

The constant distance is called the radius and the fixed point
the centre of the sphere.

6*12. Equation of a sphere. Let (a, b, c) be the centre and r the
radius of a given sphere.

Equating the radius r to the distance of any point (x, y, z) on
the sphere from its centre (a, 6, c), we have

or x*+ y*+ z'* 2ax-2by--2cz+ (a
2+b2+c* r2)=0 ...(A)

which is the required equation of the given sphere.

We note the following characteristics of the equation (A) of the

sphere :

1 . It is of the second degree in x
} y ,

z ;

2. The co-efficients of x2
, ?/

2
,
z2 are all equal ;

3. The product terms xy, yz, zx are absent.

Conversely, we shall now show that the general equation

ax*ay*+az* + 2ux+ 2vy+2wz+d=Q, a^O .. (B)

having the above three characteristics represents a sphere.

The equation (B) can be re-written as

w

and this manner of re- writing shows that the distance between the

variable point (x, y, z) and the fixed point
/ u v w ~\

\ a
' ~~

a
'

"~~

a )
is

a
and is, therefore, constant.

The locus of the equation (B) is thus a sphere.

The radius and, therefore, the sphere is imaginary when

and in this case we call it a virtual sphere.

6*13. General equation of a sphere.

The equation (B), when written in the form,
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or x*+y
2
+z*-\-2u'x+2v'y+2w'z+d'=Q >

is taken as the general equation of a sphere.

Ex. 1. Find the centres and radii of the spheres :

(i) a;
2
-hy

a+32
te-t-8y lOz-f 1 =0.

(ii) ic
2 +?/2+224-2^-4?/-6^+5 =0.

(Hi) 2#2-f 2?/24-2c2 2^-f-42/+2-+3 =0.

[Ana. (i) (3, -4, 5) ; 7. (ii) (-1, 2, 3) ; 3. (Hi) (J, -1,-J) ; 0.

2. Obtain the equation of the sphere described on the join of

A(2, -3,4), JB(-5, 6, -7)
as diameter. [4ws. x 2 -K?/

2
-f z

2
-f 3(.r-2/-f z) 56= 0.

3. A point moves so that the sum of the squares of its distances from, the six

faces of a cnbe is constant ; show that its locus is a sphere.

Take the centre of the cube as the origin and the planes through the
centre parallel to its faces as co-ordinate planes.

Let each edge of the cube to be equal to 2a.

Then the equations of the faces of the cube are

x=a ;xa ; y=a , y~~a ; z=a, z=~a.

If (/, g, h) be any point of the locus, we have

k2 (*, a constant)

or

so that the locus is

which is a sphere.

4, A plane passes through a fixed point (a, 6, c). Show that tho locus of
the foot of the perpendicular to it from the origin is tho sphere

5. Through a point P throe mutually perpendicular straight lines are
drawn ;

one passes through a fixed point C on the z-axis, while the others

intersect the cc-axis and z/-axis, respectively; show that the locus of Pis a

sphere of which C is the centre.

6'2. The sphere through four given points. General equation of

a sphere contains four effective constants and, therefore, a sphere
can be uniquely determined so as to satisfy four conditions, each of

which is such that it gives rise to one relation between the constants.

In particular, we can find a sphere through four non-coplanar

points

(*i, Vi, *i)> (*2> y> )> (*3> 2/3> 23), (*4> 2/4. a*)-

Let

x*+y*+z*+2ux+2vy+2wz+d=0, ...(i)

be the equation of the sphere through the four given points.

We have then the equation

and three more similar equations corresponding to the remaining
three points.

Eliminating u, v, w, d, from the equation (i) and from the four
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equations (ii) just obtained, we have

87

x, y, z, 1

-o,

which is the equation of the sphere through the four given points.
Note. In numerical questions, we may first find the values of w, v, w, d

from the four conditions (ii) and then substitute them in the equation (i).

Exercises

1. Find the equation of the sphere through the four points

(4, -1, 2), (0, -2, 3), (1, -5, -1), (2, 0, 1).

[Ans. x*+y*+z2-4x+6y 22+5=0.
2. Find the equation of the sphere through the four points

(0, 0, 0), (-a, 6, c), (, -6, c), (a, b, -c)
and determine its radius. (D.U. Hons. 1947)

3. Obtain the equation of the sphere circumscribing the tetrahedron
whose faces are

4. Obtain the equation of the sphere which passes through the points

(1, 0,0), (0,1,0), (0,0, 1),

and has its radius as small as possible.

5. Show that the equation of the sphere passing through the three points

(3, 0, 2), ( 1, 1, 1), (2, 5, 4) and having its centre on the plane

6. Obtain the sphere having its centre on the lino 5?/-f 2~= 0^2.r 3?/ and

passing through the two points (0, 2, 4), (2 1, 1).

[Ans. a-
2+y2+s 2-6a?-4y+ lOc-f 12-0.

7. A sphere whose centre lies in the positive octant passes through the

origin and cuts the planes rr-0, y= 0, 2= 0, m circles of xadii \/2, \/ 26, \/2c t

respectively ; show that its equation is

8. A plane passes through a fixed point (a, b, c) and cuts the axes in

A t B y
C. Show that the locus of the centre of the sphere OABC is

a/a+6/7/+c/z= 2. (D.U. Hons., 1958, 60)

Let the sphere OABC bo
=

Q, ...(1)

so that u, v, w are different for different spheres. The points A, B, C where it

cuts the three axes are (-2z/, 0, 0), (0, -2v, 0), (0, 0, 2w). The equation of

the plane ABC is

x
_L y 4.

z
i

~^M^2v^^^~
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Since it passes through (a, 6, c) we have

____,& , __
c ___i

-2** _2t> -2M>~"
*

If x, y, z be the centre of the sphere (1),

x=~ u, y~-~v, z~~w.

From (2) and (3), we obtain

JL+i+^2
x y z

as the required locus.

9. A sphere of constant radius r passes through the origin and cuts the
axes in A, 13, C. Find the locus of the foot of the perpendicular from O to the

plane ABC. (P.U. 1940 ; BJJ. 1955)

[Ans. (
x*+y*+zl)*(x-*+y-*+ z-*)= r*.

10. If be the centre of a sphere of radius unity and A, B be two points
in a line with such that

OA.OB=l

and if P be any variable point on the sphere, show that

PA : PB= constant. (P.U. 1941}

11. A sphere of constant radius 2k passes through the origin and meets
the axes in A, J5, C. Show that the locus of the centroid of the tetrahedron
OABC is the sphere

6*31. Plane section of a sphere. A plane section of a sphere, i.e.,

the locus of points common to a sphere and a plane, is a circle.

Let be the centre of the sphere and P, any point on the plane
section. Let ON be perpendicular to the given plane ;

N being the

foot of the perpendicular.
As ON is perpendicular to the plane which

contains the line NP, we have

Hence
NP2=OP2-ON*.

Now, and N being fixed points, this rela-

tion shows that NP is constant for all positions
of P on the section.

ig t 23 Hence the locus of P is a circle whose centre

is N, the foot of the perpendicular from the
centre of the sphere to the plane.

The section of a sphere by a plane through its centre is known
as a great circle.

The centre and radius of a great circle are the same as those of
the sphere.

Cor. The circle through three given points lies entirely on any
sphere through the same three points.

Thus the condition of a sphere containing a given circle is equi-
valent to that of its passing through any three of its points.
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6*32. Intersection of two spheres. The curve of intersection of
two spheres is a circle.

The co-ordinates of points common to any two spheres

satisfy both these equations and, therefore, they also satisfy the

equation

which, being of the first degree, represents a plane.

Thus the points of intersection of the two spheres are the same
as those of any one of them and this plane and, therefore, they lie on
a circle. [See 6'31].

6*33. Sphere with a given diameter. To find the equation of the

sphere described on the line joining the points

as diameter.

Let P be any point (x, y, z) on the sphere described on AB as

diameter.

Since the section of the sphere by the plane through the three

points P, A, B is a great circle having AB as diameter, P lies on a

semi-circle and, therefore,

PA^PB.
The direction cosines of PA, PB are proportional to

x x^ y y\, zZi and x x2 , y ~y2 ,
z z2

respectively. Therefore they will be perpendicular, if

which is the required equation of the sphere.
Ex. Show that the condition for the sphere

to cut the sphere

in a great circle is

where r^ is the radius of the latter sphere.

6*4. Equations of a circle. Any circle is the intersection of its

plane with some sphere through it. Therefore a circle can be

represented by two equations, one being of a sphere and the other of

the plane.
Thus the two equations

taken together represent a circle.

A circle can also be represented by the equations of any two

spheres through it.

Note. The student may note that the equations

also represent a circle which is the intersection of the cylinder
x*+y*+ 2gx+2fy+c^Q f

with the plane
2= 0.
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Examples

1. Find the equations of the circle circumscribing the triangle

formed by the three points

(a, 0, 0), (0, 6, 0), (0, 0, c).

Obtain also the co-ordinates of the centre of this circle.

The equation of the plane passing through these three points is

The required circle is the curve of intersection of this plane with

any sphere through the three points.

To find the equation of this sphere, a fourth point is necessary,

which, for the sake of convenience, we take as origin.
If

x*+y*+z*+2ux+2vy+2wz+d=Q
be the sphere through these four points, we have

These give

d=0, u= \a, v=\b, w= \c.

Thus the equation of the sphere is

#2
+?/

2
-f 22 ax by cz= 0.

Hence the equations of the circle are

a?+y
t+*-ax-by-cz=0, +-f+- =1.

a O C

To find the centre of this circle, we obtain the foot of the

perpendicular from the centre (\a, \b, \c) of the sphere to the plane
x

_i_
y J_

Z
1

T"+T+T =L

The equations of the perpendicular are

x-\a_y-\b z-\c
"I/a ljb~ W ' y

so that

,a r b '
,

c

T' T +
"2

'

c I
is any point on the line. Its intersection with the plane is given by

/1.1,1-sl 1
r

[ o ~| i o l"
'

> / I ~r
- ^ ^- ^

\ a2 62
c

i
/ 2

Thus the centre is

2* Show that the centre of all sections of the sphere

x* + y*+z*=r*
by planes through a point (x

f

, y'', z') lie on the sphere
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The plane which cuts the sphere in a circle with centre (/, g> h) is

f(x-f)+g(y-g)+k(*-h)=o.

Jt will pass through (#', y', 2'), if

f(x'-f)+g{y'-g)+M*'-h)=o,
and accordingly the locus of (/, g, h) is the sphere

Exercises

1. Find the centre and the radius of the circle

a;+ 2?/H-2c=15, x*+ y
2+z*~2y-4z=ll.

[Ans. (1, 3, 4), V7.
2. Find the equation of that section of tho sphere

of which a given internal point (x^ y^, z^} is tho centre. (P.U. 1939 Suppl.)

(The plane through (.r 1 , ?/j, ,

(

:
1 )
drawn perpendicular to the line joining this

point to the centre (0, 0, 0) of tho .sphere determines the required section.)

3. Obtain tho equations of the circle lying on the sphere
2+ 2/

2+z2 2.T+4*/ 6z-h3-

and having its centre at (2, 3, 4).

[An*. ^2+ ?y2^ ;:2_2.E4-4#-6z+3=-0=a?+5?/ 7z-45.

4. is the origin and A, B, C, are the points

(4, 46, 4c), (46, 4c, 4a), (4c, 4, 46).

Show that the sphere

passs through the nine-point circles of the faces of the tetrahedron OABC.
5. Find the equation of the diameter of tho sphere *r

2
-f-?/

2
-|-2

2= 29 such
that a rotation about it will transfer the point (4, 3, 2) to the point (5, 0, 5)

along a great circle of tho sphere. Find also the angle through which the sphere
must be so rotated. (L.U.) [Ar>s. %x= y= Jz,

cos~1
( 16/29).

6. Show that tho following points are concyclic :

(t) (5, 0, 2), (2, -6, 0), (7, -3, 8), (4, -9, 6).

(tt) (-8, 5, 2), (-5, 2, 2), (-7, 6, 6), (-4, 3, 6).

6*41. Spheres through a given circle. The equation

obviously represents a general sphere passing through the circle with

equations

=0, [7=0, QonateJ
t>y

where Mr. N, Sreekanth
S=*+f+z*+2**+2vy+2m td 9 M.Sc.(Maths) O.U
U=lx -\-my-\-nz p.

' *

Also, the equation

represents a general sphere through the circle with equations

fl=0, '=(),

where
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Here A is an arbitrary constant which may be so chosen that
these equations fulfil one more condition.

Note 1. We notice that tho equation of the plane of the circle through
the two given spheres is

S S'=2(u tt')x+2(v v')y+ 2(w-w')z+d~d'^Q.
From this we see that the equation of any sphere through the circle

S=Q,S'= Q

can also be taken of the form

S-ffc(S-S')=0;

fc, being any arbitrary constant.

This form sometimes proves comparatively moro convenient.

Note 2. It is important to remember that the general equation of a sphere
through the circle

is

where k is different for the different spheres.

Examples

1. Find the equation of the sphere through the circle

and the point (1, 2, 3).

The sphere

passes through the given circle for all values of A.

It will pass through (1, 2, 3) if

5+ 15A-0 or A=-J.
The required equation of the sphere, therefore, is

3(:r
2+r+2 2

)-2a;-3y--42-22 = 0.

2. Show that the two circles

lie on the same sphere and find its equation. (Z>. U. Hons. 1947)

The equation of any sphere through the first circle is

and that of any sphere through the second circle is

x*+y
2+z 2+x-3y + z-5+ p.(2x-y+z-l)=Q. ...(if)

The equations (i) and (ii) will represent the same sphere, if A, \L

can be chosen so as to satisfy the four equations

The first two of these equations give A=3, {x=l, and these values

clearly satisfy the remaining two equations also. These four equations
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in A, (x being consistent, the two circles lie on the same sphere, viz.,

x*+y*+z*
i.e.,

Exercises

1. Find the equation of tho sphere through the circle

iC 2_j_ 2/2+,2_j_

and the centre of the sphere

[Ana. ,

2. Show that the equation of tho sphere having its centre on the plane

4x-5y-z=3
and passing through the circle with equations

8 -0, a;
2+# 2

+;:
2
-|-4x-h

r
>?/-Gz-h2-= ;

.
.

3. Obtain tho equation of the sphere having the circle

as tho great circle.

[The centre of tho required sphere lies on tho piano x-{-y-{-z= 3.]

[Ana. x*+y'A+ z*-4x+Gy-- =
.

4. A sphere S has points (0, 1, 0), (3, 5, 2) at opposite ends of a

diameter. Find tho equation of the sphere having tho intersection of S with
the plane

as a groat circle.

[Ans. ---.- -.
5. Obtain the equation of the sphere which passes through the circle

a-2_|_^2 ;= 4
)

z Q and is cut by the plane j;-|-2^-f 2s in a circle of radius 3.

[Ana. 2
-f2/

2
-fz2:=62 4= 0.

6. Show that the two circles

72 17^=0, 2x+y 3z+ 1=0 ;

lie on the same sphere and find its equation.
[Ans. x

7. Prove that tho circles

lie on the sphere and find its equation. (D.U. Hons., 1945)

[Ans. x2 +?/2-f-z2-2a;-2i/-22-6= 0.

6*5. Intersection of a sphere and a line.

Let

zH y
2+*H 2wa;+2t^+2tt;2+d=0 ...(1)

and

be the equations of a sphere and a line respectively.
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The point (/r+a, rar+p, nr \- y) which lies on the given line (2)

for all values of r, will also lie on the given sphere (1), if r satisfies

the equation

() 9 ...(A)

and this latter being a quadratic equation in r, gives two values say,
ri> rz of r. Then

are the two points of intersection.

Thus every straight line meets a sphere in two points which may be

real, imaginary or coincident.

Ex. Find the co-ordinates of the points where the line

iGM-3) = J(y+4)= -i(2-8)
intersects the sphere

a;2+ ?/+s2f2j:- 10^= 23.

[Ans. (1, -1,3) ; (5, 2, -2).

6'51. Power of a point. If /, m, ?i, are the actual direction

cosines of the given line (2) in 6'5, so that l*-\-m
2
-\-n*=l, then

rl9 r2 ,
are the distances of the point A (a, (3, 7) from the points of

intersection P and Q.

which is independent of the direction cosines, /, m, n.

Thus if from a fixed point A, chords be drawn in any direction

to intersect a given sphere in P and Q, then AP.AQ is constant. This
constant is called the power of the point A with respect to the sphere.

Example

Show that the sum of the squares of the intercepts made by a given

sphere on any three mutually perpendicular straight lines through a fixed

point is constant.

Take the fixed point O as the origin and any three mutually
perpendicular lines through it as the co-ordinate axes. With this

choice of axes, let the equation of the given sphere be

The #-axis, (y=Q=z) meets the sphere in points given by

so that if xlt x2 be its roots, the two points of intersection are

(*i, 0, 0), (*,, 0, 0).

Also we have

.*. (intercept on #-axis)
2= (xi #2 )

2

==(^i+^2)
2 ~4a:1a;2=4(^

2
d).

Similarly

(intercept on y-axis)
2
=4(t>

2
d) y

(intercept on z-axis)
2=4(w2

d).
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The sum of the squares of the intercepts

where r is the radius of the given sphere and p is the power of the

given point with respect to the sphere.

Since the sphere and the point are both given, r and p are both

constants.

Hence the result.

Note. The co-efficients u, v, w and d in the equation of the

sphere will be different for different sets of mutually perpendicular
lines through as axes.

Since, however, the sphere is fixed and the point is also fixed,
the expressions

r2=u2+v2+w2-d
for the square of the radius and

p^d,
for the power of the point, w.r.t. the sphere will be invariants.

Exercises

1. Find the locus of a point whose powers with respect to two given
spheres are in. a constant ratio.

2. Show that the locus of the mid-points of a system of parallel chords
of a sphere is a plane through its centre perpendicular to the given chords.

6'6. Equation of tangent plane. To find the equation of the

tangent plane at any point (a, p, y) of the sphere

As (a, (3, y) lies on the sphere, we have

a2+ P
2+y2+ 2tta+2^f2^

The points of intersection of any line

through (a, (3, y) with the given sphere are

(Zr+a, mr+p, nr+y)
where the values of r are the roots of the equation

By virtue of the condition (i), one root of this quadratic equation
is zero so that one of the points of intersection coincides with
(, p, r).

In order that the second point of intersection may also coincide
with (a, P, y), the second value of r must also vanish and this

requires
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Thus the line

x_
a_.y~_P_2-^X_

/

~~ m ~~
n

meets the sphere in two coincident points at (a, p, y) and so is a

tangent line to it thereat for any set of values of /, m, n which satisfy
the condition (Hi).

The locus of the tangent lines at (a, p, y) is, thus, obtained by
eliminating I, m, n between (Hi) and the equations (ii) of the line

and this gives

or <

=a2+P 2+y 2+ 2wa+2i;|3+2^y+^=0, from (i)

which is a plane known as the tangent plane at (a, p, y).

Hence

is the equation of the tangent plane to the given sphere at (a, p, y).

Cor. 1. The line joining the centre of a sphere to any point on it

is perpendicular to the tangent plane thereat, for the direction cosines

of the line joining

the centre ( w, v, w) to the point (a, p, y)

on the sphere are proportional to

which are also the co-efficients of x, y, z in the equation of the tangent

plane at (a, p, y).

Cor. 2. If a plane or a line touch a sphere, then the length of

the perpendicular from its centre to the plane or the line is equal
to its radius.

Note. Any lino in the tagent piano through its point of contact touches
the section of the sphere by any plane through that line.

Examples

1. Show that the plane lx-\-my-}-nz=p will touch the sphere

if

(ul+vm+wn+p)
2
=(l

2
-{'m

z+n2
)(u

2+v2+w2
-d).

Equating the radius \/(u
2
-\-v

2
-\~w*d) of the sphere to the length

of the perpendicular from the centre
( u, v, w) to the plane

we get the required condition.

2. Find the two tangent planes to the sphere

which are parallel to the plane
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The general equation of a plane parallel to the given plane

is

This will be a tangent plane, if its distance from the centre

(2, 1, 3) of the sphere is equal to the radius 3 and this requires

Thus
A=10or 8.

Hence the required tangent planes are

2x+2yz 10=0, and 2x+2y-z-S=Q.
3. Find the equation of the sphere which touches the sphere

at (1, 1, 1) and passes through the origin.

The tangent plane to the given sphere at (1, 1, 1) is

The equation of the required sphere is, therefore, of the form

x*-ty* + z2 x+3yi2z-3+k(x+5y-6)=0.
This will pass through the origin if

fc

r~*-
Thus the required equation is

2(x
2+y2+z*)-3x + y+ z=Q.

4. Find the equations of the sphere through the circle

z2
+2/

2 +z2=
and touching the plane

z-0.
The sphere

passes through the given circle for all values of A.

Its centre is (-A, -2A, fX), and radius is

Since it touches 2=0, we have by Cor. 2,

or

This gives
A=-l or -J.

The two corresponding spheres, therefore, are

5(a;H2/
2+ z2)--2tf--4y--5z+l=0.

5. Find the equations of the two tangent planes to the sphere

x*+y*+z*=9,
which passes through the line

6, x 2^=3.
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Any plane

through the given line will touch the given sphere
if

or

2A2-A-1=,0.
This gives

A= l, -J.
The two corresponding planes, therefore, are

Exercises

1. Find the equation of the tangent piano to the sphere

at the point (1, 2, 3).

[Ana. 4z+9?/+ 142-64-0.
2. Find the equations of the tangent line to the circle

at the point (3, 5, 4).

[Ans.
3. Find the value of a for which the plane

touches the sphere
z2 +2/

2+z2
-2:c-22/-2;>; 6=0.

[Ans.

4. Show that the plane 2x* 2?/+2+12=0 touches the sphere

and find the point of contact.

[Ans. (-1,4, -2).

[The point of contact of a tangent plane is the point where the line

through the centre perpendicular to the plane meets the sphere.]

5. Find the co-ordinates of the points on the sphere

the tangent planes at which are parallel to the plane

[Ana. (4, -2, 2), (0, 0, -2).

6. Show that the equation of the sphere which touches the sphere

at (1, 2, 2) and passes through the point ( 1, 0, 0) is

7. Obtain the equations of the tangent planes to the sphere
a;2 -f-y

2
-f2

2
-F6tf 22+1=0

which pass through the line

3(16-z)=32=2?/+30.

[Ana. 2*+2y-2-2=0, o;+22/

8. Obtain the equations of the sphere which pass through the circle

and touch the plane 2x+4t/==14.

[Ans.
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9. Find the equation of the sphere which has its centre at the origin and
which touches the line

[Ans. 9

10. Find the equation of a sphere of radius r which touches the three
co-ordinate axes. How many spheres can be so drawn.

[Ans. 2(sHyH2 2
)4-2^2( :fca;ydb)r+r1= 0; eight.

11. Prove that the equation of the sphere which lies in the octant OXYZ
and touches the co-ordinate planes is of the form

Show that, in general, two spheres can be drawn through a given point to

touch the co-ordinate pianos and find for what positions of the point the

spheres are

(a) real, (6) coincident. (P.U. 1944)

[The distances of the centre from the co-ordinate planes are all equal to
the radius so that we may suppose that X is the radius and (X, ^X, X) is the
centre ; X being the parameter.]

12. Show that the spheres

Z24:X4:Qy 182+225=0
touch externally and find the point of the contact.

[Ana. (12/5, 20/5,9/6).

13. Find the centres of the two spheres which touch the plane

at the point (8, 5, 4) and which touch the sphere

[Ana. (4,2,4). (64/21,27/21,4).

14. Obtain the equations of spheres that pass through the points (4, 1,0),

(2, -3, 4),(1, 0, 0) and touch the plane 2x+2y-z=ll. (P.U. 1934)

[Ans. a724-2/24_;j2_6z+22/-4z+5==0 ; 16(a?*-fya+*) 102a?-f50y-49*+ 86=;0.

15. Find the equation of the sphere inscribed in the tetrahedron whose
faces are

(t) z= 0, 2/
= 0, z=0,

(w) s= 0, y= 0, 2-0, 2a?-

[Ana. (i) 32(x*+y*+z*)-S(x+y+z) + l= 0. (ii) 9(*2+ 2/
2 +z2

)-f 6(*-2/-f z)-f 2=0.

16. Tangent plane at any point of the sphere #2+y2+ z*=r2 moots the
co-ordinate axes at A> B, C. Show that the locus of the point of intersection

of planes drawn parallel to the co-ordinate planes through A, B, C is the surface

6*61. Plane of Contact. To find the locus of the points of contact

of the tangent planes which pass through a given point (a, p, y).

Let (x
f

, y ', z') be any point on the sphere

x*+y*+z*
The tangent plane

at this point will pass through (a, P, 7),

if

or
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which is the condition that the point (#', y' }
z

r

) should lie on the

plane
x(*iu) f y(P+ v)+z(y+w) f (ua+t#+ u>y+d)=0.

It is called the plane of contact for the point (a, p, y).

Thus the locus of points of contact is the circle in which the

plane cuts the sphere.

Ex. 1. Show that the line joining any point P to the centre of a given
sphere is perpendicular to the plane of contact of P and if OP meets it in Q, then

OP.OQ-~-(radius)2.

Ex. 2. Show that the planes of contact of all points on the line

*/2= (/-a)/3= (s+3a)/4
with respect to the sphere a;2 -f-2/

2+ 22 c*
2
pass through the line

6 62. The polar plane. // a variable line is drawn through a

fixed point A meeting a given sphere in P, Q and point R is taken on
this line such that the points A, R divide this line internally and

externally in the same ratio, then the locus of R is a plane called polar

plane of A w.r. to the sphere.

It may be easily seen that if the points A, R divide PQ internally
and externally in the same ratio, then the points P, Q also divide

AR internally and externally in the same ratio.

Consider the sphere

x*+y*+z*=a\ ...(1)

and let A be the point (a, p, 7).

Let (Xj y, z) be the co-ordinates of the point R on any line

through A. The co-ordinates of the point dividing AR in the ratio

A : 1 are

/Az+yN

V~A+T

This point will be on the sphere (1) for values of A which are

roots of the quadratic equation

.e.,

Its roots Aj and A2 are the ratios in which the points P, Q divide

AR.
Since P, Q divide AR internally and externally in the same ratio,

we have

Thus from (2), we have

a2=0, ...(3)

which is the relation satisfied by the co-ordinates (x, y, z) of R.

Hence (3) is the locus of R. Clearly it is a plane.

Thus we have seen here that the equation of the polar plane of
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the point (a, P, 7) with respect to the sphere

s

It may similarly be shown that the polar plane of (a, p, 7) with

respect to the sphere

s

On comparing the equation of the polar plane with that of the

tangent plane ( 6'6) and the plane of contact ( 6*61), we see that

the polar plane of a point lying on the sphere is the tangent plane at

the point and that of a point, lying outside it, is its plane of contact.

If TU be the polar plane of a point P, then P is called the pole of

the plane TC.

6*63. Pole of a plane. To find the pole of the plane

lx+my-\-nz=p .. (i)

with respect to the sphere
2
42/

2+z2=a2
.

If (a, p, y) be the required pole, then we see that the equation (i)

is identical with

so that, on comparing (i) and (ii) y
we obtain

ja __p__ _Z._^!.
I

~~ m n
~~~

p
'

or

a=a2
//#), P=a

2
m/p, y=a?7i/p.

Thus

is the required pole.

6'64. Some results concerning poles and polars. In the following

discussion, we always take the equation of a sphere in the form

1. The line joining the centre of a sphere to any point P is

perpendicular to the polar plane of P.

The direction ratios of the line joining the centre O (0, 0, 0) to

the point P(a, p, 7) are a, p, 7 and these are also the direction ratios

of the normal to the polar plane a#+ pi/-f72=a
2 of P(a, p, 7).

2. // the line joining the centre of a sphere to any point P meets

the polar plane of P in Q, then

OP.OQ= a\

where a is the radius of the sphere.

We have,
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Also, OQ y
which is the length of the perpendicular from the centre

0(0, 0, 0) to the polar plane QLX+ (ty-f-yz^a
2 of P, is given by

Hence the result.

3. If the polar plane of a point P passes through another point Q,
then the polar plane of Q passes through P.

The condition that the polar plane

of P(a1} PJ, 7j) passes through #(a2 , p a , y2 ) is

which is also_, by symmetry, or directly, the condition that the polar

plane of Q passes through P.

Conjugate points. Two points such that the polar plane of either

passes through the other are called conjugate points.

4. // the pole of a plane T:
L lies on another plane 7T2,

then the pole

of 7T2 also lies on T^.

The condition that the pole

a\ a?mi a2% \

Pi
'

Pi
'

Pi )
of th'^ plane ^

lies on the plane

is

which is also, clearly, the condition that the pole

(a\/p2 ,
a*m2/p2 , a*n2/p2)

of 7r2 lies on -KI.

Conjugate planes. Two planes such that the pole of either lies on
the other are called conjugate planes.

5. The polar planes of all the points on a line I pass through
another line I'.

The polar plane of any point,

(fr+oc,mr+p, nr
on the line, Z,

?L7J?=y.TP=?i
I m

is

or

which clearly passes through the line

<x,x+$y+yz a2=0,
whatever value, r, may have. Hence the result.
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Let this line be V. We shall now prove that the polar plane of

every point on /' passes through I.

Now, as the polar plane of any arbitrary point P on I passes

through every point of I', therefore, the polar plane of every point of

V passes through the point of P on I and as, P is arbitrary, it passes

through every point of I i.e,, it passes through /.

Thus we see that if V is the line such that the polar planes, of all

the points on a line l
y pass through it, then the polar planes of all the

points on V pass through /.

Polar Lines, Two lines such that the polar plane of every point on
either passes through the other are called Polar Lines.

Exercises

1. Show that polar lino of

(

with rospoct to the sphere

is the line

7x-f-3_2 ly __
z

11 5 HT
2. Show that if a lino I is coplanar with the polar line of a line I', then,

I' is coplanar with the polar line of I.

3. If PA, QB be drawn perpandicular to the polars of Q and P respec-

tively, with rospoct to a sphere, centre 0, then

PA^OP
QB~'OQ'

4. Show that, for a given sphere, there exist an unlimited number of

tetrahedra such that each vertex is the pole of the opposite face with respect to

the sphere.

(Such a tetrahedron is known as a self-conjugate or self-polar tetrahedron )

6*7. Angle of Intersection of two spheres.

Def. The angle of intersection of two spheres at a common point
is the angle between the tangent planes to them at that point and is,

therefore^ also equal to the angle between the radii of the spheres to

the common point ;
the radii being perpendicular to the respective

tangent planes at the point.

The angle of intersection at every common point of the spheres
is the same, for if P, P' be any two common points and (7, C r

the
centres of the spheres, the triangles GC'P and CC'P' are congruent
and accordingly

/_CPC'=/_CP'C'.
The spheres are said to be orthogonal if the angle of intersection

of two spheres is a right angle. In this case

6*71. Condition for the orthogonality of two spheres.

To find the condition for the two spheres

to be orthogonal.
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The spheres will be orthogonal if the sguare of the distance between
their centres is equal to the sum of the squares of their radii and this

requires

or

Exercises

1. Find the equation of the sphere that passes through the circle

#2+ 2/ 2_j_ ;S2_2.r-f 3z/-4z-f 6-0, 3^ 4y+ 5z 15=
and cuts the sphere

a2+2/2+ -2_|_2a+4# 6z+ll =
orthogonally.

[Ans. f>(o:
2 +i/ 2+ ;2

2
)-13.};+19?/

2. Find the equation of the sphere that passes through the two points

(0,3,0), (-2,- 1, -4)
and cuts orthogonally the two spheres

[Ans.
3. Find the equation of the sphere which touches the plane

at the point (1, 2, 1) and cuts orthogonally the sphere
z2 +2/2+z2 -4.r+6?/+ 4= 0. (L.U.)

IAns. #2+2/2-1-32-1- 7.r -|- ]0y 5z-f 12= 0.

4. Show that every sphere through the circle

a, 2 +2/2-2az+r2=0, z= 0,

cuts orthogonally every sphere through the circle

z 2+22=r2
, 2/=0.

5. Two points P, Q are conjugate with respect to a sphere S ;
show that

the sphere on PQ as diameter cuts S orthogonally.
6. If two spheres Si and 2 are orthogonal, the polar plane of any point

on Si with respect to S% passes through the other end of the diameter of Si
through P.

Example

Two spheres of radii r and r2 cut orthogonally. Prove that the

radius of the common circle is

Let the common circle be

a

The general equation of the sphere through this circle being

x*+y2+z2+2kz-a2
=Q,

let the two given spheres through the circle be

x*+y*+z*+2kiz-a*=0, x*+y*+z*+2k2z -a
2=0.

We have

r^kS+at.rf^kf+a*. ...()

Since the spheres cut orthogonally, we have
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From (i) and (n), eliminating ij, &2 ,
we have

or

Hence the result.

6*8. Radical plane. To show that the locus of points whose

powers with respect to two spheres are equal is a plane perpendicular to

the line joining their centres.

The powers of the point P(x, y, z) with respect to the spheres

are

and

respectively.

Equating these, we obtain

which is the required locus, and being of the first degree in (x, y, z), it

represents a plane which is obviously perpendicular to the line joining
the centres of the two spheres and is called the radical plane of the

two spheres.

Thus the radical plane of the two spheres

^=0, S,=0,
in both of which the co-efficients of the second degree terms are equal to

unity, is

S1 -AS2
= 0.

In case the two spheres intersect, the plane of their common
circle is their radical plane. ( 6'32).

6*81. Radical line. The three radical planes of three spheres
taken two by two intersect in a line.

If

fli
= 0, S2=0, 58

=

bo the three spheres, their radical planes

Si-fl^O, S2-S3
= 0, fl8 -fli= 0,

clearly meet in the line

$1= $2=$3 .

This line is called the radical line of the three spheres.

6'82. Radical Centre. The four radical lines of four spheres
taken three by three intersect at a point.

The point common to the three planes
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is clearly common to the radical lines, taken three by three, of the

four spheres
S1==0, S2 =0, S3=0, 4=0.

This point is called the radical centre of the four spheres.

6*83. Theorem. // $i= 0, #2^0, be two spheres, then the

equation

A being the parameter, represents a system of spheres such that any two

members of the si/stem have the same radical plane.

Let

^1+A1S2=0 and fli+Ma=0>
be any two members of the system.

Making the co-efficients of second degree terms unity, we write

them in the form

&i +\&2 __ n ^i+ A2$2 __

~TW '~i+V
The radical plane of these two spheres is

s^\s2 I+VL_ O
l+\ 1+A2

~U
'

or

S,-Sa
= 0.

Since this equation is independent of A! and A
2 ,
we see that

every two members of the system have the same radical plane.

Co-axal System. Def. A system of spheres such that any two

members thereof have the same radical plane is called a co-axal system

of spheres.

Thus the system of spheres

is co-axal and we say that it is determined by the two spheres

#!=<), fla=0.
The common radical plane is

^-#2=0
This co-axal system is also given by the equation

51+t,(S1-S8)=0.
Refer Note 1, 6'41, P. 92.

Note. It can similarly be proved that the system of spheres

S+XE7-0
is co-axal ; $=0 being a sphere and 7=0 a plane ; the common radical plane
is 7=0.

Cor. The locus of the centres of spheres of a co-axal system is a
line.

For, if (x, y, z) be the centre of the sphere
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we have

W A^ __^y
-

On eliminating A, we find that it lies on the line

This result is also otherwise clear as the line joining the centres

of any two spheres is perpendicular to their common radical plane.

6*9. A simplified form of the equation of the two spheres.

By taking the line joining the centres of two given spheres as

X-axis, their equations take the form

Their radical plane is

2x(ul
- u2 ) + (dj d2 )

= 0.

Further, if we take the radical plane as the YZ plane, i.e., x=Q,
we have d1

= d2 ^=d ) (say).

Thus* by taking the line joining the centres as X-axis and the

radical plane as the YZ plane, the equations of any two spheres can

be put in the simplified form

where ult u2 are different.

Cor. 1. The equation
x*+y*+z*+ 2kx+ d==0

represents a co-axal system of spheres for different values of k
;
d

being constant. The YZ plane is the common radical plane and
X-axis is the line of centres.

Cor. 2. Limiting points. The equation
xz+y*+

can be written as

For k= V^, we get spheres of the system with radius zero and
thus the system includes the two point spheres

(-v'rf.o.oj, (V<*, o,o).

These two points are called the limiting points and are real only
when d is positive, i.e., when the spheres do not meet the radical

plane in a real circle.

Def. Limiting points of a co-axal system of spheres are the point

spheres of the system.

Examples

1. Find the limiting points of the co-axal system defined by the

spheres
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The equation of the plane of the circle through the two given

spheres is

3z + 3t/+6z= 0, i.e., x+y + 2z=0.

Then the equation of the co-axal system determined by given
spheres is

The centre of (1) is

[~_3+A A-3 "1

o > 9
~~

I

'

*- -*

and radius is

Equating this radius to zero, we obtain

6A 6= 0,

i.e., A=l.
The spheres corresponding to these values of A become point

spheres coinciding with their centres and are the limiting points of

the given system of spheres.

The limiting points, therefore, are

(-1,2,1) and (-2,1, -I).
2. Show that spheres which cut two given spheres along great circles

all pass through two fixed points. (P.U. 1944 Suppl.)

With proper choice of axes, the equations of the given spheres
take the form

a*+ y*+z*+2ujx+d=0, ...(i)

x*+y*+z
2+ 2u2x + d=Q. ...(ft)

The equation of any other sphere is

x*+y*+z*+2ux+2vy+2wz + c=Q .. (iff)

where u, v, w, c are different for different spheres.
The plane

2x(u-u l)2vy2wz (c d)
=

0,

of the circle common to (i) and (?it) will pass through the centre

(-j, 0, 0)

of (i), if

2u^u u1) + (cd) Qy ... (iv)

which is thus the condition for the sphere (fff) to cut the sphere (i)

along a great circle.

Similarly
-2wa(t*-tta)f(c-(Z)=0, ...(v)

is the condition for the sphere (tit) to cut the sphere (it) along a

great circle.

Solving (iv) and (v) for u and c, we get

so that u, c are constants, being dependent on ui9 u^ d only.
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The sphere (Hi) cuts JC-axis at points whose #-co-ordinates are

the roots of the equation

The roots of this equation are constant, depending as they do

upon the constants u and c only.

Thus every sphere (MI) meets the Jf-axis at the same two points
and hence the result.

Exercises

1. Show that the sphere

passes through the limiting points of the co-axal system

and cuts every member of the system orthogonally, whatever bo the values of

v, w.

Hence deduce that every sphere that passes through the limiting points of
a co-axal system cuts every sphere of that system orthogonally.

2. Show that the locus of the point spheres of the system

is the common circle of the system

u, v
t w being the parameters and d a constant.

3. Show that the sphere which cuts two spheres orthogonally will cut every
member of the co-axal system determined by them orthogonally.

4. Find the limiting points of the co-axal system of spheres

a2_|_ 2/2_|_ 22_20x+30(/-40s4-29-fX(2^ 3i/-f4z)= 0.

[An*. (2, -3, 4); (-2, 3, -4).
5. Three spheres of radii ri, r, r3 ,

have their centres A, B, C at the points

(a, 0, 0), (0, 6, 0), (0, 0, c) and n*+fi*+r3*=a*+b*+c*. A fourth sphere passes
through the origin and A, B t

C. Show that the radical centre of the four spheres
lies on the plane ax+by-\- cz=0. (D.U.)

6. Show that the locus of a point from which equal tangents may bo
drawn to the three spheres

is the straight line

*/2= (y-l)/5=*/3.
7. Show that there are, in general, two spheres of a co-axal system which

touch a given plane.

Find the equations to the two spheres of the co-axal system

*

which touch the plane

[Ans.

8. P is a variable point on a given line and A, B, C are its projections on
the axes. Show that the sphere OABC passes through a fixed circle.

9. Show that the radical planes of the sphere of a co-axal system and of

any given sphere pass through a line.



CHAPTER VII
t

THE CONE AND CYLINDER

7*1. Def. A cone is a surface generated by a straight line which

passes through a fixed point and satisfies one more condition : for

instance, it may intersect a given curve or touch a given surface.

The fixed point is called the vertex and the given curve the

guiding curve of the cone.

Any individual straight line on the surface of a cone is called

its generator.

In this book we shall be concerned only with quadric cones, i.e.,

cones with second degree equations.

7*12. Equation of a cone with a conic as guiding curve. To find
the equation of the cone whose vertex is at the point

(, P, 7)

and whose generators intersect the conic

axt+ Zhxy+by^ + Zgxi-Zfy+c^, z=0. .. (t)

The equations to any line through (a, p, 7) are

*- = 2/-P=*-7 (ii]-
. . I Id Im n

This line meets the plane 2= in the point

n n

which will lie on the given conic, if

n

-)+ 2/(V^)+c= 0. ...(m)

This is the condition for the line (ii) to intersect the conic (i).

Eliminating I, m, n between (ii) and (Hi), we get

or a(aiz-xy

which is the required equation of the cone.

Note. The degrae of the equation of a cone depends upon the nature of

the gliding curve. In case the guiding curve is a conic, the equation of the
cone shall be of the sejond degree, as is seen above. Cones with second degree
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equations are called Quadric cones. In what follows, we shall almost be
exclusively concerned with quadnc cones only.

Exercises

1. Find the equation of the cone whose^enerators pass through the point
(a, p, Y) a-nd have their direction cosines satisfying the relation

[Ana. a(:r-

2. Find the equation of the cone whose vertex is the point (1, 1, 0) and
whose guiding curve is

2/=0, *2+ 22_ 4>

[Ans. x2 3i/2-f 22_2:r2/ -f8i/-- 4= 0.

3. Obtain the equation of the cone whose vertex is the point (a, (3, y) and
whose generating lines pass through the conic

0.

-;rv\ 2 /z t
2

[
^'

4. The section of a cone whose vertex is P and guiding curve the ellipse
#2

/
2
-ft/2/&

2
=:l, z=0 by the plane x=0 is a rectangular hyperbola. Show that

the locus of P is

5. Show that the equation of the cone whoso vertex is the origin and
whose base is the circle through the three points

(a, 0, 0), (0, 6,0), (0, 0, c)

is Za(&
2+c%s= 0. (B.U. 1958}

6. Find the equation of the cone whose vertex is (1, 2, 3) and guiding
curve is the circle

[Ans.

7. The plane lx+my+ nz= Q moves in such a way that its intersection
with the planes

are perpendicular. Show that tho normal to the piano at the origin describes,
in general, a cono of the second degree, and find its equation. Examine the
case in which aa'+^'+cc'^O. (M.T. 1956)

7" 13. Enveloping cone of a sphere. To find the equation of the

cone, whose vertex is at the point (a, p, y) and whose generators touch

the sphere

*H2/
2+z2=a*. ...(<)

The equations to any line through (a, (3, 7) are_. ...
I m n ^ '

The points of intersection of the line (ii) with the sphere (i) are

given by

(See 6-5)

and the line will touch the sphere, if the two values of r are coin-

cident, and this requires

(Zoc+m[3+n7)
2=

(i;

2+w2+w2
)(a

2
4-p

2+r2~a2
). ...(m)

This is the condition for the line (ii) to touch the sphere (i).
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Eliminating I, w, n, between, (u) and (u'i), we get

which is the required equation of the cone.

If we write

the equation (iv) can be re- written as

(5P -Sl)*=(S-2
or ^1

i.e., (^+ 2/-+2
2-a2

)(oc
2+

Def. Enveloping cone. The cone formed by the tangent lines to a

surface, drawn from a given point is called the enveloping cone of the

surface with given point as its vertex.

Exercises

1. Find the enveloping cono of the sphere

with its vertex at (1, 1, 1).

[Ans.

2. Show that the plane z= Q cuts the enveloping oono of the sphere
2= 11 which has its vertex at (2, 4, 1) in a rectangular hyperbola.

7'14. Quadric cones with vertex at origin. To prove that the

equation of a cone ivith its vertex at the origin is homogeneous in x, y, z

and conversely.

We take up the general equation
ax

l

*+by* + cz~+ 2fyz + 2gzx+ 2hxy+2ux+ 2vy+2wz+d=-Q ...(1)

of the second degree and show that if it represents a cono with its

vertex at the origin, then

u=v=wd 0.

Let P(x' , y', z') be any point on the cone represented by the

equation (1).

Now, rx'
t ry', rz

r

are the general co-ordinates of a point on the line

joining P to the origin 0.

Since OP is a generator of the cone (1), the point
(rx, ry', rz')

should lie on it for every value of r. Hence

r\ax
t2
+by'*+ cz'*+2fy'z'+ 2gz'x' + 2hx

f

y')+2r(ux'+ vy'+wz^
must be an identity.

This gives

ax' 2
+by'* tcz'*+2fy'z'+2gz'x'+ 2hx'y'= 0, ... (i)

ux'+vy'+ wz'= Q, ... (ii)

d=0. ...(Hi)

From (m),



EXAMPLE 113

From (ii), we see that if u, v, w, be not all zero, then the co-

ordinates x'
', y', z'

', of any point on \hecone satisfy an equation of the

first degree so that the surface is a plane and we have a contradiction.

Hence
u v w = 0.

Thus we see that the equation of a cone with its vertex at the

origin, is necessarily homogeneous.

Conversely, every homogeneous equation of the second degree

represents a cone with its vertex at the origin.

It is clear from the nature of the equation that if the co-ordinates

x, y'', z', satisfy it, then so do also rx
f

, ry' 9
rz

f

,
for all values of r.

Hence if any point P lies on the surface, then every point on OP
and, therefore, the entire line OP lies on it.

Thus the surface is generated by lines through the origin and

hence, by definition, it is a cone with its vertex at 0.
Note. A homogeneous equation of the second degree will represent a |,air

of planes, if the homogeneous expression can be factori/ed into linear factors.

The condition for this has already been obtained in Chapter II.

Cor. 1. If I, m, n be the direction ratios of any generator of the

cone

ax*+by*+cz
2
+2fyz+ 2gzx+2hxy=Q, ...(1)

then any point (lr y mr, nr) on the generator lies on it and, therefore,

al2+bm2
+cn*-\-2fmn+2gnl+2hlm^Q. ...(2)

Conversely, it is obvious that if the result (2) be true then the

line with direction ratios I, m, n is a generator of the cone whose

equation is (1).

Cor. 2. The general equation of the cone with its vertex at

(, P, y) is

as can easily be verified by transferring the origin to the point

(, P, 7).

Example
Find the equation of the auadric cone whose vertex is at the origin

and which passes through the curve given by the equations

The required equation is the homogeneous equation of the second

degree satisfied by points satisfying the two given equations. We
rewrite

Ix -{-my \~nz=p

as lx+my+nz==l
P

Thus the required equation is

or
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Exercises

1. Find the equation of the cone with vertex at the origin and direction

cosines of its generators satisfying the relation

[Ana.

2. Find the equations to the cones with vortex at the origin and which
pass through the curves given by the equations

(i)
=

(ii)

(m)

[Ans. (i)

(Hi)

3. A sphere and a plane a have, respectively, the equations

cp+ z<+c=^0 ; v=l,
where q>=^2

+?y2-f-2:2 ) w an(j ^ aro homogeneous linear functions of x, y, z and c is

a constant. Find the equation of the cone whoso generators join the origin O
to the points of intersection ofS and a.

Show that this cone meets S again in points lying on a plane (3
and find the

equation of [3
in terms of it, v and c.

If the radius of S varies, while its centro, the plane a, and the point O
remain fixed, prove that (3 passes through a fixed line. (M.T.)

[The required cone, (7, is given by
CE=

Now C *J?=

so that we see that the cone C meets S again in points lying on the plane
PEE u+ cv -f- c= .

Siiif-o the radius of 8 varies and its centre remains fixed, we see that u is

constant while c varies. Also v is constant. This shows that the plane
l) passes through the line of intersection of tho fixed pianos

7'15. Determination of Cones under given conditions. As the

general equation of a quadric cone with a given vertex contains five

arbitrary constants, it follows that five conditions determine such a
cone provided each condition gives rise to a single relation between
the constants. For instance, a cone can be determined so as to have

any given five concurrent lines as generators provided no three of them
are co-planar.

*

Examples

1. Show that the general equation to a cone which passes through
the three axes is

The general equation of a cone with its vertex at the origin is

a&*+ by*+cz*+2fyz+2gzx+2hxy=Q. ...(i)

Since .Jf-axis is a generator, its direction cosines 1, 0, satisfy (i).

This gives a = 0. Similarly b= c= 0.

2. Show that a cone can be found so as to contain any two given seta

of three mutually perpendicular concurrent lines as generators.,
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Take the three lines of one set as co-ordinate axes.

Let the lines OP, OQ, OR of the second set be

x = ^_== z x ~y z x __ y z

li ml nt

'

12 mz n2

'

/3 m3 n3

'

respectively.

The general equation of a cone through the three axes is

It will contain the lines OP and OQ as generators, if

!
= 0, ...(*)

Q. ...(ii)

The lines of the set being mutually perpendicular, we have

.- (A)

hml+ Z2W2+ hm3
~

0- J

Adding (?'), (n) and employing the relation (A), we deduce the
condition

/m37i3 -f 07i3 ?3+ 7iZ3w3
= 0,

so that the cone through OP and OQ passes through OR also.

Exercises

1. Find the equation to the cono which passes through the three
co-orclmate axes as TV ell as the lines

x y z x y z__=^_=_, _= _^__-.

[Ans. 3yz+lGzx+ 15xy=Q.
2. Find the equation of the cone which contains the three co-ordinate

axos and the lines through the origin with direction cosines (l^ t
w if nj).and

3. Find the equation of the quadric cone which passes through the three

co-ordinate axes and the three mutually perpendicular lines

[Ans.

7'2. Condition that the general equation of the second degree
should represent a cone. Co-ordinates of the vertex.

We have seen that the equation of a cone with its vertex at the

origin is necessarily homogeneous and conversely. Thus any given

equation of the second degree will represent a cone if, and only if,

there is a point such that on transferring the origin to the same the

equation becomes homogeneous.
Let

...(1)

represent a cone having its vertex at (x ', y', z').

Shift the origin to the vertex (x, y', z') so that we change

x to x+x', y to y+y' and z to z+z'.
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The transformed equation is

ax*+by*+cz*+2fyz+2gzx+2hxy-\-

+f(x' 9 y',z) = Q. .-(2)

The equation (2) represents a cone with its vertex at the origin
and must, therefore, be homogeneous. This gives

ax'+ hy'-\-gz' -\-u~Q, ... (i)

hx'+by'+fz'+v^O, ... (ii)

0, .. (Hi)

Also, f(x', y
f

, z')=x\az
f

z
'

(yx +fy'+ cz' 4 w)+ (ux
f + vy' -f wz + d) .

Thus with the help of (i), (ii) and (Hi), we see that (iv) is

equivalent to

ux'+ vy'+ivz'+ d=0. ..
(v)

Eliminating x' 3 y ', z' between (i), (ii), (Hi), and (v), we obtain

a, A, gr,

7i, 6, /, v

,
d

=o,

as the required condition for the general equation (1) of the second

degree to represent a cone.

Assuming that the condition is satisfied, ihe co-ordinates (x 3 y
f

, z')

of the vertex are obtained by solving simultaneously the three linear equa-
tions (i), (ii) and (Hi).

Cor. If F (x, y, z)=ax*+by*+cz* + 2fyz+2gzx I 21

represents a cone, the co-ordinates of its vertex satisfy the equations

^=0,^=0,^=0,^=0,
where 'f is used to make F(x, y, z) homogeneous and is put equal to

unity after differentiation.

Making F(x, y, z) homogeneous, we write

F(x, y, z, t)
= ax*+by*4 cz*+2fyz+ 2gzx+2hxy

+ 2uxt+2vyt+2wzt+dt*.

Then

Fx =2(ax}-hyigz+ut), Fv=2(hx+by+fz+vt),

Putting f = l, we see from (i), (ii), (in), (v) that the vertex

(XL , ylt Zj) satisfies the equations

^=0, 1^= 0, F ~Q, ^=0.
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Note. The student should note that the co-efficients of second degree
terms in tho transformed equation (2) are the same as those in the original

equation (1).

Note. Tho equation -#*(><% y, ~) represents a cone if, and only if, the
four linear equations Fx 0, f1

=.Q, FZ Q, JP
7

^
are consistent. In the case of

consistency the vortex is given by any three of these.

Example

Prove that the equation

represents a cone whose vertex is
( ./, 2, 3).

Making the equation homogeneous, we obtain

F(x, y, ^ t)=x2-y2
+2z*+ 2xy-3yz+l2xt-llyt+

Equating to zero the partial derivatives with respect to x, y, z

and t, we obtain the four linear equations

0, ... (i)

0, ... (ii)

0, ...(Hi)

I2x ll?/+ 6z+ SZ= 0. ... (iv)

Replacing t by unity and solving the resulting three linear equa-
tions (i), (ii), (Hi) for x, y, z, we obtain

x= 1, y= 2, 2= 3.

The values satisfy (iv) also.

Thus the equation is a cone with vertex ( 1, 2, 3).

Exercises

1. Prove that tho equation

represents a cone \\ith vortex (1, 2, 3).

2. Prove that the equation

represents a cone whoso vertex is
( 7/6, 1/3, 5/6).

Example

Find the equations to the lines in which
the plane

2x-\-yz09

cuts the cone

Let

I m n

be the equations of any one of the two lines in which the given piano
meets the given cone so that we have

2Z+w ^=0, 4Z2 fi
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These two equations have now to be solved for I, m, n. Eliminat-

ing n, we have

i.e., 8Z2+6/m+m2=0.

:VME^L_ JL or _JLm 16 42
Also we have

^
m m

, I 1 . w 1
when =

T-, we nave =-^->m 4 m 2

so that - r-= -7T *

1 4 2

and when = ~, we have =

I _ m n
so that -_

]

--___.

Thus the two required lines are

x y ~ z x _ y z

Hi 4 If' -1 2" 0~*

Exercises

1. Find the equations of the lines of intersection of the following pianos
and cones :

<*')

(')

(m) a?+7y-550,

c"\ JH-=jy=JL- x
-=j(-J = 2

lm;
1 2 3

'

~3~ 1 2
'

2. Show that the equation of the quadric cone which contains the three
co-ordinate axes and the lines in which the plane

cuts the cone

7x2+52/2-322^0.

yz+lQzx 1

3. Find the angle between the lines of intersection of

(t) ic-32/+z=0 and x*-5y*+z*=Q.

(tt) 10^+72/-62=Oand 20^2+ 7^/2
_ 10822=0.

(Hi) xy 52=0 and Syz+3zx 5xy=Q.

(iv) f2/+z= 0and 62/+3i/z 2^=0.

(v) ic+y+^^O and ^i/z+^t/ 3^2 = 0.

[^ln*. cos-i(5/6), () cos-1
(16/21), (m) cos-1 (2ij2/3), (iv) 7t/3, (?;) ic/O.
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4. Prove that the plane

cuts the cone

2/2-f zx-{-xy0,
in perpendicular linos if

(D.U. Hons. 1955)
[Refer, also Ex. 1, after tho next section 7'3J

7*3. Mutually perpendicular generators of a cone.

To find the condition that the cone

should have three mutually perpendicular generators.

Let

x __ y z f\
A [L

V

be any generator of the cone so that

Equation of the plane through the origin perpendicular to the
line (U) is

A# f |jiy-|-v3
= 0. ...(iv)

If/, m, ft be the direction cosines of any one of the generators
in which the plane cuts the given cone, we have

and

Eliminating n between (v) and (vi), we obtain

which, being a quadratic in I : ra, we see that the plane (iv) cuts the

given cone in two generators.

Hence if (Il9 m 1? %,), (12 ,
w2 ,

n2 ) be the direction cosines of these

two generators, we have

or

From symmetry, each of these is further

nn nn

-=*, (say)

with the help of (Hi).

If these two generators be at rt. angles, we have
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and hence

a+b+c-0.
Also conversely, if a+&+c=0, we see from (mi) that these two

generators are at right angles.

Since .

/

c/A=y/fA=r
2/v, is any arbitrary generator anc! the condition

obtained is independent of A, pt, v, we see that if

then the plane through the vertex perpendicular to any generator of the

cone cuts it in two other perpendicular generators. Those two generators
will themselves be perpendicular to the first generator so that the

three generators will be perpendicular in pairs.

Thus if

the cone has an infinite number of sets of three mutually perpendicular

generators.

In fact if this condition is satisfied, then the plane
r

'pcrpendicular
to any generator OP of the cone cuts the same in two perpendicular

generators OQ, OR, so that OP, OQ, OR is a set of three mutually
perpendicular generators.

Note. Tf the general equation

represents a cone having sets of throe mutually perpendicular generators, then

for, on shifting the origin to its vertex, the co-efficients of the second degree
terms remain unaffected.

Exercises

1. Show that the two straight lines represented by the equations

ax-{- by -f cz -~ and yz+zx+ try
= 0,

\vili bo perpendicular if

!/+ l/6+l/c=0. (P. U. 1939)

[The sum of the co-efficients of a-
2

, ?/
2 and z 2 in the equation of the given

cone being zero, we see that the given plane will cut the given cone in perpendi-
cular generators if the normal to the plane through the vertex which is tho

origin, viz.,

cr/a=2//6 = z/c

is a generator of the cone.

This requires
6c+ca+ a6= 0, i.e., l/o+l/6+ l/c=0.]

2. Prove that the plane lx-{-my -\-nz-0 cuts the cone

(b-c)x*+(c
in perpendicular lines if

(b-c)l*+(c-

3. If

x$y=z
represents one of a set of three mutually perpendicular generators of the cone

\\yz+zx 14a:y=0,
find the equations of the other two.

r A
x y z x y z

[Ant . ___?___ ;__r _L..,
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4. If

x y z

-p=--=s

represent one of a set of three mutually perpendicular generators of the cone

57/z Szx 3a-7/=0,

find the equations of the other two. (D.U. Hons. I960)

i4ns JL y z
.
x y z

lAns. 5
=

4= >
-

j-
= =

:LT

5. Show that the cone whose vertex is the origin and which passes through
the curve of intersection of the Miifaio *

2
//2-J-2;,

2 3c/2 and any plane at a
distance d, from the origin has three mutually perpendicular generators.

6. Find the locus of a point from which three mutually perpendicular
lines can be drawn to intersect the central conic

[An*.

7. Show that three mutually perpendicular tangent lines can be diawn to
tho sphere

from any point on the sphere
'

8. Throe points P, Q, H arc taken on tho ellipsoid

so that tho lines joining P, Q, I? to tho origin arc mutually perpendicular. Prove
that tho piano PQK touches a fixed sphere. (P.U. 1949}

7*4. Intersection of a line with a cone.

To find the points of intersection of the line

x-u.^y-$^z-y
I m n

~' (l)

with the cone

f(x, y, z)~ax
2
+bif+ cz2+2fyz4-2(jzx+ 2hxy=Q. ...(ft)

The point (Zr + a, mr+p, nr+7) which lies on the line (i) for all

values of r will lie on the cone (ii) for values of r given by the

equation

or r*(al
z+bm*+ en2+2/

p, 7)= 0, ...(A)

which being a quadratic in r, we see that there are two points of
intersection.

Hence every line meets a quadric cone in two points.

Cor. A plane section of a quadric cone is a conic, as every line

in the plane meets the curve of intersection in two points.

Note. The equation (A) gives the distances of the points of intersection
P and Q from the point (a, p, y), if l

t in, n are direction cosines.

Exercises

1. Show that the locus of mid-points of chords of the cone

ax*

drawn parallel to the line
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x\ly\m-=^z\n
is the plane

z(al+hm+gn)+y(hl+bm+fn
[Hint. If (a, p, y) be the middle point of any such chord

a?-a
== y fi= z_-3Y

J w n

the two roots of the equation (A) are equal and opposite and as such their sum
is zero.J

2. Find the locus of the chords of a cone which are bisected at a fixed

point.

7*41. The tangent lines and tangent plane at a point.

Let *-=y-V=*-7
...(,->

I m n

be any line through a point (a, p, y) of the cone

ax2+ by
2
-t cz

2+ 2fyz+ 2gzx+ 2hxy= ... (n)
so that

Thus one of the values of r given by the equation (A) of Art. 7*4

is zero and so one of the two points of intersection coincides with

(a > P y) The second point of intersection will also coincide with

(a, p, 7) if the second root of the same equation is also zero. This

requires

Z(aa+ 7ip+^y)+w(7ta+ 6P+/y)+w(flra+/P+ c7)= ...(m)

The line (?) corresponding to the set of values of ls m, n, satisfying
the relation (Hi) is a tangent line at (a, p, y) to the cone (ii).

Eliminating I, m, n, between (i) and (Hi), we obtain the locus of

all the tangent lines through (a, p, y), viz.,

or x(a*+h?> -i g*y)+y(hx+b$ -f/y) 4

which is a plane known as the tangent plane.

Clearly the tangent plane at any point passes through the vertex.

Cor. The tangent plane at any point (&oc, ftp, ky) on the

generator through the point (a, p, y) is the same as the tangent plane
at (a, p, y).

Thus we see that the tangent plane, at any point on a cone touches

it at all points of the generator through that point and we say that the

plane touches the cone along the generator.

Examples

1. Show that

xll=ylm=z/n
is the line of intersection of the tangent planes to the cone

ax*+by*+cz
2
+2fyz+ 2gzx+2hxy=0,

along the lines in which it is cut by the plane

x(al+hm+gn)+ y(hl+ bm+fn)-}-z(gl+fin+cn)==().

The tangent plane at any point (a, p, y) of the given cone is
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hx+b^+f7)+z(g^f^+c7)^Q.
It will contain the line

x]l=zy]m=zln,
if

l(a*+h$+&) +m(h*+bp+fr)+n{ff*+ft+ cy)=0,

i.e., a(aZ+Aw+0rw) +p(W+6m+/w) +7(^+/m+cn)=0.
Thus the point (a, (^ y) lies on the plane

x(al+Am+ gw) ~\-y(hl-\- bm -\-fn) -\-z(gl -\-frn+ en)= 0.

Hence the result.

2. $Aow JAa/ the locus of the line of intersection of tangent planes
to the cone

axz+ by*+ cz2=
which touch along perpendicular generators is the cone

Let the tangent planes along two perpendicular generators of the

cone meet in the line

IL^lL^L.. ...)
I m n

Therefore, the equation of the plane containing the two generators
is

alx-bmy-\-cnz=Q. ...(w)

Let X, pi, v, be the direction ratios of any one of the two genera-
tors so that we have

aZA -f om y<+ cnv= Oj ... (m)
aX2+^a+cva=0. ...(it;)

Eliminating v from (Hi) and (iv), we have

If Xj, (Jti,
v
a ;

A2 , (jt2 ,
v2 , be the direction cosines of the two genera-

tors, we have

or

Hence, by symmetry, we get

_ Vlv2

?) fc

The generators being at right angle, we have

or

Eliminating ? : m : n from (f) and (v), we obtain

as the required locus.
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7'42. Condition for tangency. To find the condition that the plane

lx+myi-nz=Q,
"

...(1)

should touch the cone

ax*+by*+cz* + 2fyz } 2gzx+2hxy=Q. ...(2)

If (a, P, 7) be the point of contact, the tangent plane

thereat should be the same as the plane (1).

aa+ Ap^r/y_Aa+&P+/y_<7a+/p+ c% ,
,

,~
I ~m ~~n * (say).

Hence

... (i)

... (ii)

... m)
Also, since (a, p, 7) lies on the plane (1), we have

... (it;)

Eliminating a, p, 7, k between (i), (H) t (Hi), (it;), we obtain

I , h, g, I

A,

m,

m

n
=o, ...(A)

as the required condition.

The determinant (A), on expansion, gives

Al 2+ Bm2+Cn2+ 2Fmn+ 2Gnl + 2Hlm= 0,

where A, B. C, F, G, II arc, as usual, the co-factors of a, b, c, /, g, h

respectively in the determinant

, A,

i.e., A=bc-J2
, B=ca-g*9 C=ab-h* ;

F=gh-af, G=hf-bg, H=fg-ch.

7'53. Reciprocal cones. To find the locus of lines through the

vertex of the cone

ax cz2 + 2fyz

perpendicular to its tangent planes.

Let

be any tangent plane to the cone (1) so that we have

Al2+Bm2+Cn 2+2Fmn+2Gnl+2Hlm=0.

...(1)

...(2)

...(3)



RECIPROCAL CONES 125

The line through the vertex perpendicular to the tangent plane
(2) is

X V Z=_J_~^
. (4\

I m n
*" v '

Eliminating Z, m, n between (3), (4), we get

Ax*+By* + Cz*+2Fyz+2Gzxi-2Hxy= ..,(5)

as the required locus which is again a quadric cone with its vertex at
the origin.

If we now find the locus of lines through the origin perpendicular
to the tangent planes to the cone (5X we have to substitute for

A
3 B, C, F, G, II in its equation the corresponding co-factors in the

determinant

A, H, G

II, B, F

G, F, C

Since, we have, by actual multiplication,

GH-AF=fD, IIF~-BG^gD 9 FG-CH=hD
;

where

it follows that the required locus for the cone (5) is

ax*+ by
2+ cz*+ 2fyz |- 2gzx+ 21ixy = 0,

which is the same as (1).

The two cones (1) and (5) are, therefore, such that each is the

locus of the normals drawn through the origin to the tangent planes
to the other and they are, on this account, called reciprocal cones.

Cor. The condition for the cone

to possess three mutually perpendicular tangent planes is

The cone (i) will clearly possess three mutually perpendicular

tangent planes, if its reciprocal cone

Ax2+ By
2+Cz*+2Fyz+ 2Gzx+2PIx?/^0,

has three mutually perpendicular generators and this will be so if

A+B+C=0, i.e., if bc+ca+ab-f2+g2+h2
-

Examples

1. Show that the general equation of a cone which touches the three

co-ordinate planes is

The reciprocal of a cone touching the three co-ordinate planes
is a cone with three co-ordinate axes as three of its generators. Now,
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the general equation of a cone through the three axes is

Its reciprocal cone is

or

or fx+gyhz--=2 Vfgxy~9

or fx+gy2Vfgxy==hz,
or ( \/f* Vgy)*=hz,

or V/db Vgy=
or

2. $Aow; ^af &e Zoc2is o/ the line of intersection of perpendicular
tangent planes to the cone

is the cone

a(b+c)x

Generators of the reciprocal cone corresponding to the perpendi-
cular tangent planes of the original cone are themselves perpendicular.
Also, the line of intersection of the perpendicular tangent planes is

perpendicular to the corresponding generators of the reciprocal cone.

Combining these two facts, we see that the given question is equiva-
lent to determining the locus of normals through the origin to the

planes which cut the reciprocal cone along perpendicular generators.

Equation of the reciprocal cone is

x* y* z2 ^

T+T+T" '

or

bcx2+ cay*+ abz*- 0. ... (t)

Let the plane

lx-\-my-\-nz=Q ...(ii)

cut the cone (i) along perpendicular generators. The condition for

this, as may be easily obtained, is

a(b+c)l
2
+b(c+ a)m*+c(a+b)n

2=Q. ...(Hi)

The equations of the normal to the plane (ii) are

x y z
/ x

-7-==:
=:--

...(it;)
I m n ^

Eliminating Z, ?n, n from (Hi) and (iv), we obtain

a(b + c)

as the required locus.

Exercises

1. Find the plane which touches the cone

along the generator whose direction ratios are 1, 1, 1,

[An*.
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2. Prove that perpendiculars drawn from the origin to the tangent planes
to the cone

lie on the cone

3. Prove that tangent planes to the cone

x2-
2/
2+ 2z2_3 2/;:+42

are perpendicular to the generators of the cone

1 7z24 82/

4* Prove that the cones

are reciprocal.

5. Prove that the cones

and

are reciprocal. (D. U. Rons. 1957}

6. Show that a quadric cone can be found to touch any five planes which
meet at a point provided no three of them intersect in a line.

Find the equation of the cone which touches the three co-ordinate planes
and the planes

[Ans. (x)+(-6y) + (te)=0.

7. Show that a quadric cone can be found to touch any two sets of three

mutually perpendicular planes which moot in a point.

8. Find the equation of the quadric cono which touches the three co-

ordinate planes and the three mutually perpendicular pianos

a 7/4.2= 0, 2.r437/4z-=0, 4.T y 5z 0.

[Ans. 04a;2 49</24-25^
2-30^-80^+48a;?/ -:0.

7*5. Intersection of two cones with a common vertex. Sections

of two cones, having a common vertex, by any plane are two coplanar
conies which, in general, intersect in four points.

The four lines joining the common vertex to the four points of

intersection of these two coplanar conies are the four common
generators of the two cones.

Therefore two cones with a common vertex intersect, in general, in

four common generators.

In case two cones with the same vertex have five common
generators, they coincide.

If

flf=0, flf'-0,

be the equations of two cones with origin as the common vertex, then

is clearly the general equation of a cone whose vertex is at the origin
and which passes through the four common generators of the cones

fl=0, fl('=
If k be so chosen that S+kS'~Q becomes the product of two

linear factors, then the corresponding equations obtained by putting
the linear factors equal to zero represent a pair of planes through the

common generators.
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Such values of k are the roots of the fc-cubic equation

a+ka
f

, h+kh',

h+ kh', b+kb' 9 f}-kf

g+W, /+*/', cfic'

The three values of k give the three pairs of planes through the

four common generators.

Exercises

1. Find the equation of the cone which passes through the common
generators of the cones

2*2+47/2+22=0 and 10^-2^+5^=0
and the line with direction cosines proportional to 1, 2, 3.

[Ana. 2.i2_4,/
2_ 22+ iO;ej/ 2ys+5z;c= 0.

2. Show that the equation of the cone through the intersection of the
cones

x*-2iP+ 3z*-4vz+5zx-Qxtj^Q and 2^2-3//
2+4;2-5^

and the line with direction cosines proportional tD J, 1, 1 is

3. Show that tho plane 3*+2y4z=0 passes through a pair of common
generators of the cones

27o;2+20,y
2 32:2-0 and 2yz+ zx 4xy= Q.

Also show that the plane containing the other two generators is

0*+10H- 8.3= 0.

4. Show that the piano 3x2yz=Q cuts the cones

3yz 2zx+2xy=Q and 2lx z~4y*5z2= Q

in the same pair of perpendicular lines.

Also show that the plane 7^+2^+ 5^ contains tho remaining two
common generators.

5. Two cones are described with guiding curves

a'2=a 2
, y ; ?y~ 62 , cc= 0,

and with any vertex. Show that if their four common generators meet the plane
z= in four concyclic points, the vertex linos on the surface

6. Find the conditions that the lines of section of the plane lx -\-rny-\-nz-Q
and the cones fyz+gzx -\-hxy~ 0, ax2+ 6 ?/

2+ cc; 2=0 should be coincident.

[6n2+
cw2_c2+orna__gm2

^iTlS* -- -- - _

Jmn gnl hi

7*6. The right circular Cone.

7*61. Def. A right circular cone is a surface generated by a line

which passes through a fixed point, and makes a constant angle with a

fixed line through the fixed point.

The fixed point is called the vertex, the fixed line the axis and the

fixed angle the semi-vertical angle of the cone.

The justification for the name right circular cone is contained in

the result obtained below.

The section of a right circular cone by any plane perpendicular to

its axis is a circle.
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Let a plane perpendicular to the axis ON of the right circular

cone with semi- vertical angle, a, meet it at N.

Let P be any point of the section. Since ON is perpendicular
to the plane which contains the line NP 9 we have

ON^NP O
PN
-y=y=tan /_NOP=^ta,n a,

or PA^ONtana,
which is constant for every position of the point P
of the section.

Hence the section is a circle with N as its

centre. Fig. 24

7*62. Equation of right circular cone. To find the equation of
the right circular cone with its vertex at (a, ft, 7), its axis the line

I m n

and its sami-vertical angle 0.

(j Let be the vertex,, and, OA 9
the axis of the

cone.

Any point P(x, y, z) on the cone is such that

the line joining it to the vertex makes an angle

P(x,?/Z)
with th axis 6A.

Direction cosines of OP are, therefore, propor-

tional to x a, y p, z y .

.'. cos 6=
Fig. 25

The required equation of the cone, therefore, is

Cor. 1. If the vertex be at the origin, the equation of the cone

becomes

(Ix+my+nz)*=(l
2
+m*+n*)(x*+y*+z

i

) cos2 0.

Cor. 2. If the vertex be at the origin and axis be the z-axis,

then taking
7=0, m=0, n= l

in the preceding Cor., we see that the equation of the cone becomes

2=(a?+y+2f
) cos2

0, i.e., x*+y*=z* tan2
0. ...(1)

Cor. 3. The semi-vertical angle of a right circular cone having sets

of three mutually perpendicular generators is

tan~V2 >

for, the sum of the co-efficients of #*, /
2

,
z2 in the equation of such a

cone must be zero and this means that

1 +l-tan20=0 [Refer (1), Cor. 2.]

i.e., 0=tan-V2 '
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Cor. 4. The semi-vertical angle of a right circular cone having sets

of three mutually perpendicular tangent planes is

for by Cor. to 7*43, this will be so if [Refer (1), Cor. 2]

l-tan2 0-tan2 0=0

f.c., tan 0=Vi-
or tf^tan"

1^.
Exercises

1. Find the equation of the right circular cone with its vertex at the

origin, axis along Z-axis and semi-vertical angle a.

\Ans. a;2+7/2^z2 taii2 a>

2. Show that the equation of tho right circular cone with veitex (2, 3, 1),

axis parallel to the line xy/'2=*z and one of its generators having direction

cosines proportional to (1, 1, 1) is

a2
8?/

2
4-z2 -r-12:r2/ I2yz+ 6zx 46.*;+ 36/-f-22z 19= 0.

3. Find the equation of the circular cone which pusses through the pomt
(1, 1, 2) and has its vortex at the origin and axis the lino

ar/2 y/4=s/3.

[Ans. 4z2-H02/a+19z2 48.^ 72^+ 362 e= 0.

4. Find the equations of the circular cones which contain the three

co-ordinate axes as generators.
[Ans. yzz.rxy=Q.

5. Lines are drawn through the origin with direction cosines proportional
to (1, 2, 2), (2, 3, 6), (3, 4, 12). Show that the axis of the right circular cone

through them has direction cosines

and that the semi-vertical angle of the cone is cos~

Obtain the equation of the cone also.

[Ans. scy~ yz-{-zx=- 0.

6. Find the equation of the right circular cone generated by straight
lines drawn from the origin to cut the circle through the three points

(1,2, 2), (2, 1, -2) and (2, -2, 1).

[Ans. 8a?a-4y2-422+ 5^-fy2+52o;=0.
7. If a is the semi-vertical angle of the right circular cone which passes

through the linos Oy, Oz, x~y=z, show that

The Cylinder

7*7. A cylinder is a surface generated by a straight line which is

always parallel to a fixed line and is subject to one more condition ; for
instance, it may intersect a given curve or touch a given surface.

The given curve is called the guiding curve.

771. Equation of a cylinder. To find the equation to the

cylinder whose generators intersect the conic

and are parallel to the line
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Let (a, p, y) be any point on the cylinder so that the equations
of the generator through it are

x-a y p z y--
j

=-- - = ...(w)m /-
v 7

As in 7*12, the line (Hi) will intersect the conic (i), if

But this is the condition tliat the point (a, p, 7) should lie on
the surface

or

which is, therefore, the required equation of the cylinder.

Cor. If the generators be parallel to Z-axis so that

/ 0--m and n= I,

the equation of the cylinder becomes

as is already known to the reader.

Exercises

1. Find the equation of the cylinder whoso generators are parallel to

= Iy=j3
and whose guiding curve is the ellipse

0:2+27/2=1, 2= 3.

[Ans. 3(x'2-|-2?/2-f2
2

)+ 2(4?/2-za;)+ G(a;-4y-33)-f24= 0.

2. Find the equation of the quadric cylinder whose generators intersect

the curve axZ+by^ Zz, lx~\-my-\-nz p and are parallel to Z-axis.

[Eliminate z from the two equations,]

[Ans. nfocH&y*) H-2to+2my-2p=0.
3. Find the equation of the quadric cylinder with generators parallel to

X-axis and passing through the curve

a#2
-f-&7/

2+ cz2 =l, Ix+my+nzp.
[Ans. (6Z

2 -fam2
)2/2^_2wna?/^+ (cZ2-f-an

2
)2

2
2ap/^?/ 2aprcz+(ap

2 J
2

)
= 0.

4. Show that the equation of the tangent plane at any point (a, p, Y) of

the cylinder

!.nd that it touches the cylinder at all points of the generator through the point..
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7*72. Enveloping Cylinder. To find the equation to the cylinder

whose generators touch the sphere

x*+y*+z*=a*, ...(%)

and are parallel to the line

f-i-7
"<

Let (a, P, y) be any point on the cylinder so that the equations
of the generator through it are

.

I m n

The line (Hi) will touch the sphere (i) if

But this is the condition that the point (a, p, y) should lie on

the surface

which is, therefore, the required equation of the cylinder and isknown

as an enveloping cylinder of the sphere (i).

Ex. Find the enveloping cylinder of the sphere

having its generators parallel to the line

[Ans.

7-8. The Right Circular Cylinder.

7*81. A right circular cylinder is a surface generated by a line

which intersects a fixed circle, called the guiding circle, and is perpendi-
cular to its plane.

The normal to the plane of the guiding circle through its centre

is called the axis of the cylinder.

Section of a right circular cylinder by any plane perpendicular
to its axis is called a normal section.

Clearly all the normal sections are circles having the same radius

which is also called the radius of the cylinder. The length of the

perpendicular from any point on a right circular cylinder to its axis is

equal to its radius.

7-82. Equation of a Right Circular Cylinder. To find the

equation of the right circular cylinder whose axis is the line

I m n
'

and whose radius is r.

Let (x, y, z) be any point on the cylinder. Equating the perpen-
dicular distance of the point from the axis to the radius r, we get

which is the required equation of the
cylinder.



Example

Find the equation of a right circular cylinder of radius 2 whose axis

passes through (/, 2, 3) and has direction cosines proportional to

(2, -3, 6). (P. U. 1940)

The axis of the right circular cylinder is

a l-J^-S^-S a~l.^y-2^z 3

~2~ -3
" "

6
r

"2/7" ^3/7 6/7
'

Let (/, <7, h) be any point of the cylinder. The square of the

distance of the point (/, g, h) from the axis is

Equating it to the square of the radius 2
y
we see that the point

(/ 0> h) satisfies the equation

so that the required equation is

Exercises

1. Find the equation of the right circular cylinder of radius 2 whose axis

is the line

[Ans.

2. The axis of a right circular cylinder of radius 2 is

n!= y _^zl
~2~ ~3~

=
~T~'

show that its equation is

3. Find the equation of the circular cylinder whose guiding circle is

[Hint. Show that the radius of the circle is y'G and the axis of the cylinder
is rr 2/

=
2.]

4. Obtain the equation of the right circular cylinder described on the
circle through the three points (1, 0, 0), (0, 1, 0), (0, 0, 1) as guiding circle.

[Ans. x'2 -}-y
z-\-z^xyyzzx^=.\.

Examples

1. Find the angle between the lines in which the plane

cuts the cone

Let I, m, n be the direction cosines of any one of the two lines so
that we have

ul-{-vm-{-wn=0J (*")

aZa+6m2+ en2= 0. ... (ii)

Eliminating I from (i) and (n), we obtain

(av
2+ bu2

)m2+Zavwmn+ (aw
2+cul

)n2~
,

or (av*+bu*) ( +2avw ( + (aw
2
+cu*)=Q. ...(HI)
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Let ?!, mi, nx ;
Z2 > >i> n^ be the direction cosines of the two lines

separately. From (Hi), we get

,

Thus

2- 4
(

_ ^WjTig

2w\/ [ (?r6c t vca -\~wa

From symmetr}^, cacli of these expressions is equal to

^2_ ^=+ _ n\h-~ n Ji __
6t(;

2
1 cu2

2v\/[(u
2bc t ?rca4-^

2
a6)]

= + /^-Lm,
^^Vt-^^c-f^ca+ tt;

2
^)]

' l y;

If be the angle between the two lines, we have

+ /,_ V[2(^]W2
tan t/ v/^h

v/f
-

4(
' "

r -f cw
2

af'1 -f bu & 2avw

__,"~

2. P, Q are iAe points of intersection of the line

x-*^y-$^z~y
I m n

with the cone
ew;2 -h&y

?+ cs
8= 0.

Show that the sphere described on PQ as diameter will pass through
the vertex of the cone, if

where

A=pn-yZ, (ji^yZ
- an, v=am pi.

Any point (/r fa, mr+ p, wr+7) on the line will lie on the cone

if

(al
2+bm?+ cn2

)r
2+ 2(alx | 6mp + c^7)r-f(aa

2+^2+ cy2
)=0. .

(t)

Let rl9 r2 be the roots of this r- quadratic. Therefore, the points

P, Q are

(foi-f a, m^+p, wr x f-7), (^2+ a
>

Thus
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The sphere on PQ as diameter is

or

which, with the help of (i) 3 becomes

2(x-a)
2Ilal

2
+22l(x-

It will pass through (0, 0, 0), if

^ -f ray)

(Z
2+m2+ n2

) (aa
2+ fcp

2+ c72
)
- 0,

or 2a[(Z7
-

aw)
2+ (am- gZ)

2
]
- 0,

i.e., 2a(H-
2+v2

)=0."

3. A sphere passes through the circle

z^O, &+y*=a*.
Prove that the locus of the extremities of its diameter parallel to X-axis

is the rectangular hyperbola

y^O, x*-z*=cf. (B.U.)

The equation of the general sphere through the given circle is

A being the parameter.
Its centre is (0, 0, JA). Therefore, the equations of its

diameter parallel to .X-axis are

y= 0, 2= JA. ...(w)

Eliminating A between (i) and (), we get

y^0, a;
2~22==a2

as the required locus which is clearly a rectangular hyperbola.

Revision Exercises II

1. Show that the plane x-\- 2?/ z 4 cuts the sphere

in a circle of radius unity and find the equation of the sphere which has this

circle as one of its great circles.

[Ana. ct-2-fi/2+22_2^ 2/4- 2z 4-2= 0.

2. Find the equation of the sphere which passes through the point

(2, 3, 6) and the feet of the perpendiculars from this point on the co-ordinate

planes.
Also find the equations of tangent planes to tho sphere which are parallel

to the plane 2x-}-2y-{-z~ ; and the co-ordinates of their points of contact.

[Ana. z--H/
2
4-z

2-2a;-3y-62=0 ; ^-^-{^-f 5= ; 4^4-4i/4-2z~37= 0,

(-1, -*, V) ; (, , V).
3. Show that all the spheres that can be drawn through the origin and

each set of points where planes parallel to the plane

cut the co-ordinate axes form a system of spheres which are cut orthogonally

by the spheres

a4-j/*4-z*4-2/je4-20y4-2/*3=0 if a/4- bg+ch=Q. (M.T.)
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4. Find the equations of tho lines passing through the point (1, 1, 1),

tangent to the sphere x%-{-y
z
-\-z

z 2 and parallel to the plane

[Ans. 3-2x=y=z ; 2( 1)
= 3(1 y)=s 1.

5. Obtain the equations of the planes passing through the point (3, 0, 3),

tangent to the sphere x*-\-y
2 z*= 9 and parallel to the lino

x= 2y= z.

[Ans. x+2y+2z=9 ; 2x-2y+z=9.
6. Find the equations of the spheres which touch the planes #=0, 2/=0,

2=0, lie on the positive sides of these planes and are cut orthogonally by the

sphere

2

sphere

6=0.

[Ans.

7. Find the equations of tho spheres that pass through the points
(3, 4, 1), ( 1, 0, 3), (0, 3, 3) and touch the line x=*y, 2= 0.

[Ans.

8. Show that the line (x a) /I (y 6)/w = (z c)/n is touched by two

spheres, each of which passes through the points (0, 0, 0), (2a, 0,0), (0, 26, 0).

Show further that the distance between the centres of the spheres is

9. Find the equations of tho tangent to the circle through the three points
(-3, 0, 1), (5, 1, -2), (0, 4, 2) at the point (-3, 0, 1).

_. rr+3 y z-1
[Ans - ^isrir-

10. Find the equation of the sphere inscribed in the tetrahedron formed

by the planes whose equations are

[Ans. a;
2

-r-?/
2
-f-2

2~2a(x-f y+z)+ a2=0, where (3+ v/6)a=:l.

11. If A, A' are points where the lines y nix, z=c ; y= mx, z~ c, meet
the shortest distance betw een them and P, P' are the points, one on each of
these lines, such that the sphere 011 PP r

as diameter cuts orthogonally the

sphere on AA' as diameter, show that PP f

lies on the surface

(1 W2)( 2/
2_m2a,2)

==s o //l 2( z
2_ c2j > (B.U.)

12. POP' is a variable diameter of the hyperbola x2
/a

z
y z/b*=\, z=0,

and a circle is described m tho plane PP'ZZ' on PP' as diameter. Prove that
as PP'O varies, the circle generates the surface

13. A variable plane is parallel to a given plane x/a-\-ylb-\-z/c=0 and
meets the axes in A, B, C. Prove that the circle A, B, C lies on the cone

(D.U.Hona., 1959 ; B.U.)
14. A straight line whose equations in one position are

xa__y 6_z c

I m n

is rotated about the axis of Z ; prove that the surface generated is

15. Find the equation of the system of spheres which touch 2/-axis at the

origin and pass through a fixed point (a, 6, c) ; show that all these spheres pass
through a fixed circle.
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16. Find the equations of the two spheres whose centres lie in the positive
octant and which touch the planes

x=0, 2/=0, 2=0, x+2y+2z= 8a.

[Ans. (i) z2+2/2+ 22_2a(a;+7/4-z)-f 2a
2=0. ('') x

2

17. Find the equation of the sphere which cuts orthogonally each of the

four spheres

z 2
+2/

2+22=a2
-f6

2
-j-c*, z2+y2

-fz
2+2aa;=a2

,

= c2 . (M.T.)

[Ans. ai+y2+2 + _ x + y
CL

18. Show that the locus of the centre of a variable sphere which cuts a
fixed sphere =0 orthogonally and is cut by another sphere $'=0 along a great
circle is the sphere -|-'= 0.

19. Prove that the locus of the centre of a variable sphere which cuts

each of two given spheres in great circles is a plane perpendicular to their line of

centres.

20. Find the locus of the centres of spheres which touch the two lines

y= mx, 2= c.

[Ans. wa?i/-fcz(l+m) 2=0.

21. A sphere of radius R passes through the origin ; show that the
extremities of the diameter parallel to the X-axis lie one on each of the spheres

0. (L.U. 1907)

22. Show that the cone yz+zx+xy=Q cuts the sphere #2
-f y

2+z%=a* in

two equal circles, and find their area. [Ans.

23. (i) Find the angles between the lines in which the plane

ux+vy+wz Q,

cuts the cone

ayz -{- bzx -f cxy= 0.

[Ans. tan-l!?^!lL2 c^r?

(ii) Show that the plane

ax+ by+czft,
cuts the cone

in two lines inclined at an angle

)}^ "I

Jbc-}-ca-)-ab

(D.U.Hons. 1958)

24. Show that the angle between the lines given by
bzx+cxy~0t

c= and i^ if a~

(D.U. Hons., 1959)

25. Find the equation of the cone generated by straight lines drawn from
the origin to cut the circle through the three points (1,0, 0), (0, 2, 0), (2, 1, 1)

and prove that acute angle between the two lines in which the plane x=2y cuts

the cone is cos-1 <v/(5/U). (M.T.)

[Ans. &z2 zx5
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26. A cone has for its guiding curve the circle

and passes through a fixed point (0, 0, c). If the section of the cone by the

plane x=0 is a rectangular hyperbola, prove that tho vertex lies on the fixed
circle

27. Planes through .XT-axis and F-axis include an angle a ; show that locus
of their lines of intersection is the cone

)=jt,2y* tan2 a.

28. Prove that the straight lines which cut two given skew lines such
that the length intercepted is constant, are parallel to the generators of a
circular cone whose axis lies along the line of shortest distance between the given
lines.

29. Show that the plane 2 a meets any enveloping cone of the sphere
#2

-h?/
2+22=a2 in a conic which has a focus at the point (0, 0, a). (P. U. 1938}

30. A point O is at a constant distance 2a from the origin arid points
P t Q, R are taken on the axes in such a way that OP, OQ, OR are mutually
perpendicular. Prove that tho plane PQR always touches a fixed sphere of

radius a. (M.T.)
31. Show that, in general, two spheres rnay be drawn to contain a gi\

ren
circle and to touch a given piano. If the circle ho in tho plane 2 = 0, and has a

given radius a, and if tho plane is .u cos 0-j-c sin 0, show that if tho distance

between tho centres of the two spheres is constant arid equal to 2c, the locus of

tho centre of the circle is the pair of linos

ar= v^(*+ca cos2 0), z= 0. (P. U. 1949}

32. Find the equation of tho right circular cone with the vertex

(1, 2, 1), semi -vertical angle 00 and the line

.

3
'

4 5

as its axis. Prove that the plane 3r 4y -f-5c= o6 cuts it in a circle. Find its

centre and radius. Find tho equation of the right circular cylinder with the
above circle as its base. (P.U. 1948}

[Ans. lx*-ly* 25z*+ tteij+ Wyz-Wzx+ 22jc+ly+\Wz+ 'l*=*()

centre (4, 6, 4) ; radius 5-^/6.

41z 2+34^2-f25^2-f-24^+40^-30^-64.cf 1 52 //-j- 160; -7236-0.

33. At what angle does the sphere

*2-j-?/2_j_ 22_2.C 4/7-62+10=0
intersect the sphere which has tho points (1, 2, 3) and (5, 0, 1) as extremities
of a diameter. Find the equation to the sphere through the point (0, 0, 0)
coaxal with the above two spheres. (P.U. 1948)

[Ans. cos-l( |) ; 2(^+y2z*)l4x3y+8z=Q.
34. A line with direction ratios / : m : n is drawn through the fixed point

(0, 0, a) to touch the sphere

Prove that

m2-f-2n/=0.

Find the co-ordinates of the point P in which this line meets the plane
2=0 and prove that as the line varies, P traces out the parabola



APPENDIX

HOMOGENEOUS CARTESIAN CO-ORDINATES

ELEMENTS AT INFINITY

A. t. Let X, F, Z be the cartesian co-ordinates of any point P
and let x, y, z, w be any four numbers such that

Then we say that #_, y, z, w are the homogeneous cartesian

co-ordinates (or simply homogeneous co-ordinates for the purposes
of this book), of the point P. Also, if x^ y, z, w are the homogeneous
co-ordinates of a point P }

then the four numbers kx, ky, kz, kw,

(k^O) which arc proportional to x, y, z, iv are also the homogeneous
co-ordinates of the same point, for,

^L= JL y pfp^. t/ 1 1.

kw w

In particular, (x, y,z> 1), are the homogeneous co-ordinates of the

point whose ordinary co-ordinates are (x, y, z).

Conversely, if the homogeneous co-ordinates of a point are

(x, y, z, w), then its ordinary co-ordinates are

(xjw, y/w, zjw).

A. 11. Equation of a plane in Homogeneous co-ordinates. In
the ordinary cartesian equation,

AX+BY+CZ+D=-Q,
of a plane, if we change X, Y, Z to xjw, y\w, z/w, respectively, we
obtain

which is the general equation of a plane in homogenous cartesian

co-ordinates
; a?, y, z, w, being the current co-ordinates.

A. 12. Equation of a line in Homogeneous co-ordinates. As
above we can easily see that, in homogeneous cartesian co-ordinates,

the equations of the straight line through (x, y', z', w') with direction

ratios Z, w, n are

xw' wx _yw' wy __zw wz'

I m n

Also, we may easily see that the equations of the line through

i > *z> wt) are
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Ex. Show that any point on the line j oining

(
x l> yi> zl> w l) and (*2> 2/2> 2

t being the parameter.

A. 2. Elements at infinity. Let (x, y, z, w) be the homogeneous
co-ordinates of any point. If x, y, z are not all zero and w -> then,
one at least of the three ordinary co-ordinates x/w, y/w t z/w f tends to

infinity. We find it convenient to express this idea by saying that

(x, y 9 z, w), when wQ and x, y, z are not all 0, is a point at infinity.

The aggregate of the points (x, y, z, 0) where x, y, z take up different

sets of values, not all zero, is the aggregate of the points at infinity.
The equation of the locus of points at infinity is

t0=0,
which being of the first degree, we say that the locus of the points at

infinity in space is a plane and call it the plane at infinity.

A. 21. Two parallel lines meet at a point at infinity. Consider

the two parallel lines

I m n

_
_^

I m n

Putting ^=0, we obtain

x = y __ z

I m n

for both (i), (ii) so that we see that both the lines meet at the point
at infinity (/, m, ?i, 0).

It is useful to remember that (I, m, n, 0) is the point at infinity

on every line with direction ratios I, m, n.

A. 22. Line at infinity on a plane. The aggregate of points

(x, y t z, w) which satisfy the equation

of the plane at infinity, and the equation

Ax+By+Cz+Dw=0 ...(iv)

of any arbitrary plane, is said to be the line at infinity, on the

plane (iv).

Thus, for the line at infinity on the plane (iv), we have the

equations

A. 23. Two parallel planes have a common line at infinity.

Putting w=0 in the equations of the two parallel planes

Ax+By+Cz+Dw=0,

we see that they both contain the same line at infinity, viz.,
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Note. The importance of the notions of joints at infinity* and 'lines at

infinity' lies in the fact that in certain cases we can replace directions of lines

and orientations of planes by points and lines lying on the plane at infinity.

A. 3. Illustrations.

1. Find the equation of the plane through the points

(1,0, -1), (3,2,2)

and parallel to the line

In the notation of homogeneous co-ordinates, we are required to

find the plane through the three points

(1,0, -1, 1), (3, 2, 2, 1), (1, -2,3,0);

the last one being the point at infinity on the given line.

The required equation is

Ax+By+Cz+Dw=03 ...(1)

where A, B, C, D are to be determined from the three simultaneous

linear equations

Solving these for A : B : C : D and substituting the values in (1),

we see that the required equation is

4x y 2z-fav=

i.e., 4x y 2z 6=0,

in the notation of ordinary co-ordinates.

2, Find the condition for the lines

to be coplanar.

In the notation of homogeneous co-ordinates, we see that the

first line is the join of the points

2> 0).

and the second is the join of

0% 2/2, 22) ^ and

The necessary and sufficient condition for the two lines to be coplanar
is that these four points be co-planar for which we have the condition

J9 ml9 nl9

2 , w2 , 7&2 ,
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1 * 2' /1 o/2> 1 2>

ml9 nl9

^2> ^2>

-o,

or

which is the same as obtained in 3'4, pp. 44-45.

3. Regarding a cylinder as a cone whose vertex is a point at

infinity, we can deduce the equation of the cylinder whose guiding
curve is

ax*+2hxy+by*+2gx+2fy + c=0, z= ...(1)

and the direction ratios of whose generators are I, m, n> from the

equation of the cone whose guiding curve is (1) and whose vertex is

(a, p, 7).

A. 4. Sphere in Homogeneous co-ordinates. Changing x
9 y, z to

x[w, yjiv, z\w respectively in the general equation of a sphere, we see

that

x*+y"+z
2
+2fxw+2gyiv-t-2hzw+dw

z
=Q, ...(1)

is the general equation of a sphere in Homogeneous cartesian co-

ordinates.

A. 41. Section of a sphere by the plane at infinity. Putting
w=0 in (1), we see that the section of (1) by the plane at infinity is

the curve
z2

+2/
2
+ z2=0, w=Q. ...(2)

From the fact that the equations (2) do not involve the arbitrary
constants /, g, h, d, we deduce that every sphere meets the plane at

infinity in the same curve. The plane curve (2) which lies on every
sphere is known as "The absolute circle/' or the "Circle at infinity"

We shall now show that

Every surface of the second degree which contains the circle at

infinity is a sphere.

To prove this, we consider the general second degree equation

ax*+by
2 + cz*+2fyz+ 2gzx f 2hxy+2pxw-t-2qyw2rzw+dw*=0. ...(3)

Putting w=0, we obtain

ax*+by*+cz*+2fyz+2gzx+2hxy=Q
which will be identical with #2

+2/
2+z2=0, if, and only if,

a=6 = c and/=0, <7=0, ^=0,
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A. 5. Relationship of perpendicularity in terms of conjugacy.

Let I, w, n, and T, m', ri, be the direction ratios of two lines.

The points at infinity

(Z, m, 7i, 0), (V, m', ri, 0)

on these two lines will be conjugate with regard to the circle at

infinity, if

ll'+mm'+nn'=-0

i.e., if the two lines are perpendicular.

Thus, we see, that two lines are perpendicular if the points at

infinity on them are conjugate with regard to the circle at infinity.

The lines at infinity

ax-\-by-\- cz 0=w
; a'x-\-b'y-{-cz Q=w,

on the two planes

ax+by-\-cz + dw0, a'x-}-b'y+c'z-{-d'w~Q,

will be conjugate for the circle at infinity, if

i.e., if the two planes are perpendicular.

Thus we see that two planes are perpendicular if the lines alinfinit
"

on them are conjugate with respect to the circle at infinity.

It may also be easily shown in a similar manner that a line is

perpendicular to a plane if the point at infinity on the line is the pole

of the line at infinity on the plane with regard to the circle at infinity.



CHAPTER VIII

THE CONICOID

The general equation of the second degree

8*1. The locus of the general equation
ax*+ by

2+ cz*+ 2fyz+ 2gzx+2hxy+ 2ux+2vy+2wz+d=0,
of the second degree in x, y, z is called a conicoid or a quadric.

It is easy to show that every straight line meets a surface whose
equation is of the second degree in two points and consequently
every plane section of such a surface is a conic. This property
justifies the name " Conicoid" as applied to such a surface.

The general equation of second degree contains nine effective-

constants and, therefore, a conicoid can be determined to satisfy nine
conditions each of which gives rise to one relation between the

constants, e.g., a conicoid can be determined so as to pass through
nine given points no four of which are coplanar.

The general equation of the second degree can, by transfor-

mation of co-ordinate axes, be reduced to any one of the following
forms ; the actual reduction being given in Chapter XI. (The name of
the particular surface which is the locus of the equation is written

along with it.)

1. z2/a*+ i/
2
/fc

2+ z*\<?
= 1

, Ellipsoid.

2. x*/a
2+ y*lb*-\-z

z
jc

2= I, Imaginary ellipsoid.

3. z2
/a* +y*lb*~z

t
lc*=\, Hyperboloid of one sheet.

4. #2
/a

2
y
2
/b

2
z*/c*=l, Hyperboloid of two sheets.

5. x^la
zj

t-y^/b
2+zt

/c^=0 t Imaginary cone.

6. z2
/a

2
+2/

2
/&

a-z 2
/c

2=0, Cone.

7. x2
la?+y

2
lb*=2z/c, Elliptic paraboloid.

8. #2
/a

2
y
2
/6

2
=2z/c, Hyperbolic paraboloid.

9. z2
/a

2+yV&t==1 Elliptic cylinder.

10. a;
2
/a

2
y

2
//

8= l, Hyperbolic cylinder.

11. x2
/a*+ y

2
/b* 1

, Imaginary cylinder.

12. z3
/a

2
y*jb

z=Q, Pair of intersecting planes.

13. x2
la?-y*/b*= 0, Pair of Imaginary planes.

14. i/
2
=4aic, Parabolic cylinder.

15. y
2==aa

,
Two real parallel planes.

16. y*~ a2
,
Two imaginary planes.

17. ^
2=0, Two coincident planes.

The equations representing cones and cylinders have already
been considered and the reader is familiar with the nature of the

surfaces represented by them.
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In this chapter we propose to discuss the nature and some of the

important geometrical properties of the surfaces represented by the

equations 1, 2, 3, 4, 7, 8.

8*2. Shapes of some surfaces.

8-21. The Ellipsoid

Fig. 26

The following fads enable us to trace the locus of this equation.

(i) If the co-ordinates x, y y
z of any point satisfy the equation,

then so do also the co-ordinates x, y,z. But these points are on
a straight line through the origin and are equidistant from the origin.

Hence the origin bisects every chord which passes through it and is,

on this account, called the centre of the surface.

(ii) If the point with co-ordinates x, y,
z lies on the surface,

then so does also the point .r, ?/, z. But the line joining these

points is bisected at right angles by the XOY plane. Hence the XOY
plane bisects every chord perpendicular to it and the surface is

symmetrical with respect to this plane.

Similarly, the surface is symmetrical with respect to the YOZ
and the ZOX planes.

These three planes are called Principal Planes in as much as they
bisect all chords perpendicular to them. The three lines of inter-

section of the three principal planes taken in pairs are called

Principal axes. Co-ordinate axes are the principal axes in the

present case.

(Hi) x cannot take a value which is numerically greater than a,

for otherwise y
2 or z2 would be negative. Similarly y and z cannot

be numerically greater than b and c respectively.

Hence the surface lies between the planes

x=a, x= a
; y^b, y=b ; z=c, z= c

and so is a closed surface.
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(iv) The JT-axis meets the surface in the two points (a, 0, 0)

and
( a, 0, 0). Thus the surface intercepts a length 2a on .X-axis.

Similarly the lengths intercepted on 7 and Z-axes are 26 and 2c

respectively. Lengths 2a, 2b, 2c intercepted on the principal axes
are called the lengths of the axes of the ellipsoid.

(v) The sections of the surface by the planes z k which are

parallel to the XOY plane are similar ellipses having equations
x2

?/
2 k2

tf+~b*
=l ~

c
2~' Z=fc; - (1)

k lying between c and c. These ellipses have their centres on Z-axis

and diminish in size as k varies from to c. The ellipsoid may,
therefore, be generated by the variable ellipse (1) as k varies from

c to c.

It may similarly be shown that the sections by planes parallel
to the other co-ordinate planes are also ellipses and the ellipsoid may
be supposed to be generated by them.

Note. The surface represented by the equation

which is not satisfied by any real values of jc
f y,

~ is imaginary.

8-22. The hyperboloid of one sheet

1.

Fig. 27

(i) The origin bisects all chords through it and is, therefore,, the
centre of the surface.

(ii) The co-ordinate planes bisect all chords perpendicular to
them and are, therefore, the planes of symmetry or the Principal
Planes of the surface. The co-ordinate axes are its Principal axes.
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(Hi) Tho X-axis meets the surface in points (a, 0, 0), (a, 0, 0)

and thus the surface intercepts length 2a on X-axis. Similarly the

length intercepted on F-axis is 26, whereas Z-axis does not meet the

surface in real points.

(iv) The sections by planes z~ k which are parallel to the XOY
plane are the similar ellipses

xz
?/

2 k2

whose centres lie on Z-axis and which increase in size as k increases.

There is no limit to the increase of k. The surface may, therefore, be

generated by the variable ellipse (1) where k varies from oo to +00.
Again, sections by the planes x=k and y k are hyperbolas

if _ . _ _i.
~*~~^~ a*

)X~ '

"a* CT b*
9y~*

respectively.
Ex. Trace tho su

62

= 1.

8*23. The hyperboloid of two sheets

X2

__J^__Z
2

a2 b 2
~C
T

(I) Origin is the centre ; co-ordinate planes are the principal

planes ;
and co-ordinate axes the principal axes of the surface.

(ii) X-axis meets the surface in the points (a, 0,0) and ( a, 0,0)
whereas the Y and Z-axes meet the surface in imaginary points.

(Hi) The sections by the planes z k and?/ k are the hyperbolas
T2 i/2 Z-2 ~2 ~2 1*2
+v c/A/ - JU A - . nt i

respectively.

The plane xk cuts the surface in the ellipse

V
2

,

z2 fc
2

t 7*7 _I_ I /y i

6
^

c 2 a*
' '

which is imaginary for a<k<a. Thus there is no portion of the

surface included between the planes x~ a, x=a. When F>a2 the

section is a real ellipse which increases in size as k2 increases.
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The surface, therefore, consists of two detached portions.

Ex. Trace the surfaces

T2 7 ,2 ~2 #2 ?/
2 Z2

W -TT+Jr-ii-'- () ~^-^+;T= L

8'24. Central Conicoids. The four equations considered above

are all included in the form

rtor+fy/
2+ c;r-]. ...(1)

The surface is an ellipsoid if a, b, c are all positive, virtual

ellipsoid, if all arc negative, hyperboloid of one sheet, if two are

positive and one negative ;
and finally hyperboloid of two sheets if

two are negative and one positive.

All these surfaces have a centre and three principal planes and are,

therefore, known as central conicoids.

On the basis of the preceding discussion, the reader would do
well to give piecise definitions of (i) Centre, (ii) Principal plane and

(ii) Principal ff.n'.s
1 of a conicoid.

In what follows, we shall consider the equation (1) and the

geometrical results dcduciblo from it will, therefore, hold in the case

of all the central conicoids.

Ex. Show that the surfai e represented by tho equation
ai z

+l>!/
2 +cz*+ 2f t/z+ gzv+ 2hw= d

is a central conicoid
; origin being the centre.

Note. Cone is also a central conicoid, vertex being tho centre
; this fact is

clear from tho general equation of a cone with its vortex at the origin.

8'3. Intersection of a line with a conicoid. To find the points

of intersection of the line

?i?=^r-P == ?.-y /
f)

/ in n
with the central conicoid

ax*+by
2+cz2=l. ...(ii)

Any point

(fr+ a, wr + p, nr+ 7)

on the line (i) shall also lie on the surface (ii), if

or r-

..(A)
Let rl9 r2 be the two roots of (A). Then

(fri+ a, rarj+ p, n^+ y), (Zr2+a, mr2+p, nr2+ y)

are the two points of intersection.

Hence every line meets a central conicoid in two points.

We also see that any plane section of central conicoid is a conic
for every line in the plane meets the curve of intersection in two

points only.

The two values r^ and r
2
of r obtained from equation (A) are the

measures of the distances of the points of intersection P and Q from
he point (a, p, y) provided /, m, n are the actual direction cosines of
he line.
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Note. The equation (A) of this article will frequently be used in what
follows.

Ex. 1. Find the points of intersection of the lino

-J(*+5) = (2/-4)=4(:-H)
with the conicoid

12x2- 17i/2+ 7-2=7.

[Ans. (1,2, 3), (-2,3,4).
2. Prove that the sum of the squares of the reciprocals of any three

mutually perpendicular semi-diameters of a central conu oid is constant.

3. Any throe mutually orthogonal Imes drawn thiough a fixed point C
meet the quudric

in Pj, jP2 > Q\y Q% 9 ^i ^2 respectively ; prove that

JV'2a
, QiQJ , 'W

( '1\*.< 'Aj
2 C (^.r 'Q^ ( '-fti

2 .< 'AV11,1
CPi.dV t (^.C ^2 Cl^.CJtz

aie constants.

8*31. Tangent lines and tangent plane at a point.

Let
s-a y-p 2-7

/

=
'm"

=
n

- (0

be a?i?/ line through the point (a, p_, 7) of the surface

aor+tyHcz2
--!, ...(J)

so that

a>.
2

-| /^
2 +cy2=l. ...(m)

One root of the equation ^4) 8*3 is, therefore, zero.

The line (i) will touch the conicoid (ii) at (a, p, 7) if both the

values of r given by the equation (A) 8'3 are zero.

The second value will also be zero, if

a/a+fcwtp-r-c/iy^-O, ...(iv)

which is thus the condition for the line (i) to be a tangent line to the

surface (ii) at (a, (3, 7).

The locus of the tangent lines to the surface, at (a, (3, 7),
obtained by eliminating l y m, n between (i) and (ii), is

aa(o;-a) 4 &fty
-

p; + cy(z-y) = 0,

or

which is a plane.

Hence the tangent lines at (a, (3, 7) lie in the plane
aax (-&P2H cyz~l,

which is, therefore, the tangent plane at (a. p, y) to the conicoid

Note. A tangent line at any point is a lino which inetth the surface in t\\o

coincident points and the tangent plane at a point is the locus of tangent lines

at the point.
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8'32. Condition of Tangcncy. To find the condition that the plane

lx+my+nz^p, ...(0

should touch the conicoid

a*a+fy2
+cJ5

2=l. ...(if)

If (a, p, 7) be the point of contact, the tangent plane

av.x+ bfiy + cjz= 1
, ... (Hi)

thereat should be the same as the plane (?').

Comparing the two equations (i) and (Hi), we get

I a m n
oc=

, P= 7 , 7= ,

ap up cp

and since

we obtain the required condition

V m 2

ji
2

^ 2

a b c
~ *

Also the point of contact, then, is

/ I m n \

\ap bp cpJ

Thus \ve deduce that the planes

touch the conicoid (ii) for all values of /, m, n.

8*33. Director Sphere. To find the locus of the point of inter-

section of three mutually perpendicular tangent planes.

Let

be three mutually perpendicular tangent planes so that

D/jmjSmjTii 2^?!= 0,

2Z1
a=2m1

2 =2%2 =1. ...(fv)

The co-ordinates of the point of intersection satisfy the three

equations and its locus is, therefore, obtained by the elimination of

119 m,, ri! ;
/2 ,

ra
2 ,
n2 ;

/3 ,
m3j wa .

This is easily done by squaring and adding the three equations
and using the relations (iv), so that we obtain

x2+y2+z2
=l/a+l/b+l/c,

as the required locus which is a concentric sphere called the Director

sphere of the given quadric.
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Examples

1. Find the equations to the tangent planes to

which pass through the line,

7s

Any plane

i.e., 73-60 r-7cz
= 3fc 9,

through the given line will touch the given surface

732 -302-z2+2i=0
i.e., -i^+V+2\28=l,

if -17
*

+ (
~

0)a +f
a

= (3fc-9)
a

.* 7 21

i.e., if 2fc
2+ 9fc+'1:=~0.

This gives

*=-4, -1.
Therefore the required pianos are

73-60-43+ 21 = 0,

73- 60 i3+ /= 0.

2. Obtain the tangent planes to the ellipsoid

x*la* + y*lb*t**lc*~I,
which are parallel to the plane

Ix \ M0-f nz~().

If 2r is the distance between two parallel tangent planes to the

ellipsoid, prove that the line through the origin and perpendicular to the

2)lanes lies on the cone

x2
(a

2- r2
) + y\b*

- r
5

) + 2' (c
3- r2

)
= 0.

(D.U. Hons.
} 1947, 1959)

The tangent planes parallel to the plane

^3= 0,

are

Ilx=^YaV. ...(1)

The distance between these parallel planes which is twice the
distance of either from the origin is

Thus we have

or

S(o
2 r2 )/

2= 0.

.*. the locus of the line

x/lylmz/n,
which is perpendicular to the plane (1), is
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3. The tangent planes to an ellipsoid at the points Pl5 P2 , ^3 ^*
a tetrahedron A^A^A^A^ where A l is the vertex which is not on

the tangent plane at Px . Prove that the planes

A,A 2P21 -M 3P3 , A,A,P,
have a line in common.

The tangent planes at points

P\(xn 2/i> *i) *V#2 2/2, -2). A(-T2> #3, 23) ^4(2-4, 2/4, 24)

to the ellipsoid

are

respectively. The point AI is the intersection of the planes

(n), (MI), (iv)

and ^2 is the intersection of the planes

(i), (Hi), (iv).

Thus the line A^4. 2 is the line of intersection of the planes (Hi)
and (iv). Also P2 is (^, ?/2)

z
2 )

We may now easily show that the equation of the plane A 1A 2PZ

is

Similarly the two planes ^4 1 .1 3P3 and ^1 1^1 4P4 are

-(*?-' X 1?- 1
)-

From these it follows that these three planes all pass through
the line

Hence the result.

Exercises

1. Show that the tangent planes at the extremities of any diameter
of a central comcoid are parallel.

2. Show that the plane 3o;-f 12// 6-: 17 touches the conicoid
3x-2-62/

2
4-92

2 4-17 = 0, and find the point of contact.

[Ana. (-1,2,2/3).
3. Find the equations to the tangent planes to the surface



parallel to the piano

Find their points of contact also.

\Ans. 4s+20i/-21*13= ; (1, =F4, =p3).
4. Find the equations to the two planes which contain the line given by

7.e-fl0.y 30=0, SySz-^Q
and touch the ellipsoid

[Ana. 7j?+6y+32-30=O f 14^+5^4-92-60= 0.

5. P, <9 are any two points on a central conicoid. Show that the plane
through the centre and the line of intersection of the tangent planes at P, Q will
bisec-t PQ. Also show that if the planes through the centre parallel to the
tangent planes at P, Q cut the chord PQ in P', Q', then

PP'=QQ'.
6. Prove that the locus of the foot of the central perpendicular on varying

tangent planes of the ellipsoid

is the surface

(*a+y2+2S)2 !=B02 i;
2+ &2i,2+ c2,2. (B. U. 1915)

7. Find the locus of the perpendiculars from the origin to the tangent
planes to the surface

which cut off from its axes intercepts the sum of whose reciprocals is equal to a
constant l/k.

\Ans. a*JC*+b*t/*+c*z*=k*(*+y+z)*.
8. Show that the lines through (a, (3, y) drawn perpendicular to the

tangent planes to

a,*la*+
which pass through it generate the cone

9. If P is the point on the ellipsoid
2 +2?/

2
-f \z

2=\ such that the
perpendicular from the origin on tho tangent piano at P is of unit length, show
that P lies oil 0110 or other of the planes 3^/ ^z.

8-34. Normal.

Def. The normal at any point of a guadric is the line through the

point perpendicular to the tangent plane thereat.

The equation of the tangent plane at (a, p, 7) to the surface

atf+bif+cz^l, ...(,')

is

The equations to the normal at (a, p, 7), therefore, are

aa 6p
-

so that aa, 6(3, c7 are the direction ratios of the normal.

If. p, is the length of the perpendicular from the origin to the

tangent plane (if), we have

or

which shows that aap, b$p, c?p are the
,
actual direction cosines of

the normal at (a, p, 7).
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8*35. Number of normals from a given point.

If the normal (Hi) at a point (a, p, 7) passes through a given

point (/, g, h), then,

Since (a, p, y) lies on the conicoid (t), \ve have the relation

which, being an equation of the sixth degree, gives six values of r,

to each of which there corresponds a point (a, p, 7), as obtained

from (iv).

Therefore there are sic points on a central quadric the normals

at which pass through a given point, i.e., through a given point, six

normals, in general, can be drawn to a central quadric.

8'36. Cubic curve through the feet of normals. The feet of the

six normals from a given point to a, central quadric are the intersections

of the quadric with a certain cubic curve.

Consider the curve whose parametric equations are

where r is the parameter.

The points (x, y, z) on this curve, arising from those values of r

which are the roots of the equation (v) are the six feet of the normals
from the point (/, g, h).

Again, the points of intersection of this curve with any plane

are given by

which determines three values of r. Hence the curve (vi) cuts any
plane in three points and is, as such, a cubic curve.

Therefore, the six feet of the normals from (/, g, h) are the

intersections of the conicoid and the cubic curve (vi) .

8'37. Quadric cone through six concurrent normals. The six

normals drawn from any point to a central quadric are the generators

of a quadric cone.

We first prove that the lines drawn from (/, g, h) to intersect

the cubic curve (vi) generate a quadric cone.

If any line

x-f==y-9- z- h
/,, jV i----

tt
ivn \

I m n
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through (/, g 9 h) intersects the cubic curve, we have

f
-f

g
-g ~h -h

l-\-ar
J l+br 1-f cr

I

~~ m ~~
n

afil balm chin
or ~ == =r:: - ~

*

1-far l-\-br 1+cr
whence eliminating r, we get

which is the condition for the line (vii) to intersect the cubic

curve (vi).

Eliminating I, m, n between the equations of the line and this

condition, we get

af(b-c)_^bg(c-a)^ch(a~b)^Qxf yff z-h

which represents a cone of the second degree generated by lines

drawn from (/, </, h) to intersect the cubic curve.

As the six feet of the normals drawn from (/, {/, h) to the quadric
lie on the cubic curve, the normals are. in particular, the generators of

this cone of the second degree.

Note- The importance of this result lies in the fact that while five given
concurrent linos determine a unique quadric cone, the six normals through a

point he ou a quadric cone, i.e , the quadric cone through any of the five normals

through a point alto contains the 6ix normals through the point.

8*38. The general equation of the conicoid through the six feet

of the normals.

The co-ordinates (a, (3, y) of the foot of any of the six normals
from (/, g, h) satisfy the relations

a-y^p-gr^r-A
aa 6p cy

Hence we see that the feet of the normals lie on the three

cylinders

ax(y-g)=by(xf) or

by(z- h)=cz(y-g) or (b-c)yzbhy+cgz=0 9

cz(xf)=zax(z--h) or (c a)zx cfz-{-ahx=Q.

The six feet of the normals are the common points of the three

cylinders and the conicoid

o

The equation

is satisfied by the six feet of the normals and contains three arbitrary
constants fc

1 ,
k2, k3 . Therefore it represents the general equation of

the conicoid through them.
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Examples

1. The normal at any point P of a central conicoid meets the three

principal planes at GI, G2 ,
Gz ;

show that PG
1} PG2y PG3 ,

are in a
constant ratio.

The equations of the normal at (a, p, 7) are

aap
Now since aap, bftp, cjp, are the actual direction cosines each

of these fractions represents the distance between the points

(a, p, 7) and (x, y, z).

Tims the distance PG lt of the point P(a, p, 7) from the point Gl

where the normal meets the co-ordinate plane x=Q is

-I lap.

Similarly PG2
=- Ijbp, PG^-l/cp.

PGl : PG2 : PG3 : : a'1
: b~l

: c'1
.

2. Show that the lines drawn from the origin parallel to the

normals to

at its points of intersection with the planes

lx-\-my -\-nz-p,

generate the cone

-

b c/Va b c

Let/, g, h be any point on the curve of intersection of

ax2
+by*-{-cz

2=l, lx-\-my-\-nz=p. ...(1)

The normal to the quadric at (/, g, h) is

af by ch'

The line through the origin parallel to this normal is

x _ V __ z

af b(j ch
'

Also (/, g, h) satisfies the two equations (1) so that we have

a/
2+fy2+ (**=!, lf+mg+nh=p. ...(3)

The required locus is obtained by eliminating /, g, h between

(2) and (3).

The equations (3) give

which is a second degree homogeneous expression in /, g, h. From

(2) and (4), we can easily obtain the required locus.

3. Prove that two normals to the ellipsoid
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lie in the plane

and the line joining their feet has direction cosines proportional to

a-(b*-c
2
)mn, W(c*-a*)nl, c*(a*-b

z
)lm.

Also obtain the co-ordinates of these points. (M.T.)

ket (/> (7) A) be any point on the ellipsoid. The normal at the

point is

?r^=^r?=^i: A

//a
2

glb*~ h/c*

'

This lies in the given plane, if

These give

_// _
2- c

2
) 6w/(c

2- a2
) dm~(a*

- 62
) y

= 17/6 = */c _ =~*

Therefore the required two points are

a*mn(b* - c
2
) . b*nl(c*-a?)" "" "~ c

8
/m(a

2-6an"
d J

where d

The direction cosines of the line joining these points are propor-
tional to

a?
??in(6

2 c
2
), etc.

4. Prove that for all values of A_, the normals to the conicoid

i
'

which paw through a given point (a, p, 7) mee^ the plane z= in points
on the conic

(6
2-c2

)
t

3o:+ (c
2-a2

)a7/+ (

2 62
)a;y=0, 2= 0.

It can be shown that the equation of the quadric cone containing
the normals to

r2
?/
2 z2

+ -^ + =1
oa+ A 6HA c

2
-fA

J

drawn from the point (a, p, 7) is

a: a

Thus it meets the plane 2 0, where

a: a

or a(i/-p)(c
2

or (

a _
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Exercises

1. If a point G be token on the normal at any point P of the ellipsoid
a 2

/a
2
-|-?/2/6

2
-|-c2/c2=l such that

o T>/"J ~f^d I ~f>Cl I J3/^
OA. Lr ss i Cf \ "f"-/ t/o

I
* ^3

show that the locus of G is

a 2*2
, 62^/2 C

2^2 ^ j^

(2a2-fc2_~c2)2 (2&
2_ c2_ a 2)2 (2c2-2_6

2. If a length PQ be taken on the normal at any point P of the ellipsoid

such that PQ k^lp where k is a constant and p is the length of the perpendicu-
lar from the origin to the tangent plane at P, the locus of Q is

C
2. 2

"

3. Show that, in general, two normals to the ellipsoid

IIB in a given plane. Determine the co-ordinates of the two points on tho ellip-

soid the normals at which he in tho plane

[Ana. (rkVia. l*>, Jc).

4. Show that the locus of points on a central quadric, the normals at

which intersect a given diameter is the curve of intersection with a cone having
tho principal axes of the quadric as generators.

5. Show that tho normals at the points (x^, y^ Zj), and
(.r2 , y^ zz) ^

a-2

intersect, if

^1-^2 2/1-2/2 -1-
and that if (/, g, h) be their point of intersection,

2/2

Deduce that 'the points on the surface, normals at which intersect the

normal at a given point, ho on a quadric cone having its vertex at tho given

point.

6. Prove that six normals drawn from any point to a central conicoid
meet a principal plane in six points which he on a rectangular hyperbola.

7. The normals at six points on a,
<2
/a

2 -f y2lb
z+z2

lc
2~I meet in the point

( ft V* ^) J
show that the mean position of the six points is

- 7 (c
2+q2-26 2

)6
2 -A(q 2

~

8*4. Plane of contact. Tho tangent plane
axx'+ byy'+ czz' 1

,

at (x ', T/', 2') to the quadric a#2
+fo/

2
-fcz

2=l, passes through (ot^p 5

if

This shows that the points on the quadric the tangent planes at

which pass through the point (a, (3, y) lie on the plane

which is called the plane of contact for the point (a, p, 7).
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8*5. The polar plane of a point. // any secant APQ through a

given point A meets a conicoid in P and Q and a point R be taken on
this line such that points A and E divide the line PQ internally and

externally in the same ratio, then the locus of R is a plane called the

polar plane of A .

It may be easily seen that if the points A and R divide PQ
internally and externally in the same ratio, then the points P,Q divide
AR also internally and externally in the same ratio.

Let A, be a point (a, p, 7) and let (x, y, z) be the co-ordinates

of R.

The co-ordinates of the point which divides .47? in the ratio

A : 1 are

/

VA+ 1
'

A+l
'

A+l/
This will lie on the conicoid

for values of A which are the roots of the equation

i.e., a

+ (a**+ bp+ c7*-l)= 0. ...(1)

The two roots A
1?

A
2 of this equation are the ratios in which the

points P, Q divide the line AR. Since P, Q divide AR internally and

externally in the same ratio, we have

so that, from (1),

avx+bfy+cyz-l^Q. ...(2)

Now (2) is the relation between the co-ordinates (x, y, z) of the

point R. Being of the first degree, the equation (2) represents a

plane.

Thus the polar plane of the point (a, p, 7) with respect to the

conicoid

s

Any point is called the pole of its polar plane.
Rote. Tho reader acquainted \vith cross ratios and, in particular, harmo-

nic cross ratios, would know that tho fact that the points P, Q divide All

internally and externally in the same ratio is also expressed by the statement

This is further equivalent to the relation,

2 1 1

Cor. The polar plane of a point on a conicoid coincides with

the tangent plane thereat and that of a point outside it coincides with

the plane of contact for that point.
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Ex. 1. Show that the point of intersection of the tangent pianos at three

points on a quadric is the plane of the plane formed by their points of contact.

Ex. 2. Find the pole of the plane Ix+my+nzp with respect to Mie

quadric ax2
-}-by

z -{-cz*\. [Ana. Ijap, mjbp, njcp).

8*51. Conjugate points and conjugate planes.

It is easy to show, that if the polar plane of a point P passes

through another point Q, then the polar plane of Q passes through P.

Two such points are called Conjugate points.

Also, it can bo shown that if the pole of a plane a lies on another

plane p, then the pole of p lies on a.

Two such planes are called Conjugate planes.

8*52. Polar lines. Consider any line

x a_?/ P__2 7
/ m n

The polar plane of any point (Jr+ a, mr + P, nr-\-y) on this lir

is a(1r+.)x-\-b(mr+)y+ c(nr+y)z= l
9

or

aaa; -f b$y+ cYz 1 -f r(alx -\-bmy + cnz) 0,

which clearly passes through the line of intersection of the planes

and
alx+bmy -f cnz

for all values of r.

Thus the polar planes of all the points on a line I ]pass through
another line /'.

Now, as the polar planes of any arbitrary point P on I passes

through every point of
/'_,

therefore the polar planes of any point on V
will pass through the point P on /and, as P is arbitrary, it passes

through every point on /, i.e., passes through /.

Hence if the polar plane of any point on a line I passes through
the line Z', then the polar plane of any point on I' passes through I.

Two such lines are said to be polar lines with respect to the

conicoid.

To find the polar line of any given line, we have only to find the

line of intersection of the polar planes of any two points on it.

8*53. Conjugate lines.

. .. , -liet I, ra/be any two lines and Z', m' , their polar lines. Let m'

intersect ^at a point P.

We shall now show that the line V also intersects the line m.

As P lies on m' and also on I, its polar plane contains the polar
lines m and /' of m' and I respectively i.e., the lines m and I' are

coplanar and hence they intersect.

Hence if a line I intersects the polar of a line m, then the line m
intersects the polar of the line /.

Two such lines I and m are Conjugate lines,
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Example

Find the locus of straight lines drawn through a fixed point (a, (3, 7)
at right angles to their polars with respect to

ax* + by*+cz*=l. (P.U. 1937)
Let

-

I m n "''

be any line perpendicular to its polar line. Now the polar line of (1)
is the intersection of the planes

aaLX+ b$y+ cjz= 1
,

alx -fbmy -f- cnz= 0.

If A, {/,,
v be the direction ratios of this line, we have

0.

These give

aA _ 6[^ _ cv

n$my ly na ma
|

Because of perpendicularity, we have

+rz.v= 0.

na) , w(m
- -"

or

or

Eliminating l> m> n between (1) and (2), we see that the required
locus is

-
,

_-- ~r -

a

__
x-<*.\ b c y- c a z-y\ a

Exercises

1. Prove that the locus of the poles of the tangent planes of

with respect to

is the conicoid

^+PV+t!^ JSBsl-

a b c

2. Show that the locus of the poles of the plane

with respect to the system of conicoids

where X is the parameter, is a straight line perpendicular to the given plane.
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3. Show that the polar line of

(*-l)/2=(2/-2)/3=(z-3)4
with respect to the quadric

a:
2

4. Find the locus of straight lines drawn through a fixed point (/, g, h)
whose polar lines with respect to the quadrics

a*2-|-&2/2-fc^i and
are coplanar.

[An.. X J
5. Show that any normal to the conicoid

_ _ _ ...
pa+q pb+q pc+q

is perpendicular to its polar line with respect to the conicoid
/v>2 7/2 9-2

^_+J' +__= l t

a 6 c

6. Find the conditions that the lines

I in n
'

I' rti' n'

should be (t) polar, (ii) conjugate with respect to the coincoid

[Ans. (i)

(ii)

8*61. The enveloping cone. Def. The locus of tangent lines to

a quadric through any point is called the enveloping cone.

To find the enveloping cone of the conicoid

az

with its vertex at (a, p, 7).

Any line

m n
-

through (a, p, 7) will meet the surface in two coincident points if the

equation (A) of 8*3 has equal roots, i.e., if

Eliminating l
y m, n between (i) and (ii), we obtain

which is the required equation of the enveloping cone.

If we write

we see that the equation of the enveloping cone can briefly be written

as
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Note. Obviously the enveloping cone passes through the points common
to the conicoid and the polar plane aoLX+bfiy-t- cz*f 1 of the vertex (a, p, y)

Thus the enveloping con e may be regarded as a cone whose vertex is the

given point and guiding curve is the section of the conicoid by its polar plane.

Exercises

1. A point P moves so that the section of the enveloping cone of
#2/a2 -f-2/

2
/>

2
-f-2

2
/c

2=l with P as vertex by the plane z=0 is a circle ; show that
P lies on one of the conies

2/
2 z2 x2 22

2. If the section of the enveloping cone of the ellipsoid

whose vertex is P by the plane z0 is a rectangular hyperbola, show that the
locus of P is

j- 2 z2

T- 1 - (Agra, 1938)

3. Find the locus of points from which three mutually perpendicular
tangent lines can be drawn to the conicoid a:r2 +&7/2

-f-cz
2=l.

[Ans. a(64 c)z
2+6(c+a)2/ 2 -f c(a-

4. A pair of perpendicular tangent planes to the ellipsoid

;passes through the fixed point (0, 0, k). Show that their line of intersection lies

on the cone

(D. U. ffons. 1949)

[The required locus is the locus of the line of intersection of perpendicular
tangent planes to the enveloping cone of the given ellipsoid with vertex at

(0,0, A-).]

8'62. Enveloping Cylinder. Def. The locus of tangent lines to a

quadric parallel to any given line is called enveloping cylinder.

To find the enveloping cylinder of the conicoid

with its generators parallel to the line

x _ y z

I

"~~ m
~~

n

Let (a, p, 7) be any point on the enveloping cylinder, so that the

equations of the generator through it are

m n

As in 8*61, the line (i) will touch the conicoid, if,

Therefore the locus of (a, (3, 7) is the surface

-which is the required equation of the enveloping cylinder*

Note. Equation of Enveloping cylinder deduced from that of Enveloping
cone* Use of elements at infinity. Since all the lines parallel to the line

x\ly\m=*z\n

pass through the point (I, m, n, 0) which is, in fact, the point at infinity on each
anember of this system of parallel lines, we see that the enveloping cylinder is

sthe enveloping cone with vertex (I, m, nt 0) .
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The homogeneous equation of the surface being
ax*+by*+cz*-t*=Q 9

the equation of the enveloping cylinder is

so that in terms of ordinary cartesian co-ordinates, this equation is

c. Clearly the generators of the enveloping cylinder touch the quadric-
at points where it is met by the plane aljc-^-bnnj -\-cvz-Q which is known as the*

plane of contact.

Exercises

1 . 8how that the enveloping cylinders of the ellipsoid

with generators perpendicular to Z-axis meet the plane z=Q in parabolas.

2. Enveloping cylinders* of t lie quadnc- r/.t
2
-|-& <j/

2
-{-c::- 1 meet the plane-20 111 rectangular hyperbola ;

t-liow that the ctiitral perpendiculars to their

planes of contact generate the cone

3. Prove that the enveloping cylinders of the ellipsoid
f> .) O

4+^1+^-1,2
fc
2 c 2

whose generators are parallel to the lines,

c

meet the
j
lane c=0 in circU .. (P. U. 1937}

8*71. Locus of chords bisected at a given point. Section with a
given centre.

Let the given point be (a, p, 7).

If any chord

m n" -

of the quadric ax2
-\-by

2jrcz
2=l is bisected at (a, p, 7), the two roots.

TI and 7*2 of the equation (A) of 8*3 are equal and opposite so that.

r1+r2=0, and therefore

aZoc+6mp+cny=0. ...(2)

Therefore the required locus, obtained by eliminating Z, m, n,.

between (1) and (2), is

which is a plane and can briefly be written as

IWflfj.

The section of the quadric by this plane is a conic whose centre

is (a, p, 7) ; for this point bisects all chords of the conic through it.

Cor. The plane which cuts a#*-r-&y
2+c22=l, in a conic whose

centre is (a, p, 7) w -
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Example
Triads of tangent planes at right angles are drawn to the ellipsoid

2?
2
/a

2+ ?/
2
/&

2
-f-z

2
/c

2=l. Show that the locus of the centre of section of the

surface by the plane through their points of contact is

Suppose that (a, P, 7) is the centre of section of the surface by
a plane through the points of contact of a triad of mutually perpen-
dicular tangent planes. The pole of this section must thus be a point
of the director sphere

The equation of the section is Tj $j i.e.,

as py,rz_a P,y_
^+

"b*
+ J rf

+
j? c'

If (f> ff> A) be its pole, the equation (i) must be the same as

$+&+-'
Comparing (i) and (w), we have

, jc n= P , r
J

2(a
2
/a

2
)'

f/

E(a
a
/a

2
)' S(a

2
/a

4
)'

Since

/
2 +

we have
a2+

Replacing a, p, y by x, y, z respectively, we have the required
result.

Exercises

1. Find the equation to the plane which cuts the surface

in a conic whose centre is at the point (5, 7, 6).

[Ana. 5jj 1

2. Find the centres of the conies

(i) 4,r+9.y-f4s= 15, 2r2-3.?/2-f 4s
2^ I ;

(w) 2*-2y 5s+5=0, 3z2 +2y2_i522= 4 t

[,Jn,. () (2, -3,1) () (-2,3,-!).
3. Prove that the plane through tho three extremities of the different axes

of a central conicoid cuts it in a conic whose centre coincides with the centroid
of the triangle formed by those extremities.

4. Show that the centre of the conic

is the point
/ lp mp np

where J2-f ??i
2
-f-n

2=l and Po
5. A variable plane makes intercepts on the axes of a central conicoid

whose sum is zero. Show that the locus of the centra of the section determined
fcy it is a cone which has the axes of the conicoid as its generators.
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6. Find the locus of the centres of sections which pass through a given*

point.

7. Show that the centres of sections of ax2+by2+cz*=l by planes which.

are at a constant distance, p, from the origin lie on the surface

8. Find the locus of centres of sections of a#2
-f-&2/

2
-{-cz

2=l, which touch-

1.

[Ans. a2a-

8*72. Locus of midpoints of a system of parallel chords. Let
19 m, n be proportional to the direction cosines of a given system of

parallel chords and let (a, p, 7) be the midpoint of any one of them.

As the chord

I m n
'

of the quadric is bisected at (a, (3, 7), we have, as in 8*71,

Now I, m, n. being fixed ^ the locus of the midpoints (a, P, 7) of
the parallel chords is the plane

alx+bmy+ cnz 0,

which clearly passes through the centre of the quadric and is known>
as the diametral plane conjugate to the direction I, m, n.

Conversely any plane Ax+By-\-Cz=Q through the centre is the-

diametral plane conjugate to the direction I, m, n given by

al bm en

Thus every central plane is a diametral plane conjugate to some
direction.

Note. If P be any point on the conicoid, then the plane bisecting chords

parallel to OP is called the diametral plane of OP.

Note. Another method. Use of elements at infinity. We know that the

mid-point of any line AB is the harmonic conjugate of the point at infinity on
the line w.r. to A and B. Thus the locus of the mid-points of a system of parallel
chords is the polar plane of the point at infinity common to the chords of the system.

We know that (I, m, n, 0) is the point at infinity lying on a line whose
direction ratios are /, m, n. Its polar plane w.r. to the conicoid,

expressed in cartesian homogeneous co-ordinates, is

alx 4-bmy+ cnz w. = 0,

i.e., alx+bmy-{-cnz=().

Exercises

1. P(l, 3, 2) is a point on the conicoid,

Find the locus of the mid-points of chords drawn parallel to OP.

[Ans. x 62/4- 6e=(X
2. Find the equation of the chord of the quadric 4#2

5y2-+-6z
2 7 through

(2, 3, 4) which is bisected by the plane 2# 5y+3z=Q.
[Ans. (a:-2)-J(y-3)-(-4).
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8*8. Conjugate diameters and diametral planes.

In what follows, we shall confine our attention to the ellipsoid only.

Let P(xl9 yl9 Zj) be any point on the ellipsoid

The equation of the diametral plane bisecting chords parallel tcr

OP is

Let Q(x2 > y^ ^2) be any point on the section of the ellipsoid by
this plane so that we have

which is the condition that the diametral plane^ of OP should pass
through Q and, by symmetry, it is also the condition that the dia-

metral plane of OQ should pass through P.

Thus if the diametral plane of OP passes through Q, then the dia

metral plane of OQ also passes through P.

Let R(x3 , 2/3, z3 ) be one of the two points where the line of
intersection of the diametral planes of OP and OQ meets the conicoid.

Since R is on the diametral planes OP and OQ, the diametral plane

of OS passes through P and Q.
Thus we obtain the following two sets of relations :

"^+ 6T+ "c
r==1 '

semi-diameters OP, OQ, OR, which are such that the

plane containing any two is the diametral plane of the third are called

conjugate semi-diameters.

The co-ordinates of the extremities of the conjugate semi-

diameters are connected by the relations A and B above.

The three diametral planes POQ, QOR, ROP which are such that

each is the diametral plane of the line of intersection of the other two are

catted Conjugate planes.

We shall now obtain two more sets of relations C, D, equivalent
to the relations A, B.

By virtue of the relations (A), we see that
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can be considered as the direction cosines of some three straight
lines and the relations (B) show that these three straight lines are
also mutually perpendicular.

Hence as in 5*2,

x l

a
y ?/2 ^3.

z
1

z2 z3
7 > "~T~ ) T > 3

-
b b be c

'

c

are also the direction cosines of three mutually perpendicular
straight lines. Therefore, we have

Properties of Conjugate Semi-diameters

8*81. The sum of the squares of three conjugate semi-diameters is

constant.

Adding the relations (0), we get

which is constant.

8*82. The volume of the parallelopiped formed by three conjugate
semi-diameters as coterminous edges is constant.

The results (B) give

be

ffor

ca

/v

ab

___
/V

is the sine of the angle between two perpendicular lines whose
direction cosines are

x2 y2 z2
1

x3 7/3 zs
y ~T~J ana > ~*~>

a b c a b c

_ _"
a

-
6c~

'

6 ca
'

c
"

ab

Now the volume of the parallelepiped whose coterminous edges
are OP, OQ, OR

= 6 X volume of the tetrahedron OPQR

! 0, 0, 0, 1
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2/2,

2/3,

a;

-Y = dba&c, which is a constant.

The same result can also be proved in the following manner :

2/2>

2/3,

X 2/2,

2/3,

(By the rule of multiplication of determinants)

a?62c2
,
from (C) and (Z>).

8'83. The sum of the squares of the areas of the faces of the paral-

>lelopiped formed with any three conjugate semi-diamehrs as coterminous

edges is constant.

Let AI, A 2 ,
A 3, be the areas of the triangles OQR, ORP, OPQ,

and let k, mi, nt> (i=l> 2, 3) be the direction cosines of the normals
to the planes respectively.

Now the projection of the triangle OQR on the YZ plane is a

triangle with vertices (0, 0, 0), (0, ?/2 ,
22 ), (0, y^ z3 ) whose area is

\ (2/2232/322)- Also this is AJt.
.bcx1

!

~2^'

2c

Squaring, we have

AS=
l !,

Similarly projecting the areas ORP and OPQ on the co-ordinate

planes, we get

4a2 462

,^V"^
462

"

4c2
'
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Adding we get

^1
2+J 2

2+^3
2== X(6

2c2+c2at4.a262) j

which is a constant.

8*84. The sum of the squares of the projections of three semi-

conjugate diameters on any line or plane is constant.

Let 19 m, n, be the direction cosines of any given line so that

the sum of the squares of the projections of OP y OQ, OB on this

line is

which is a constant.

Again, let I, m y n be the direction cosines of the normal to any
given plane so that the sum of the squares of the projection of OP,
OQ, OR on this plane is

which is a constant.

Examples

1. Show that the equation of the plane through the extremities

(#*> 2/*, Zfch^l, 2, 3,

of the conjugate semi-diameters of the ellipsoid

s

X(xl+x2+x3),y(yl+y2+y3),z(zl+z2+z3 )

a2 "*"
62

^
c2

If any plane

lx+my+nz=p
passes through the three extremities, then

Multiplying by xl9 #2 > xz> respectively, we obtain

Similarly

and

nc2=
Hence the required equation.
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2* Find the locus of the equal conjugate diameters of the ellipsoid

Let OP, OQ, OR be three equal conjugate semi-diameters. We-
have

Let P be the point (xl9 yl9 zj. We require the locus of the line

^.=JL=A. HV
*i yi *i'

- (1>

where

a^+yi'+si^KaHft'+c'), ...(2)

and V +|!+^=1 }
or o2 c2

From (2) and (3), we obtain the homogeneous relation

^+y+^JH^yjL^i M
a? b* c

2
a'J-feM-c'"

' '"w
Eliminating a^, yl9 zl from (1) and (4),, we obtain the required

locus, viz.

^4.^4.^.?(aj!+^^)
a2
^

62
^

c2 e?+6*+c2
'

3. Show that if the cone

has three of its generators along conjugate diameters of the ellipsoid

then

.

Let OP, OQ, OR, where P, $, J? are the extremities of conjugate
semi-diameters^ be generators of the given cone.

Let

(*i 2/i> zi) (2 2/a 22), fe, ys, a)

be the co-ordinates of these points. Since these points lie on the

given cone, we have

and two similar results.

Adding these three results and making use of the relations C and'
D of 8*8, we obtain the given relation.

4. With any point on the surface of any ellipsoid as centre, a
sphere is described such that the tangent planes can be drawn to it from
the centre of the ellipsoid which are conjugate diametral planes of th&

ellipsoid. Show that its, radius is the same for all positions of its centre.
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Consider any point (/, g, h) on the ellipsoid

x*

+2/
2

_i_
22 __i

o 1 "To I S A
or 62 c2

Let the three conjugate diametral planes

"be tangent planes to a sphere with centre (/, ^, 7&) and radius r. The
distance of (/, #, &) from each of the three planes being equal to r,

we have

Sfa')
rts?L.

l

Adding and making use of the relations C and D of 8*8, we
liave

r i 1 y
2

or ra=(2a~a
)-

1
.

Hence the result.

Exercises

1. Show that the lines

x y z .T ?/ z
~~

x y z

afe three mutually conjugate diameters of the ellipsoid

T" + "4~"
f

""9"
= 1 '

2. Find the equations of the diameter in the plane x+y+z^Q, conjugate
to .T= J?/

= 4>;with respect to the comcoid 3*c2 +?/
2 2z2=l. What are the

equations of the third conjugate diameter ?

T'^IIcplf' "34'

==
l2

s==

"3""

3. Show that for the ellipsoid a,
2
-|-4z/

2
-f 5z

2=l, the two diameters

%x$y {z and #=0, 2y=5z are conjugate. Obtain the equation of the third

conjugate diameter. Ana. x/lQ=y**> 2/2.

4. If PI, p%, PQ ; Ttj, 7r2 , ^3, be the projections of three conjugate diameters
on any two given lines, then pi^i-i-p^z^'P^^ *s constant.

5. If three conjugate diameters vary so that OP, OQ lie respectively in

the fixed planes

show that the locus of OR is the cone
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[The required locus of OR is obtained from the fact that the lines of inter-

section of the diametral plane of OR with the given planes are conjugate lines.]

6. From a fixed point H perpendiculars HA , HB, HC are drawn to the

conjugate diameters OP, OQ, OR respectively ; show that

is constant.

7. OP, OQ, OR are conjugate diameters of an ellipsoid

At Q and R tangent lines are drawn parallel to OP and p-^ 9 p% are their
distances from 0. The perpendicular from O to the tangent plane at right
angles to OP is p.

Prove that

(D.V. Hons. 1945}
8. Show that the plane lx-\-my-\-nz=p will pass through the extremities-

of conjugate semi-diameters if

a2
*
2+ 62m2

-f c
2^2= 3p

2
.

9. Show that the locus of the centre of the section of the ellipsoid

by the plane PQR is the ellipsoid

#2
/a

2

Prove that this locus coincides with the locus of the controid of the triangle-

PQR.
10. Prove that the plane PQR touches the ellipsoid

at the centroid of the triangle PQR. (D.U. Hons. 1948)
11. Find the locus of the foot of the perpendicular from the centre of the

ellipsoid to the plane PQR.
[Ans. a*x2+ b2y2+c*z2= 3(x2+y2+z2)2.

12. If one of the three extremities P(x, 2/i Zj) of conjugate diameters be
kept fixed, show that the locus of the line joining the centre to the centroid of
the triangle PQR is the cone

13. If (a?!, 2/1, Zj), (#2 , 2/2 22) (x& 2/3>
za) be the extremities of three conju-

gate diameters of the ellipsoid

show that the equation of the plane through the three points

(xl9 x2 , a?8), (2/1, 2/2, 2/3 ) (i 22 *s)

and that it touches the sphere

14. The enveloping cone from a point P to the ellipsoid 2#2
/a

2=l has;

three generating lines parallel to conjugate diameters of the ellipsoid ; show that

the locus of P is the ellipsoid

V^-4- - x
^2~
+

62
+

C2
~

2
X '

(B.U. 1958}

15. Show that any two sets of conjugate diameters of the ellipsoid lie on a
quadric cone. (Deduce from, Example 3, page 171).
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Paraboloids

8*9. Having discussed the nature and geometrical properties of
central conicoids, we now proceed to the consideration of paraboloids.

8-91. The Elliptic Paraboloids z2
/a

2+^2
/&

2
==2z/c.

We have the following particulars about this surface :

Y

Fig. 29

(i) The co-ordinate planes x=0 and ?/=0 bisect chords perpendi-
cular to them and are, therefore, its two planes of symmetry or

Principal planes.

(ii) z cannot be negative, and hence there is no part of the

surface on the negative side of the plane z= 0. We have taken

*c positive.

(Hi) The sections by the planes z= k, (k>0), parallel to the XT
plane, are similar ellipses

whose centres lie on Z-axis and which increase in size as k increases ;

there being no limit to the increase of k. The surface may thus be

supposed to be generated by the variable ellipse (i).

Hence the surface is entirely on the positive side of the plane
z=0, and extends to infinity.

(iv) The section of the surface by planes parallel to the YZ and
.ZX planes are clearly parabolas.

The Fig. 29 shows the nature of the surface.

Ex. Trace the surface x*la2+y*lb*^ 2zjc. (c>0)

8-92. The Hyperbolic Paraboloid x*/a*
-

y*fb*
= 2z/c.

(i) The co-ordinate planes x = 0, y= Q are the two Principal

planes.
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(ii) The sections by the planes zk are the similar hyperbolas
z2 v2 2k

&_ ? 7*

a2"~62 ~~c ' '

with their centres on Z-axis. *

Fig. 30.

If & be positive, the real axis of the hyperbola is parallel to

J-axis, and if k be negative, the real axis is parallel to F-axis.

The section by the plane 2=0 is the pair of lines

= -f, *==() and = f , *=0.
a b a b

(Hi) The section by the planes parallel to YZ and ZX planes are

parabolas.

The Fig. 30 shows the nature of the surface.

Note. The two equations considered in the last two articles are clearly
both included in the form

This equation represents an elliptic paraboloid if a and 6 are both positive
or^ both negative, and a hyperbolic paraboloid if one is positive and the other

negative .

Hence for an elliptic paraboloid ab is positive but, for hyperbolic parabo-
loid, ab is negative.

The geometrical results deducible from the equation a#2
-f-62/

2=2c2 will

hold for both the types of paraboloids.

Note. The reader would do well to give precise definitions of (i) vertex,
'(ii) principal planes, (Hi) axis of a paraboloid.

8*93. Intersection of a line with a paraboloid.

The points of intersection of the line

I m n

with the paraboloid

__~~~

are

(Jr+oc, mr+p, nr+y)
for the two values of r which are the roots of the quadric equation

r2 (ai
2+6m2

)+2r(aZa+6mp-cn)+ (aa
2+6p2

~-2c7) = ...(A)

We thus see that every line meets a paraboloid in two points.

It follows from this that the plane sections of paraboloids are

. conies.
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Also, if /=w=0, one value of r is infinite and hence any line-

parallel to Z-axis meets the paraboloid in one point at an infinite

distance from (a, (3, y) and so meets it in one finite point only. Such
lines are called diameters of the paraboloid.

In particular, Z-axis meets tfie surface at the origin only.
8'94. From the equation (A) 8*93 above, we deduce certain

results similar to those obtained for central conicoids. The proofs of
some of them are left as an exercise to the student.

1. The tangent plane to ax2
+by* ^2cz at any point (a, (3,, 7) on

the surface is

In particular, z-=0 is the tangent plane at the origin and 2-axis-

is the normal thereat.

The origin is called the vertex of the paraboloid and Z-axis,.

the axis of the paraboloid.

2. Condition of Tangency. The condition that the plane

may touch the paraboloid

ax*+by*=2cz, ...(1)^+ 2np
a b c

and the point of contact, then, is

lc me p \~
) 7 > /

.

an on n /

Thus the plane

touches the surface (1) for all values of I, m, n.

3. Locus of the point of intersection of the three mutually

perpendicular tangent planes.

If
,1 2

JYI
2\

2n r (l >x+mry+ n r

z)+c(-^+ ^)==0, (r=l 9 2, 3)

be three mutually perpendicular tangent planes, the locus of their

point of intersection is obtained by eliminating Zr ,
rar , nr, which is-

done by adding the three equations and is, therefore,

and is a plane at right angles to the 2-axis ; the axis of the-

paraboloid.
4. Equations of the normal at (a, p, 7) are

aoc 6f c

5. The polar plane of the point (a, J3, 7) is
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6. The equation of the enveloping cone with the point (a, P, y)
as its vertex is SSl T1

z
y i.e.,

Its plane of contact with the paraboloid is the polar plane
ao#+ b$y cz c7=

of the vertex (a, p, 7).

7. The equation of the enveloping cylinder having its generators

parallel to the line

J5L= JL=JL
l m n

is

(ax*+by
2

2cz)(al
z+bmz

)--=(alxibmy-cn)
2

.

Its plane of contact is the plane
alx+ &ww/ en= 0.

8. The locus of chords bisected at a point (a, j3, 7) is the plane

This plane will meet the paraboloid in a conic whose centre is

at (a, p, 7).

9. The focws of mid-point of a system of parallel chords with
direction ratios I, m, n, is the plane

alx+bmy ~cn Q

which is parallel to Z-axis, the axis of the paraboloid. The plane is

called a diametral plane conjugate to the given direction.

Any plane Ax+By+D= Q parallel to the axis of the paraboloid
is easily seen, by comparison, to be the diametral plane for the

system of parallel chords with direction ratios

Ala, Bib, -Die.

Any plane parallel to the axis of a paraboloid is, thus, a dia-

metral plane.

Exercises

1. Show that

(*) the plane 2# 4t/ z-|-3=0 touches the paraboloid

3:2-22/2=32 ;

(ii) the plane 8x 6y 2=6 touches the paraboloid

*l/2-y*/3-* ;

and find the co-ordinates of the points of contact. (D.U. Hons. 1958)

[Ana. (i) (3, 3, -3), (ii) (8, 9, 5).

2. Show that the equation to the two tangent planes to the surface

which passes through the line

ttsa&e-f-wy-l-nz p=0, w'

is

/ Za tit* \
(IV+mm'-r>p'-n'p)+u'* f- f--r-- 2np

J
= 0.
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3. Tangent planes at two points P and Q of a paraboloid meet in the line

US ; show that the plane through RS and the middle point of PQ is parallel to
the axis of the paraboloid.

4. Find the equation of the plane which cuts the paraboloid
#2 i2/

2=z
in a conic with its centre at the point (2, 3, 4).

[Ans. 4# 3t/ z+5=0.
5. Show that the locus of the centres of a system of parallel plane sections

of a paraboloid is a diameter.

6. Show that the centre of the conic

is the point

\ an '

bn

I
2 2

where &2= 1-

a b

7. Find the chord through the point (2, 3, 4) which is bisected by the
diametral plane \Qx24y=2l of the paraboloid 5x2->6yZ= Iz.

then

8*95. Number of normals from a given point.

If the normal at (a, p, 7) passes through a given point (/, g, h),

/-a (/-p fc-y
M-~-M

=
^c

= r
' (say)

so that = =

Since (a, (3, 7) lies on the paraboloid, we have the relation

which, being an equation of the fifth degree in r, gives five values of

r, to each of which there corresponds a point (a, p, 7), from (i).

Therefore there are five points on a paraboloid the normals at

which pass through a given point, i.e., through a given point five

normals, in general, can be drawn to a paraboloid.

Cor. 1. As in 8*36, page, 195, it can be shown that the feet of

the five normals from the point, (/, g, h) to the surface are the points
of intersection of the surface with the cubic curve

where r is the parameter.

Cor. 2. Lines drawn from (/, g, h) to intersect the eubio curve

(Hi) generate the quadric cone

_/___g ,c(6-a) pQ*/ y 9 ab(
z *)

'

and, in particular, this cone contains the five normals from (
f
t g, h)

as its generators.
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8*96. Conjugate diametral planes*

Consider any two diametral planes

Q, ...(i)

Q. ...(ii)

The plane (i) bisects chords parallel to the line

x y z

Tfc^mlb^-pTc
which will be parallel to the plane (ii) 9

if

IV mm'-+ -^-=0. ...(.*)

The symmetry of the result shows that the plane (?) is also

parallel to the chords bisected by the plane (ii).

Thus if a and p be two diametral planes, such that the plane a is

parallel to the chords bisected by the plane P, then p is parallel to the

chords bisected by a.

Two such planes are called Conjugate diametral planes.

Equation (iv) is the condition for the diametral planes (i) and

<ii) to be conjugate.
Ex. Show that the diametral planes

x

.are conjugate for the paraboloid



CHAPTER IX

PLANE SECTIONS OF CONICOIDS

9*1. We have seen that all plane sections of a conicoid are-

conies. We now proceed to determine the nature, the lengths, and
the direction ratios of the axes of any plane section of a given.
conicoid.

We shall first consider the sections of central conicoids, and then:

of paraboloids.

While determining the nature of plane sections of conicoids, we
shall assume that the orthogonal projection of a parabola is another

parabola, of a hyperbola another hyperbola and of an ellipse is

another ellipse or in some cases a circle.

9*2. Nature of the plane section of a central conicoid. To deter-

mine the nature of the section of the central conicoid.

by the plane

lx+my+nz=p. ...(2}

The equation to the cylinder passing through the section and1

having its generators parallel to Z-axis, obtained by eliminating
from (1) and (2), is

x2
(an

2
-f cl~) -f- 2clmxy -j- y

z
(bn

2+cm2
) 2cplx 2cpmy-\- (cp

2 n2
)
= 0.

The plane 2=0 which is perpendicular to the generating lines of
the cylinder cuts it in the conic whose equations are

3= 0,

x2
(an

2+ cl
2
)+ 2clmxy+ y*(bn

2
-f cm2

) 2cplx 2cpmy+ (cp
2- n2

)
=

0,,

and which is the projection of the given section on the plane
25= 0.

The projection and, therefore, also the given section is a parabola,.

hyperbola or ellipse according as

r

or bd*+cam*+abn* ^ <0.
L>

Thus we find that the section is

a parabola ")
f

a hyperbola ^according as bcl 2+cam2jrabn2
^

an ellipse j [^ > ,
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9*21. Axes of central plane section. To determine the lengths
<and direction cosines of the section of the central conicoid

az2
+fy2+cz2=l, ...(1)

by the central plane
lx+my+nz-=Q. ...(2)

Take a concentric sphere

*2
+</

2+zW2
. -..(3)

The extremities of all the semi-diameters of length r of the

<;omcoid lie on the curve of intersection of the conicoid and the sphere.

The lines joining the origin to the points on this curve form a
oone whose equation, obtained by making (1) and (3) homogeneous,
is

(ar
2-l)x

2
+(6r

2
-l)2/

2
+(cr

2
~l)z

2=0. ...(4)

The plane (2) cuts this cone in two generators which determine
the directions of two equal diameters of length 2r of the section and
which are, therefore, equally inclined to the axes of the section.

In case 2r becomes the length of either axis of the section, the

generators coincide and, therefore, the plane touches the cone, the

generator of contact being one of the axes.

Now, the condition for the plane (2) to touch the cone (4) is

*L 4.
*

+_*
a _

ar2-!^2 -! cr2 -!'

or (bcl
2
+cam*+abn*)r*-[(b+-c)l

2+(c+a)m2+(a+b)n2
]r*

-f(/
2+m2

+ra
2
)-0, ...(5)

which is a quadric in r2 and has two roots r^ 9
r2

2 which are the

squares of the semi-axes of the section.

If A5 (JL,
v be the direction ratios of the axis of length 2r, the

plane (2) touches the cone (4) along the line

2-
...(6)

(JL
V

:and is, therefore, identical with

which is the equation of the tangent plane at any point of the line

-{6) so that we have

I m n

which determine the direction ratios of the axis of length 2r ; r being
given by the equation (5).

9*22. Areas of plane sections.

If the plane section be an ellipse,

its area=7^1?*=& TTT^-, =-: . 9V1 *

V(bcl +cam2+abn2
)
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If, p, be the length of the perpendicular from the origin to the

tangent plane to the conicoid,

lx+my+nz=^ (
+T+),

which is parallel to the given plane lx-}-my+nz~^s we have

./(*.+!#+) f f
._

V \ a b c / v(bcl
z+cam2

-j-abn
2
) I 1

so that

the area= -
. r .

pV(abc)

9*23. Condition for the section to be a rectangular hyperbola*
For a rectangular hyperbola, we have

and hence

(b+c)!
2+ (c+a)m

2+(a+b)n2=0.
Ex. Obtain the condition that the section of the conicoid

by the plane Ix -\-rny-\-nz-p should be a parabola, an ellipse, a hyperbola or a.

circle from the equation 5 of 9*21

(For a circle r1
2= r2

2
)

[Ans. The conditions for a circle are

Z= 0, m2(c a)= n2( 6) ;
or w=0, n*(a 6)=Z2

(6 c) ;

or w=0, l*(b-c)=m*(c-a).

9*24. To find the condition for two lines

OL^IL^JL, jOL^JL^JL. m
Za ml Tij

'

12 m2 n2

to be the axes of the section by the plane through the same.

The quadric is

As each of the two lines in (1) will bisect chords of the section

parallel to the other, we see that each of them must belong to the

diametral plane conjugate to the other.

Now the diametral plane conjugate to

is

aliX+bm1y+ cr^z= ,

and the condition for the same to contain the second line is

al1l2+bm ]
m2+cn1n2 ==0. ...(2)

The condition (2) is the one sought.

In addition to (2), we also have

for the axes are necessarily perpendicular.
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Examples
1. Planes are drawn through the origin so as to cut the quadric

in rectangular hyperbolas. Prove that the normals to the planes through
the origin lie on a quadric cone.

Consider any plane
lx+my+nz=Q -.(1)

through the origin. The condition for this plane to cut the given

quadric in a rectangular hyperbola is

(b+ c)l
2+(c+a)m?+(a+b}n

2=Q. ...(2)

The normal to the plane (1) through the origin is

?.=_.= .!. ...(3)
I m n

"

Eliminating 7, m, n between (2) and (3), we see that the normals, in

question, lie on the surface

which is a quadric cone.

2. Lines are drawn from the centre of the quadric

proportional to the area of the perpendicular central section ; show that

the locus of their extremities is a quadric
x tj

a z
+~-+ = constant.

a b c

Consider any central plane section

lx+my-\-nz=Q. (!)

The area of the conic in which this plane cuts the given

quadric is

where, p, the length of the perpendicular from the origin to the

tangent plane parallel to the plane (1) is given by

v( ST)
-Y - sa

where we have supposed that I, m, n are actual direction cosines.

We require the locus of the point (x, y, z) where

x-lAk, y=mAk, znAk ;

k being the constant of proportionality.

vTt i I i i ,

where fc'=?

Hence the result.
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3. Show that the axes of the sections of the surface

a,

which pass through the line

lie on the cone

(b-~6)(

Let

- =
I m n'

y). (ca)(nxlz) .(a

y

mi ni

_~

..

be the principal axes of any section through the given line

x _. y __ z

I m n

The axes being perpendicular to each other, we have

Zj/ 2+Wjmg -hn^s= 0.

Also as in 9 '24, page 182, we have

= 0.

Also the lines
(?'), (ii) and (in) are coplanar. Therefore

m, n

or

lm^ 0.

Eliminating Zt , mi, ^ from (fv), (v) and (vi) 9
we have

bm2 ,
cn2 =0.

...(fw)

.. (vii)

Now, eliminating ?2 m2,- ^2 ^rom (**) an(^ (*'*'*")> we obtain the

locus as required.

4. Owe aa;i of a central section of the conicoid

lies in the plane

Show that the other lies on the cone

(b-c)uyz+(c-a)vzx+(a-b)wxy=*Q
(C.u. 1924)
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"Oet

be the two axes of a central section such that the second lies in the

given plane for which we have the condition

ul2+vm2 -}-im2= 0. ...(*)

Also, as in 9'24,

IJ2+w^+ntn2
= ... (it")

alJz+6m1m2+cnln2
= 0. ... (iii)

Eliminating I2t raa , n<i from (i), (ii) and (iii), we have

= 0,

or

uminL(b c)+ 071^, (c a) +wl/ml(ab)= 0.

With the help of this condition, we see that the locus of the axis

ar/Z1=y/m 1 =2/w 1

is the cone

Exercises

1. Show that the section of tho ellipsoid

by the plane

is an ellipse with semi-axes 1/2 and ^7(9/22). Also obtain their equations.
fAns. ^=2/= J; x/4= y/5=2.

2. Show that the curve
a>
2
-f7?/

2-1022 4-9=0, .7;4-2^/4-3^-0
is a hyperbola whose transverse axis is 6 and the direction cosines of whose axes
are proportional to (6, 3, 4) and (17, 22, 9).

3. AI, A 2 , A$ are the areas of three mutually perpendicular central

sections of an ellipsoid ; show that J.j-2-fA 2
~2 -\-A 3

~2 is constant.

4. Show that all plane sections of

which are rectangular hyperbolas and which pass through the point (a,

touch the cone
- -

+
c-f-a

+
a-f-6

5. Any plane whose normal lies on the cone

cuts the surface

in a parabola.
6. The director circle of a plane central section of the ellipsoid

has a radius of constant length r. Show that the plane section touches the cone
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7. If a length PQ be taken on the normal at any point P of the ellipsoid

equal in length to l^A/nabc where Zis a constant and A is the area of the section*

of the ellipsoid by the diametral plane of OP, show that the locus of Q is

C222

( C2-H2
)
2

8. Prove that if l^ 9 m^ n^ ; 1%, w 2 , ^?2 are ^ne direction ratios of the-

principal axes of any plane section of the quadric

osH 6y2+ cz 2=l,
then

lll% mi??? 2 r&iWg

6 c~~ c a
~
a b

"

9. Find the equation of the central plane section of the quadric

ax*+by*+cz*=l
which has one of its axes along the line

[Ana.

10. Show that central plane sections of an ellipsoid of constant area touch
a quadric cone.

9*3. Axes of non-central plane sections. To determine the lengths
and direction ratios of the section of the central conicoid

by the plane

Centre of the plane section, now, is not the origin. If (a, p, 7)
is the centre of the section, the plane (2) is also represented by the

equation

so that we get

=k
, (say) .

__ Ik Q__& __nk
oc==

j p -==~
j / ==: <

CD C

Hence
+cr2_ i2 / I

2 m2
,

n2-- --
p # \ a ' 6 c

or

\
J >

/

If we write

m2 n2

we get

Ip mp np
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as the co-ordinates of the centre of the section. The equation of the

conicoid referred to this point as origin is

or

PQ PQ

Also, the equation of the plane (2) becomes

fa+my4-nz=0. ...(4)

Now the conic

^(lx+my+nz)= l ~Xf, fo+wt/+raz=0, ...(5)'

is the same as the conic

Q, ...(6)

for, points whose co-ordinates satisfy the equations^) also satisfy

the equations (6).

Putting

and replacing the a, b, c by aid?, b[d*, c/d* respectively in the equa-
tions (5) and (6) of the previous article, we get

_P_ ,
m*

_,.
n* _ n

ar* ~^br*~
"""

cr*
'

...(7)'

I m n '

which give the lengths rlt r2 and the direction ratios I, m, n respectively
at the corresponding semi-axes of the section.

9'31. Area of the plane section. If the section be an ellipse,.

we have its area

,72 /(~~ V \bbcl*+cam*+abn2

P
2

\ /(
*lb+n*/cJV \bcl*+cam*+abn*

9*32. Parallel plane sections. Comparing the equations (7)'

and (8) with the equations (5) and (6) of the previous article, we see

that if a, p be the lengths of the semi-axes of the section by the-

central plane
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then the semi-axes of the section by the parallel plane

=p ...(10)
are da, and dp,

or

and the corresponding axes are parallel.

^

Thus we see that parallel plane sections of a central conicoid are
similar and similarly situated conies.

Again, if AQ and A are the areas of the sections by the planes
(9) and (10), we have

and

Thus

Note. pfojQ can easily bo seen to be the ratio of tlio lengths of the per-
pendiculars from the centre to the given plane and to the parallel tangent plane.

Examples
1. Show that the area of the section of an ellipsoid by a plane

which passes through the extremities of three conjugate semi-diameters is

in a constant ratio to the area of the parallel central section.

Consider the ellipsoid

Let P(xly ylt zj, Q(x2 , y2 ,
z2 ), E(x3) y3 ,

z3) be the co-ordinates of
the extremities of three conjugate semi-diameters of the ellipsoid.
The equation of the plane PQR is

The central plane parallel to* (1) is

Re-writing these equations as

Ix+my+nz=l 9

see that the ratio of the areas of the two sections

< 9
'

32)

Again
2

o
Oj

making use of relations C, D of 8*8.

Hence the result.
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2. Find the angle between the asymptotes of the conic

ax2+byz+cz2=l, Ix+my+nzp.
Let be the required angle.

If fi
2
,
r2

2 be the squares of the semi-axes of the conic, we have

Exercises
N*

1. Find the lengths and directions of the axes of the section of the ellipsoid

-62/2-{- 1432=3 by the plane z+y+z=*l.
[Ans. A, V (22)44, (4, -5, 1), (2, 1, -3).

2. Show that the plane #+i/-f-2=l cuts the quadric

in a hyperbola and find the direction ratios of its axes.

[Ana. -3, 1,2 ; 1, -5,4.
3. Show that the plane x-\-Zy-\-3z~ cuts the conicoid

in a parabola, the direction cosines of whose axis are proportional to 1, 4, 3.

4. The ellipsoid x2
-J-2?/

2-f322=l is cut by parallel planes

2x--}-3?/+ 42=2, 2.s-H3?/+4z=3 ;

show that the areas of the sections made by the planes are in the ratio 59 : 29.

5. Find the locus of the centres of the sections of the ellipsoid

^2

which are of constant area 7r/c
2
,

[
Ans .

9*4. Circular Sections. To determine the circular sections of the

ellipsoid

Writing the equation of the ellipsoid in the form

^+y,+2,_a

we see that the two planes

meet the ellipsoid where they meet the sphere

but as a plane necessarily cuts a sphere in a circle, we find that the

planes (2) cut the ellipsoid (1) in circles.
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Similarly, if we re-write the equation (1) in the forms

, ...(4)

we find that the planes

and

cut the ellipsoid in circles.

Thus there are three pairs of central planes which cut an ellipsoid

in circles.

If a2>62>c2
>
the second of these equations only gives real planes

so that in this case the real pair of central planes of circular sections

is

*
V(a

2-&2
) V(&

2-c2)=0. ..-(5)
a c

Since parallel sections are similar, the two systems of planes

and

''which are parallel to those given by the equations (5) cuL the ellipsoid in

circles for all values o/A and
[JL.

9*41. Any two circular sections of an ellipsoid of opposite systems
lie on a sphere.

Let vV-&2
)+ V(62-c2)=A

a c

and V(
f- 6

1
)
- V(&

2- c
2
)
=

I*,
a c

be the equations of the planes of any two circular sections of opposite

.systems.

The conicoid

-- V( z-&2
)- V(&

a-c2)-n =o, ...(i)
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which passes through the two circular sections for all values of k, will

represent a sphere, if fc can be chosen so that

~^~
+

~~~tf
^

6 ^T* c*
'

Now, k=l/b*9

>clearly satisfies these two equations.

Substituting this value of fc in (1), we get

d c

<which represents the sphere through the two circular sections.

Hence the proposition is proved.

Exercises

1. Show that the real central circular sections of the hyperboloids

are given by the planes

A/(
2+ c2)=0 and

-^-

Also show that any two circular sections of opposite systems in the case of
either hyperboloid ho on a sphere.

2. Find the real circular sections of the following conicoids :

(ii) 10o;2 2?/2+z2+2=0. [A us.

(rii) 15a;2_ 2/2__iO-2_|_4 == 0. [Ans. 4^+32=X, 4^32= ^.

3. Find the equation of the sphere which contains the two circular sections
of the ellipsoid a;2 3?/

2
-|-2^

2=4 through the point (1, 2, 3).

[Ans. x

4. Find the radius of the circle in which the plane

c

-cuts the ellipsoid

[Hint. Obtain the equation of the sphere which passes through the given
-circle and any circle of the opposite system and determine the radius of the
circle in which the given plane cuts it.]

5. Show that the circular-sections of the ellipsoid

passing through one extremity of X-axis are both of radius, r, where

Zi=^z 2

62 ~o2-C*"

6. Prove that the radius of a circular section of the ellipsoid at a distance

p from the centre is 6\/(l p262/a
2c2 ).
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7. Show that the locus of the centres of the spheres which pass through*
the origin and cut the ellipsoid

in a pair of real circles is the hyperbola

8. If PI, >2 #3 De ^e lengths of the perpendiculars from the extremities

Pj, P2 ,
P3 of conjugate semi-diameters on one of the planes of central circular

sections of the ellipsoid,

then show that

Pi
2+P22+P32=aWlb*. (B.U. 1931)

9. A cone is drawn with its vertex at the centre of the ellipsoid
cc
2
/a

2
+2/

2
/6

2
-f-2

2
/c

2=l and its base is a circular section of the ellipsoid. If the
cone contains three mutually perpendicular generators, prove that the distance
of the section from the centre of the ellipsoid is

obc

9-42. Umbilics.

Def. A point on a quadric such that the planes parallel to the

tangent plane at the point determine circular sections on the surface

is called an umbilic.

Clearly, umbilic is a point-circle which lies on a quadric.

The umbilics are the extremities of the diameters which pass-

through the centres of the systems of circular sections.

To determine the real umbilics of the ellipsoid,

If/, g, h be an umbilic, the tangent plane

at the point is parallel to either of the central circular sections

V(a
2-& 5

)
ct c

Q== ^ anci ~
, . n rrr "i"

tf

ay(aa
62

)

f2 a2

But ^+fr
Hence

These are the co-ordinates of the four real umbilics.

Exercises

1. Show that the hyperboloid of one sheet has no real umbilics.
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2. Find the real umbilics of tho hyperboloid
a-
2 y

a z2

3. Find the umbilics of the ellipsoid 2z2+ 3#
2+6z2=6.

[Ana. (K/, 0,

4. Show that the four real nmbilics of an ellipsoid lie upon a circle.

5. Prove that the perpendicular distance from the centre to the tangent
plane at an uinbilic of the ellipsoid is ac/6. (U.P. 1937)

9*5. Sections of paraboloids. To determine the nature of the

section of the paraboloid

by the plane
lx+my-{-nz=p.

Let 1 7^0 so that the plane is not perpendicular to the YZ plane.
As in 9*3, the equations of the projection of the section on the YZ
plane are

i
2
z
2

2apmy 2(apn -f- cl*)z+ >

3= 0.

The projection and, therefore, also the section is an ellipse,

parabola, or hyperbola according as

f<
a2ra2na

an*(am*+bl
2

)<{
=0 or abn2

!
2

Thus for a parabola n=0. If n^O, the section will be an ellipse
or hyperbola according as ab is positive or negative that is according
as the paraboloid is elliptic or hyperbolic.

If Z= and ra^O then, by projecting on the XZ plane_, we get a
similar result.

If Z=ra=0 then n cannot be equal to zero and the section is then

clearly an ellipse or hyperbola according as ab is positive or negative.

Thus we have proved that all the sections of a paraboloid which
are parallel to the axis of the surface are parabolas : all other sections

of an elliptic paraboloid are ellipses anil of an hyperbolic paraboloid are

hyperbolas.

9*51. Axes of plane sections of paraboloids. To determine the

lengths and the direction ratios of the section of the paraboloid

aza
+fy2

=2c2, ...(1)

by the plane

Let (a, p, y) be the centre of the section so that the plane (2) is

also represented by the equation

Comparison gives

gg__ffi_ ~c a

I

~~
m~~ n

~~
p
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Therefore a=
,
B= >

an bn

If we write

7 Z
2 m2

Tip

*-T+T+T'
we find that the centre of the section is

/ Zc me kc\

\ an
9

bn
'

w2 /

The equation of the paraboloid referred to this point as the

origin is

f *C N
2

, r/ mc\ a
ft

/
,

fcc

a{ a;--
) +&{ 2/ T- ) =2c{ Z + -0-

\ an)
^

\
y bnJ \ n*

o
,

7 2
2c

or ax*+by*-- (Ix+my+nz)

Also, the equation of the plane (2) now becomes

lx+my+nz=0.
Now the conic

r V t'/

y+w2=0 J

is the same as the conic

Let us write

pQ*^c(kc+np)=c[^+
1

~+2np
J.

The semi-diameters of length r of the conicoid

are the generators of the cone

a

^)~2V-0 ...(4)

The plane

will touch this cone if

or
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which is a quadratic equation in r2 and has two roots r^
2

,
r2

2
,
which

are the squares of the semi-axes of the section.

AlsOj if A, JA, v be the direction ratios, of the axis of length 2r,

the plane (2) touches the cone (4) along the line

is, therefore, identical with

(

so that we have

m n

which determine the direction ratios of the axis of length 2r
;

r being
,given from the equation (5).

9*52. The section will be rectangular hyperbola, if

This requires

(a+b)n
2+am2

-fbl
2=0.

Ex. Obtain the conclusion of 9*5 with the help of equation
of this article.

9*53. Area of the section.

If the section be elliptic, its area

9*54. If 6 be the angle between the asymptotes of the section,

rthen as in Ex. 2, page 189.

(V+ r2
2
)

2

which being independent of #, we deduce that the angle between the

.asymptotes of parallel plane sections is the same.

Thus we see that parallel plane sections of a paraboloid are similar.

Exercises

1. Show that the section of the paraboloid

ft>y a tangent plane to the cone

6 a

(is a rectangular hyperbola.

2. Prove that the axis of the section of the conicoid az%+by2=s2z by the

splane lx+my+nz=Q lie on the cone

(a b)n__
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3. If the area of the section of

be constant and equal to nk2
, the locus of the centre is

9*6. Circular sections of paraboloids. To determine the circular

tections of the paraboloid

The equation (1) can be written in the forms

Therefore, as before, the two pairs of planes

y(6-a)-cw
8

o, -(2>
and

a!
f
(a-&)-&2:=0> ...(3)

determine circular sections through the origin.

If a or 6 is negative and the other positive, neither of the equa-
tions (2) and (3) gives real planes.

Hence hyperbolic paraboloids have no real circular sections.

Of the two pairs of planes (2) and (3), one will be real if a and 6*

are of the same sign.

In case a>6>0,
32
(a-6)-6z

a
=0,

gives real circular sections through the origin and the two real systems
of circular sections are given by

A, a?V(a b) \/bz (Jt.

Exercises

1. Show that any two circular sections of opposite systems of an elliptic-

paraboloid lie on a sphere.

2. Find the real circular sections of the paraboloid :

. [Ans. 2x3y=l.
0, [Ans. 2/22=X*.

9*61. Umbilics of a paraboloid. To determine the umbilics of
the parctboloid

Circular sections are determined by the planes

x\/(ab)+<\/'bz~'h, XT/iaty^bz
If/ Q> h ^e an umbilic, the tangent plane

afx+bgyc(z+h)**Q

thereat is parallel to ^either of the circular sections.
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Also,

Therefore,
-

n ~~s~ir
2ab

IT i

~~ b
Hence - A (

a -b)c~\
.O/-^ J

the two real umbilics of the paraboloid.
Ex. 1. Find the umbilics of the paraboloids

(**) 4^2+ 5^2=402 . (ii) 2

[Ans. (i) (0, 2, t) ; (n) (db3/100, 0, 9/800).



CHAPTER X

GENERATING LINES OF CONICOIDS

10*1. Generating lines of the hyperboloid of one sheet. We
re-write the equation

-2
7/
2 za

4- y __ i m
a2+ 62 v

- 1 ' - (1>

of a hyperboloid of one sheet in the form

l_fl_i_,

This may again be written in either of the two forms

x z i\y
a c b

V_ J?Li_?L
'b a

"*"
c

...(2)

X Z

a c b /oxor =*-z (3)

We consider, now, the two families of lines obtained by putting
the equal fractions (2) and (3) equal to arbitrary constants A and \L

respectively.

To each value of the constant A
, corresponds a member of the

family of lines (A) and to each value of the constant \L corresponds
a member of the family of lines (B).

Now it will be shown that every point of each of the lines (A) and
(B) lies on the hyperboloid (1).

If (xQ9 yQ , z
)

be any point of a member of the family (A),

obtained for some value A of \ we have

_.,,a c \ b / b

On eliminating A from these, we obtain

which relation shows that (SQ, 2/ ,
3 ) is a point of the hyperboloid (1)
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A similar proof holds for the family of lines (B).

Thus as X and [i vary, we get two families of lines (A) and (B)
each member of each of which lies wholly on the hyperboloid. These
two families of lines are called two systems of generating lines (or

generators) of the hyperboloid.

We shall now proceed to discuss some properties of these systems
of generating lines.

10*11. Through every point of the hyperboloid there passes one

generator of each system.

Let (xQ , yQ ,
zQ ) be any point of the hyperboloid so that we have

Now the line

__JL=A (i-f), H.JL-
a c \ b J b

will pass through the point (x , ?/ ,
z ) if, and only if, A has a value

equal to each of the two fractions

+f)/^)- -

Now, by virtue of the relation (4), these two fractions are equal.

Thus the member of the system (A) corresponding to either of

the equal values (5) of A will pass through the given point (x , y , z ).

Similarly it can be shown that the member of the system (B)

corresponding to either of the equal values

of, [i, passes through the given point (z , yQ ,
ZQ).

10*12. No two generators of the same system intersect.

Let

f-T-'-C'-f)-<'+ f

be any two different generators of the A system.

Subtracting (Hi) from (i), we obtain

(Ai-A2 )

(
1

1-)=0
or y=6, for A

Again, from (ii) and (iv), we obtain

+=O or y=~b
>
for

Thus we see that these four equations are inconsistent and

accordingly the two lines do not intersect.
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10" 13. Any two generators belonging to different systems intersect.

Let

be two generators, one of each system.

Firstly, we solve simultaneously the equations (i), (ii) and (Hi).

Now (i) and (Hi) give

Substituting this value of ?/ in (i) and (ii), we obtain

x z 2A(ji a; 2 2

a c ~A-j-f>t
>

a
~

c

These give, on adding and subtracting,

. l--Atj
, 2=0.
-

Now, as may easily be seen, these values of x, y, z satisfy (lv)

also. Thus the two lines intersect and the point of intersection is

A-^

Another method. The planes

__y_)
_

fcr
b J L

pass through the two lines respectively for all values of k and k'.

Now, obviously these equations become identical for

lc \L and fc'=A.

Thus the two lines are coplanar and as such they intersect. Also

the plane through the two lines, obtained by putting IC^\L or &'=A is

A+fx a A-HfA
'

6 A-f-pt

*

c

Cor. 1. Now the plane (7) through two generators of the oppo-
site systems is the tangent plane to the hyperboloid (1) at the point
of intersection (6) of the two generators. Since also through every

point of the hyperboloid there pass two generators, one of each

system, we see that the tangent plane at a point of hyperboloid meets

the hyperboloid in the two generators through the point.

Cor. 2. Any plane through a generating line is the tangent plane
at some point of the generator. Now like every plane section, the

section of the hyperboloid by any plane through a generator is a
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conic of which the given generator is a part. Thus the conic is

degenerate and the residue must also be a line. At the point of

intersection of the lines constituting this degenerate plane section,

the plane will touch the hyperboloid.
Ex. Prove this result analytically also.

Cor. 3. Parametric Equations of the hyperboloid. The co-

ordinates (6) show that

14- Apt. . A u. 1 ALL
x=a .

, 2/= - --
A + JJL'

y

are the parametric equations of the hyperboloid ; A, [i being the two

parameters. These co-ordinates satisfy the equation of the hyper-
boloid for all values of the parameters A and

(JL.

Example

Find the lengths of the side of the skew quadrilateral formed by the

four generators of the hyperboloid

which pass through the two points (10, 5, 1) (14, 2, -2).

(D.U. 9
M.A. 1948)

Re-writing the given equation in the form

we see that the equations of the two systems of generating lines of

~the hyperboloid are

JL_ 2

-f
*

The generators (i) and (ii) pass through the points

(10, 5, 1) and (14, 2, -2)
for

A=2, (x=| and A=f , fz=l

respectively.

The two pairs of generators through the two points, therefore,
.are

... (m)

(v)

~+z =l-y ... (w)



202 ANALYTICAL SOLID GEOMETRY

Solving in pairs (m), (vi) and (iv), (v)> we see that the two other

vertices of the skew quadrilateral formed by the four generators are

(14, i,-|), (V, H, tt).

The lengths of the sides are now easily seen to be

V(98)/16, V(308)/3, V2/3, \/(7970)/16.

Exercises

1. Write down the equations of the two systems of generating lines of the

following hyperboloid and determine the pair of lines of the systems which pass
through the given point.

(t) *2+9?/2_ 22 == 9, (^ 1/3)
_

1}<

(n) a/9-y2/16+z2/4= l, (_i ? 4/3> 2 ).

[Ans. (i) #-f-3tJi2/-2=3X, l

x 3[A2/ 2=3^., ^+3t/4-^2=3 ; a; 3?/ z=3, cc-

(n) 4z-3?/+6X2=12X, 4Xa?+ 3X2/-~62= 12 ; 2=2,

4x-3y~6\iz=12[L 9

4x-3y+22+4= 0,

10*2. To find the equations of the two generating lines through any
point (a cos 6, b sin 0, 0), of the principal elliptic section

of the hyperboloid by the plane z=0.

Let

x a cos 6 b sin

I m n

be any generator through the point

(a cos 0, b sin 0, 0).

The point

(Ir+a cos 6, mr+b sin 0, nr)

on the generator is a point of the hyperboloid for all values of r~

Thus the equation

(Ir+a cos 8)* , (mr+b sin 0)
a
__7i

2r2
________ _

-f-
---- _ ^ t

a

2 2 " cos
,
m sin

in r must be an identity. This will be so if

and
I cos 6

,
m sin 6

i -r

a b

These give

1 __ m _
a sin -b cos
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Thus we obtain
xa cos 0___.y b sin 0^3 ,

a sin 6 cos c

as the two required generators.
Note. Since every generator of either system meets the plane z=0 at a

point of the principal elliptic section, we see that the two systems of lines"

obtained from (C) as varies from to 2n are the two systems of generators
of the hyperboloid. The form (C) of the equations of two systems of generators
is often found more useful than the forms (A) and (B) obtained in 10* 1.

Ex. Show that (A) and (B) are equivalent to (C) for

X=tan (ire 0), jx
= cot (in 40).

10'3. To show that the projections of the generators of a hyper-
boloid on any principal plane are tangents to the section of the

hyperboloid by the principal plane.

Consider any generator
x a cos y b sin __ z

a sin 6 cos c
'

The equation
x a cos y b sin

a sin b cos

represents the plane through the generator perpendicular to the XOY~
plane so that the projection of the generator on the XOY plane is

x -a cosj?_y--fr
sin __

a sin 6 cos #
'

~~"

x cos
, ?/ sin , ~

or + - r =1, 2=0,
a b

which is clearly a tangent line to the section

of the hyperboloid by the principal plane z=Q at the point

(a cos 0, b sin 0, 0).

Again
x -a cos 0__ z

a sin c

is the plane through the generator perpendicular to the XOZ plane so*

that the projection of the generator on the XOZ plane is

x a cos z-
, 2/=0a sin

or

a; sec , .

tan = 1, v=
a c

which is clearly the tangent to the section

of the hyperboloid by the principal plane y~0 at the point

(a sec 0, 0, c tan 0).
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Similarly we may show that the projections of the generators on
the principal plane x touch the corresponding section.

Example

Show that points of intersection E 9 S of the generators of opposite

systems drawn through the points

(a cos 6, b sin 6, 0), (a cos <, b sin ^, 0)

of the principal elliptic section of the liyperloloid

a?la* + y*lb*-z*lc*= l

-are

,sin \(0+ <l>}
sin |(0-<

'

The question can, of course, be solved by solving simultaneously
the equations of the generators obtained in 10'2, but we shall give
another method which is perhaps simpler.

Let R (xi, 2/1, zj be either of the two points of intersection of the

generators.

The tangent plane
r^j.?yi_??i == i

"a* 62 c
2

at R meets the plane 2 of the principal elliptic section in the line

which is the line joining the points P, Q whose equation is known to be

Comparing these equations, we obtain

Also we have

Substituting these values of xl and yl in this relation, we obtain

Exercises

1. /?, iS are the points of intersection of generators of opposite systems
-drawn at the extremities F, Q of semi-conjugate diameters of the principal

elliptic section ; show that

(i) the locus of the points R9 S are the ellipses

(ii) the perimeter of the skew quadrilateral PSQR taken in order, is con-

stant and equal to 2 (a
2+62

-f 2c2 ) ;

(Hi) cot 2
a-f-oot2p= (a

2+ 62)/c
2 where

/_RPS=2(X. and RQS=W ;

(iv) the volume of the tetrahedron PSQR is constant and equal to

iabc.
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2. The generators through a point P on the hyperboloid

meet the principal elliptic section in points whose eccentric angles differ by a*

constant 2oc ;
show that the locus of P is the curve* of intersection of the hyper-

boloid with the cone

3. If the generators through a point P on the hyperboloid

meet the principal elliptic section in two points such that the eccentric angle of
one is three times that of the other, prove that P lies on the curve of intersection
of the hyperboloid with the cylinder

4. Show that the generators through any one of the ends of an equi-
conjugate diameter of the principal elliptic section of the hyperboloid

are inclined to each other at an angle of 60 if a2
-j-6

2=6c2
. Find also the

condition for the generators to be perpendicular to each other.

[An*.

5, A variable generator of the hyperboloid

intersects generators of the same system through the extremities of a diameter
of the principal elliptic section in points P and P' ; show that

6. Show that the shortest distance between generators of the same system
drawn at one end of each of the major and minor axes of the principal elliptic-
section of the hyperboloid

7. Show that the shortest distance between generators of the same*
system drawn at the extremities of the diameters of the principal elliptic section.
of the hyperboloid

are parallel to the XO Y plane and lie on the surfaces

8. Show that the lines through the origin drawn parallel to the line of*

shortest distance between generators of the same system through the ends of

semi-conjugate diameters of the principal elliptic section of the hyperboloid,

generate the cone
2 2c2z2=0.

9. A variable generator meets two generators of the system through
the extremities B and B' of the minor axis of the principal elliptic section of
the hyperboloid

in P and P', prove that

10. Q is a point on a generator at any point P of the principal circular-

section of the hyperboloid
C2(a;2 -f 2,2)

_ 222 2c2f

such that PQ=r ;
show that the angle between the tangent plane at P and Q is-

tan-l ( r j
c
) t
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11. The generators through a point P on the hyperboloid

-meet the plane zQ in A, B and the volume of the tetrahedron formed by the

generators through A and B is constant and equal to abc/4 ; show that the locus
of P is either of the ellipses

10'4. To find the locus of the points of intersection of perpendi-
cular generators of the hyperboloid

*V+2/2
/&

2-22
/c

2
==l. ...(1)

Let (#!, yl9 Zj) be any point the generators through which are

'perpendicular.

The generators are the lines in which the tangent plane

^1 ,2/2/1 __ 23 .ox

a2 "*"
62 c2

*W
,at the point meets the surface. On making (1) homogeneous with

-the help of (2), we obtain the equation
x*

, 2/
2 22 __ fxxi 2/2/1

z

a8
" +

6a ~"^~U2+ 62 c

The curve of intersection of (1) and (2) being a pair of lines, the

cone with its vertex at the origin and with the curve of intersection

of (1) and (2), as the guiding curve, represented by the equation (3),

.reduces to a pair of planes.

If, 1 9 m, n be the direction ratios of either of the two generators,

we have, since they lie on the planes (2) and (3),

fci my, nzi

a*
+

6*
~"

c2
'

/fa,

Now, (5), with the help of (4), reduces to

72
,

m2 n*
n~F+T2 --2"

= 0-
a2 ^ 62 c2

Eliminating n from (4) and (5), we obtain

If Zj, mi, HI, ; Z2 >
m2> nz ^e ^ne direction ratios of the two gene-

rators, this gives

ml

or *

Since y2+ml
m2+n1w8=0,

we obtain
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or
6Va:1

2
(c

a

or

(6

We re-write it as

Since now the point (a?lf yx , zj lies on the hyperboloid, this

reduces to

Thus we see that the point of intersection of perpendicular
generators lies on the curve of intersection of the hyperboloid and the
director sphere

Another method. Let PA, PB be two perpendicular generators
through P and PC be the normal at P so that it is perpendicular to
the tangent plane determined by PA and PB. The lines PA, PB, PC
are mutually perpendicular and as such the three planes CPA, APB,
BPC determined by them, taken in pairs, are also mutually perpendi-
cular.

The plane CPA through the generator PA is the tangent plane
.at some point ofPA and the plane CPE through the generator PB is

the tangent plane at some point of PB. Also the plane APE is the

tangent plane at P.

Thus the three planes CPA, APE and BPC are the mutually
perpendicular tangent planes and as such their point of intersection
P lies on the director sphere. Thus the locus of P is the curve of
intersection of the hyperboloid with its director sphere.

Example
Show that the angle 6 between the generators through any pointP on

a hyperboloid is given by
cot 0=p(r*-a*-b

z
+c*)/2abc,

where, p, is the perpendicular from the centre to the tangent plane at P
and, r, is the distance of Pfrom the centre. (D.U., M.A. 1947, 59)

The tangent plane at P(xl9 yl9 zj is

xxj yyl 2*1

~^r+-p -^T-
1 -

...(1)

As in 10*4, it can be shown that the direction ratios I, m, n, of the
two generators through this point are given by the equations

n
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Proceeding as in example 1, on page 169, we can show that

angle 6 between the lines is given by

^
. VL 4

\a* + bf+^JValb^^c^+^a^)j
tan =

j 2 a 1 2 2" 1 a a

Now, p, the length of the perpendicular from the centre to the-

tangent plane (1) at (x^ yit zj is given by

1 1
p*=- .

. .1 \JJi n ^"^ +* A

/ 2 ?L. & a

V a4

Also the denominator of the expression for tan

}

_VL-?(-:tan 0- -
2

10*5. Central point. Line of Striction. Parameter of Distri-

bution of a generator.

Def. 1. The central point of any given generator, Z, is the limiting

position of its point of intersection with the line of shortest distance

between it and another generator, m, of the same system ; the limit

being taken when, m, tends to coincide wilh I.

With some sacrifice of precision, one may say that the central

point of a given generator is the point of intersection of the generator
and the shortest distance between it and a consecutive generatoi of

the system.

Def. 2. The locus of central points of generators is called line of
striction.

Def. 3. The parameter of distribution of a generator, I, is

lim($sl<\>) where, 65, is the shortest distance and, 8^, the angle between I

and another generator m of the same system, the limit beincf taken when
the generator m tends to coincide with the generator I.
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10*51. To determine the central point of a generator.

We consider generators of the system
x a cos0 yb sin0 z

a sin0
~~

b cos#
~~

c

Let any generator, Z, of this system be

xa cos? y 6 sin9 z

a sincp b 0089 c

We, now, consider any other generator, m,

xa coscp' y b sin?' z

...(i)

...(2)a 81119' ~~b cogq/ c

of the same system.
Let the shortest distance between these generators meet them

in P and Q respectively so that we have to find the limiting position
of the point P on the generator I when 9'-Kp. Let C be the limit

of P.

Since PQ is a chord of the hyperboloid, its limit will be a tangent
line CD at the point C. Let Z, m, n be the direction ratios of the
shortest distance PQ and Z

,
m

,
n be those of its limit. We have

at 81119 bm cos? -f-en=0,

al _ bm _ en

cos9 siii9' sin9 sin (9' 9)
'

or

al __ bm _ en

sin $(9'+^) cosi(""'
Let 9'-9.
Thus we obtain

-sin? co&9 1

Let

[a(r sin9+ cos9), 6(sin9 r cos?), cr] (3)

be the central point C on the generator (1). The equation of the

tangent plane at C is

r

a
'

b

Since the line CD with direction ratios Z
,
m

,
w

, lies on this

tangent plane, we have
*

r cos) r

aa '

6 2

or

in29 ,
cos29 ,

1 H f 1 11.
r+~w~+ cd

=
L"^^^" J

sl

2
.

sln9 cos?
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or

r= cV-
(a

262+aV2 cos2
9+62c2 sin29)

'

so that we have obtained r.

Substituting this value of r in (3)* we see that the co-ordinates

of the central point C(x, y, z) are given by

_q*(fr
2+c2

)cos9 _ 68 (c
2+a2

) sin9 c3(q
a~-62) sin9 0089

where

Jt=a252+q2c2 cos29-f-6
2c2 sin29

Eliminating 9, we see that the line of striction is the curve of
intersection of the hyperboloid with the cone

Ex. Find the central point for a generator of the second system and show
that the line of striction is the same for either system.

10*52. To determine the parameter of distribution of the

generator, I.

If 6^ be the angle between the generators (1) and (2) of 10*51,
we have

j. c-i
tan od=T .

smcp 0039 0039

so that 69-^0 as 9'->9. Then, from above,We write 9'=
we obtain

Again we shall now find the S.D., 65, between the two generators.

Now the equation of the plane through (i) parallel to (2) is

xa COS9,, yb sin9, z

a sin9, b cos9, c

a sin9', b 0039' c

eo that on cancelling a common factor sin (9' 9), we obtain

bcx sinj(9
;

+9)4- cay cosJ(9'+9)+a&z cosj(9' 9)

+abc sinj(9
/

The S.D., 6,9, which is the distance of the point

. (a 0089', b sin9
f

, 0)
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from this plane is given by

Again putting 9'=9 +6 9, we obtain

rf$ abc

ds dsjdy __ a&c(a
2 sin29+62

10*6. Hyperbolic paraboloid. We re-write the equation
z2

/a
2
-2/

2
/6

2
==2z/c ...(1)

of a hyperbolic paraboloid in the form

6 * 6

which may again be re-written in either of the two forms

jx
a

x__ y_
a b

2 X -L.JLT+
b

Now, as in 10*1 it can be shown that as A and [i Vary, each
member of each of the system of lines

lies wholly on the hyperbolic paraboloid (1).

Thus we see that a hyperbolic paraboloid also admits of two systems

of generating lines.

As in the case of hyperbole id of one sheet, it can be shown that

the following results hold good for the two systems of generating
lines of a hyperbolic paraboloid also.

1. Through every point of a hyperbolic paraboloid there passes
one member of each system.

2. No two members of the same system intersect.

3. Any two generators belonging to different systems intersect

and the plane through them is the tangent plane at their point of inter-

section.

4. The tangent plane at any point meets the paraboloid in two

^generators through the point.
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5. The locus of the, point ofintersection ofperpendicular generators-

is the curve of intersection of the paraboloid with the plane

An important Note. Since the generator

^__ y^te o-xf* 4-J
a ~b

~
c

> 2~\a +
6

lies in the plane

-O+i-}
which is parallel to the plane

whatever value A may have, we deduce that all the generators belong-
ing to one system of the hyperbolic paraboloid

are parallel to the plane

xja+y/b=0.
It may similarly be seen that the generators of the second'system

are also parallel to a plane, viz.,
*

xlay/b=0.

Example

Show thai the polar lines with respect to the sphere

x2+y*+z*=a*

of the generators of the quadric
x2

y
2=2az.

all lie on the quadric
x2

y
2=2az,

Re-writing the equation
x2

y
2
~2az,

as

(x-y)(x+y)=2az

we see that the two systems of generators of this quadric are

x =

Symmetric form of the A generator is

x'ha__y-\-'ha_ z

1 1 ~2?T
The polar plane of any point

(r+Aa, r Xa, 2rA),

on the A generator w.r.t. the sphere

is
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i.e. 9

r(x+y+ Z\z)+a(faG hy a)
= Q

so that the polar line of the A generator is

Eliminating A between these, we see that these -polar lines lie on
the quadric

a2-y= -2az.

We may similarly treat the
(JL generators.

Exercises

1. Obtain equations for the two systems of generating lines on the

hyperbolic paraboloid

and hence express the co-ordinates of a point on the surface as functions of two

parameters. Find the direction cosines of the generators through (a, 0, y) and
show that the cosmos of the angle between them is

2. Show that the projections of the generators of a hyperbolic paraboloid
on any principal plane are tangents to the section by the plane.

3. Find the locud of the perpendiculars from the vertex of the paraboloid

a;2/a
2
-z/

2
/62=2z/c

to the generators of one system.

[Ans. x2+y*+2z*(az+bz
)xylab= Q.

10*7. Central point. Line of striction. Parameter of Distri-

bution.

10*71. To determine the central point of any generator of the

system of generators

- _.
a 6 c

'
"

a b

Let any generator, 1 9 of this system be

x y pz x y"

We, now, consider any other generator, m, of the same system

...(2)
a c

The direction ratios of these generators are

a, -6, 2c/p ; a, -6, 2c/p'.

If l
y m, n be the direction ratios of the line of S.D. between

(1) and (2), we have

albm+2cnlp =0,

These give

I/a, 1/6,

as the direction ratios of the line of S.D. Being independent of p and

p' 9 we see that the line of S.D. is parallel to a fixed line.
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Let (a?i, yl9 zj be the central point of (1). As in 10*51, the

limiting position of the line of S.D. is a line contained in the tangent
plane

at (xv yl9 zj.

Thus we have

Also since (xt , yt , zj lies on (1), we have

Solving (3) and (4), we obtain x

____20
3 _ 2fe

3
_2c(0

2~62
)"" ~

Eliminating ^?, we see that the line of striction is the curve of
intersection of the surface with the plane

Ex. Find the central point of a generator of the second system and show-
that the corresponding line of striction is the curve of intersection of the surface
with the plane

10*72. To determine the parameter of distribution.

Let 8^ and 65 be the angle and the S.D. between (1) and (2).

We have

tan W-tan&J;

Let p'=p-\-Sp so that 6p->0 as p'-*-p.

dp
Now the plane through the generator (1) and parallel to (2) is

JL+ y.=L.
a b p

Also taking 2=0, we see that (alp' , b/p', 0) is a point on (2).

/( 1

V U2
"" 4"^

.*. as before
ds 2ab

which is the parameter of distribution.
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Ex. For the generator of the paraboloid

*2/a2__2,2/62=23
given by

x y 9\
x

j_ y z- ~r-= -6A,
--{-=-,a b

f
a r b X

prove that the parameter of distribution is

a&

and the central point is

268X

Prove that the central points of the systems of generators lie on the planes

*la* i ylb*=Q. (D.U., M.A.)

10*8. General Consideration. We have seen that hyperboloid
of one sheet and hyperbolic paraboloid each admit two systems of

generators such that through each point of the surface there passes
one member of each system and that two members of opposite

systems intersect but no two members of the same system intersect.

Also we know that through each point of a cone or a cylinder there

passes one generator. Thus hyperboloids of one sheet, hyperbolic

paraboloids, cones and cylinders are ruled surfaces inasmuch as they
can be generated by straight lines.

We now proceed to examine the case of the general quadric in

relation to the existence of generators.

10*81. Condition for a line to be a generator* A straight line

will be a generator of a quadric if three points of the line lie on the

quadric.

Let the quadric be

ax*+by
2
+cz*+2fyz+2gzx+2hxy+2ux+2vy+2wz+d=0. ...(1)

The line

x a^y-fi = g ""y
I m n

will be a generator of the quadric, if the point

(fr+oc, mr+p, nr+7)
on the line lies on the quadric for all values of r, i.e., the equation
obtained on substituting these co-ordinates for x,y>z in (1) is an

identity. As this equation is a quadric in r, it will be an identity
if it is satisfied for three values of r, i.e., if three points of the line

lie on the quadric.

Cor. 1. The quadric equation in r obtained above will be an

identity if the co-efficients of r
2 and r and the constant term are

separately zero. This gives

...(2)

...(3)

() -.-(4)

The condition (4) simply means that the point (a, p, y) lies on
the quadric.
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Since (2) is a homogeneous quadric equation and (3) is a homo-
geneous linear equation in I, m, n, these two equations will determine
two sets of values of/, m, n. Thus we deduce that through every point
on a quadric there pass two lines, real, coincident or imaginary lying

wholly on the quadric.

Cor. 2. A quadric can be drawn so as to contain three mutually
skew lines as generators, for the quadric determined by nine points,
three on each line, will contain the three lines as generators.

10*9. Quadrics with real and distinct pairs of generating lines.

10*91. Of all real central quadrics, hyperboloid of one sheet only

possesses two real and distinct generators through a point.

Let

be any central quadric.

The direction ratios /, m, n of any generator

/ m n

of the quadric through the point (or, p, 7) are given by the equations

Eliminating n from these, we obtain

Its roots will be real and distinct if, and only if,

4a2
fc
2
<x
2
p
2 4a&(aa

2 + c72
) (&p

2+ cj
2
)> 0,

i.e., if

4a6c72
(aa

2+ b$*+c7
8
)> 0.

Since aa2+&p 2+c72
l, we see that the roots will be real and

distinct, if and only if,

abc is negative.

Now this will be the case if a, b, c are all negative or one nega-
tive and two positive. In the former case the quadric itself is imagi-

nary and in the latter it is a hyperboloid of one sheet.

10*92. Of the two paraboloids, hyperbolic paraboloid only possesses
two real and distinct generators through a point.

In the case of the paraboloid

the direction ratios, /, m, n of the generating lines through a point
(a, P, 7) of the surface are given by

*=0, ...(1)

=0. ...(2)

The equation (1) shows that for real values of / and m, we must
have a and b with opposite signs, i.e., the paraboloid must be

hyperbolic.
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10*10. Lines intersecting three lines. An infinite number of lines

van be drawn meeting three given mutually skew lines. For the quadric

through the three given mutually skew lines a, 6, c, the three lines

will be generators of one system and all the other generators of the

other system will intersect a, b, and c.

In fact the quadric through three given mutually skew lines can be
determined as the locus of lines which intersect the three given lines.

Thus the locus determined in 4*41 on page 65 is really the

equation of the quadric through the three lines

ur=Q= vr ; r=l, 2, 3.

Exercises

1. Find the equation of the quadric containing the three lines

y=b, z= c ; z=c, #= a ; x=a,y= 6.

Also obtain the equations of its two systems of generators. (See Ex. 2.

page 65).

[Ana. ayz+bzx+cxy+abc= ; y~ 6-f-X(z-f c)= 0, 6(a?-f-o) X(as+ca;)=0.

[L(az+cx)~ (z+c] =0, vb(x+a)+ (y-6) =0.

2. Find the equations of the hyperboloid through the three lines

y z=\
9
x=Q ;

z #=1, j/=0 ; xy=\ t z=0.

Also obtain the equations of its two systems of generators.

[Ana. x*+y2-{-z22xy2yz2zx=l ; xy l=Xc, l(x y+l)=2a;+2y z-,

xyl=\(2x+2yz), X(a: y+ !)=.
3. The generators of one system of a hyperbolic paraboloid are parallel

to the plane Ix-\-rny-}-nzQ and the lines

ax-\-by= Qz-\-c ; axby~Q=z c

are two members of the same system.
Show that the equation of the paraboloid is

abz(lx -\-my-\-nz} c(a
2mx-\-b z

ly-)-abcn).

(See Ex. 3, p. 65)

4. Show that two straight lines can bo drawn intersecting four given
mutually skew lines.

Examples

1. From a fixed point A(f, g, h) perpendiculars are let fall on
three conjugate diameters of the ellipsoid

rr
2

77
2 ?2

r_4_ 2/_ i _f___-i .

a2 62
c
2 '

prove that the plane passing through the feet of the perpendiculars goes

through the fixed point

Let P(xl9 ylt i?!), Q(x29 y^ z2), R(x3 , /3 , zj be the extremities of

their conjugate semi-diameters.

Equations of OP are

6O that (rxl9 ryi, rzj are the general co-ordinates of any point on this
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line. The line joining (/, g, h) and (rxlt ryl} rzj will be perpendicular
to OP, if

i.e., if,

Therefore, the foot of the perpendicular L from (/, g, h) to OP i

S/*,

Similarly, the feet M , N of the perpendiculars to OQ, OB are

(Zfx, 2fo Zfx,

and

f**.._
SAa,

The plane LMN is

or

1

ZO^
2

=0,

=0.

Adding third and fourth rows to the second and making use of
the relation in 8*8, this becomes

x,

a2
/,

y>

0,
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or =0,

This form of the equation of the plane clearly shows that it>

passes through the point

2. Show that the normals to the ellipsoid
/y>2 4 .2 ~2_ i y~. i _. =1

at all points of a central circular section are parallel to 'a fixed plane..
Find the angle which this plane makes with the plane of the section.

Consider the central circular section

T* 4 .2 ~2 ^///2_^2\

aa '

b*
'

ca a c

The direction ratios of the normal to the ellipsoid at any point
(/> 9> h) of the section are

flat,

Also we have the relation

which we re-write as

+ .
- -c2

) . 0.
C

This relation shows that the normals are parallel to the fixed*

plane

If, 0, be the angle between this plane and the plane of the section,,
we have

cos 0=-

a-
5

c'

ac
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3. The generators through a point P on the hyperboloid

x*la*+y*lb*-z*/c*=l
.meet the principal plane z= Q in points A and B such that the median
of the triangle PAB through P is parallel to the fixed plane

show that P lies on the curve of intersection of the hyperboloid with the

surface

The equations of the line AB where the tangent plane

x^.M/i 2*1 _,
<*

2 + I* c
8 '

at P (xl9 yl% Zi) of the hyperboloid, containing as it does the genera-
tors through P, meets the plane x0 are

= +f= l, Z=0. ...,

Let (/, g, 0) be the mid-point of AB. The equations of the
chord of the principal elliptical section

x*fa*+y*lb*=l, z= 0,

>with (/, g, 0) as its middle point is

$+-> -

Comparing (1) and (2), we have

These give

__y\_
-l+ zfl**

Also the median of the A P-4J5 through P being parallel to

have
0. ...(5)

Eliminating/, g from (3), (4) and (5) we obtain

Thus we have the result as required.



Revision Exercises III

1. Prove that if is the angle between the central radius to the point?
x y> z ) on the ellipsoid

and normal at P,

2. Prove that the common tangents of the three ellipsoids

touch a sphere of radius

I /.n.2 I A2 I x.2 V

(BJJ. 1956)

and that the points of contact of the planes lie on a sphere of radius

3. Show that if three central radii of an ellipsoid be mutually perpendi-
cular, the plane passing through their extremities will envelope a sphere.

4. Prove that six normals can be drawn from any point P to a central 1

quadric surface and that those six normals are generators of a quadric cone with
vertex at P.

Prove that the conic in which the cone meets any one of the principal

planes of the quadric surface remains fixed when P moves along a straight line

perpendicular to that plane. (Birmingham)
5. Show that the length of the normal chord at any point (x, y, z) of the

ellipsoid

^.4-^.4-11^1
a2

"*"
6 2 C2

'

vhere

)2 j4 6^ C^

6. If PI, >2' ^3* an(^ ni 7T 2' ^3 ^e ^ne- perpendiculars from the extremities

PI, .P2 ^3* ^ conjugate semi-diameters on the two central circular sections ofT

the ellipsoid

then

7. Show that the locus of points on the quadric ax*-\~ 6?/
2+c221 ^t

normals at which intersect the straight line

#a^_'V ft _ g T
Z ?/i n

is the curve of intersection with the quadric.

(Zy na)&2/ (ma /3)cz=0^
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8. If rj, r2, 7*3, r4, r6, r6 ,
are the lengths of the normals drawn from any

/point to a central conicoid and pi $ p%t p$, p^, p$ 9 #>6 , are the lengths of the

-perpendiculars from its centre to the tangent planes at their feet,

tie constant.

9. Two planes are drawn through the six feet of the normals drawn to the

ellipsoid
2
/a

2
-f2/

2
/&

2
-f z

2
/c

2= 1 from a given point (/, gt h) ; each plane containing
three ; prove that if (a, (3, y), (a', (3', y') be the poles of these planes with respect
to the ellipsoid then,

and

10. If three of the feet of the normals from a point to the ellipsoid

3ie on the plane

show that the equation of the plane through the other three is

4- y-4-f- 4-
l -0

an^bim^&n^ p
Also, show that if one of the planes contains the extremities of three

conjugate semi-diameters, the other plane cuts tho co-ordinate planes in triangle
whose centroid lies on a coaxal ellipsoid. (B.U. 1929)

11. Pairs of planes are drawn which are conjugate with respect to the

ellipsoid #2
/a

2
-fy

2
/6

2
-}-z

2
/c

2=l, the first member of each pair passing through
the line

ymx, z=k
and the second member of each pair passing through tho line

ymx,zk ;

prove that the line of intersection of the two members of any pair lie on the

surface (6
2-a2w2

) (
z*-k*) + (y*mW) (

c2 +fc 2)=0. (Bm. U. 1926)

12. The normal to the ellipsoid a;
2
/a

2
+2/2

/6
2 -fz 2

/c
2=l at a point P meets

the plane z=0 at Q and GO is drawn perpendicular to this plane and equal to

-OP. Show that the locus of Q is the surface

_____..-
a2_ c262_ c2 C2 <

'

show also that if, N is the foot of the perpendicular from P to the principal

plane on which O lies and the normal at Q to its locus meets this plane at K,
then O is the midpoint of KN. (L.U. 1914)

13. Through a given point (a, P, y) planes are drawn parallel to three

conjugate diametral planes of tho ellipsoid a;
2
/o

2
-|-2/

2
/^

2+22
/c

2=l. Show that
the sum of the ratios of the areas of the sections by these planes to the areas of
the parallel central planes is

a2
_p_

2
y
2

6
a* 6 2 ~~^2

~'

14. If Ai 9 A% 9 A& are tho areas of tho sections of the ellipsoid

by the diametral planes of three mutually perpendicular semi-diameters of

lengths rj, ra , r3 ,
show that

l
2

+ d*-
a

+^W /62c2

15. If through a given point (/, g, h) lines be drawn each of which is an
-axis of some plane section of

isuch lines describe the cone
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16. If a plane lx-\-my-\-nz=p cuts the surface a#2
4-&2/

2H-cz2=l in a
parabolic section, prove that the direction cosines of its axis are proportional
to l/a, m/bt njc and the co-ordinates of the vertex of the parabola satisfy the

equation

- _ -

b c r m\ c a r n\a b

(A.U.1920)
17. Prove that the generating lines through any point P on the section

z=c of the hyperboloid z2
/a

2
-f 7/

2
/&2 z2/c2=l meet the principal section by the

plane 2= at the ends of a pair of conjugate diameters. (M.T.)

18. The generators of opposite systems drawn through the extremities

A, B of semi-conjugate diameters of the principal elliptic section of the hyper-
Iboloid xzla^+^/b^z^lc2= l meet in P ; show that the median through P of
,the triangle PAB lies on the cone

19. Prove that tangent planes to #2
/a

2
-|-?/

2
/&

2 z2/c
2=l which are parallel

to the tangent planes to

_
C2

meet the surface in perpendicular generators. (P.U., M.A. 1938)
20. Show that the generators of the surface #2

-{-2/
2 z2= l which intersect

on XOY plane are at right angles.

21. Show that the points on the quadric

at which the generators are perpendicular lie on the cylinder

(c a)z2+(c b)y*+cd(a+b)lab=Q. (M.T.)
22. If (a cos sec 9, b sin sec 9, c tan 9) is a point on the generating

line

X
4-

Z -X I 1 4-
y \

X
+ -x

^
i +

6 |,

of the hyperboloid xz
/a

2
-{-y

2
lb

2 z2Jc^= 1, prove that for points along the gene-
rator, 9 is constant. (P>U. t M.A. 1943)

23. Show that the most general quadric surface which has the lines

o;=0, 2/
= ;#=0, z=c ; 2/=0, z= c

as generators is

where/, g, h are arbitrary constants. (M.T.)
24. Find equations in symmetrical form for the line of intersection of the

two planes whose equations are

where X and (JL
are constants. Find also the co-ordinates of the point in which

this line meets the plane z=0.

If now X and \j. are taken to be variable parameters connected by the rela-

tion X2 +H- 2= 1> show that line traces out a right circular cone.



CHAPTER XI

GENERAL EQUATION OF THE SECOND DEGREE

Reduction to canonical forms and Classification of Quadrics

ll'l. A quadric has been defined as the locus of a point satis-

fying an equation of the second degree. Thus a quadric is the locus*

of a point satisfying an equation of the type

F(x, y, z)~ax^+ by
2+c

which we may re-write as

splitting the set of all terms into three homogeneous sub-sets.

We have considered so far special forms of the equations of the
second degree in order to discuss geometrical properties of the various

types of quadrics. In this chapter we shall see how the general

equation of a second degree can be reduced to simpler forms and also

thus classify the types of quadrics.

Firstly we shall proceed to determine the equations of various

loci associated with a quadric given by a general second degree
equation. In this connection we shall start obtaining a quadric in

r, which will play a very important role in connection with the
determination of the equations of these loci.

Consider any point (a, p, 7) and any line through the same with.

direction cosines (/, m, n). The co-ordinates of the point on this-

line at a distance r from (a, (3, 7) are

This point will lie on the quadric

F(x, y y z)=Z,(a

for values of r satisfying the equation

i.e.,

r^(al
2
+2fmn)+ 2r[l(aoi+h^+g7+u)+m{

+n(0a+/P+esy+ i0)]+-F(a, P, 7)=0 ...(2).

which is a quadric, in r. Thus if rl9 r2 be the roots of this quadric,
the two points of intersection of the line with the quadric are

Note. It may be noted that the equation (2) can be written as

where 9J^/9a 3-*Y3P. 3^/3r denote the values of the partial derivative of F w. r.,

to #, 2/, z respectively at the point (a, p, y).
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11*11. Tangent plane at (a, p, y). Suppose that the point
(a > P, 7) lies on the quadric so that

F(<t, 6, y)=0
and accordingly one root of the quadric equation (2) is zero. The
vanishing of one value of r is also a simple consequence of the fact
that one of the two points of intersection of the quadric with every line

through a point of the quadric coincides with the point in question.
A line through (a, p, y) with direction cosines I, m, n will be a

tangent line if the second point of intersection also coincides with

(a, p, y) i.e., if the second value of r, as given by (2), is also zero.

This will be so if the co-efficient of r is also zero, i.e.,

/(aa+^p+ flr7+w)+m(^a+6p+/y+v)+ w(gra-f-/p-+cr+^)= ...(3)

which is thus the condition for the line

to be a tangent line at (a, p, y). The locus of the tangent lines

through (a, p, y), obtained on eliminating I, m, n between (3) and
(4) is,

.e., x(

Adding UOL+ V$ -\-wy~\-d to both sides, we get

2x(w+h$+gy+u)+ (ux+v$+wy+d)==F(<x, P, y)=0.
Thus the locus of the tangent lines at (a, p, y) is

which is a plane called the tangent plane at (a, p, y).

11-12. Normal at (a, p, y). The line through (a, p, y), perpendi-
cular to the tangent plane thereat, viz.,

X-CL _ y p z y

is the normal at (a, p, y).

11* 13. Enveloping cone from a point. Suppose now that (a, p, y)
is any point necessarily on the quadric. Then any line through
(a, p, y) with direction lines (I, m, n) will touch the quadric i.e., meet
the same in two coincident points, if the two roots of the quadric

equation in r, are equal. The condition for this is

[XKL+*P+jr+u)]
l
-[S(rf+2/mn)] ^(a, p, y) ...(5)

The locus of the line .

n

through (a, P, y) touching the quadric, obtained on eliminating
/, w, w, between (5) and (6) is

a, p, y) ...(7)
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To put this equation in a convenient form, we write

S=F(x, y, z), SiS-Ffa, p, 7),

Then (7) can be re-written as

.e., ^
which is the equation of the enveloping cone of the quadric $=0
with the point (a, p, 7) as its vertex.

11*14. Enveloping Cylinder. Suppose now that (I, m, n) are

given and we require the locus of tangent lines with direction cosines

(Z, m t n). If (a, p, 7) be any point on any such tangent line, we
have the condition

[2l(a*+hp+gy+u)]*=[X(al*+2fmn)]F(*, p, 7)

as obtained in 11*13 above. Thus the required locus is

[2l(ax+hy+gz+u)]
2
=2(al*+2fmn) F(x, y, z),

known as Enveloping Cylinder.

11*15. Section with a given centre. Suppose now that (a, p, 7)
is a given point. Then any chord with direction cosines I, my n
through (a, p, 7) will be bisected thereat if the sum of the two roots

of the r-quadratic (2) is zero, i.e.,

B(a+Ap+0y+ iO=0, ...(8)

so that the locus of the chord

through (a, p, 7) and bisected thereat, obtained on eliminating I, m, n
from (8) and (9) is

2(a:-a)(aa+p+ i77+tt)= 0,

which, we may re-write as,

T^.
Clearly the plane T=Sl} meets the quadric in a conic with its centre
at (a, p, 7).

11*16. Polar plane of a point. If any line through A(v. y p, 7)
meet the quadric in Q, E and a point P is taken on the line such
that the points A and P divide QR, internally and externally in the
same ratio, then the locus of P for different lines through A is a

plane called the polar plane of A with 'respect to the quadric. It is

easily seen that if A and P divide QR internally and externally in
the same ratio then the points Q and R also divide AP internally
and externally in the same ratio.

Consider any line through A (a, p, 7) and let P be the point
(x, y, z). The point dividing AP in the ratio A : 1 is

/Aa+a Ay+p Az+7\
\\+I

'

A+l.
*

A+l /
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It will lie on the quadric

(a, (3, y)-0.
The two values of X give the two ratios in which the points Q

and R divide AP. In order that Q and R may divide AP internally
and externally in the same ratio, the sum of the two values of A
.should be zero, i.e.,

0, ...(10)

which is the required locus of the point P(x9 y*z).

Thus (10) is the required equation of the polar plane.
Note. The notions of conjugate points, conjugate planes, conjugate lines

and polar lines can be introduced as in the case of particular forms of equations
in the preceding chapters.

11*21. Some preliminaries to reduction and classification. In
this section we shall state some points which will prove useful in the

problem of reduction and classification.

In the following discussions, the determinant

a h g

h b f

g f c

rto be denoted by D will play an important part.

We may verify that

As before, A, B 9 C, F, G 9
H will denote the co-factors of a, 6, c,

/9 g, h respectively in D so that we have

A=bc-f 2
9 B=ca-g*, C=ab-h*

;

F=gh-af. G=hf-bg, H=fg-ch.
It can be easily verified that

BC-F* =aD, CA-G* =bD, AB -H* =cD .

GH-AF=fD, HF-BG=gD, FQ-CH=hD.
Also we have

aH+hB+gF=09

oG+W+flfC =M), *G+6Jf
f

+/C
r

=0, gG+fF+cC=D.
11*22. // Z>=0, then we have

"These follow from the relation (1) in 11*21 above.
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Ex. If D=0 and .4=0, prove that #=0, 0=0. Also prove that if Z>=
and tf=0 then

either A=Q, #=0, (2= or #=0, =0,^=0.
Further prove that if D=0, ^4= 0, #=0, then F> O,H must all be zero but C may
or may not be zero.

11-23. IfD=Q and A +B+C=Q, then

A, B, C, F, G, H
are all zero.

As Z)=0, we have

so that A, B, C are all of the same sign. Since, also

we deduce that

4=0, =0, (7=0.

Also then

F*=BC=Q so that ^=0.

Similarly =0, #=0.

11*24. The two planes

will be

(i) same if

Pi

P*

=0, = 0,

(ii) parallel but not same if

to **iPi

Pz

=0,
to

= 0,

if

(Hi) neither parallel nor same^, i.e., will intersect in a straight line

Pi to

Pz to

or

to

11*25. Three homogeneous linear equations
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"will possess a non-zero solution, i.e., a solution wherefor x, y, z are

not all zero, if and only if,

Ci

=0.

11*3. Diametral plane conjugate to a given direction. We know
{Refer equation (2) p. 223] that if 1

9 m, n, be the direction cosines of

any chord and (x, y, z) the midpoint of the same, then we have

7
.

I --h in^ An A =0. (I)

Thus if I, m, n be supposed given, then the equation of the locus of

the midpoints (x, y y z) of parallel chords with direction cosines

1, m, n is given by (1) above. This locus is a plane called the

'diametral plane conjugate to the direction I, m, n. We can re-write the

equation (1) of the diametral plane conjugate to Z, ra, n as

x(al -\-hrn + gn)+y(hl+bmfn)+z(gl+fm-}-cn)-}-(ul-{-vm-{-wn)==Q.
...(2)

Note. In this connection we should remember that there does not neces-

sarily correspond a diametral piano conjugate to every given direction. Thus
we see from above that there is no diametral plane conjugate to the direction

2, m, n if these are such that the co-efficient of x, ?/, z in the equation (2) are
all zero,

As I, m, n are not all zero, this can of course happen only if

a h g

h b f =0,

f7 / c

11*4. Principal Directions and Principal Planes. A direction

I, m, n is said to be principal, if it is perpendicular to the diametral

plane conjugate to the same. Also then the corresponding conjugate
diametral plane is called a principal plane.

Thus, I, m, n will be a principal direction if and only if the

direction ratios

al+hm+gn, hl + bm+fn, gl4/m-f en

of the normal to the corresponding conjugate diametral plane are

proportional to

Z, m, n
t

i.e., there exists a number A such that

al+hm+gn= ZA,

gl -\-frn+en=
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We re-write these as

These three linear homogeneous equations in Z, w, w will possess*
a non-zero solution in /, ra, n if and only if,

a A

<7

6-A / =0.

On expanding this determinant, we see that A must be a root of

the cubic
A3~A2

(a+6+ c)+A(^+J5+(7)-Z)=0. ...(4)

This cubic is known as the Discriminating cubic and each root of
the same is called a characteristic root.

The equation (4) has three roots which may not all be distinct.

Also to each root of (4) corresponds at least one principal direction

/, m, n obtained on solving any two of the equations (1), (2) and (3).

Note /. If I, m, n be a principal direction corresponding to any root X of
the discriminating cubic, then we may easily see that the equation ofthes

corresponding principal plane, takes the form

X
(
Ix -f-my -f- nz ) -|- (nl -f-vm+ wri)

= 0.

This equation shows that we can have no principal plane corresponding to
X=0 if X=0 is a root of the discriminating cubic. In spite of this, however, we
shall find it useful to say that I, m, n is & principal direction corresponding
to X=0. This every direction l

y m, n satisfying the equations (1), (2), (3)

corresponding to a root X of the discriminating cubic (4) will be called a principal
direction.

Note 2. In the following, we shall prove three important results concerning
the nature of the root of the discriminating cubic and the corresponding
principal directions.

11*41. Theorem I. The roots of the discriminating cubic are all

real.

Suppose that A is any root of the discriminating cubic (4) and
1 9
m. n any non-zero set of values of I, m, n satisfying the correspond-

ing equations (1), (2), (3).

Here it should be remembered that we cannot regard I, m, n a&

real, for A is not yet proved to be real.

In the following, the complex conjugate of any number will be-

expressed by putting a bar over the same. Thus , m, n will denote
the complex conjugates of /, m, n respectively.

Now we have

hi -f bm+/w=mA,
gl+fm+cn=ri\.
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Multiplying these by 1
9 m, n respectively and adding, we obtain

2irf7+S/(ww+ww)=A22 T ...(5)

Now a, b9 c, /, g, h are all real. Also 1 1, m m, n n being the products
of pairs of conjugate complex numbers, are real. Further we notice

that m n is the conjugate complex ofm n so that

mn +m n
is real.

Similarly

n 1+n l t I m+l m
are real. _

Finally 2 I I is a non-zero real number.

Thus A, being the ratio of two real numbers from (5), is

necessarily a real number.

Hence the roots of the discriminating cubic are all real. Also,

therefore, I, m, n corresponding to each A are real.

11*42. Theorem II. The, two principal directions corresponding
to any two distinct roots of the discriminating cubic are perpendicular.

Suppose that

AI, A2

are two distinct roots, and

ll> >1, ^l ;
J2 ^2> 7*2

are the two corresponding principal directions.

We then have

(6) aZ1+Am1+gr%=A1Z1 , (9)

(7) Wl+6m1+/n1
A
1m1 , (10)

(8) fifZi+/w,+cwl s=sA1w1 , (11)

Multiplying (6), (7), (8) by 12 , ra2 , n2 respectively and adding we
obtain

SaljIt+Z/lm^+mjnJ-XxH^ ...(12)

Also multiplying (9), (10), (11) by Il3 ml9 % respectively and

adding, we obtain

^al2ll +I.J(mln2 -\-m2nl)=='h2J2ll2 ...(13)

From (12) and (13), we obtain

AiBA^sU,
so that

(Ai-A 2)2V2=0.
Hence

ZZA=0, for Aj-A^O.
Thus the two directions are perpendicular. Hence the theorem.

11*43. Theorem III. For every quadric, there exists at least one
set of three mutually perpendicular principal directions.

We have to consider the following three cases :

(A) When the roots of the discriminating cubic are all distinct.



232 ANALYTICAL SOLID GEOMETRY

(B) When two roots are equal and the third is different from
these.

(C) When the three roots are all equal.

These three cases will be considered one by one.

(A) The roots being distinct, there will correspond a principal
direction 19 m, n satisfying (1), (2), (3) on page 230 to each ofthese and

by theorem II, these three directions will be mutually perpendicular.
The three principal directions are unique in this case.

(B) Let A be a root of the discriminating cubic repeated twice so

that besides satisfying (4), on page 230 viz.,

W-\*(a+b+c)+\(A+B+C)-D=0 ...(4)

it also satisfies

3Aa-2A(a+&+c)4 (A+B+C)=0 9 ...(14)

which is obtained on differentiating the cubic w.r.t. A.

We can re-write (14) as

It has been shown in 11'23, p. 227 that if

D=Q, A+B+C=Q,
then

A, B, C, F, G, H,
are all zero.

Since, as may be easily seen, the relations (4) and (14) above
can be obtained on replacing

a, 6, c by a A, 6 A, c A

respectively in the relations

we see that corresponding to the vanishing of A, B, C, F9 G, H9 we
have here

a-A)= <7

2
, (a-A)(6-A)-^

2
fl

-*)g=hf, (c-*)h=fg. J
-

These relations show that the equations (1), (2), (3) on page 230
for the determination of Z, m, n, corresponding to A are all equivalent.

[Refer 11 -24, page 228]

Thus we see that if A is a twice repeated root, then every direction

I, m, n satisfying the single relation,

(a-A)J+ftm+0w=0 ...(16)

[or any equivalent relation (2), (3)]

is a principal direction corresponding to A.

Suppose now that Z, m, n is* any direction satisfying (16).

Further we determine a direction 12 ,
m2 ,

n2 satisfying (16) and per-

pendicular to llt m^ nv Thus Z2 ,
m2 ,

r&2 are determined from

(a

*If desired, Il9 mi, nt may be selected further so as to satisfy some addi-

tional suitable condition.
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Thus we have obtained two perpendicular principal directions

li> mi9 n\ '>
Z2 ,
m2> n2 corresponding to the twice repeated root A.

Also let ?3 ,
w3 , n3 be the principal direction corresponding to the

third root A3 . By Theorem II, this direction 78 , ra3 ,
n3 ,

will be

perpendicular to each of the two perpendicular principal directions

lla ml9 n ;
12 , ra2 ,

n2 .

Thus the theorem is true in this case.

Note. It is important to notice that in the case every direction perpendi-
cular to the principal direction corresponding to the non-repeated root X3 is

a principal direction for the twice-repeated root X.

(C) Suppose now that all the three roots are equal to A.

In this case A satisfies the three equations

W-.W(a+b+c)+*(A+B+C)-D=Q, ...(4)

3A2-2A(a+6+c)+ 04++C')=0, ..,(14)

3A-(a+&+c)=0 ...(17)

In this case also the relation (15), page 232 as deduced from (4)

and (14) are true.

We re-write (17) as

(a
Also by (15),

(6_A) (c_A)=/2 }

so that

a A, b A, c A

must all have the same sign. Thus as in 11 '23, page 228, we
deduce that

a-A=0, 6~A=0, e-A=0
so that

A=a=&=c.
Also then it follows that/=0, 0=0, /&=().

We now see that in this case the equations

(atyl+hm+gn^Q, til+(b A)m+/n=0, glfm+(c A)r&=0
for the determination of the principal direction are identically

satisfied, i.e., they are true for every vaJue of Z, m, n, so that every
direction is a principal direction.

Thus in this case also a quadric has a set of three mutually
^perpendicular principal directions. In fact, any set of three mutually
perpendicular directions is a set of three mutually perpendicular
principal directions in this case.

The reader may observe that the quadric is a sphere in this last

case.

Examples

Find a set of three mutually perpendicular principal directions

Jor the following conicoids :

1. 3aa+5y2
-f3z

2
2yz+2zx-2xy+2z=Q.

2.

3.
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i.e.,

1. We have

a=3, 6=5, c=3,/=-l, g=l, A= 1.

Therefore the discriminating cubic is

-1 5-A -1 =0,

1 -1 3-A

-A3+HA2-36A+36=0..
Its roots are

A=2, 3, 6.

The principal direction corresponding to A=2 is given by
I m-f7i=0,

Z

These give I : m : n==l : : 1.

Thus the principal direction corresponding to A=2 is given by

Again the principal direction corresponding to A=3 is given by
Of m+tt=0,

so that
I :m : n= l : 1 : 1,

and we have the principal direction

1 1 L

Finally the principal direction corresponding to A=6 is given.

I m n=0,
Z m 3tt=0,

wherefrom we may see that this principal direction is

The principal plane corresponding to A being

we may see that the three principal planes are

2o;-2z-l=0,

3x4-3^+32+1=0,
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2. We have

a=8, 6-7, c=3,/=-4, 0=2, fe=-

Therefore the discriminating cubic is

8-A 6 2

-6 7-A -4

2 -4 3-A

=0,

i.e.,

-A3+18A2-45A=0.

A=0, 3, 15.

Thus 0, 3, 15 are three distinct characteristic roots.

The principal direction /, m, n corresponding to A=0 is given by
8Z-6ra4-2710,

-62+7771-471=0,

Solving these, we see that

I : m : TI=! : 2 : 2.

Thus the principal direction corresponding to A=0 is given by
*, i, i.

Again the principal direction corresponding to A=3 is given by
51 6w+2ri=0,

These give
I : m : n=2 : 1 : 2,

so that the corresponding principal direction is given by
I, i -f.

Finally the principal direction corresponding to A= 15 is given by
-7Z-6m+ 2w=0,

6Z 8m 47i=0,

which give
I : m : n=2 : 2 : 1,

so that the corresponding principal direction is given by
a _.& i
3> '8 8-

. The reader may verify that the three directions are mutually-

perpendicular.

The principal plane corresponding to A being



236 ANALYTICAL SOLID GEOMETRY

we may see that the two principal planes corresponding to the non-
zero values 3, 15 of X are

.and

15(2z-22/+2)+10=0, i.e.,

3. We have

a=6, 6-3, c=3,/=-l,0=2, h=-2.
The discriminating cubic is

6-A -2

-2 3~A

2 - 3-A

=0,

rf.e., A3+12A2-36A+ 32=0,

whose roots are 2, 2, 8. Thus two roots are equal. Firstly we
consider the non-repeated root 8. The principal direction correspond-
ing to this is given by

2Z-5w- 2= 0,

2Z m-5rc= 0.

These give

I : m : n^2 : 1 : 1

;SO that the principal direction corresponding to A=8 is given by
2

Again the principal direction corresponding to A=2 is given by

21+ m 7i=0,

21 m+ n=0.

It is easily seen that these three equations for the determination of

./, m, n are all equivalent. This fact had been generally established

in Theorem III for principal directions corresponding to twice

repeated characteristic roots.

% Thus every I, ra, n satisfying the single equation

2l-m\-n=Q ...(1)

determines a principal direction. Consider any set of values of

<l, m, n, satisfying (1) say
-1, -1,1.

We write

Then we determine 12 ,
m2l n2 satisfying (1) and perpendicular to
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Thus
2/2-m2+n2=0.

Za w2+tta=0.
These give

I2 :m2 : %=0 : 1 : 1.

Thus we have obtained a set of three mutually perpendicular
principal directions given by

_2_ __i_ j_ . ;^i ^i _L. O JL JL
V6' V3

1

V3' V3 \/2' \/2'

The choice of principal directions is not unique in the present
case as two characteristic roots are equal.

Note. It may be verified that every direction perpendicular to the>

principal direction corresponding to the non-repeated root 8 is a principal)
direction for the twice repeated root 2. [Befer note at the end of 1 T43 B>
page 231.]

Exercises

Examine the following quadrics for principal directions and principal*

planes.

2. x*+2yz-4x+6y+2z=Q.
3. 42/242/z^4za;_4a;

2/ 2^-f22/ 1=0.

4. 3x*y2 z*-t-6yz6x+6y2z2=Q.

Answers

1. Principal directions : 1, 0, ; 0, , ; 0, , .

Principal planes : #=1,2/ z-f3=0.

2. Principal directions ; fO, ,

^J
and every direction perpendicular

to it.

Principal planes : t/ 2 2= and any plane through the line,,

2/ 4_ z_j.4=0, x=2.

^ . - i j- 1111-211^1
3. Principal directions . _, _ ; _, , _;_ ,- .

Principal planes. Any plane at right angle toa?=2/2J
2(a? 2y+)-l, 2(^2)+ 1=0.

4. Principal directions : 0, -, ~
; 1, 0, ; 0,

-
.

Principal planes ; 2/-fz-f-l
= 0, a;~l, y 2=1.

11*5. Centre, We know that if a point (x> y, z) is the midpoints
of a chord with direction cosines Z, m, n of a quadric

then we have

<

This shows that if (x, y, z) is such that
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then the condition (1) is satisfied, whatever values Z, m, n may have,
i.e., every chord through (x, y, z) is bisected thereat. Such a point is

known as a Centre of the quadric. We can re-write these as

0, ...(2)

9 ...(3)

0. ...(4)

It should be remembered that a quadric may or may not have
& centre ; also it may have more than one centre a line of centres

or a plane of centres, depending upon the nature of the solutions of

the three equations (2), (3), (4).

In the following, we shall consider the different cases regarding
the possible solutions of these equations. This discussion will be
facilitated a good deal, if, regarding x, y, z as variables, we consider

the three planes represented by these equations. We have thus to

examine the nature of the points of intersection, if any, of these three

planes to be called Central planes.

11*51. Case of Unique Centre. Multiplying the equations (2),

(3), (4) by A, H, G, respectively and adding, we obtain

Dx+(Au+Hv+Gw)=Q (Refer H'21, page 227]

Again, on multiplying (2), (3), (4) by H, B, F, and by G, F, C
and adding separately we obtain

Dz+(Gu+Fv+Cw)=Q.
we obtain from these

z= (Gu+Fv+Cw)!D.

Substituting these in (2), (3), (4) we may easily verify that the

same are satisfied.

Thus if IMG, the quadric has a unique centre (x } y, z) where

(x9 y, z) have the values given above.

11*52. Now suppose that DQ. Then, we have,

A(ax+hy+gz+u)+H(hx+by+fz+v)+G(gx+fy+cz+w)
=Au+Hv+Gw.

[Refer 11-21, p. 226].

This shows that the three equations cannot have a common
solution, i.e., the quadric will not have a centre if

Considering H, B, F and G, F, C as sets of multipliers instead

of A, H, G, we may similarly see that the quadric will not have a

centre if

Hu+Bv+Fw^Q or if Gu+Fv+Cw^Q.
Thus we see that the quadric will not have a centre if D~0 and

my one of

Au+Hv+Gw, Hu+Bv+Fw, Gu+Fv+Cw
Is not zero.
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11*53. We now suppose that

D=0 as well as Au+Hv + Gw=Q.

Then we have

A(ax+hy+gz+u)+H(hx+by+fz+v)+G(gx+fy+cz+w)s*0.

(i) Thus if A^Q9 we have

ft O
ax+hy+gz+u=j (hx+by+fz+v) j(gx+fy+cz+w).

(ii) Also if A^0, the two planes

hx+by+fz+v=Q

=are neither same nor parallel so that they intersect hi a line. This is

^because

f
[Refer 11'24, p. 228]

From (i) and (ii), we deduce that the plane

ax+hy+gz+u=Q
-passes through the line of intersection of the two intersecting planes

hx+by+fz+v=Q, gx+fy+cz+w=Q.
Thus in case

i>=0, Au+Hv+Gw=Q3 A^Q,
.the three central planes all pass through one line so that we have a line of
-centres.

We may similarly see that the quadric will have a line of centres

if #=0, Hu+Bv+Fw=Q 9

or if D=0, Qu+Fv+Cw=Q,
Note 7. We can show that if D=0and Ay&Q and Au+Hv+Gw~0, then

we must also simultaneously have

In fact we have

A(Hu+Bv+Fw)=sH(Au+Hv+Gw)
and

A(Gu+Fv+Cw)s*G(Au+Hv+Cw),
the equalities holding for all values of u, v and w. Thus if Ay6Q 9

we have

Cw=
A.

The result stated now follows.

It may be remembered that if -4=0 then also H=0, (7=0, so that
.Au+Hv+Gw&Q. In this case when 4=0, T=0, #=0, we may not have

Hu+Bv+Fw=Q or Gu+Fv+Cw~Q.
For example consider
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Here

a=l 9 6=2, c=0,/ 0, #0, /t=l, w=l, t>=J, w=l,
so that

4=0, =0, (7= 1, F=Q, #=0, H=0, >=().

Thus we have Au+Hv+Qw*Q but Gu+Fv+Cw?4Q.
Note 2. The cases treated above in 11*52 and 11*53 cover the cases

when D=0 and one at least of A, B t
C is not zero.

If we suppose that A, B, C are all zero, then it follows that F, Gt H are
also all zero, for

F*=BC, G*=CA, H*=AB.
In the next sub-section we consider the case when A, B, C, F9 G, H are all'

zero. The vanishing ofD then follows from the vanishing of these co-factors in-

as much as we have

so that DQ even if A, H, G only are known to be zero.

11'54. Suppose now that A, B, 0, F, G, H are all zero.

In this case we have Z>=0 also.

We have, in this case,

(1)

These show that if

fu-gv^Q or fuhw-^Q,
then the quadric cannot have a centre.

11*55. Suppose now that

fugv=Q and fuhw~Q,
i.e., fu=gv=hw.

Then if g^Q, h^O, we have, from (1) above in 11*54 that

(ax+hy tgz+u),
g

so that every point of the plane

is also a point of the other two central planes. Thus we have a plane-
of centres in this case.

Similarly we may show that if

fu=gv~hw
and some two of /, g y h are not zero, then the quadric has a plane of
centres.

Note. It can be easily seen that ifA, B, C, F, G, Hare zero and one of

/, g, h is known to be zero, then one more of /, g, h must also be zero. For

instance, suppose that/=0. Then, because,

0=*F=gh--af9

it follows that either g or h must also be zero. Thus the case treated here can.

be stated as follows :

// A, B> C, F, G, H are all zero, none 0//, g> h is zero andfugvhw, then

the quadric has a line of centres.
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The case where one and, therefore, two of /, g, h are zero is treated here
below.

11'56. Now suppose that two off, g, h are zero in addition to A, B,
C9 F, G, H being all zero and fu=gv~-htv. Let g0~h and
In this case we see from (1) above, 11'54_, p. 240 that

ax+hy+gz+u^Q
so that a= 0, h=0, 0^0, u= 0.

The vanishing of u also follows from the fact that

fu= gv~ hw and 7 0, 7^

Consider now the two central planes

gx+fy+
the co-efficients of the third central plane being all zero. As h and
g are both zero, we can re-write these as

Here

i

b f
|

/ v
i =:6C-/

2 =:^= 0, =>-(
C c w

Thus, iffw cv^-0, the quadric has no centre and if fw ci?=0,
the quadric has a plane of centres.

We can obtain similar conditions when

or when / 0=-(/,

11*57. Now suppose that/, g, h are all zero in addition to the

vanishing of A, B, C, F, G, PL

In this case two of a, b, c must be zero. Suppose that 6=c=
and tty^O- Then the first of the three central planes is

and the other two are

Qx+Qy+Qz+w^Q.
Thus if v^O or w^O the quadric has no centre and if

the quadric has a plane of centres.

Summary of the various cases

1. D^O. Unique centre.

2. f->
= 0, Au-\-Hv+Gw^Q. No centre.

-{ Z>=0, Hu+Bv+Fw=Q. No centre.

L/)=0, Gu+Fv+Cw^O. No centre.

3. f-E>=0, Au+Hv+Fw=Q. A^Q, Line of centres.

^ D=0, Hu+Bv+Gw=Q. B^O, Line of centres.

[/)=0, Gu+Fv+Cw=Q. (7^0, Line of centres.
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4. A, B, C, F, G, H all zero &ndfu^gv or gv^hw. No centre.

5. A, B, C, F, G, H all zero, fu=gv=Jiw, /^O, g--0, h^O. Plane

of centres.

6. A, B, C,F,G, Hall zero, fu=gv=hw, g=Q,h=Q,
No centre.

7. A, B, C 9 F,G9
Ha.U zero 9 fu*=gv=hw 9 0=0, h=0,

Plane of centres.

We may have results similar to (6) and (7) when/=0, (7=0,

Ji^O or when A=0,/=0, g^O.
8. A, B, C, F 9 G, H all zero

; f,g,h all zero. Then two of a, 6, c

must be zero and one none-zero. Then we have no centre if

a^O, t;^0, or

and a plane of centres if

We have similar results when b=Q or

Note. The results given above need not be committed to memory.

Exercises

Examine the following quadrics for centre :

[Ans. Unique centre (1, 1, 1).

2. 2z2 2yz 2zx+2xy+3xy 2z+l=0.

[Ans. Line of centres ; =- = = ^-5
\. \. &

3. 4a;2+9i/2-t.422-f 12x2/+ \2yz+8zx -

[^!ns. No centre.

4. a2 -f2/24. 22__2x2/-2^z-h22a;4-a;--2/+z= 0.

[Ans. Plane of centres ; 2x2y+2z+l=0.
5. 4^2_22/2_2z24-5i/z-f2zic-h2a;2/~a;4-2z/4-2z~lx=0.

[^4n^. No centre.

6. 2a;2+2?/2+5s2_22/z~2za;-4^2/-14a;-142/-fl6z-f6=0.

[.4n5. Line of centres ; x=3 y, z-\-l=Q.

7. 18^2-f-22/24-2022_12zx-}-12yz+2a:~222/-6z-f.l=0.
[Ans. No centre,

8. 4x2~i/24-2z2 4-2x2/ 3?/z+12x Il2/+6z-f4=0.

[Ans. Unique centre : (1, 2, 3)

11*6. Transformation of Co-ordinates. Before we take up the

problem of the actual reduction and classification, we shall consider

two important cases of transformation of co-ordinates.

11*61. The form of the equation of a quadric referred to centre

as origin. We suppose that the given quadric has a centre. Let
(a, (3, 7) be the centre of the quadric with equation,

Consider now a new system of co-ordinate axes parallel to the

given system and with its origin at (a, p, 7). The equation of the

quadric w. r. t. the new system, obtained on replacing x9 y, z by
, 2+7 respectively, is
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I.e.,

$(ax*+2fyz)+2x(a*+hp+g'y+u)+ 2y(!i<x.+bp+f'y+v)

+22(0a+/p+cy-fw)+F(* 9 p, 7)=0.
As (a, p, y) is a centre, we have

Further, as may be easily seen,

F(*> P, y)=

Thus the required new equation is

2(az
2
-h 2fyz) + (uot.+ v$+w7 +d) = 0.

so that the second degree homogeneous part has remained

unchanged.
Note 1. The discussion above is applicable whether the quadric has one

oentre, aline of centres or a plane of centres. In case the quadric has more
than one centre, then (a, (3, y) may denote any one of the centres.

Note 2. The co-ordinates w. r. t. the old as well as now systems of axes
has both been denoted by the same symbols, x, y, z.

11*62. The form of the equation of a quadric, when the co-ordi-

nate axes are parallel to a set of three mutually perpendicular princi-

pal directions. Suppose that

/!, mv nl9 ; 12 ,
m2 ,

n2 ,
13 ,
wg ,

n3 ...(1)

.are the direction cosines of three mutually perpendicular principal
directions corresponding to the three roots

\> ^2> ^3

t)f the discriminating cubic. Here one or two of these roots may be
zero.

We take now a new co-ordinate system through the same origin
such that the axes of the new system are parallel to the directions

given by (1) above.

The equation referred to the new system of axes is obtained on

Teplacing
#> y, z

by
l

respectively.

As homogeneous linear expressions are to be substituted for

-a;, y, 2, we may note that a homogeneous expression of any degree
will be transformed to a homogeneous expression of the same degree.

Thus we may separately consider the transforms of the homo-

geneous parts

2(ax*+2fyz) and 21>ux.

We shall now prove a very important result, viz., that the transform

2(ax*+2fyz) ...(1)

is
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On direct substitution, we may see that the co-efficient of x2 in

the transform of (1) is

+2/m^+ 2gnlll+ 2hllm1

i(^i+ frm^

[by 11% P- 229}

Similarly the co-efficients of #
2 and e2 in the transform can be

shown to be
A2 and A3

respectively.

Again the co-efficient of 2yz in the transform of (1)

Similarly the co-efficients of zx and xy in the transform can be
seen to be zero.

Thus the transform of

is

Finally we see that the transform of

Z(ax

11*7. Reduction to canonical forms and classification.

We shall now consider the several cases one by one.

11*71. Case I. When D^O. In this case Hie quadric has a

unique centre and no root of the discriminating cubic is zero.

Shifting the origin to the centre (a, p, y), the equation takes the

form

S(oo-f 2/z)+ (ta+vp+tiO' + d!)=0. ( 11'61 p. 242)

Now rotating the axes so that the axes of the new system are

parallel to the set of three mutually perpendicular principal directions,
we see that the equation becomes

which is the required canonical form.

Below we shall find an elegant form for the constant term.

We have
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Also we write

Eliminating a, (3, 7 from (1), (2), (3) and (4) we obtain

1 a k g u
h

g
u

b

f
V

/

w (d-k)
-t.e.,

-k
a
h

h

b

f

g

c

A

where we have represented the fourth order determinant on the left

*>y A-

Finally, therefore, the equation assumes the form

\x2
-\- A 2 7/

2+A3z
2+ - - =0.

This equation represents various typos of surfaces s shown in the

following table. It may be remembered that the word 'rootb' refers to

^characteristic roots.

A-0

A/I0
A/D>0
A/D>0
A/D<0

A/D<0

roots all>0 or <0
Two roots>0 and one<0
Two roots<0 and ono>0
Roots all>0
Roots all <0
Two roots>0 and one<0
Two roots<0 and ono>0

|

Roots all>0
! Roots all<0
! Two roots>0 and ono<0
i

Two loots<0 and one>0

Imaginary cone,
Real cone.
Real cone.

Imaginary ellipsoid.
Real ollipsoid.

Hyperboloid of two sheets.

Hyperboloid of one sheet.

Real ellipsoid.

Imaginary ellipsoid.

Hyperboloid of one sheet.

Hyperboloid of two sheets.

In this case the11-72. Case II. When'D=Q,
quadric has no centre and the discriminating cubic has one zero root and

-two non-zero-roots.

We denote the non-zero roots by Aj, X
2 . The third root A

3=0.

We rotate the co-ordinate axes through the same origin so that

new axes are parallel to the set of three mutually perpendicular

principal directions.

The new equation takes the form

.(1)

.(2)

3 ,
ns corresponding to A3=0.

Here we notice that

Let, if possible,
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We also have

As Z3 ,
w3j UQ are not all zero, we have from (2), (3), (4).

u v w

b =0,

f

i.e., Au+Hv+Gw=0 t

which is contradictory to the given condition.

Denoting the co-efficients of x3 y, z by p, q, r, we re-write (1)

+d=Q where r^O,

so that shifting the origin to the point

f- P - ? _1/ J--?-
2

--?
2

L V V 2A Aj A2

we see that the equation takes the form

where r=
This is the required canonical form in the present case.

This equation represents I an elliptic or hyperbolic paraboloid

according as \, A2 are f tne same or opposite signs.

Axis and vertex of a paraboloid. It is known that z-axis is the
axis and (0, 0, 0) is the vertex of the paraboloid

Also the 'principal directions of the paraboloid are those of the
co-ordinate axes

;
the principal direction corresponding to the charac-

teristic root zero being that of z-axis and the principal direction

corresponding to the non-zero roots A
1? Aa being those of rr-axis and

y-axis respectively. Further it can be easily seen that the principal

planes corresponding to the non-zero characteristic roots are the

planes #=0, y=0 whose intersection z-axis is the axis of the paraboloid.
Thus we have the following important and useful result :

The line of intersection of the principal planes corresponding to the

non-zero characteristic roots is the axis and the point where it meets the

paraboloid is the vertex. Also the axis is parallel to the principal
direction corresponding to the characteristic root zero.

11-73. Case llI.J*When Z>=0, Au+Hv+Gw=Q, A^O. In this,

case the quadric has a line of centres and the discriminating cubic haa
one zero and two non-zero roots.

We may ses that A+B-\-C^=Q, for if it were so, then we would
have A, E, C all zero and the condition A^O would be contradicted*
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Since D=0 and A+B+C^Q, the discriminating cubic would have

only one zero root.

Let (a, (3, y) be any centre. Shifting the origin to (a, p, y) and

rotating the axes so that the new axes are parallel to the set of

mutually perpendicular principal directions, we see that the equation
becomes

which is the required canonical form.

We may, as follows, obtain an expression for the constant term
in a form free from a, (3, y.

In this case the central planes all pass through one line.

*We select the two lines

Now (a, P, y) is any point satisfying these two equations.

Taking a=0, we have

=0,

so that

b f v

few
v w d

Thus the required canonical form is

The equation represents various types of surfaces as shown in the follow

table :

*These are so selected that they are not the same. The condition

ensures the non-sameness of these two planes.



248 ANALYTICAL SOLID GEOMETRY

Cor. 1. Axis of a cylinder. The z-axis is known to be the axis

of the cylinder

As in the case of a paraboloid, we have the following result

regarding the axis of a cylinder.

The axis of a cylinder is the line of intersection of the principal
planes corresponding to the non-zero characteristic roots. Also it is

parallel to the principal direction corresponding to the characteristic root

zero. The axis is also the line of centres.

Cor. 2. Planes bisecting angles between two planes* It may be
seen that planes bisecting angles between the two planes

are

Thus we have that

The two principal planes corresponding to the two non-zero

characteristic roots are the two bisecting planes.

Cor. 3. The equation

will represent a pair of planes if D Q.

11-74. Case IV. When A,B,C, F, G, H are all zero and fu^gv.
In this case the quadric has no centre and two roots of the discrimi-

nating cubic are zero and one non-zero.

We rotate the axes so that the new axes are parallel to the three

mutually perpendicular principal directions. The new equation
takes the form

As the two roots A
2 > \ are equal, both being 0, we know that

?2> m2> W2> *s any direction satisfying

al+hm+gn=0. ...(1)

We suppose that 12 , m2 , ra2 are so chosen that these satisfy (1)

and

ulz+vm2+wn2
-

0. ...(2)

Then Z3 ,
ra3 , n3 ,

are chosen so as to satisfy (1) and

Denoting the co-efficients of x and z by p, r, we re-write the

equation as

*1x'
t+ 2px+2rz+d=Q, ...(3)

the co-efficient by y being zero by (2).

Again we re-write (3) as

a ..-(4)
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Also we may see that r^ for otherwise the quadric will have a
centre. Again, we re-write (4) as

Shifting the origin to

we see that the equation becomes

which is the required canonical form.

The equation represents a parabolic cylinder in this case.

H'75. Case V. When A, B, C, F, G, H are all zero, fu=gv=hw,
and no one off, g, h is zero.

In this case the quadric has a plane of centres and the discriminat-

ing cubic has iwo zero and one non-zero root.

Let (a, p, 7) be any centre. Shifting the origin to (a, (3, 7) and

rotating the axes so that the axes of the new system are parallel to

a set of three mutually perpendicular principal directions, we see

that the equation becomes

The equation represents a pair of parallel or same planes.
Note. The case when some two or all of /, </, h are zero can be easily

considered and it can bo shown that we shall have a parabolic cylinder in case

the quadric does not have a centre and a pair of parallel planes if the quadric
has a plane of centres.

11*8. Quadrics of revolution. Firstly we shall prove a lemma

concerning surfaces of revolution obtained on revolving a plane curve

.about an axis of co-ordinates.

Lemma. The equation of a surface of revolution obtained on revolv-

ing a plane curve about x-axis is of the form

Consider any surface of revolution obtained on revolving a curve

about cr-axis. Let the equations of the section of this surface by the

plane 3=0 be

=/(*), 2= 0, ...(1)

If P be any point on the curve
and M the foot of the perpendicular
from P on o:-axis, we have

so that we can re-write yf(x) as

MP=f(OM). ...(2)
Now this relation remains unchanged
as the curve revolves about a?-axis so
that P describes a circle with M as its centre.
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In terms of the co-ordinates (x, y, z) of the point P in any
position, we have

MP=
so that we can now re-write (2) as

vV+*2
) =/(*)

Hence the result.

Similarly the equations of the surfaces of revolution obtained
on revolving plane curves about ?/-axis and z-axis are of the form

V(2
2+*3

)=</. (y),

W+t?)^ (2)

respectively.

Cor. A quadric is a surface of revolution, if and only if it has

equal non-zero characteristic roots. To see the truth of this result, we
examine the various canonical forms which we have obtained. These
are as follows :

Case I A^+A^ +V'+A/^O, ...(!>

Case II A1cc
2+A22/

2
+2r2:-0, ...(2)

Caselll A^+A^+fc-O, ...(3)

Case IV A^+2^-0, ...(4)

CaseV

On comparison with the equations of the surfaces of revolution,
we see that for the surface (1) to be that of revolution we must have
two of Ao A

a ,
A3 equal and for the surfaces (2) and (3) to be of re-

volution we must have Aj=A2 . The quadrics (4) and (5) cannot be
surfaces of revolution.

Clearly the equation (1) will represent a sphere if the characteristic

roots A
1? A2 , A3 are all equal.

Hence the result.

11*81. Conditions for the general equation of the second degree
to represent a quadric of revolution. We have been in 11*43 (B),

p. 232 that if the discriminating cubic has two roots each equal
to A, then,

(6-A)(c-A)=/2, (c_A)(a-A)=<7
2

, (a-A)(&-A)=fc
2 ...I

^(a-A)/, hf=(b-*)g, /<7=(c-A) h. ...II

It can be shown that if these conditions are satisfied, then we
can deduce the relations (4) and (14) of 11*43 (B) p. 232 so that

these conditions are sufficient also.

The required conditions will be obtained on eliminating A.

11*82. Firstly suppose that none off, g, h is zero. We can show
that in this case the set of conditions I is deducible from II so that I

is not an independent set of conditions and can, as such, be ignored.
Let us assume the set II.

Now since

^=(a
and hf=(b
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we get on multiplication

fgh*-(a

Dividing by/gr^O, we obtain

We may similarly deduce other conditions of the set I from II-

Now from II, we have

so that

a-^-ft^-c-^U>
~

7
-- u--- C---7

/'9 h

is the required set of conditions for the general equation of the
second degree to represent a surface of revolution in case none of

/, gs h is zero. These conditions can clearly be re-written as

Cor. Assuming the conditions to be satisfied, we shall now
obtain the equations of the axis of revolution.

Replacing
a, 6, c

we get

A 4- A4-
7"' y* y

+^

This form of the equation shows that any plane parallel to the

plane

^+A4-_L=0 (1)
/
+

g
+

h
U -U '

cuts the surface in a circle. The axis of revolution, being the locus

of the centres of the circular sections, is the line through the centre

of the sphere

perpendicular to the plane (1). Thus the axis of revolution is

u v w

I//
-

1/0

~
I/A

11-83. We shall now consider the case when some one off, g}

is zero.

Suppose thatfQ, Then since

we see that when/=0, we must have either </=0 or A=0.
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Putting /~0-~0 in I and II, we obtain

c~A, (a c)(b c)
= h2

and taking f0=h, we obtain

6 = A, (c -b)(a-b)=g\
Thus we have the alternative sets of conditions,

/=0=0, (a-cK&-c)=A
3

, A=c .. (1)

/=0 = A, (c-6)(a-fc)=sf*, X=6 ...(2)

Starting with (7=0, we shall obtain the alternative sets of
conditions (1) and

g=0=h, (b-a)(c-a)=f~, A=a. ...(3)

Thus if/, g9 h are not all non-zero, we have three alternative
sets of conditions (1), (2) and (3).

Axis of revolution. Suppose that the conditions (1) are satisfied.

Since (a c)(b c)~h* we must have a -
c, b c both of the same sign.

Suppose that they are both positive.

We have

ax" -f by* -f- cz
2+ 2fyz -h 2gzx- 2hxy

Thus

where the sign is -f or according as h is positive or negative.

Thus planes parallel to

V(a-c)a v (&-c)y = ...(4)

<mt the surface in circular sections. Hence the axis of revolution is

the line through the centie

( -w/c, v/c, w/c)
of the sphere

c(x*+y*+z*)-\-2ux+2vy+2wz +d=Q ;

perpendicular to (4). Thus the axis of revolution is

x+ulc y+v/c ,
.

/ / ~i
=

"T / / f" -x y
z + w c^Q.- ~ y

The other alternatives may be similarly discussed.

11*9. Reduction of equations with numerical co-efficients. We
shall now discuss the procedure to be followed when we have to

reduce any given equation with numerical co-efficients to canonical
form. It will be seen that when A, B, (7, F 9 G, H are all zero, then
we need not follow the method given in 11*74 and instead obtain

the required reduction by the method given below.

When A,,C, F, G, H are all zero. We shall first show that

when A, B, C 9 F, G, II are all zero, then the second degree homogeneous

part

must be a perfect square.
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Since we have

bc=f
2

, ca=g
2
9 ab=h2

,

we see that a, b, c must all be of the same sign. Without any loss

of generality, we may suppose that a, 6, c are all positive, for other-

wise we could throughout multiply with 1 and have the same
rendered positive.

Again, because

gh= a/, Jif= If], /;/
= ch ,

we see that/, g, h are either all positive or two negative, one positive.

Thus we have

so that the second degree terms form a perfect square.

Let the given equation be

Case I. Suppose first that

i/a : \/b : \'c~u : v : w
so that there exists a number k such that

\/a uk, \/b vk, \ic=wk.
Then the given equation can be re-written as

so that the given equation represents a pair of parallel planes whose

separate equations can be obtained on solving (1) as a quadric for

ux+ vy + wz.

Case II. Now suppose that the set of numbers \/a, \/&> V/c is

not proportional to the set u, v
y
w so that

-y/a : \/b^u : v or \/b : \/c^v : w.

We re-write the given equation as

and choose A such that the two planes

are perpendicular to each other. This requires

i.e.,

or __
a+o+c

Having chosen A, we re-write (2) as
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where

a+b+c
Taking

we see that the given equation takes the form

Y*=zkX,

so that the surface is a parabolic cylinder.

The following procedure is suggested for the reduction of numeri-
cal equations when the second degree terms do not form a perfect
square.

1. Find the discriminating cubic and solve.

2. If no characteristic root is zero, then put down the centre

giving equations and solve.

If (a, p, y) is the centre and Aj, A2 ,
A3 are the characteristic roots,

then the reduced equation is

A1z
l+A22/

2+A3z
2+ (wx+vp +wy+ d) =0.

3. If one characteristic root is zero, find the principal direction
ly m, n corresponding to the zero characteristic root by solving two of
.the three equations

is

gl+fm+cnQ.
Then find ul+vm+um. If this is not zero, the reduced equation

A!, A2 being the non-zero characteristic roots.

4. If ul+vm+wn=Q, find the centre giving equations. In this
case we have a line of centres and only two of the three centre giving
equations will be independent. Find any point (a, p, X) satisfying
two of the three equations. Then

is the required reduced equation.

Note. If one characteristic root is zero and two non-zero, then the line of
intersection of the two principal planes corresponding to the two non-zero roots
is the axis, if the quadric is a paraboloid or an elliptic or hyperbolic cylinder
and the line of intersection of the planes if the quadric is a pair of intersecting
planes.

In the case of ellipti3 and hyperbolic cylinder, one pair of intersecting
planes, the line of centres is also the axis.
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Examples

1. Reduce the equation

to a canonical form.
The discriminating cubic is

A3+3A*-90A+216=0.
This shows that D= 216^0. The roots of the discriminating

cubic are

3, 6,-12.

Again the centre giving equations are

2z+3=0.

Solving these we see that the centre is

(I, -I, t).

Denoting this by (a, P 7), we have

UK+vp+wy+d^ 3.

Thus the canonical form of the equation is

x*+2y*-4z*=l,
-

...(1)

which shows that the given quadric is a hyperboloid of one sheet.

The equation (1) represents the given quadric when the origin
of co-ordinates is its centre and the co-ordinate axes are parallel to
the principal directions i.e., (1) is an equation referred to principal
,axes as co-ordinate axes.

2. Reduce to canonical form the equation of the quadric

x*-y*+4yz+4:xz 3=0.
The discriminating cubic is

A3_9X=:0
so that the characteristic roots are

0, 3, -3.
Thus.Z>=0.

The direction cosines I, ra, n of the principal direction correspond-
ing to A=0 are given by

These give

I : m : n=2 : 2 : 1.

Thus in this case we have

.so that we proceed to find the centre giving equations.
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These are

These three planes meet in a line. Clearly (0, 0, 0) is a point
on it. Denoting this by (a, (3, A), we have

MX+ t>p+wy+d= 3.

Thus the canonical form of the equation is

The given equation, therefore, represents a pair of intersecting

planes.
Note. The fact that the given equation is free from first degree terms

also shows that (0, 0, 0) is a centre of the given quadric.

3. Show that

^represents a paraboloid. Obtain its reduced Aquation. (D.U. 1951}

The discriminating cubic is

Its roots are

A 5+V2~f 5-V21"V -
2 2

This shows that D=0. The direction cosines I, m, n of the

principal direction corresponding to A--0 are given by
4Z 4ra 2w=0, ...(!>

+2w=0, ...(2)

Clearly (1) and (2) are the same. Solving (2) and (3), wo-

ol)tain

n=r
V 2

Thus the reduced equation is

4. Discuss the nature of the surface whose equation is

and find the co-ordinates of its vertex and equations to its axis.

(Lucknow, 1949}

It may be shown that the roots of the discriminating cubic are

0, -2, 4.
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The direction cosines Z, m, n of the principal direction corres-

ponding to the root, 0, are given by
8Z=0,

2m+ 27i=0,

These give Z=0, m=l/V2, n=
2

Then

Thus the quadric is a paraboloid.

We now proceed to find the axis and the vertex.

The direction cosines Z, m, n, of the principal direction corres-

ponding to A= 2 are given by
6Z+Ow-t-On-=0,

These give Z=0, ra

so that the corresponding principal plane is

i.e., t/-z+3=0. ...(1)

Again the direction cosines of the principal direction corresponding
to A=4 are given by

OZ

OZ+m 5n=0.
These give

I :m: n=l : :

so that the corresponding principal plane is

4z-4=:0
i.e.,

x=l. ...(2)

Thus

is the required axis of the paraboloid.

The vertex is the point where the axis meets the paraboloid.

Re-writing the equations of the axis in the form

z

~0 T~~T'
we see that any point

(1, r-3, r),

on the axis will lie on the surface for

r=f,
so that the vertex is the point

(i, -i , i).
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5. Prove that

; -12H-6=0- -=
represents a cylinder whose cross-section is an ellipse of eccentricity l\\/2.

Find also the equations of the axis of the cylinder. (Calcutta, 1953)

The discriminating cubic is

A3-18A2+72A=0
so that the values of A are

0, 6, 12.

The direction cosine I, m, n of the principal direction correspon-

ding to A=0 are given by
I 5m 4n=0

so that

Thus

We have, therefore, to proceed to put down centre giving

equations. These are

10z~22/+82+12 == 0, ...(1)

-2o;+10i/+8z-12=0, ...(2)

Sx + Sy+I6z=0. ...(3)

Clearly (3) can be obtained on adding (1) and (2) so that as expected,
these three equations are equivalent to only two. Putting 2=0 in

i(l) and (2), we obtain

=
1, y=l, z=0,

so that ( 1, 1, 0) is a centre. Thus

ua+fl(Hwy+d= -6-6+6= 6.

Hence the reduced equation is

.e.,

The cross-section is

2z2+r=i, 2=0.

Its eccentricity is now easily seen to be l/\/2.

The line of centres is the axis of the cylinder so that the equa-
tions of the axis are

= 0, x+y f 2z - 0.
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6. Shaw that the equation

represents a quadric of revolution and find the axis of revolution.

The discriminating cubic is

(1-A)(A
2~1)=0,

i.e., (M-l)(A-l)
a=0,

so that the characteristic roots are

-1, 1, I-

Two of the characteristic roots being equal, we see that the given
equation represents a quadric of revolution.

Further re-writing the equation as

i.e., (x
2
+y*+z*-I)-(y-z)*=Q,

we see that the planes parallel to

2/-*=0 ...(1)

cut the quadric in circles. Thus the axis of revolution which is the

line through the centre of the sphere

perpendicular to the line (1) is

xQ_y 0_3
~~<r r i

'

i.e., #=0, y=z.

7. Prove that

represents a paraboloid of revolution and find the co-ordinates of its

focus. (D.U. 1954)

The discriminating cubic is

so that the characteristic roots are

n 3.U
> 2) 2'

Two values of X being equal, the given quadric is a surface of
revolution.

The direction cosines I, m, n of the principal direction corres-

ponding to A=0 are given by any two of the three equations

I \m ft=0,

These give

I : m : n=l : 1 : 1.

n-
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Now we have

- JL J- Q l -JL l

2
'

V3 V3 2
'

V'c

9 .

Thus the quadric is a paraboloid of revolution and the reduced

equation is

2 -i*-0*
V3

Z '

3
2 ,

3
2/ya _ I '/*_~~

i.e.,

This form of the equation shows that the latus rectum of the

generating parabola is 4\/3.

With respect to the given system of co-ordinate axes, the direction

ratios of the axis of the paraboloid which is also the axis of revolution

are

i, i, i.

We re-write the given equations in the form

or

Thus the axis of revolution, being the line through the centre of

the sphere

and perpendicular to the plane

x+y+z=Q,
is

which is the axis of the paraboloid.

The vertex is the point where this axis

meets the paraboloid. It can be shown
that any point

(r+1, r+2, r+3)

on the axis will be on the paraboloid if

r=-l.
Thus (0, 1, 2) is the vertex of the

paraboloid.
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The required focus is the point on the axis (1) at a distance \/3
from (0, 1, 2). Re-writing the equations of the axis in the form

x~Q ~l 2-2

we see that the point on the axis at a distance \/3 from (0, 1, 2) is

(1, 2, 3).

Thus (1, 2, 3) is the required focus.

8. //
ax*+ by*+cz

2+ 2fyz+2gzx+ 2hxy=Q,

represents a pair of planes, prove that the planes bisecting the angles

'between them are

ax+hy+gz hx+by+fz gx+fy+cz

x y =0.

As the given equation represents a pair of planes, we must have D=0.

The line of intersection of the two planes is parallel to the

principal direction corresponding to the characteristic root zero so

that if I, ra, n be the direction cosines of this line we have

These give

I m n

~G^~F^~C'
As FG=CH we see on replacing C by FG/H, that I, m, n are

proportional to jp-1
, G"1

,
H~l

.

This result can also be obtained if we regard the line of intersec-

tion as the line of centres.

Now we know that the two bisecting planes are the principal

planes corresponding to the two non-zero characteristic roots.

Suppose that (x, y, z) is any point on either bisecting plane.
Let this bisecting plane, as a principal plane, bisect chords with

direction cosines 119 m^ n^ and perpendicular to the plane. The

equation of the plane being
l1(ax+hy+gz)+m1(hx+by+fz) + n1(gx+fy+cz)=Q 9 ...(1)

we see that any point (x, y, z) on the bisecting plane satisfies this

equation.

Further the plane being normal to the line with direction cosines

^i> mi, MI, its equation is also

][1a;+m12/4"Wi2==0, (2)

o that (x, y, z) satisfies (2) also.
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Finally, the principal direction Zi, ml9 % corresponding to a non-
zero characteristic root being perpendicular to that corresponding to
the zero characteristic root, we have

^-1+m1

-1+%^"1=0. ...(3)

From (1), (2) and (3), we have

ax+hy+gz hx+by+fz gx+fy+cz

y =o.

Hence the result.

9. Prove that if

a3+fr
3+c3=3a6c and

ax2
+by*+cz

2
+2ayz'+2bzx+2cxy+2ux+2vy+2wz+d=Q

represents either a parabolic cylinder or a hyperbolic paraboloid.

(D. U. 1952^

The discriminating cubic of the given quadric is

so that under one of the given conditions, one root is zero.

We have

so that either

a+b+c-=0, -(I)
or

The condition (2) is equivalent to

i.e., a=b=c. ...(3)

Assuming (2) to be satisfied, we see that the given equation takes

the form

a(x+y+z)
2+2(ux+vy+wz)+d=Q

which is a parabolic cylinder^ if

u^kv or v^w.

Suppose now that the condition (1) is satisfied so that one root-

only of the discriminating cubic is zero.

The direction cosines I, ra, n of the principal direction correspond-

ing to the zero root are given by

so that
I _ m _ n

acb2 be a2 ab-c2
*

As

a+6+c=0, we may see that

ac 62=6c a2=a& c2 .
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Thus the principal direction corresponding to the zero root is

given by
1 1 1

V3
'

V3
'

V3'
Also

Thus in this case the quadric is a paraboloid. This paraboloid
is hyperbolic for the two non-zero characteristic roots given by

are of opposite signs.

Exercises
1. Show that

represents a paraboloid. Find the reduced equation and the co-ordinates of
the vertex. (Lucknow 1952)

2. Reduce to its principal axes :

22/2 2yz+2zx 2xy x 2y+3z 2=0
and state the nature of the surface represented by the equation.

(Lucknow, Hons. 1952)
3. Find the nature of the surface represented by the equation

(P.U. 1949)
4. Find the reduced equation of

(i) x*+2yz-4x+6y+2z~Q.
(ii) x*y*+2yz2xzxy+z=Q.
(Hi) yz+zx-\-xy'lx6y-~5z25Q.
(iv) 4y^4yz+4zx4:xy2x-\-2y^l==0.

(v) 2x*+2y2+z*+2yz-2zx-4xy+x+y=0. (Lucknow 1947)

(vi) (x cos a y sin a)
2
-f (y cos a-f-z sina)

2
-f2t/=l.

(vii) 3*2+6i/2-2/2__. 22_.6z+62/-2z-2=0, (MtC7< 194f)
(viii) 4x2+y*+z*4xy2yz+4zx 12x+6y 6z+8=0.
(ix) x2+y*+zz 2xy2yz+2zx+x4y+z+l=Q.
5. Show that the equation

(* x)(x y}+b(xy}(y z)+c(y z)(z x)=0,

represents two planes whose line of intersection is equally inclined to the three
co-ordinate axes.

6. Show that the equation

2yz+2zx+2xy~\

represents a hyperboloid of revolution. Is this an hyperboloid of one or two
sheets ?

7. Show that the quadric

is a cone and obtain its reduced equation. Show further that this is a right
circular cone with its axis of revolution parallel to the line

8. Show that the quadric with generators

ysrl, 2=~1 ; 2=1, = 1

is a hyperboloid of revolution.
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9. Find the reduced equation of the quadric with generators

10. Prove that every quadric of the linear system determined by the two*

equations
2/2 2#-f-:c=0, #2-f2/2-f-2#2=:0

is a cone.

11. Discuss the nature of the quadrics represented by the equation

as m varies from < to -f- .

Obtain the reduced equation of the quadric corresponding to m=l,
12. Show that there is only one paraboloid in the system of quadrics

In particular, show that if/, gt
h t u9 v, w are all zero, the equation of this*

paraboloid is

(72

m2 n2 \~+T+
)

Further prove that its axis is parallel to the line

ax by cz= =- .

I m n

13. If the general equation

represents a right circular cylinder, prove that

14. Show that the condition for the quadric

to be a cone is

C2-J-X

15. Prove that the principal axes of the conicoid

are given by the equations

s(/Xr-fF)*=y(g\+G)z(h\r+H), (r=l,2, 3)

where Xj, X2 , X3 are the roots of the equation

a X h g

h 6-X / =0 .

g 1 c-x

k of, G*=hfbg, Hfgch.
Also show that the cone which touches the co-ordinate planes and the

principal planes of the above conicoid is

^((gH-hG)x]+</[(hF-fH)y]+y(fG-gF)z]=0. (B.U. 1953)
16. If the feet of the six normals from P to the ellipsoid

"^2" T*" c2 . . >
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lie upon a concentric conicoid of revolution, prove that the locus of P is the cone

.-..- x*y*

and that the axes of symmetry of th e conicoids lie on the cone

a2 (62_c2)2+ 52( c
2_a2) 2/

2+ c2(a2_52)z
2 == (B.U. 1953)

17. Prove that the equation

will represent a right circular cone whose vorticle angle is 0, provided that

af-ghjbg-hf^chfg (a+6+c)(l+ cos 6)

/
~"

g h
"" '

(1+3 cos b)

18, Given the ellipsoid of revolution

a2 62
~'

(a
2>62

), show that the cone whose vertex is one of the foci of the ellipse z=0,
#2 ty2

-s- + -pr
= 1 and whose base is any plane section of the ellipsoid is a surface of

revolution. (D.U. 1948)

19. Prove that if

F(x, y, z)=2(ax2+2/?/z)+22wx+d==0,

represents a paraboloid of revolution, we have

and that if it represents a right circular cylinder, we have also

T +T +T =0 ' (D -u - 1950'

Answers

i, 2x*-y*+v2*=o.
(i. -T>T)-

2. 3x2
y2 =^. Hyperbolic cylinder.

3. 3x2+62/2-922+1=0. Hyperboloid of the two sheets.

4. (t) ^2+2/2-22=10.

(ft) 3rc2-32/2= 2;.

(Hi) 2a;2-2/
2-22=102.

(w) (1+sina cos a)x
2 +(l sin a cos a)?/

2+2 sin2a/^(l sin2 x cos2 a)=0.
if sin a^0, cos a^0.
^2+^2= 2 if sin a= Oand?/2+22=2 if cos a= 0.

(vii) 2x2+3^2422^4.

(ix) 32/2=^/6x.

'6. Hyperboloid of two sheets.

7. a
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11. For w>2, ellipsoid
For m< 2, ellipsoid
For 77i=2 9 pair of imaginary planes
For rn= 2, elliptic cylinder
For l<m<^2, hyperboloitl of two sheets
For 2<m-<l, hyporboloicl of one sheet
For m 1, cone

'

The redxiced equation for the last case is



APPENDIX

Spherical Polar and Cylindrical Coordinates.

Various systems of coordinates have been devised to meet,
different types of problems which arise in Geometry and in various

applications of the same. Cartesian system which is one of these has

already been introduced and this is the one system with which we
have been concerned all along. It is now proposed to introduce two
more systems, viz. :

1. Cylindrical Polar,

2. Spherical Polar

which are often found useful in various applications.

Cylindrical Polar Coordinates.

Let P be any given point.

Draw PN perpendicular to the XY~plane, N being the foot of the-

perpendicular.
I We write

Then r, 0, z are called the

cylindrical polar coordinates of the

point P.

It will be seen that r, are
the usual polar coordinates of the

projection N in the XY-plane of the

point P referred to O as the pole
and OX as the initial line.

If x, y^ z be the cartesian

coordinates of P referred to OX,
OY

9
OZ as the three axes, we may

easily obtain the following formulae

giving relations between x y y} z

and r, 0, z.

x~r cos 0, yr sin 6, z z.

Ex. What are the surfaces represented by

(i) r= constant ;

(ii)
= constant ;

(Hi) 2= constant.

Spherical Polar Coordinates.

Let N be the foot of the perpendicular from P on the .XT-plane..
We write

VI

N(r,0,o)

Fig. 33
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N

It may be easily seen that
<f>
can also be described as the angle

between the planes

POZ and XOZ.
Then r, 6, <f>

are known as

the spherical polar coordinates

of P.

We now obtain the for-

mulae of transformation between

x, y, z, and r, 6, *.

Draw NA_iOX
We have /_OPN=0.
From the right-angled tri-

angle OPN, we have

z=NP=OP cos 8

=r cos 6.

ON=OP sin /_OPN
=r sin

Again, from the right angled triangle OAN, we have

,x=OA=ON cos cj)=r sin cos ^

y=NA=ON sin </>=r sin sin
<f>

'

Thus we have the following formulae of transformation.

x=r sin 6 cos <, y=r sin sin
<f>,
z=r cos 0.

Surfaces represented by

(i) r= constant ;

(ii)
= constant

;

(Hi) (/)= constant.

The reader may easily verify that

(i) r= constant represents a sphere with its centre at the origin^

(ii) 0= constant represents a right circular cone with its vertex

at the origin and OZ as its axis,

(Hi) 0== constant represents a semi-plane through OZ.

It may be easily verified that if a point r, 6, (f>
varies in the

interior of a sphere whose centre is at the origin and the radius is

* a : then r varies from to a ; <j>
varies from to 2n

; 6 varies from
tO tOTU.
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