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and Léon M.J. Knippels

vi Contents



Part V Brain and Neuroimmunity

20 Nutrition and Cognitive Decline in Older Persons: Bridging

the Gap Between Epidemiology and Intervention Studies . . . . . . . . 395

Pascale Barberger-Gateau, Cécilia Samieri,
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Part I

General



Chapter 1

Pharma-Nutrition

Seil Sagar, Gert Folkerts, and Johan Garssen

Nutrition has the primary goal to maintain, or if possible to improve, health.

Pharmaceuticals, on the other hand, are generally developed to treat, cure

or to prevent diseases [1]. In the last few years the disciplines of pharma and

nutrition have evolved separately. Nonetheless, worldwide increased incidence of

complex multifactorial disorders, particularly chronic and degenerative diseases

and their growing burden in modern society have narrowed the gap between

pharmacology and nutrition science [2]. Hence, multifactorial diseases probably

require multi-pathway understanding and multi-targeting approaches which might

lead to compound combinations [2]. This rediscovered common ground between

the complementary values of pharma and nutrition can be conceptualized in the

term “pharma-nutrition.” In this respect, functional foods or dietary supplements,

i.e., those that carry substantial health claims, can be helpful in reducing health risk

factors and may thereby prevent chronic diseases [1]. Various chapters in this book

highlight the aspects of molecular characteristics of food ingredients towards

clinical effectiveness and relevance.

The interaction between microbial community and human host plays a crucial

role in regulating immune homeostasis [3–5]. Moreover, alterations in these gut

microbial communities were demonstrated to cause immune dysregulation, leading

to autoimmune disorders [5]. In this respect, nutrition and orally ingested drugs that

pass the gastrointestinal mucosa can affect the balance between the mucosal

immune system and microbial community herein. This in turn may affect the
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microbial composition and/or mucosal integrity [4]. Over the last decade, there has

been a growing interest in the use of interventions that target the intestinal

microbiota as a treatment approach for allergic inflammation. There is now increas-

ing evidence that changes in the gut microbiota contribute to the development of

allergies and asthma [6–10]. Additionally, the potential role of beneficial bacteria as

modulators of the intestinal microbiota and mucosal immune responses has been

extensively investigated and discussed in the last few years [11, 12]. It is now well

established that beneficial bacteria can have an impact on the epithelial barrier and

immune functions by interacting with the host’s epithelial and immune cells within

the gastrointestinal system [13]. Besides their impact on the gastrointestinal system,

beneficial bacteria were also reported to modulate immune responses in the air-

ways. Hence, Bifidobacteria and Lactobacilli, which are a part of the gut

microbiota, suppressed both allergic and autoimmune responses by reducing aller-

gic symptoms and inhibiting allergic airway response in murine models of acute

airway inflammation [14–18] and murine models of chronic allergic asthma [19].

Moreover, a combination of Bifidobacterium breve with a specific mixture of

nondigestible oligosaccharides reduced allergic responses in mice [20]. The same

combination also proved to be useful in allergic asthmatic adults and infants with

atopic dermatitis [21, 22]. Additionally, specific combinations of nondigestible

oligosaccharides were more effective in improving the immune responses and

reducing disease parameters of allergic asthma in mice than either of the oligosac-

charides alone [23–25]. Interestingly, we have recently demonstrated that the

combination of Bifidobacterium breve with a specific mixture of nondigestible

oligosaccharides suppressed airway inflammation in a murine model for chronic

asthma [26].

This book reviews the impact and effects of natural products and functional/

medical foods (nutritional programming) on disease management, specifically

focusing on diseases related to (1) Inflammation and Immunity, (2) Cancer,

COPD, and Cachexia, (3) Allergy, and (4) Brain Neuro/Immune. As both pharma-

cologists and nutritionists are recognizing that the one disease-one target-one drug

(or nutrient) concept will be less successful than in the past, this book aims to stress

the importance of a multi-target approach versus a single-target approach. This

book also reviews the connection between the microbiome, within the intestine,

and the outcome of diseases. Hence, animal and human studies have demonstrated

that natural products and functional/medical foods can impact the microbiome.

In Part I the concept of pharma-nutrition is introduced. The definitions and

characteristics of the pharma-nutrition industry in the European health and life

science sector are explored, and developmental trends of the medical nutrition

industry are exemplified. Patenting behavior in the medical nutrition industry

is also described. Additionally, recent and ongoing innovations in food allergy

safety assessment and innovations in toxicological safety assessment of food are

addressed. Regarding the toxicological safety assessment of food, an innovative

new toxicological safety assessment approach for complex food matrices based

on the Threshold of Toxicological Concern concept is presented and discussed.

4 S. Sagar et al.



The effects of antibiotics and beneficial bacteria on the intestinal microbiota

composition in irritable bowel syndrome are discussed in Part II (Inflammation

and Immunity). Colonic cleansing and fecal microbiota transplantation may be

a promising novel treatment option for irritable bowel syndrome. Furthermore, the

role of nutrition in immune system development and the protective and predis-

posing effects of early nutrition on healthy development of the immune system are

also explored. Nutritional intervention using prebiotics, probiotics, and long chain

polyunsaturated fatty acids support an optimal immune development and hence

may provide a better defense against infections. Additionally, the immunologic

basis by which nondigestible oligosaccharides may affect the mucosal and systemic

immune system is discussed. Combining oral delivery of nondigestible oligosac-

charides with allergenic epitopes might improve effectiveness and may add to

future oral immunotherapy strategies. In regard to inflammatory bowel disease,

the role of omega-6 and omega-3 fatty acids in inflammatory bowel disease is

discussed. High dietary n-3 fatty acids intake and low n-6 fatty acids intake with

a more balanced n-6–n-3 fatty acid ratio seems a promising therapeutic approach

for inflammatory bowel disease. Furthermore, the protective role of omega-3

polyunsaturated fatty acids against age-related neuroinflammation is discussed.

Polyunsaturated fatty acids seem to play an important role in controlling inflam-

mation in the brain because of their abundance in this organ and their modulatory

effects on inflammation and cell functions. In addition, the endocannabinoid system

which forms a molecular connection between nutrition and pharmacology is

reviewed. The possible pharmacokinetic and pharmacodynamic interactions of

natural products, such as Ginkgo biloba extract, saw palmetto extract, Coleus
forskohlii extract, grapefruit juice, and green tea, with drugs are also discussed

in this part. Heme oxygenase-1 is a widely accepted cytoprotective molecule with

various medical benefits. It functions primarily as an antioxidant and has

anti-inflammatory, pro- and anti-proliferative properties; and it can act as an

immunomodulatory enzyme. The ability of natural substances, such as curcumin,

flavonoids and isothiocyanates to increase the level of heme oxygenase is described

in Part II. In regard to Parkinson’s disease, the potential of nutrition and gastroin-

testinal health as modulators of Parkinson’s disease is also discussed. Therapeutic

intervention through whole foods, dietary patterns, and supplemental nutrition

(probiotics, prebiotics, and synbiotics) may positively impact intestinal milieu

and result in reduced inflammation and oxidation and reduced risk for Parkinson’s

disease.

In Part III (Cancer and Cachexia) recent therapeutic approaches for cachexia

are reviewed. As nutritional strategies are insufficient to reverse the cachexia

syndrome, a combination with pharmacological strategies may be a more effective

approach than nutrition alone. In this respect, the beneficial impact of nutrition

on the nutritional status of cancer cachexia patients is discussed. Furthermore,

novel possibilities and biomarkers for individualized tumor therapy with natural

products are reviewed. Custom-tailored combination treatments seem to become

a reality soon and each individual cancer patient may be treated based on

his or her individual molecular tumor architecture. Additionally, the potential

1 Pharma-Nutrition 5



of translational research and challenges, particularly the use of nutraceuticals, as

novel strategies to reduce cancer incidence, prevalence, and mortality and social

economic impact is stressed.

Recent insights into the pathophysiology of the onset of atopic dermatitis,

particularly the interplay between skin barrier abnormalities, inflammation, and

skin microbiota are highlighted in Part IV (Allergy). Potential strategies for pre-

vention and treatment are also addressed. Additionally, the use of biologicals,

allergen-specific immunotherapy and dietary compounds to actively reduce the

allergic responses is discussed. To date, the future direction in allergy management

is shifting away from the classical allergen avoidance into active tolerance

induction. It is likely that the way forward lies in the combination of life style

management, nutritional support to preset the immune system towards tolerance

induction and allergen-specific immunotherapies based either on whole proteins or

on tolerance-inducing peptides. Additionally, the pros and cons of the different

nutritional options chosen as a replacement feeding for children with cow’s milk

protein allergy are reviewed. To date, the choice for first an extensive hydrolyzed

formulae and then an amino-acid-based formulae seems the best approach for

cow’s milk allergy.

In Part V (Brain, Neuro/Immune) the role of the neuro-immune axis and

its targetability in relation to neurological disorders, such as depression, neurode-

generative diseases, and autism are discussed. Additionally, the challenges and

potential pitfalls of randomized controlled trials involving nutritional interventions

for the prevention or treatment of cognitive decline in older people are examined.

Moreover, the therapeutic effects of nutraceuticals in immune disorders are

reviewed. Besides their effects on the immune system, nutritional elements such

as probiotics, n-3 polyunsaturated fatty acids, vitamin D, and zinc can alter com-

ponents of the neuroendocrine system that in turn play a critical role in regulating

systemic immunity. Additionally, nutritional approaches for healthy aging of the

brain and the prevention of neurodegenerative diseases are also discussed. Rice

bran, curcumin, anthocyanin-rich fruits, and olive polyphenols represent promising

nutraceuticals for modulating mitochondrial function in the brain. Hence, mito-

chondrial dysfunction plays an important role in brain aging and in the pathogenesis

of neurodegenerative diseases, including Alzheimer’s Disease.
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Chapter 2

New Developments in Food Safety
Assessment: Innovations in Food Allergy
and Toxicological Safety Assessment

Geert Houben, Marty Blom, Jolanda van Bilsen, and Lisette Krul

1 Introduction

Food preferably has to be tasteful, healthy, attractive, and affordable, but should

above all be safe. The safety of our daily food nowadays is at a reasonable level,

but is far from obvious. With a certain frequency, food safety incidents come up,

and the increasing complexity and globalization of our food production networks

contribute to an easy outgrow of such incidents to international crises. There is an

increased food demand due to a growing world population, whereas existing food

sources are limited. To meet the increasing food demand, industry continues

developing new ingredients, sources, and products like novel protein-based prod-

ucts (e.g., insect-derived food proteins); extracts from fruits, vegetables, and herbs;

natural fragrances; and flavorings but also introduces new processing methods and

innovative food packaging concepts. Furthermore, new food concepts are under

development in an attempt to reduce the health burden due to overweight and other

(related) western food-related conditions or to specifically treat or prevent food-

related diseases such as food allergy. Finally, our current food is still found to pose

natural or process-induced hazards, sometimes newly discovered (e.g., acrylamide

several years ago), and not seldom its safety is jeopardized due to malpractice such

as fraud.

During the past half century, food risk assessment and risk management

approaches have developed, particularly with respect to microbiological and

chemical safety aspects of food and food production and processing. Yet, several

white spots or areas of inefficiency still exist. Until recently, methodologies for

assessing and efficiently managing risks posed by allergens in food were lacking.

Furthermore, assuring the chemical safety of current and increasingly complex new

foods and food concepts and innovations in food as mentioned above requires a
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continuous improvement of our toxicological food safety assessment and manage-

ment approaches. These should be pragmatic and prevent unnecessary spending of

time, money, and animals for safety testing. In this chapter, recent and ongoing

innovations in two areas are addressed: innovations in food allergy safety assess-

ment and innovations in toxicological safety assessment of food.

2 Food Allergy Safety Assessment

2.1 Food Allergy

Food allergies are adverse reactions to an otherwise harmless food or food compo-

nent that involves an abnormal response of the body’s immune system to specific

protein(s) in foods. True food allergies may involve several types of immunological

responses [1]. The most common type of food allergies are mediated by allergen-

specific immunoglobulin E (IgE) antibodies which bind to receptors on circulating

basophils and mast cells in mucosal tissues. Upon recurrent exposure to the same

allergen, cross-linking of cell-bound IgE induces an allergic response by mediator

release [2, 3]. The clinical picture of food allergy is pleomorphic and can range

from gastrointestinal symptoms to severe anaphylaxis [4]. This adverse hypersen-

sitivity response to food poses a serious public health concern [5–7]. The etiology

of food allergy or tolerance, however, continues to be poorly understood. For a

more detailed review of the mechanisms of allergy, in particular food allergy, the

reader is referred to several excellent review articles [8–10].

2.2 Food Allergens

Virtually all food allergens are proteins, although only a small percentage of proteins

are major allergens [11, 12]. Any food that contains protein has the potential to cause

allergic reactions in some individuals. However only a few foods or food groups are

known to cause allergies on a more frequent base than other foods. The majority

(approximately 90 %) of food allergic reactions are caused by eight foods: milk, egg,

peanuts, tree nuts, fish, soya, wheat, and shellfish [13]. Although controversy exists as

to whether the prevalence of food allergy is increasing, it nonetheless remains an

important health issue, affecting approximately 1–2 % of adults and 6–8 % of

children [14].
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2.3 Safety Assessment and Risk Management of Known
Major Allergenic Foods

The only option for food allergic individuals to manage their food allergy is the strict

avoidance of allergenic food. Medication is available to suppress symptoms, and an

increasing number of studies are being published on oral tolerance induction pro-

tocols for peanut, milk, egg, and wheat, though these procedures have not yet become

standard practice. The majority of the food allergic population therefore relies on

rigorous elimination of the allergen in their diet. Legislations in many regions of the

world, as for instance for the EU laid down in EU directives 2003/89/EC and 2006/

42/EC, prescribe the labeling of food products for several major allergenic foods or

products derived from that allergen when added as ingredients to food. In addition,

many food producers have incorporated allergen auditing programs and voluntarily

warn the allergic consumer as to the potential presence of allergens by using

precautionary labeling of food products, e.g., “may contain xxx.” However, despite

this, several retrospective studies [15–17] show that many allergic individuals expe-

rience an accidental allergic reaction due to hidden allergens or inappropriate label-

ing. Surveys of commercially available products demonstrate that the presence or the

absence of a precautionary warning corresponds poorly with the actual presence of

the allergen in the product [18, 19], which can lead to potentially dangerous situations

[15, 20]. A recent study in Canada showed that approximately 17 % of allergic

individuals experiencing an accidental exposure attributed this to products with

unintentional cross-contamination during manufacturing and no precautionary state-

ment on the label [17]. Conversely, many products do not contain the allergen to

which the precautionary warning on the label refers. As a consequence, a precau-

tionary warning on products is not always valuable to allergic consumers and they

increasingly seem to ignore precautionary labels [21, 22].

To improve this situation, quantitative guidance is needed with advice on

maximum levels of unintended allergens in foods (also called action levels) to

improve the precautionary labeling. Several initiatives have been set up by both

food industry and enforcement bodies with the involvement of various stake-

holders to improve allergen management and to introduce more uniform and

transparent risk information [23–25]. One of the ultimate goals may be to

establish internationally harmonized guidance that includes action levels for

labeling unintended allergens. In contrast to many other risk assessment situa-

tions, human data on threshold doses to allergenic foods is available and can be

used to establish action levels. In very sensitive patients small amounts may

elicit severe reactions, but also thresholds for allergic reactions of micrograms or

grams of allergenic food have been reported [26–29]. The US FDA Threshold

Workgroup [30] therefore concluded that a single threshold level for any of the

major food allergens might yield thresholds that are unnecessarily protective and

further that additional data were required. A recent study by Taylor et al. [31]

combined the threshold dose of peanut allergic individuals from different centers

into a peanut threshold distribution curve which can be used to derive the
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eliciting dose to which a certain portion of the population might respond with

objective allergic reactions (EDp): an approach that was used to establish

reference doses for many major allergenic foods by a scientific expert panel

that reviewed all published and unpublished threshold data available at the

Food Allergy Research and Resources Program (FARRP) of the University of

Nebraska and the Netherlands Organization of Applied Scientific Research TNO

for the Australian-New Zealand Allergen Bureau [32, 33]. Figure 2.1 illustrates

the approach followed by this expert panel for elaboration of reference doses.

Starting point for the elaboration of these reference doses was an accepted risk

of less than 1 % mild objective reactions, chosen in consultation with stake-

holders as an acceptable compromise from the perspectives of food safety

objectives, practical feasibility, and scientific feasibility. These reference doses

were developed into a guidance for establishing action levels for precautionary

labeling by the Allergen Bureau. An incidental reaction, that may occur in view

of the accepted remaining risk, will in general be mild and transitory, generally

requiring no medical intervention. This quantitative guidance is a big step

forward and welcomed by the different stakeholders and increasingly taken up

by food-producing companies all over the world. For the allergic consumer this

will lead to a greater choice of products and a growing confidence in precau-

tionary labeling.
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Fig. 2.1 Elaboration of a reference dose protecting the vast majority of allergic individuals

(from Blom M.W. et al. Action limits for the potential cross-contamination of a food product

with Allergens. Netherlands Journal of Allergy & Asthma (2013) 13: 74–80)
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2.4 Safety Assessment of Novel Proteins/Protein Sources

Any food that contains proteins has or will have the potential to cause allergic

reactions in some individuals. In order to prevent novel foods from posing a high

risk of inducing new allergies, regulatory bodies require the assessment of safety,

including the assessment of allergenicity. In Europe the Novel Food Law defines

novel foods and novel food ingredients as those that have no history of safe

significant use within the EU before 15 May 1997. The absence of a history of

safe use can be the result of the food being new to the European Union (e.g., exotic

fruits, insects, and algae) or of novel processing techniques. Food existing of or

derived from genetically modified (GM) organisms may also have an allergenic

hazard and thus also need to be assessed on safety, including allergenic potential.

Even though novel non-GM foods meet less consumer resistance than GM foods

[34, 35], reality is that with respect to allergenic potential, it does not matter

whether the novel food is from a GM source or a non-GM source; both may have

the potential to add to the allergenic burden of the diet of the consumer. However,

frameworks for the assessment of the allergenic potential of GM foods have been

extensively developed and are more structured than those for other novel proteins/

protein sources, for which the assessment will necessarily be more subjective.

2.4.1 Allergenic Potential of GM Foods

In the early 1990s it became clear that developments in gene technology might have

significant implications for the food supply, particularly in terms of their potential

to increase the quantity and quality of available foods. Currently, crops are gene-

tically modified by incorporating new proteins to target deficiencies in nutrients

and improve insect or salt resistance so that less pesticide can be used or plants

can grow under non-optimal conditions and can often be produced in larger

quantities on less land.

Theoretically there are four scenarios in which a novel GM food may be a risk

for allergenicity: (1) The transfer of a known allergen or cross-reacting allergen into

a food crop: It is generally accepted that the current in silico homology searches,

combined with serology where appropriate, are sufficient to predict clinically

relevant cross-reactivity with known allergens [36]. (2) The potential to increase

endogenous allergenicity of the target food by increasing the level of expression of

endogenous allergens: This risk to the population is somewhat controversial since it

could be argued that at-risk allergic individuals will be avoiding that crop already,

although the counterargument is that increasing levels of allergens could increase

the number of individuals likely to acquire de novo sensitization. (3) There is an

unexpected expression of novel proteins/peptides as a result of the introduction of

unintended open reading frames (reviewed by [37]). (4) The novel protein may be a

de novo allergen that has not been previously been experienced by the human

population. Where there is no previous history of dietary exposure, such as for those
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target proteins that are isolated from alternative sources (fungi, bacteria, etc.) or

where significant changes have been introduced to the amino acid sequence to

confer particular benefits, or cross-linking the proteins results in protein structures

with new characteristics, the current battery of tests available will not be sufficient

to identify a truly novel allergen. As a consequence, there has been a growing

interest in the design and development of appropriate animal models and their

potential integration into safety assessment paradigms. In 2010, EFSA’s Geneti-

cally Modified Organisms (GMO) Panel has adopted a scientific opinion on strat-

egies for assessing the risk of allergenicity of GM plants and microorganisms and

derived food and feed which is an update of the 2001 FAO/WHODecision Tree that

was recommended by the joint Food and Agriculture Organization and World

Health Organization (FAO/WHO) Expert Consultation on Allergenicity of Foods

Derived from Biotechnology [38].

The EFSA panel considers the weight-of-evidence, case-by-case approach the

most appropriate way of assessing the allergenicity of GM food and feed [39]. In

summary, it is recommended that with regard to the search for sequence homology

and structural similarities, the local alignment method with a known allergen with a

threshold of 35 % sequence identity over a window of at least 80 amino acids is

considered a minimal requirement. When IgE binding tests are considered neces-

sary, e.g., when there is sequence homology and/or structure similarity with known

allergens, the use of individual sera from allergic individuals rather than pooled sera

is recommended. In addition to the pepsin resistance test, it is recommended that the

resistance to digestion of the newly expressed proteins is evaluated using other

in vitro digestibility tests mimicking physiological conditions of humans; some

protein is likely to survive intact into the lower intestine because of the following:

(1) Protein does not enter the acid environment of the stomach as a pure test

solution, but rather as part of a complex food matrix. Within a bolus of food passing

through the stomach, it is unlikely that all protein is exposed to the extremes of acid

pH. (2) Upon entering the stomach, proteins continuously leave the acid environ-

ment of the stomach, in a non-, partially, and fully digested state (Verhoeckx et al.,

in prep). In addition, proposals have been made with regard to other additional

testing that may improve the assessment, cell-based tests (basophil activation tests

(BAT), rat basophil leukemia (RBL) cell line transfected with human IgE receptor

activation tests), and sharing of T cell epitopes between transgene-encoded proteins

and allergens, e.g., animal models. Even though MHC restrictions in immune

responses of animal models currently preclude any conclusions, the use of animal

models can be considered as an enhancing step in the weight-of-evidence approach

if they are further developed and validated. Animal models can be useful to

investigate the capacity to elicit an allergic reaction and/or to act as an adjuvant

in different environmental/exposure conditions and analyze the underlying mech-

anisms. Moreover, animal models can be used as a substitute for allergic human

sera for a (pre-)screening of the immunological cross-reactivity of the novel protein

with known allergens and may also be appropriate for studying the allergenicity of

whole GM foods.
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2.4.2 Allergenic Potential of Non-GM Foods

Detailed guidance on how to assess the allergenic potential of novel foods is mainly

available for GM foods as described above, but not for “natural” non-GM foods that

are newly introduced into the diet, such as alternatively processed proteins or new

alternative food protein sources. Since new alternative protein sources (e.g., beet

leaves, algae, and insects) are increasingly explored for a sustainable food produc-

tion, this area will become more important. The assessment of these novel foods

will have some similarities to EFSA’s weight-of-evidence approach for novel GM

foods, in that the source of the protein needs to be defined. Homology searching is

less appropriate for novel proteins/protein sources because there is no specific

transgene to sequence. Gubesch et al. [40] designed a methodology to screen

novel plant-derived foods for the presence of pan-allergens, IgE binding of food

allergens, and clinical relevance of IgE, which illustrates a stepwise approach

which could be adopted for the allergenicity assessment of other protein sources

as well. Using this approach, cross-reactive allergens can be identified that possibly

elicit an allergic reaction in a consumer already sensitized to a known food allergen.

Pan-allergens are ubiquitous proteins responsible for IgE cross-reactivity to a

wide variety of related and unrelated allergenic sources. Usually the IgE cross-

reactivity is a consequence of structural similarity between homologous proteins,

which is translated into conserved sequence regions, three-dimensional folding, and

function [41]. However, it has been shown that antibodies also can contribute to

cross-reactivity by means of conformational diversity [42] and T cells may also

display a cross-reactivity [43].

Although usually considered as minor allergens, sensitization to pan-allergens

might be problematic as it bears the risk of developing multiple sensitizations. This

may explain the phenomenon that the majority of patients seem to display adverse

reactions upon contact to multiple allergen sources. For example, profilin is a

pan-allergen that is recognized by IgE from about 20 % of the patients with

allergies to birch pollen and plant food [44]. Therefore, as a first screening step,

the presence of proteins homologous to known allergens needs to be confirmed by

specific animal antibodies or antisera. Thereafter, a specific serum screen to identify

potential IgE-binding capacity is appropriate. In this targeted serum screening, it is

important to use sera from allergic patients with IgE reactivity to known

pan-allergens.

Where the protein in the novel food is unrelated to any major food allergen or

comes from an exotic source for which there is little information, e.g., insects or

imported fruits, then an investigation into the phylogenetic relationships of the food

source with other known foods should first be conducted. This would lead to the

design of a targeted serum screen, in which sera from individuals previously

sensitized against phylogenetically related foods should be screened for potential

cross-reactivity (i.e., to peanuts if screening for a novel legume or to shrimp if

screening for mealworms).
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Finally, the clinical relevance of in vitro IgE binding should be verified by

provocation tests (skin-prick tests or a double-blind placebo-controlled food chal-

lenge) in a clinical environment. The meaningfulness of such studies with special

regard to market authorization of novel proteins/protein sources may be question-

able when considering that in vitro IgE-binding properties in targeted serum

screening and even clinical reactivity in preselected allergic patient groups may

be observed with any novel vegetable or fruit [40]. Nonetheless, the continuing

performance of comparable studies with novel foods can improve our knowledge

about the allergenic potential of novel foods. Having sets of data on different novel

foods, those foods with an extraordinary allergenic potential may be easier to

identify.

Using the stepwise approach as mentioned above, cross-reactive allergens can be

identified. However, this approach will not identify the potency to sensitize a

predisposed individual de novo. To this end, the assessment should be supplemented

with several assays. Since there is no single test available that predicts the de novo

sensitizing potency of protein (sources), a set of assays should be conducted as

described in the previous paragraph. Together with the possible allergen cross-

reactivity data, the risk assessment can be performed on a weight-of-evidence base.

TNO drafted a generic allergenicity risk assessment flow chart for novel food proteins

and protein sources summarizing the key elements to be assessed (Fig. 2.2).

2.4.3 Allergenic Potential Hypoallergenic Food Proteins

In marketing, the term hypoallergenic should only be used when there is little

likelihood that a food will cause an allergic reaction. A well-known example is the

hypoallergenic infant milk formula. In this chapter, the term hypoallergenic refers

to the significant reduction or elimination of individual known allergens from foods

which may prove beneficial to human health.

Different approaches may be chosen to reduce the allergenic burden in foods:

(1) physical removal of the targeted allergen, (2) genetic modification (RNA

silencing or mutational knockout gene expression), and (3) food processing.

In plants, genetic modification may be used, provided that the elimination of

allergenic proteins is not deleterious to the plant since such proteins may have a

function in the plan or contribute to the nutritional value. To this end, RNA silencing

(knockdown gene expression) and mutational knockout gene expression techniques

are used. Several examples exist of genetically modified foods with reduced levels of

allergenic proteins, such as rice [45], soybean [46], apple [47], peanuts [48], and

tomato [49].

However, genetic modification is not the only approach which can be applied to

the development of hypoallergenic foods and ingredients. Other novel processing

techniques, such as high-pressure processing or extreme heat application, may

reduce the allergenicity of problematic foods and ingredients [50]. Needless to

say that genetically modified or alternatively processed foods should be assessed for

allergenicity with methods and approaches described previously in this chapter.
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2.5 Desirable Improvements in Allergenicity Assessment

Currently, the weight-of-evidence, case-by-case approach is considered the most

appropriate way of assessing the allergenicity of GM food and feed. This assess-

ment results in a “yes” or “no” verdict to the likelihood of being an allergenic

protein (source), which results often in an oversimplification in terms of risk

management: for example some novel allergenic protein (sources) may hardly

have a significant impact on public health and not require active management but

may become unnecessarily banned from the market. For risk management, it is

desired to classify novel foods/proteins in a more subtle way. A promising approach

is to compare the allergenicity of novel protein (sources) to known allergens with

low, intermediate, and high allergenic potency. This relative allergenicity scaling

Fig. 2.2 Flow chart of allergenicity risk assessment novel “natural” non-GM protein/sources
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helps regulatory bodies to decide their priorities and thus improve allergy manage-

ment by focusing resources to where they are needed.

In order to design a relative allergenicity scale of known allergens, one should first

decide what defines allergenicity, i.e., which criteria should be included to identify

allergenic foods of public health importance. To this end expert groups under the

aegis of the ILSI Europe Food Allergy Task Force [51, 52] have previously proposed

and evaluated the following as important criteria: (1) IgE-mediated character of

adverse reactions, (2) the required dose of allergenic food to elicit adverse reaction

in an already sensitized individual (threshold dose), (3) severity of adverse reactions,

and (4) prevalence. It must be acknowledged that the severity of the adverse reactions

is a result of the nature, extent, and duration of exposure rather than the inherent

allergenic potency of the protein per se. Therefore in order to design a relative

allergenicity scale, a risk-scoring system should be developed in which all available

data on the IgE-mediated character, threshold dose, and prevalence of a panel of

known low/intermediate/high allergens should be collected. Eventually, risk scores

should be attributed to the combined available information for each newly introduced

food. Such an overall scoring system is currently being developed by TNO as a useful

tool for proper risk assessment and management of novel allergens.

3 Toxicological Safety Assessment of Food

3.1 The Toxicological Food Safety Assessment
and the Threshold of Toxicological Concern

A toxicological food safety assessment is generally performed by a sequential

approach. In this sequential approach traditionally four steps are taken. In the first

step the composition of a food product should be completely identified and quan-

tified. Based on this information, the potential hazard of each substance present in

the food product should be separately assessed in the second step. For each

substance a toxicological threshold has to be derived. Mostly this threshold is

derived from animal toxicity data and converted using safety factors to thresholds

for human exposure. Subsequently, in the third step an assessment of the past and

the current or the expected exposure is performed. Finally, in the fourth step, a risk

assessment is performed for each substance by comparing the calculated exposure

to the threshold calculated to determine if the product is expected to pose a health

concern. It should be noted that it is likely that not each single substance can be

identified in a complex food matrix, resulting in data gaps which forces to perform

(animal) toxicity testing using the product as a whole.

Foods are chemically complex food matrices (CCFM) and may consist of

many substances. Therefore, the abovementioned sequential approach may lead

to unnecessary detailed research and as such to a waste of time, animals, and

resources. It is therefore essential to make better use of existing toxicological
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information. In the past decades, alternative approaches have been developed for

the safety assessment of substances. An example of an alternative approach is

the Threshold of Toxicological Concern (TTC) concept. Based on a large toxico-

logical dataset, containing chronic toxicity data of a wide variety of substances, the

TTC concept provides a predictive safety assessment tool for substances for which

no toxicological information is available. Depending on the molecular structure of a

substance, a human exposure threshold value can be derived for most substances,

below which there is a very low probability of a risk to human health.

The history of development and application of the TTC concept has been

extensively reported in several publications [53–59]. Kroes et al. [54] published a

decision tree in which different TTC values are proposed for different groups of

substances. The decision tree distinguishes between genotoxic and/or high-potency

carcinogens, organophosphates, and Cramer class III, II, and I substances. For all

these classes of substances a conservative threshold of concern is determined based

on a large set of chronic toxicity data. These thresholds are derived for lifetime

daily exposure to the substances. Proteins, heavy metals, and polyhalogenated

dibenzo-p-dioxins and related substances were excluded from the decision tree.

Using the decision tree, for many substances a threshold can be derived which can

be used in safety assessment (confirmed by the EFSA).

The main difference between the TTC concept and the traditional sequential

approach is that the TTC concept is an exposure-driven approach. Since the past

decades, exposure-driven safety assessment concepts are applied or developed in

several frameworks, e.g., indirect food additives endorsed by the US FDA [60],

flavoring components endorsed by JECFA [61], genotoxic impurities in pharma-

ceuticals endorsed by EMEA [62], contaminants in foods proposed by ILSI [53], and

exposure-based waiving under REACH [63]. This is considered as a shift in safety

assessment mindset away from the preferred traditional approach to investigate the

exact toxicological profile of a substance after which the exposure is considered.

3.2 New Toxicological Safety Assessment Approach
for Complex Food Matrices

Many of the compounds present in a complex food matrix might be present at low

concentrations resulting in intakes below the TTC thresholds. In order to increase

the efficiency of the assessment process of complex food matrices, without making

concession to the safety aspects, TNO has developed a complex matrix safety

assessment strategy (CoMSAS) which is a stepwise multidisciplinary strategy

combining high-end sample preparation, fractionation, and analytical techniques

with the TTC concept [64, 65]. The strategy concerns a stepwise analytical

approach based on the exclusion of the presence of specific groups of substances

using target analytical techniques following the Kroes et al. [54] decision tree and

modifications as proposed by Munro et al. [58]. Also the recent conclusions of the

EFSA opinion on the TTC concept [59] are taken into consideration. The major
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advantage of this strategy is that a full identification of all compounds in the matrix

and concurrent compound-specific safety assessment is not needed for substances at

low exposure levels. For a detailed description of categories of substances and their

thresholds that are considered in the TTC and CoMSAS approach it is referred to

Kroes et al. [54], Munro [58], and EFSA [59]. The CoMSAS is schematically

presented in Fig. 2.3 and will be further explained below using a stepwise approach.

3.2.1 Step 1

The first step concerns a general analytical screening of the complex food matrix.

The goal of this step is to detect as many substances as possible present in the

complex food matrix, without identification, and to estimate the concentration at

which they are present. This step is performed using a nontarget forest-of-peaks

(screening) approach in which a number of analytical techniques is being used to

cover a wide variety of physical chemical properties which substances present in

the CCFM may possess. Based on the estimated concentration of the detected

substances, an exposure estimate for each “peak” can be made based on food

consumption information of the total food product concerned. For substances

below the exposure threshold of 90 μg/day, no further assessment has to be

performed when certain categories of substances can be excluded or are below

specific thresholds (see further steps). In principle only the substances with an

exposure exceeding 90 μg/day have to be identified after which a substance-specific

Fig. 2.3 Stepwise approach to assess safety of complex food matrices using CoMSAS
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safety assessment needs to be performed (see step 4). For identification and

quantification of these substances analytical methods like gas chromatography

coupled to mass spectrometry, combined with LC and high-resolution mass spec-

trometry or NMR analysis, may be used. It should be noted that the identity of

substances that are present in higher amounts in a complex food matrix is in many

cases already known, particularly in case these substances are intentionally present

for a specific purpose in the food.

3.2.2 Step 2

As indicated before, the TTC concept cannot be applied to proteins, heavy metals,

and polyhalogenated dibenzo-p-dioxins and related substances, as these substances
have a higher toxicity or are not included in the dataset underlying the TTC concept

[54]. Also aflatoxin-like, azoxy- or N-nitroso substances do not have a TTC

threshold and need a substance-specific safety assessment. Moreover, the threshold

of 90 μg/day used in the CoMSAS approach is based on the TTC threshold of

Cramer class III substances, which is higher than the threshold for organophos-

phates and carbamates (18 μg/day). Therefore, for the substances present in the food
matrix with an estimated exposure below 90 μg/day, it has to be excluded that they
belong to the class of substances as indicated above. Using targeted analytical

methods the complex food matrix can be assessed for the presence of proteins,

nonessential/heavy metals, metal-containing compounds, dioxin-like substances,

highly potent genotoxic substances, and organophosphates/carbamates.

3.2.3 Step 3

For substances with a genotoxic potency a threshold of 0.15 μg/day is set in

the TTC decision tree. For applying a general TTC threshold of 90 μg/day, the
presence of substances with a genotoxic potency needs to be excluded. The best

way to assess this is to test the whole food matrix or extracts thereof for the presence

of potential genotoxic substances using a biological assay. Conventional state-of-

the-art assays such as the AMES test were not developed to test CCFM. Alternative

assays such as the BlueScreen HC assay [66], which is sensitive for gene mutations,

clastogenicity, and aneugenicity, can be used as an alternative for this purpose. In

case a food or an extract thereof is tested positive in such a genotoxicity assay it is

unclear which substance(s) actually causes (cause) the genotoxic response. Frac-

tionation of the food matrix using extraction and separation techniques and testing

these fractions for their genotoxic potential may help to finally identify the fraction

containing the genotoxic substance(s) and subsequently to find the substance

(s) responsible for this effect. This can be followed by identification of the respon-

sible substances present in the positive fraction followed by substance-specific risk

assessment. A high-throughput genotoxicity assay such as the BlueScreen HC assay
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in combination with fractionation and further analytical research is very helpful for

this purpose.

3.2.4 Step 4

The next steps of the CoMSAS approach are related to substances present at levels

resulting in intakes above 90 μg/day and assessment of substances that appeared

present in step 2 or 3. Step 4 requires assessment of these substances. The safety

assessment of the substance can be done based on the TTC threshold of the actual

Cramer class, based on substance-specific toxicological data (e.g., retrieved from

public literature), or related to legal limit values for the substance (e.g., in case of

heavy metals and aflatoxins). In case no substance-specific toxicological informa-

tion is available, the evaluation can also be performed using available toxicological

information from comparable chemical substances (in structure and mode of

action). Based on the toxicological evaluation a substance-specific human health

limit value can be established which can be compared to the estimated daily intake

of the substance. In case it cannot be excluded that a health risk may occur,

measures might be taken to reduce or prevent the presence of the substance

concerned.

3.2.5 Step 5

In case proteins appear present in the complex food matrix, an allergenicity

assessment may be necessary. In case of known food allergens labeling of the

product can be performed, and/or an assessment can be made for the probability of

an allergic response in an allergic individual. For new proteins/unknown food

allergens, new safety assessment approaches will be developed (see later on in

this chapter).

3.3 Discussion on CoMSAS

The CoMSAS approach as described above is most efficient in case in a complex

food matrix a limited number of substances are present to which the daily exposure

exceeds 90 μg/day. To investigate this, TNO has applied the approach to migrants

from food contact materials (non-intentionally added substances), natural food

supplements, and processing of herbs. The pilot cases demonstrated that the thresh-

old of 90 μg/day would be sufficiently high for a reasonable applicability in the

safety assessment of complex food matrices. It should be noted that the TTC

concept is not a static concept, but remains under development as more information

is expected to be published in near future. The TTC thresholds may therefore also

change depending on the information available. The exclusion scheme and strategy
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presented in this chapter are based on the most recent literature on TTC at the time

of writing. For example, in its evaluation in 2012 the EFSA concluded that the

chronic toxicity dataset underlying the threshold for Cramer class II substance

(540 μg/day) is not sufficient and that therefore the threshold of Cramer class III

substances (90 μg/day) should be applied to Cramer class II substances. Based on

this conclusion, the threshold used in the CoMSAS approach was set at 90 μg/day.
TNO currently assesses the chronic toxicity dataset underlying the TTC concept to

assess whether on a scientifically valid base other thresholds for (sub)classes of the

Cramer class III substances can be derived. Details of this study will be submitted

for publication upon completion. Based on the outcome of this assessment eventu-

ally also the threshold used for the CoMSAS approach may be adapted.

The TTC approach was developed for the evaluation of single substances present

in food. The CoMSAS approach is developed for the evaluation of complex food

matrices (mixtures). It might occur that in a complex food matrix different sub-

stances with similar or interacting toxicological activity are present that will appear

as separate “peaks.” The aspect of interaction between (toxicity of) substances at

low dosages was evaluated by the Dutch National Institute for Public Health and

Environment [67] and Boobis [68]. Both concluded that at low doses interaction

between substances such as synergy and antagonism is not likely to occur. How-

ever, Pieters and Konemann concluded that dose addition even at low concentra-

tions of substances in mixtures cannot be excluded. In most cases a factor of

10 appeared to be sufficient to cover for dose addition. TNO has assessed this

further and concluded that “to some extent cumulative effects at exposure levels for

each substance at or below 90 μg/day might occur. However, the health relevance of

possible cumulative effects at this dose level is considered to be that low that a need

for a correction factor to cover possible cumulative effects is very low to

absent” [69].

The current sequential approach in toxicological safety assessment may lead to

unnecessary detailed research, especially considering that more and more complex

food matrices have to be assessed. To stimulate food innovation and reduce animal

toxicity testing, scientifically sound but pragmatic safety assessment strategies are

required in which existing relevant information is used optimally. Besides the TTC

principle and read across for single substances, CoMSAS provides a pragmatic

approach for the assessment of matrices without the need for full identification. The

CoMSAS complies with the current accepted state of the art regarding the TTC

concept. In future, the TTC concept might be refined or extended with other

(higher) thresholds of concerns for classes of substances due to new knowledge

and literature. Moreover, new non-testing concepts might be developed. By making

more optimal use of existing information, based on large datasets of toxicological

data, these data in combination with for example toxicogenomics information can

provide even more pragmatic ways of safety assessment in future.
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Chapter 3

Bridging a Pharma-Like Innovation Gap
in Medical Nutrition

Tamar C. Weenen, Kenneth Fernald, Esther S. Pronker,
Harry Commandeur, and Eric Claassen

1 The Health and Life Sciences

As the boundaries between many once-distinct industries blur and consequently

combine, it gives rise to new industries. This also holds true for the health and

life science sector [6, 18, 59]. In the past few years the gap between pharma and

nutrition science is closing. One reason is the increasing scientific evidence regard-

ing the potential of nutrition and the role in the prevention or treatment of diseases

and/or risk factors for disease [23].

As a result of the rediscovered medical application of nutrition, the traditional

boundaries between the pharmaceutical and food industries are fading. It is at this

interface where the ideal set of conditions/environment is provided for the devel-

opment of a new industry segment: pharmanutrition.

Convergence is taking place where (large) pharmaceutical, biotechnology and

food companies are merging or forming strategic alliances to maintain long-term

profitability [5, 6, 59]. Consequently, the number of companies with multidis-

ciplinary activities eligible to fall under the pharmanutrition industry has increased.
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Especially in an era where the pharmaceutical industry is facing both fewer product

approvals in combination with blockbuster patent expirations, such convergence

trends offer profitable opportunities [5, 10]. Food industry research programmes

slowly start resembling approaches used in the pharmaceutical world, while phar-

maceutical companies realise the potential of nutrition slowing down disease

progression or improving therapeutic outcome [23].

The resulting new industries present companies with both threats and opportu-

nities. On the one hand, industry convergence increases the risks for developing

new knowledge and technologies. Inventors leave the comfort zone of their mono-

disciplinary area of expertise to venture into unknown discipline-crossing activities.

On the other hand, the early stages of industry convergence offer significant

opportunities, one of them encompassing the first-mover advantage, and potentially

setting the knowledge and technological industry standard in doing so [10].

Compared to the food industry, the pharmaceutical industry is relatively young,

and it has developed into a cluster of industries concentrating on developing

commercial applications for global health-care markets [69].

Existing pharmaceutical and food companies realise that pharmanutrition

is an area filled with opportunities for enhancing discovery, technological and

development competencies. [5, 72]. Already during the past few decades, various

boundary spanning innovative pharmanutritional products have been granted mar-

ket approval. These so-called pharmanutrition products claim to provide a form of

specific health benefits beyond basic nutrition. Examples of pharmanutrition prod-

ucts resulting from the convergence between the food and pharmaceutical indus-

tries are functional foods and medical nutrition (Fig. 3.1).

Nevertheless, both pharmaceutical and food companies also recognise the dis-

advantages in funding inventions that lead to the commercialization of boundary-

spanning products. Especially during the early stages of industry convergence, such

products are perceived by the regulatory authorities and legal practices as entities

with ambiguous identities. Consequently, the boundary-spanning product is gener-

ally misunderstood by the majority of risk-averse consumers and experienced as

illegitimate. Additionally, the greatest distinction between food products and med-

icines is of great significance for legal practice, since medicines are more strictly

regulated than foods [20]. Therefore, carefully categorising industries and identi-

fying industry boundaries may lead to better consumer perception and higher

market acceptance.

Disadvantages of boundary spanning products are that having an unclear and

ambiguous identity decreases the chances of receiving attention as well as not being

perceived as legitimate and trustworthy [72].

This chapter starts off by exploring the definitions and characteristics of the

pharmanutrition industry in the European health and life science sector. At present,

unstandardized terminology describing pharmanutritional products is often per-

ceived as confusing [23]. The focus will be on defining the industry boundaries

and illustrating industry convergence. By taking conventional foods at one end of

the spectrum, and pharmaceutical products at the other, the pharmanutrition indus-

try can be split further into two categories falling within this spectrum: functional

foods and medical nutrition.
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Section two exemplifies the developmental trends of the medical nutrition

industry. Here, various industry life cycle scenarios are defined in order to forecast

the direction in which this pharmanutrition industry could mature. Concepts such as

the innovation cliff and jumping the S-curve are described, and strategies to

overcome these common bottlenecks are proposed.

The final section describes patenting behaviour in the medical nutrition industry,

offering a patent decision framework for intellectual property protection strategies.

The chapter rounds-off with a general discussion as to the successful development

of the medical nutrition industry.

1.1 Setting the Scene

In order to understand the convergence of the conventional foods, functional foods,

medical nutrition and pharmaceutical industries, it is useful to review each industry.

1.1.1 Conventional Foods

The conventional foods industry (Table 3.1) encompasses a broad range of nutri-

tional products for consumption, ranging from natural sources to genetically,

Fig. 3.1 Industries situated in the health and life science sector
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biologically and/or chemically modified food substances. It is considered to be at

the opposite end of the industry spectrum, unrelated to the pharmaceutical industry.

This product category is defined according to EU legislation as “any substance or
product, whether processed, partially processed or unprocessed, intended to be, or
reasonably expected to be ingested by humans. Foods include drinks, chewing gum
and any substance, including water, intentionally incorporated into the food during
its manufacture, preparation or treatment.” Food is consumed to provide nutri-

tional support for the body. It is usually of plant or animal origin and contains

essential nutrients, such as carbohydrates, fats proteins, vitamins or minerals [21].

Foods do not include: live animals unless they are prepared for placing on the

market for human consumption, plants prior to harvesting, medicinal products,

tobacco and tobacco products, narcotic or psychotropic substances, and residues

and contaminants. Both international trade and technological developments have

contributed to a significant increase in the available foods and other edible

ingredients.

With the increasing pace of developments in the food industry, EU regulatory

bodies realised the need for a formalised safety assessment of new foods In the EU

[28], the general policy on food safety has been laid down in the EUWhite Paper on

Food Safety [8]. This document outlines a comprehensive range of actions required

to complement and modernise existing European food legislation, which in turn led

to the introduction of the General Food Law (Regulation (EC) 178/2001). This

regulation formed the basis for the establishment of the independent European Food

Safety Authority (EFSA) in 2002. In summary, these regulations are necessary to

ensure EU unified food safety standards.

Conventional foods are inherently linked to an individual’s health. As a result,

conscious consumers seek out the health properties of natural food substances.

1.1.2 Functional Foods

The term “functional food” was first introduced in Japan in the 1980s as FOSHU

(Food for Specified Health Uses) and has since developed into a successful and

lucrative industry [51, 60]. The Japanese interest in functional foods spread towards

the Western world in the early 1990s. As a result, the Western functional food

industry has evolved at the intersection of the pharmaceutical and food industries

[10, 60]. This product category consists of food products with added health benefits

when compared to the regular nutritional value of the traditional food product [30].

To date, most countries do not have a formal and legislative definition of the term

functional food. Even for experts, delineating the boundaries between food and

functional foods is challenging [60]. According to the EU-project Functional Food

Science in Europe (FUFOSE), functional foods are defined as: “A food can be
regarded as functional if it is satisfactorily demonstrated to affect beneficially one
or more target functions in the body, beyond adequate nutritional effects. . .” [12].

The functional food industry is seen to have evolved from the convergence of the

food industry and health and life science sector. Comparable to the pharmaceutical
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industry, which is based on traditional healing experiences such as willow bark

(aspirin), functional foods are based on traditional nutrition folklore such as fatty

fish, at present often supplemented as a refined omega fatty acid.

As awareness and trust concerning food related health benefits is growing among

the general public, consumer demands are changing. They collectively seek foods

with added health benefits, which include functional foods. Most early develop-

ments of functional foods were food products enriched with vitamins and/or

minerals. Soon, foods fortified with various essential micronutrients—such as

phytosterol and soluble fibre—became more popular [61, 62].

Through functional foods, consumers aim to prevent diseases and improve their

physical and mental well-being [39]. The majority of functional food products are

aimed at optimising health by increasing energy-levels, by boosting the immune

system or through the prevention of chronic illnesses (including cancer, cardiovas-

cular disease, Alzheimer’s disease and osteoporosis) [30]. Especially in the West-

ern world, any innovation targeting those disease areas are considered valuable.

This is due to a combination of the following reasons: health-care costs are

increasing; people demand an improved quality of life; and there is a steady

increase in life expectancy. Combined with the general saying that “prevention is

better than the cure,” consumers are more actively pursuing healthy lifestyle and

dietary choices.

Consumer perception of functional foods is strengthened by means of nutrition

and/or health claims. A claim is defined by the Codex Alimentarius, as “any
representation which states, suggests or implies that a food has particular charac-
teristics relating to its origin, nutritional properties, nature, production, processing,
composition or any other quality” [26]. To ensure that claims on foods and food

constituents are scientifically justified, the European Union published Regulation

No 1924/2006 on nutrition and health claims made on foods [3]. This regulation

distinguishes two categories of claims on foods: health claims and nutritional

claims. Nevertheless, functional foods are not regulated in the same way as pharma

(EMA or FDA). According to functional food legislation, health claims state,

suggest or imply a relationship between food and health. Such claims include

reduction of risk of disease claims, function claims or claims referring to the growth

and development of a child.

Nutrition claims state, suggest or imply that a food has particular beneficial

nutritional properties due to the energy it provides or the nutrients it contains.

Examples hereof are content claims or comparative claims, e.g. “this product

contains calcium” or “this product is low in sugar.” Explicit conditions are provided

in EU legislation for claims such as “source of”, “rich in”, “reduced”, “fat-free”

[26]. The European Food Safety Authority (EFSA) carries out the scientific assess-

ments of these claims in Europe. The final approval is provided by the European

Commission and member states but is strongly based on the scientific opinions of

EFSA as to whether the claim is sufficiently substantiated [16, 50].

Since many applicants have encountered difficulties in submitting EFSA accept-

able scientific evidence to be granted a health claim, they published in July 2007 its

“scientific and technical guidance for the preparation and presentation of the
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application for authorization of a health claim.” This publication is pursuant to

Article 14 of Regulation 1924/2006 in order to assist the applicant with submitting

health and nutritional claims. As may be expected, the reactions from various

stakeholders regarding this EFSA document differ considerably [67]. Some stake-

holders have brought up the issue that the current EFSA approach may hamper

innovation. Others state that on the long term, Regulation 1924/2006 will improve

the reliability and credibility of health claims on foods. According to yet other

experts, this regulation will not empty the functional food shelves but solely change

the look of those shelves.

1.1.3 Medical Nutrition

Medical nutrition is perhaps the most confusing category, subject to different

interpretations between, as well as within, geographical regions. Terms include

medical nutrition, clinical nutrition, medical foods, enteral nutrition, foods for

special medical purposes, and dietary supplements [20, 23, 34, 57].

In Europe, medical nutrition is not regulated by the EMA (European Medicines

Agency) but is governed by the Foods for Special Medical Purposes (FSMP)

Directive. The design and production of medical nutrition is predominantly based

on scientific knowledge. In this Directive, medical nutrition is defined as: “foods
that meet the particular nutritional requirements of persons affected by or are
malnourished because of a specific disease, disorder or medical condition” [7].

This category includes oral nutritional supplements as well as tube feeding, of

which the latter is administered via nasogastric, nasoenteric or percutaneous tubes.

There are three categories in medical nutrition:

1. Nutritionally complete foods that can serve as the sole source of nutrition for a

patient;

2. Nutritionally complete foods with an adapted nutrient formulation which can

also serve as the sole source of nutrition for a patient;

3. Nutritionally incomplete foods which are not suitable as the sole source of a

patient’s nourishment [7].

As a result of the patient specific needs, medical nutrition is often personalised in

order to optimise the health-benefit effect. The European Union provided manu-

facturers with basic rules concerning the vitamin and mineral substances that are

needed for covering particular requirements of intended users [7]. The legislation of

medical nutrition is harmonised on EU level, but in case of the Directives it is

implemented in the individual Member States.

Medical nutrition spans both conventional food and pharmaceutical categories.

Nevertheless, medical nutritional products are intended for patients suffering from

a disease and are predominantly prescribed by a medical professional. Therefore,

medical nutrition products are perceived to be more related to the latter category.

As a consequence of this industry convergence, it is confusing for the regulatory

authorities, medical nutrition companies and market, how to validate the safety,
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efficacy and quality of a medical nutritional product for example. In the pharma-

ceutical industry, clinical trials are an essential aspect in new product development.

For the medical nutrition industry in Europe, clinical trials are optional. Companies

may choose to carry out clinical trials to obtain sufficient evidence on the efficacy

of a product to be able to substantiate a product claim. These product claims are

often important in the process of applying for reimbursement. The requirements for

reimbursement are dependent on the health-care system of the particular country

and the reimbursement decision rests with the respective countries’ advisory

committees [25, 48].

Already in the last few decades, pharma-like clinical evidence concerning the

effectiveness of medical nutrition has significantly enhanced its credibility

[35]. Medical nutrition is becoming a well-accepted form of nutritional support

for patients suffering from disease-related malnutrition. Disease-related malnutri-

tion is a highly underestimated condition, prevalent throughout hospitals, commu-

nity health-care centres (outpatients, care homes, general practice) and other

community settings [64]. Malnutrition is defined as “a state of nutrition in which
a deficiency, excess (or imbalance) of energy, protein and other essential nutrients
causes measurable adverse effects on tissue/body form (body shape, size and
composition) and function, and clinical outcome” [17]. There are many causal

factors leading to disease-related malnutrition, yet in general, it is the underlying

medical condition that affects the intake of essential micronutrients.

1.1.4 Pharmaceuticals

The pharmaceutical industry represents the other end of the health and life science

sector spectrum, and in turn is highly unrelated to the conventional foods industry.

During the 1980s, the pharmaceutical industry experienced an exponential growth

spurt, leading to the highest product turnover and market approvals of new chem-

ical entities (NCEs) known to history. Nevertheless, this growth has significantly

slowed down at the start of the millennium, due to a number of reasons including,

but not limited to rising development costs, enhanced best-standard of care, block-

busters patent expiry and intensified global competition [31, 40]. Pharmaceutical

new chemical entities are defined by the EU legislation as: “any substance or
combination of substances presented for treating or preventing disease in human
beings. Any substance or combination of substances which may be administered to
human beings with a view to making a medical diagnosis or to restoring, correcting
or modifying physiological functions in human beings is likewise considered as a
pharmaceutical product” [9].

Pharmaceutical new chemical entities are considered prescription medicines,

used for therapeutic treatment or prophylaxis of a chronic or acute disease. They

can only be obtained at a pharmacy with a prescription from a physician. The drug

development value chain is considered as one of the most (inter-) nationally

regulated processes, whereby the NCE has to demonstrate specific safety, efficacy,

quality and ethical standards throughout the discovery, preclinical, clinical and
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market phases. As a result, the average clinical development phase of the value

chain takes over 12 years and requires an investment close to €0.6 Billion [55].

Since 1995, the European medicines Agency (EMA) is responsible for the scientific

evaluation and monitoring of the safety and efficacy of pharmaceutical products in

Europe.

2 Trends in the Medical Nutrition Industry

From the four above-mentioned industries, the medical nutrition industry offers the

most potential for innovation (Fig. 3.1). This industry has experienced vigorous

growth in the last few decades [69]. This growth can be attributed to several factors,

such as the increase in ageing population and the growing body of scientific

evidence concerning the effectiveness of medical nutrition. At present, various

companies have entered the industry domain and are intensely competing with

each other. To assess today’s and tomorrow’s medical nutrition innovation oppor-

tunities, it is crucial to monitor industry development.

2.1 Medical Nutrition Industry Development

The industry output of the European medical nutrition market is dominated by five

companies. The key participants owning of the total EU medical nutrition market

share include Abbott Nutrition, B Braun, Danone, Fresenius Kabi and Nestle.

As an industry emerges its innovation activities correspondingly develop. It is

therefore crucial for companies within emerging industries to manage innovation

using appropriate strategies and business models. There is an extensive body of

business oriented literature demonstrating that effective management of innovation

works best when matched with the distinct stages of industry development [38].

Examining these patterns is a crucial prerequisite for adopting the appropriate

innovation strategies and business models for improving product development

and enhancing value creating activities [38].

First, we identify the current stage of development in which the industry is in. In

short, industry development is represented by an S-curve, delineating four key

stages: emerging, growth, maturity and saturation [2, 19]. The main method for

evaluating the industry development phase is by analysing the technological state-

of-the-art via patent applications. These are a primary measure reflecting an

industries’ technological development, which in turn illustrates on the industry’s

development phase. We visualised a cumulative patent application timeline for the

development of medical nutrition from 1995 to 2009 [69]. Here we update, includ-

ing 2012 (Fig. 3.2). Since 2002, a steep increase in cumulative patenting activity is

observed, which is considered to indicate that the technological development of the

industry is currently in the growth stage.
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Nevertheless, it is of importance to forecast the industry development curve, in

order to infer future performance (Fig. 3.3). From a macro-perspective, four different

future scenarios may exist for medical nutrition industry development, namely,

classic S-curve, steep S-curve, innovation cliff and jumping the S-curve. Here, we

Fig. 3.2 Medical nutrition industry development 1995–2012. Updated from [69]

Fig. 3.3 Medical nutrition industry development scenarios. Black line: Classic S-curved technol-

ogy life cycle [69]. Red line: Steep S-curved technology life cycle. Blue line: Innovation cliff.

Green line: Jumping the S-curve. Adapted from: [1, 19, 22, 37, 71]
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will argue the possibility of each of the four scenarios, based on literature review and

interviews with key opinion leaders in the field of medical nutrition [70].

2.1.1 Classic S-Curved Technology Life Cycle

The classic technology development S-curve was introduced in economics by

Mansfield [37] in a publication concerning the diffusion of new technologies. The

S-curve has since been widely used in management and economic theory [22]. The

classical S-curve starts off with the emerging stage, which is characterised by a

relatively low technological growth, followed by the growth stage, in which the

technological progress rises steeply, and then by the maturity phase, where

the growth slows and when it has reached saturation, and reveals a plateau. During

the saturation stage, the technology approaches its underlying natural limitation.

Based on the development stage an industry finds itself in, strategic R & D

decisions can be made [19]. The classic S-curve of technology development is

worth keeping in mind when considering the current status of the medical nutrition

industry and where this industry may be headed. At present, the medical nutrition

industry finds itself in the growth phase of the technology life cycle. Based on our

data, if the industry performance continues to follow the classic curve, saturation

could be reached by mid 2024.

2.1.2 Accelerated S-Curved Technology Life Cycle

For a very successful and fast-growing industry, the angle of the upward inflection

in the emerging and growth phases may be less than 120� [71]. The curve follows a
similar pattern to the classical S-curve, and eventually levels off at a sustainable

high level. One aspect that contributes to the steepness of the curve during the

emerging and growth phases is the length of the product development timelines: the

shorter this timeline, the steeper the curve. The product development timelines for

medical nutrition are significantly shorter when compared to pharmaceutical new

product development, yet longer when compared to other fast-moving consumer

goods (e.g. conventional foods). Therefore, we predict that the emerging and

growth curve for medical nutritional products will fall in between the two other

industry categories. Based on this knowledge, it is assumed to be highly unlikely

that the medical nutrition industry performance will follow the steep S-curve.

2.1.3 The Innovation Cliff

An industry is, more often than not, perceived as durable and stable, capable of

surviving many decades. Nevertheless, industries are fragile and prone to collaps-

ing [14]. This is represented by the green curve in Fig. 3.3, which illustrates the

so-called ‘innovation cliff’ scenario.

3 Bridging a Pharma-Like Innovation Gap in Medical Nutrition 39



During this scenario a technology initially follows the performance characteristics

of the classic S-curve in the emerging and growth phases, and all seems

well. However, the curve is suddenly truncated [71] while the industry plunges off

the metaphorical innovation cliff, and seizes to exist any longer (Fig. 3.4). Many

different factors can lead to the sudden demise of a technology. Two key factors

contributing to this phenomenon include innovation barriers and/or reduced innova-

tion adoption. Surprisingly, the majority of interviewed medical nutrition key opinion

leaders predict that the medical nutrition industry is heading towards an innovation

cliff within the coming 2–3 years. Based on theoretical models adopted from literature

and results from our previous research [70], we propose two different explanations as

to why the medical nutrition industry might be headed towards this innovation cliff:

(1) Technology/innovation development and (2) technology adoption.

2.1.4 Abernathy–Utterback Technology Development Life Cycle

The technology development life cycle explores the roles of the manufacturing com-

panies, as they respond to the forecasted unmet needs within the market. It describes a

scissor-curve technology life cycle describing the evolutionary phases of technology

development. Abernathy and Utterback’s technology life cycle (Fig. 3.5) consists of

three phases: fluid, transitional and mature [66]. The fluid phase is characterised by

extreme diversities in new product designs. It is in this phasewhere competitors attempt

to meet the various needs of the emerging customer, resulting in a high throughput of

innovative product designs in order to grab the attention of the first-mover consumers.

The fluid phase then gives way to a transitional phase, where product innovation

decreases and process innovation is on the rise. During this phase a dominant design

typically emerges, which has been accepted either by the market or selected as such

by the regulatory authorities. Some technologies eventually transition to the mature

phase, where product and process innovation lose momentum and the primary focus

of the company is mainly set on reducing the manufacturing cost.

Fig. 3.4 The lemming effect
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When including the classical S-curve describing the industry life cycle to the

Abernathy–Utterback model, the mid-emerging phase of the industry life cycle is

manifested slightly before the crossing of product and process innovation in the

fluid phase. This implies that not all of the customers’ needs have been fulfilled and

the dominant design has not yet been adopted.

This description typifies the current EU medical nutrition industry situation,

which is supported by previous research into innovation barriers within the medical

nutrition industry [70]. As a result, the main obstacles include the regulatory

ambiguity at both the clinical research as well as at the reimbursement level.

Clinical research is perceived by the surveyed KOLs as the main innovation barrier,

and it is intricately linked to other financial barriers. This includes the consideration

of the chances for being granted reimbursement, which would ultimately stimulate

the decision to perform clinical studies. This lack of clarity and standardisation may

prevent the adoption of a dominant design. Therefore, a slippery slope is assumed,

linking the clinical research barrier with the absence of establishing a dominant

design, which in turn reduces the capacity for process innovation. All in all, this

scenario would result in medical nutrition industry heading towards the innovation

cliff.

2.1.5 The Chasm of Technology Adoption

The technology adoption life cycle is a model developed to understand the accep-

tance of innovation by the consumer market over time. Geoffrey Moore discovered

that companies often fail to make the transition from the growth phase to maturity

in the technology adoption life cycle (Fig. 3.6) [43]. This gap is known as the
chasm, during which product sales drop [43]. Crossing this chasm is often nearly

Fig. 3.5 Abernathy–Utterback technology development life cycle and the industry life cycle—

adapted from [29, 66]
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impossible but progressing beyond it is considered crucial for the ability of an

innovative industry to reach the stage of maturity and saturation.

In the medical nutrition industry, innovation adoption is influenced by both

health-care professionals and patients. Generally, health-care professionals pre-

scribe medical nutrition and assess which type/nutrient content of medical nutrition

is best. However, medical nutrition product characteristics such as taste, smell and

tolerance are assessed by the patient. In the view that the medical nutrition industry

is a relatively young industry [69], innovation adoption is still at an early stage. The

early adopters, in this case mainly the nutrition-oriented health-care professionals,

have realised the potential of medical nutrition. Nevertheless, the awareness of

available products is low [70] which may cause the medical nutrition industry to fall

victim to the chasm.

The challenge of crossing the chasm in this case is to raise awareness

among all health-care professionals concerning nutritional interventions through

medical nutrition. Subsequently, if awareness among the medical professionals is

heightened, they will be able to educate their patients which in turn will stimulate

innovation adoption.

Fig. 3.6 The medical nutrition chasm of technology adoption adapted from Moore [43]
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Based on Sects. 2.1.4 and 2.1.5, the synergistic effects of technological devel-

opment and market adoption pose a serious risk for the medical nutrition industry to

face the innovation cliff. It is, therefore, in any scenario, of utmost importance to

address innovation barriers and increase general awareness on effectiveness of

medical nutrition in order to prevent this negative scenario from happening in

reality.

2.1.6 Jumping the S-Curve

As dark and gloomy as the previous scenario might seem, this scenario provides a

more optimistic future for the medical nutrition industry. Generally, once the

growth phase has been surpassed, the natural evolution of the industry is to reach

the stage of saturation, where technological growth reaches homeostasis. Success-

ful industries are those with companies that manage to jump the classical S-curve

halfway through its growth phase to the next technology S-curve. Such a feat can

only be accomplished when companies understand the dynamics of the S-curve,

which implies the anticipation of market decline. One way of jumping the S-curve

and taking advantage of this knowledge, is to radically innovate their way to a new

S-curve [46].

Generally there are two types of innovations: incremental and radical. Incre-

mental innovations consist of minor improvements or adjustments to existing

inventions or technologies. Radical inventions exhibit key characteristics that are

inherently different from existing inventions or technologies. The latter type is

considered to form a crucial basis from which subsequent incremental development

may evolve [42, 58]. Most organisations are familiar with leveraging core products

through incremental innovation. This approach is perceived as less risky. It assures

positive revenue growth as opposed to the discontinuous and radical approach of

breakthrough innovation. In prior research, we demonstrated that even though

radical innovation is crucial for industry and company performance, only a few

medical nutrition companies innovate radically [69].

For an industry to jump the S-curve, companies are to strategically innovate

towards the next S-Curve and jump at the optimal moment. Generally, the optimal

time to start building the next S-curve is during the growth phase of the technology

life cycle. Whilst in the technological growth phase, companies are still able to

maximise their returns while starting to invest in a new radical technology [1, 46].

One way for the medical nutrition companies to jump the S-curve is by identifying

new opportunities, such as unmet needs. This can be in the form of addressing

unmet patient needs, related to product characteristics, but also by responding to

unmet medical needs.

As a rule of thumb, if one company successfully jumps the S-curve through

radical innovation, the (incremental) others may follow. The radical innovator will

always benefit from first-mover advantages and has a chance of establishing a

dominant technology design. Furthermore, radical technology innovation is a

strategy to overcome the innovation barriers as described in Weenen et al. [70].
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2.2 Intellectual Property Strategies in Medical Nutrition

The first and a crucial step for successful innovation within a competitive industry

is to protect your inventions through intellectual property (IP) rights [33, 65]. Espe-

cially in the early stages of industry development in the emerging and growth

phases, the choice of appropriate IP protection methods is fundamental. Different

IP methods include: trade secrets, copyright, trademark, defensive publishing and

patents [24]. In the view that patents are most valuable to the health and life

sciences, we will focus on this particular IP right.

The 5 major players in the European medical nutrition industry exhibit four

different patent strategies. This leads to the assumption that patents are perceived

with different value for protecting medical nutrition inventions [69]. The origin of the

parent-industry could partially account for the difference in patenting cultures. While

two of the European medical nutrition companies originate from the food industry,

the others stem from the pharmaceutical industry. Generally, the food industry relies

heavily on trademarks and trade secrets, and is less familiar with patenting. This is

in sharp contrast to the pharmaceutical companies, who are notorious patenting

machines.

Patent strategies consist of blocking the competition from commercially

exploiting the invention, protective patent thickets/walls, or using a patent application

solely for the purpose of a marketing tool [4, 24, 56]. Research shows that the first

listed motive to patent is considered to be the most important to medical nutrition

industry [68]. Although patents are considered valuable instruments for protecting

innovations, companies should always look beyond the boundary of the patent and

carefully assess if any other relevant IP methods are applicable [68]. By means of a

7-step medical nutrition IP decision framework, companies and academic R & D

department can assess for each individual invention which IP method—or combina-

tions of IP methods—is most appropriate (Fig. 3.7).

Most medical nutrition companies apply the strategy of patenting to their

incremental inventions. This appears to be a similar trend as what has been

observed in the pharmaceutical industry where on average more than half (51 %)

of all FDA approved drugs are incremental innovations [13]. There are two reasons

explaining this pattern. First of all, it is easier to develop an incremental innovation,

to stabilise market presence and enhance existing product life cycles, based on an

existing product in contrast to developing a radical innovation from scratch.

Secondly, incremental inventions have generally proven to be of higher value

than radical inventions [69]. Rationally, radical inventions are often high risk and

only a few may result in a marketed product that yield a profit.
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3 Discussion: Bridging the Medical Nutrition Innovation
Cliff

The health and life sciences are moving towards pharmanutrition oriented product

development such as medical nutrition. Faced by innovation declines, pharma and

nutrition industries are converging in order to fill the gap. On the one end the

conventional food industries are converging with more health-oriented industries,

while on the other hand the pharmaceutical industry is moving into the (pharma)

nutrition space. It is estimated that in approximately 20 years, 50 % of the

pharmanutrition industry will be pharma owned [63]. Enabled by a growing body

of evidence, technology development and plenty of unmet needs to fulfil, the

medical nutrition industry offers ample future potential. The industry development

forecast analysis shows four possible future scenarios. These scenarios include both

pessimistic as well as optimistic possible outcomes. Currently the newly emerging

medical nutrition industry is within the growth phase of the industry life cycle

yet all signs currently point in the pessimistic direction that the medical nutrition

industry is heading towards an innovation cliff. In view of this diagnostic observa-

tion, the industry has the chance to pre-emptively jump the cliff by starting a new

S-curve. The optimal time to start building the next S-curve is during the growth

phase of the technological life cycle. Although the medical nutrition industry is

currently encountering rapid growth in the growth phase of the technological life

cycle, it is time to start thinking ahead. To prevent the dreaded industry saturation

plateau, or even worse, the innovation cliff that may lie ahead, companies must

realise that incremental innovation alone is insufficient. The solution for future

success lies in the radical innovations. These radical innovations allow for jumping

the S-curve, gain competitive advantage and start building the medical nutrition

industry’s future.

An illustrative case-in-point of a more mature industry which has been facing

innovation decline since the early 1990s is the pharmaceutical industry. In its early

history, the productivity of the pharmaceutical industry and market approval of

innovative therapies were relatively easy, which is explained by some critics due to

the selection of low-hanging fruits [49]. Currently, the pharmaceutical pipeline is

drying up as patents on blockbuster products are expiring and the realisation is

kicking in that incremental innovation is insufficient for sustaining business models

[27, 31, 44]. The perception of this innovation deficit has motivated large firms to

exploit various other strategic options for capturing radical innovations. Since the

early 1990s the pharmaceutical industry has been going through significant strate-

gic consolidation of large pharma firms as well as the acquisition of small biotech

(Appendix A). Solving this innovation deficit required that firms successfully

combined or coordinated merger and acquisition (M & A) activities, strategic

alliances, and licensing deals alongside conventional in-house R & D [11, 36, 41].

Learning from the pharmaceutical industry, staying ahead of the medical nutri-

tion innovation cliff requires radical innovation. Although the adoption of a clear

generic competitive corporate strategy such as described by Porter [53] is essential,
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we focus on the implementation of internal development versus acquisition strat-

egies. We propose two development strategies for the medical nutrition industry to

achieve this and jump to the next S-curve: first by incorporating radical innovation

strategies into their own corporate DNA (organic growth) and second through

capturing radical innovation by acquiring smaller innovative medical nutrition

start-ups (inorganic growth). The first can only be accomplished if companies

adopt systematic processes for initiating, supporting and rewarding radical innova-

tion in-house activities [32, 47]. The challenge in this organic growth strategy lies

within the fact that it is easier for existing companies to innovate incrementally

since this only requires the leveraging of existing knowledge and resources. On the

contrary, new entrants will have a considerable advantage in radical innovation

since they do not have to change their knowledge background. Furthermore, large

companies, such as the medical nutrition market leaders, may have a difficult time

implementing radical innovation because they operate under a “managerial

mindset/constraint.”

The second strategy of inorganic growth through radical innovation acquisition

only offers potential if medical nutrition start-ups continue to emerge and invest in

the development of radical innovation. Entrepreneurial start-ups are a valuable

source of knowledge necessary to develop radical innovation [15]. Research has

shown that active acquisition industries encourage radical innovation, particularly

at the SME level [52]. This is in line with the theory of contestable markets, which

states that the entry of new business only stimulates industry development and

additionally also offers benefit for existing companies [45].

The medical nutrition industry, at present in the growth stage of the industry life

cycle (Fig. 3.2), may be considered as especially attractive to start-ups. When

demand is growing in an industry, firms can achieve initial success without the

intense competitive threat that firms face in mature and overregulated markets. In

other words, there is more than sufficient market opportunity available for multiple

entrants to achieve commercial successes [54].

Since development and production costs are relatively high in the medical

nutrition industry, it is highly unlikely that medical nutrition start-ups will develop

into fully integrated nutrition companies [FINCOs]. Most likely, medical nutrition

market leaders will view these small innovative firms as prey as opposed to

competitors, and will incorporate them into their companies. Even if the SMEs

are the source of new ideas, commercialization and wide product diffusion will

usually happen only after acquisition by the incumbent. Generally, being acquired

is an attractive exit strategy for small firms.

In a similar profile as the pharmaceutical industry but 15 years later, M & A

activity within the medical nutrition industry has increased since 2004 (Fig. 3.8).

A total of 11 mergers and acquisitions and 3 joint ventures/partnerships have

occurred within this industry. In particular since 2010, acquisition has become

more frequent. More start-ups may be realising the potential of the medical

nutrition industry in the last few years and are entering the playing field. In addition,

large medical nutrition companies may already encounter difficulties in developing
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radical innovations and are shifting from organic to inorganic growth through

acquisition.

However, companies cannot solely rely on insourcing innovation since this is

often only a quick-fix. Additionally, if entry barriers prove to be unscalable for

medical nutrition start-ups, the flow of innovation will come to a halt, and the

acquisition opportunities for large medical nutrition companies will decline accord-

ingly. The optimal innovation strategy is a balanced integration of both organic and

inorganic growth. Such a strategy will enable medical nutrition companies to jump

the S-curve themselves when acquisition opportunity is low and stock up on

radically innovative start-ups when it is an active acquisition industry.

Fig. 3.8 Medical nutrition industry M & A
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Appendix A: Pharmaceutical M & A

Pharmaceutical M&A from 1990 to 2013. Blue: industry incumbent;Dark blue: Large-scale M7A

(above $10 billion); Grey: Medium M & A between $1 and $10 billion
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Part II

Inflammation and Immunity



Chapter 4

Modulation of the Gut Ecosystem in Irritable
Bowel Syndrome

Julia König and Robert-Jan Brummer

1 The Aberration of the Gut Ecosystem in IBS

1.1 Gut Microbiota in Healthy Individuals

From birth on, our gastrointestinal tract is colonized by a complex ecosystem

consisting of several hundred bacterial species. The bacterial cells in the human

body outnumber the mammalian cells by a factor of 10, and the amount of bacteria

increases gradually from very low numbers in the stomach to concentrations of

approximately 1012 bacterial cells per gram of luminal content in the colon, with an

especially steep gradient at the ileocecal valve [93].

These organisms normally live in a well-balanced symbiotic state with their host

and have an important impact on our health. They form a crucial barrier against

pathogens and are involved in the development and maturation of our immune

system. In addition, they play a vital role in the metabolism of nondigestible

compounds and in the supply of essential vitamins and short chain fatty acids.

Before birth, our intestinal tract is basically sterile. Colonization with microbiota

starts during the process of delivery by exposure to the extrauterine environment

such as maternal vaginal, fecal, and skin microbiota. During the first months of life,

the composition becomes more and more complex, and varies widely between

individuals. It takes about 1 year until this rather coincidental, chaotic intestinal

microbiota is transformed into a more adult-like, stable community [72]. Different

factors such as delivery mode (vaginal or caesarean), infant diet (breast or formula

feeding), and the use of antibiotics are likely to influence the early microbiota

composition and maturation of the immune system, which in turn might have

potential long-term effects on adult microbiota and health later in life [91]. The
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701 82 Örebro, Sweden

e-mail: julia.konig@oru.se; robert.brummer@oru.se

G. Folkerts and J. Garssen (eds.), Pharma-Nutrition, AAPS Advances in the

Pharmaceutical Sciences Series 12, DOI 10.1007/978-3-319-06151-1_4,

© American Association of Pharmaceutical Scientists 2014

55

mailto:julia.konig@oru.se
mailto:robert.brummer@oru.se


altered microbiota in children delivered by caesarean section might for instance

contribute to their higher risk of developing allergic diseases [7].

The individual intestinal microbiota in healthy adults is composed of up to 1,000

microbial species [115], and remains remarkably stable even after a 10-year period

[84]. Each adult has its own subject-specific intestinal microbiota composition;

however, we all share a common microbial core [79]. It has recently been suggested

that all humans can be classified into one of three so-called enterotypes, which are

characterized by relatively high levels of one of the three genera Bacteroides,
Prevotella, or Ruminococcus [6]. With increasing age, the core microbiota changes

and shows a high interindividual variability that is strongly influenced by diet and

living situation [19, 20].

It needs to be highlighted that the true extent and diversity of the human

microbiota are still unknown. Culture-independent techniques, which enable an

unbiased detection of all bacteria present in the human gut based on 16S rRNA

(small subunit ribosomal RNA) sequences, have recently been developed. Assays

such as phylogenetic microarrays [83] or barcoded pyrosequencing [2] have

revealed that the number of intestinal bacteria is much greater than previously

thought, and new bacterial species are being discovered continually.

1.2 Gut Microbiota in IBS

Alterations in the normal composition of the intestinal microbiota are associated

with a variety of disorders, including inflammatory bowel diseases and obesity [32,

54]. It is now widely accepted that a dysbalanced gut microbiota composition also

plays an important role in the pathophysiology of irritable bowel syndrome

(IBS) [88].

IBS is a very common disorder with a worldwide prevalence of 10–20 %. Even

though it is not life-threatening or associated with higher mortality, it profoundly

affects the patients’ quality of life and causes substantial economic costs due to the

need for medical consultation and work absenteeism [29, 89]. Symptoms vary

between patients and include constipation and/or diarrhea, abdominal pain and

cramps, flatulence, fecal urgency, a sense of incomplete evacuation, and relief of

pain or discomfort upon defecation [57].

Even though the etiology and pathophysiology of IBS are complex and not well

understood, it is well accepted that a dysregulation of the microbe–gut–brain axis

plays a very important role. Associated aberrations include visceral hypersensitiv-

ity, abnormal gut motility, and autonomic nervous system dysfunction [47]. In

addition, there is a growing amount of data revealing a contributing role of an

aberrant immune system in the pathogenesis of IBS. Mild immune activation has

been found both locally in the gut and systemically [9], and mucosal biopsies from

IBS patients are characterized by an increased quantity of various immune cells [18,

24]. Own preliminary data show that mucosal biopsies from IBS patients display an

altered composition of immune cells, including immune fingerprinting of
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intraepithelial and lamina propria lymphocytes. Furthermore, psychological and

environmental factors like anxiety, depression and significant negative life events

are believed to contribute to IBS development [30].

A considerable body of evidence points to the presence of a disturbed intestinal

microbiota composition in IBS. A specific subtype, the so-called post-infectious

IBS, develops after an episode of acute infectious gastroenteritis and is causally

linked to aberrations in the gut ecosystem [99]. Moreover, IBS symptoms can be

improved by treatments targeting the microbiota such as antibiotics, probiotics and

prebiotics (Fig. 4.1) [46, 87, 98]. Importantly, several studies have demonstrated

Fig. 4.1 Putative mechanisms behind modulating the gut microbiota in IBS. In IBS, the intestinal

microbiota shows an aberrant diversity and is characterized by low numbers of beneficial bacteria

(shown in green, e.g., bifidobacteria, lactobacilli, and butyrate producers). In addition, abundance

of specific harmful bacteria (shown in red, e.g., R. torques) has been reported. Probiotics and

prebiotics might act by increasing the numbers of beneficial bacteria, while antibiotics predom-

inantly deplete harmful ones. Fecal microbiota transplantation (FMT) introduces a healthy, diverse

microbiota
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that the composition of the microbiota in IBS patients is distinct from that of

healthy controls [97]. Numerous bacterial species have been found to be differen-

tially abundant in IBS. However, the results are rather inconsistent and no species

could be specifically linked to IBS so far.

On the one hand this is probably due to the various techniques that have been

applied. Among them are both high-throughput methods such as 16S rRNA

sequencing and phylogenetic microarrays aiming to analyze the immense diversity

of the intestinal microbiota population, as well as qPCR and FISH (fluorescence in

situ hybridization) assays evaluating only a certain defined set of bacteria. On the

other hand, the pathology of IBS has a very heterogeneous character and shows a

large interindividual variation of aberrations along the microbe–gut–brain axis

without a distinct link between the pathophysiologic mechanism and symptom

generation. In addition, different classifications (or none at all) of patients

according to symptoms criteria have been used, and it is difficult to account for

exogenous factors. Especially diet has a strong influence on the microbiota

composition [111].

Earlier studies investigating fecal microbiota in IBS using culture-based ana-

lyses detected decreased amounts of bifidobacteria and lactobacilli compared to

controls [8]. The first study to apply a specifically designed qPCR assay covering

300 species was published in 2005 [62]. The authors found lower amounts of

Bifidobacterium catenulatum and Clostridium coccoides in fecal IBS samples. In

addition, amounts of lactobacilli were significantly decreased in the diarrhea-

predominant group compared to the constipation-dominant subgroup. The same

group was also the first to apply high-throughput 16S rRNA gene cloning and

sequencing (after fractioning the community DNA according to the %G+C con-

tent), and found changes especially in the phyla Firmicutes and Actinobacteria
[49]. A follow-up study analyzing the entire microbiota (without fractioning) of

only the diarrhea-predominant IBS subtype (n¼ 10) detected high numbers of

Proteobacteria and Firmicutes and low numbers of Actinobacteria and

Bacteroidetes compared to controls [51].

Rajilic-Stojanovic et al. analyzed the microbial composition of fecal samples of

62 IBS patients and 46 controls using a phylogenic microarray (HITChip) that

enables the unbiased detection of over 1,000 phylotypes [82]. In accordance with

other studies, they found that the intestinal microbiota of IBS patients differed

significantly from controls, and detected an increased Firmicutes to Bacteroidetes
ratio. In addition, they could show that the abundance of several members of

Firmicutes and Proteobacteria correlated with IBS symptom scores. For instance,

pain scores correlated negatively with Bifidobacterium spp. The lower abundance

of bifidobacteria has been reported in several studies [49, 50, 62] but was not found

in others [42].

A recent study examined the relationship between fecal microbiota composition

and clinical and physiological parameters using pyrosequencing of 16S rRNA

[42]. In this study, the IBS patients clustered into three different groups based on

their microbiota composition. Two groups clustered very differently from the

healthy controls, whereas the so-called “normal-like IBS group” was
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indistinguishable from the controls, and consisted of 15 of the 37 included patients.

In the first two groups, the clearest difference in microbiota composition was a

higher Firmicutes to Bacteroidetes ratio. Several bacterial taxa were found to

correlate with specific clinical symptoms, some in the group comprising all IBS

patients and some in the subgroups. For example, the abundance of Cyanobacteria
was associated with satiety, bloating and gastrointestinal symptom scores, whereas

Proteobacteria correlated with an increased mental component and pain threshold.

A study using qPCR found that the amount of Ruminococcus torques was positively
correlated with the severity of self-reported IBS symptoms [61]. Interestingly, an

increased number of this species in IBS patients has been reported in other studies

[49, 82]. Parkes et al. investigated the mucosa-associated microbiota of IBS patients

using in situ hybridization of five bacterial-group specific oligonucleotide probe

sequences on rectal biopsies. They found that IBS patients in general had a

significantly higher number of mucosa-associated bacteria, comprising predomi-

nantly bacteroides and clostridia, and found correlations between several species

and IBS symptoms, including a negative correlation of bifidobacteria and

lactobacilli with stool frequency [73].

The association of specific bacteria with specific IBS symptoms is a promising

tool to provide insight into factors contributing to IBS. However, it needs to be

taken into account that identical symptoms are not necessarily related to the same

pathophysiology.

Unlike the aforementioned study, most studies focus on investigating fecal

microbiota. Not many results on mucosa-associated bacteria can be found, even

though it is known that the compositions of these can differ [116]. Kerckhoff

et al. found lower amounts of bifidobacteria in diarrhea-predominant IBS compared

to constipation-predominant IBS and controls using FISH [50]. Carroll et al. used a

molecular fingerprinting technique to investigate fecal and unprepared colon muco-

sal samples of patients with diarrhea-predominant IBS and healthy controls. They

found distinct microbial communities between fecal and mucosa samples and

between IBS and controls in both types, with a diminished microbial biodiversity

only in fecal samples [16]. The possible effects of bowel preparation on the mucosal

microbiota composition are discussed later in this chapter.

Own preliminary data showed that IBS patients have a lower proportion of

butyrate-producing microbiota compared to healthy controls. Butyrate is the dom-

inant short-chain fatty acid produced by microbial fermentation of undigested

dietary carbohydrates in the gut. It is an important energy source for epithelial

cells and has many beneficial effects on colonic mucosal function including inhi-

bition of inflammation and carcinogenesis and promotes the colonic defense barrier

[35–37].

An additional aberration in IBS seems to be an abnormal microbial gene variety,

also referred to as microbial diversity or heterogeneity. However, results described

in literature are inconsistent, and both a loss of diversity [17, 21] and an increased

heterogeneity have been reported [81]. Both conditions might be indicative of the

inability of the IBS ecosystem to maintain its normal composition. A loss of

diversity is usually associated with the outgrowth of certain species, while a high
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degree of variability could refer to a disturbed community trying to recover and

reestablish its previous state [88].

2 Antibiotics as Cause or Treatment in IBS

The administration of antibiotics is well known to have both short-term and long-

term effects on the composition of the gut ecosystem. In most individuals, the

microbiota appears to recover within days or weeks after cessation of antibiotic

treatment [25, 56]. However, in some cases these alterations can result in a

persistent depletion of beneficial bacteria and/or overgrowth of harmful ones [25,

26, 43], as is the case in for example in Clostridium difficile infection. Attention

should be paid to the fact that the sensitivity of the methods used for detection of

microbial changes is limited by the techniques applied, and deeper analyses might

be necessary to detect more subtle alterations.

Antibiotic treatment early in life may be related to the development of certain

diseases later on, and has been especially associated with immunological disorders

such as asthma and allergies [28]. There is some evidence that the use of antibiotics

is connected to an increased risk to develop IBS. A retrospective survey including

421 subjects (48 with IBS) found a correlation of antibiotic use with IBS symptoms

[68]. Another retrospective review of 26,107 medical records of patients exposed to

broad-spectrum antibiotics showed a higher prevalence of IBS development among

patients receiving macrolide or tetracycline [107]. In a prospective case–control

study by Maxwell et al., subjects receiving antibiotic treatment were more likely to

suffer from bowel symptoms than controls during a 4-month follow-up period

[64]. Even though further studies are necessary to investigate this in detail, it is

possible that a change in the intestinal microbiota caused by antibiotics could

contribute to the development of IBS. However, it needs to be considered that

also the infection leading to the prescription of antibiotics could be the underlying

cause of the higher risk to suffer from IBS.

Nevertheless, antibiotics might not only be a possible trigger of IBS, but on the

contrary, also show potential as a successful treatment option. The first antibiotic

investigated in a clinical study was neomycin, an antibiotic that is not absorbed in

the gastrointestinal tract. It was demonstrated to be effective in improving IBS

symptoms (35.0 % improvement in a composite score compared to 11.4 %

improvement in placebo treatment) [74]. However, its rather severe adverse effects

and the fact that it provokes a rapid clinical resistance limit its clinical use [87].

Nowadays the antibiotic of choice in treating IBS is rifaximin. It is a semisyn-

thetic derivative of rifamycin with a low side effect profile and no demonstrable

systemic absorption [10]. It is approved by the US Food and Drug Administration

for the treatment of traveler’s diarrhea and hepatic encephalopathy, but still lacks

approval in several other countries. Its efficacy for IBS treatment has been tested in

various clinical trials, the largest being the TARGET 1 and TARGET 2 studies

[75]. Here, a total of 1,258 subjects with nonconstipated IBS were included.
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Treatment with rifaximin (550 mg/day) for 14 days resulted in a significantly higher

percentage of patients reporting relief of global IBS symptoms compared to the

placebo-treated group (41 % vs. 31 %), and effects were sustained for at least

10 weeks. In addition, bloating, abdominal pain, and loose or watery stools were

improved. These results are supported by a meta-analysis that included five articles

and found a modest therapeutic improvement of IBS symptoms using rifaximin

with a therapeutic gain similar to other currently available IBS therapies [69]. The

American College of Gastroenterology Task Force rated rifaximin as a strong drug

with moderate evidence for the treatment of IBS with diarrhea [1]. As mentioned

before, the reported side effects of rifaximin are very low. Its so-called “number to

harm” was evaluated to be 846, meaning that 846 patients would benefit from it

before 1 harm event would occur [95]. In addition, rifaximin was effective in

retreating patients that presented with a relapse after the first antibiotic treatment,

and it does not seem to provoke clinical resistance [76, 112].

Hardly any studies have examined the modes of action of antibiotics with regard

to IBS treatment. The aforementioned study from Pimentel et al. investigating the

effect of neomycin on IBS found that subjects with IBS often presented with

abnormal values in the lactulose breath test (LBT), and antibiotic treatment resulted

in normalization of the LBT along with symptom improvement [74]. The authors

suggested that the excessive gas production might be caused by the presence of

small intestinal bacterial overgrowth (SIBO), a condition where an abnormal

number of bacteria is present in the small bowel, and that antibiotics were able to

reverse this aberrant colonization. However, the use of LBT to diagnose SIBO is

controversial, and several other studies did not find an association between IBS and

SIBO [31, 77]. Instead it might be possible that rifaximin reduces the total number

of bacteria, especially in the large intestine, which could lead to a decreased amount

of gas produced by bacteria, resulting in less flatulence and bloating.

In conclusion, it has been demonstrated that nonabsorbable antibiotics are able

to—at least—partially improve IBS symptoms, confirming that alterations in the

gut microflora play an important role in the pathophysiology of IBS. However, even

though rifaximin seems to be safe, it does not have a very high efficacy and its long-

term effects have not been investigated. It is still unclear which bacteria are

specifically targeted by the antibiotics and whether this or a decrease in the total

bacterial number is responsible for their beneficial effects. In addition, a possible

harmful effect of antibiotics on the intestinal microbiota composition also needs to

be considered.

3 Probiotic Therapy in IBS

Probiotics are defined as living microorganisms, often consumed as food products,

which upon ingestion survive the passage through the stomach and have beneficial

effects on human health. In order to reach the intestine intact, they need to be

resistant to gastric acid and digestive enzymes. However, recent research has shown
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that nonviable probiotic bacteria may possess strong bioactivity in the small

bowel [104].

The most commonly administered kinds belong to the genera Lactobacillus or
Bifidobacterium, and they can be used alone (monospecies) or in combination with

several other species (multispecies).

Strong evidence for an effective clinical use of probiotics has been demonstrated

for the treatment of antibiotic-associated, traveler’s and pediatric diarrhea [65, 66,

100]. In infants with infantile colic, Lactobacillus reuteri significantly improved

symptoms, which was demonstrated by a clearly reduced daily crying time [90].

The mechanisms behind the beneficial effects of probiotics are still not

completely understood. One mode of action is their antagonistic activity against

pathogenic species. By adhering to the intestinal mucosa, probiotics replace

existing pathogens or inhibit their adherence, thus providing a healthy microflora

[94]. Probiotics can also act against harmful bacteria via the secretion of antimi-

crobial substances, so-called bacteriocins [23]. In addition, probiotics are able to

enhance epithelial barrier function by activating signaling pathways resulting in an

increased expression of tight junction proteins or in enhanced mucus production

[48, 98]. Another important function of probiotics is their ability to induce benefi-

cial immune responses. These can take effect by direct interaction with immune or

epithelial cells, or via secreted molecules [71, 78, 104]. By inducing the expression

of opioid and cannabinoid receptors, some probiotics might be able to modulate the

perception of visceral pain [86].

All these mechanisms suggest that probiotics could be a promising treatment

option in IBS, and numerous controlled clinical trials testing the effect of a wide

selection of probiotic strains on IBS have been performed [97]. In general, most of

the higher-quality clinical trials so far yielded positive results. Some, however,

showed no beneficial effects in IBS and one study even reported symptom deteri-

oration using Lactobacillus plantarum MF1298 [55]. Several meta-analyses came

to the conclusion that probiotic use improves IBS symptoms and might be a

promising treatment option [40, 67, 70]. Meta-analyses combining the results of

studies using different probiotic strains carry the risk of masking the success, or

failure, of a specific strain. Accordingly, the authors agreed that it still needs to be

further investigated which strains and which doses are most effective.

Probiotics that demonstrated IBS symptom improvement in more than one

controlled clinical trial with a substantial number of patients include

Bifidobacterium infantis 35624 [71, 110] and the so-called “Finnish combination”

consisting of Lactobacillus rhamnosus GG, L. rhamnosus Lc705, Propioni-
bacterium freudenreichii ssp. shermanii JS and Bifidobacterium breve Bb99 or

Bifidobacterium animalis ssp. lactis Bb12, respectively [44, 46].

It is known that different probiotics have distinct functional effects in the human

intestine [103]. Some strains have been shown to improve total symptom scores in

IBS patients, while others primarily seem to affect bloating and flatulence or stool

frequency [97]. Several studies did not distinguish between the different subtypes

of IBS such as diarrhea or constipation-predominant IBS, discounting the fact that

most strains are probably more effective in treating one kind than the other. It would
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of course be ideal to administer a probiotic that specifically targets the respective

predominant symptoms of an individual IBS patient; however, as mentioned earlier,

one needs to be aware that identical symptoms are not necessarily related to the

same pathophysiology. An additional factor to be considered is that clinical trials

are often conducted in a hospital setting, which may give rise to an inclusion bias in

comparison to subjects suffering from IBS in the general population. These groups

may differ in the proportion of the various pathophysiologic mechanisms contrib-

uting to IBS symptoms.

Only a few probiotic intervention studies looked deeper into the pathophysio-

logic mechanisms and evaluated for instance the impact of the tested probiotics on

the microbiota composition in IBS.

Kajander et al. investigated the effect of the multispecies “Finnish combination”

(see above) on the intestinal microbiota composition of IBS patients. They applied

16S rRNA gene targeted qPCR assays and assessed the presence of short-chain fatty

acids and bacterial enzymes in fecal samples [45]. They did not detect any differ-

ences, apart from an increase in Bifidobacterium spp. in the placebo and a decrease

in the treatment group. They suggested that other mechanisms besides an increased

colonization with the administered bacteria must have been responsible for the

beneficial effects on IBS symptoms, probably involving a direct interaction with the

intestinal epithelium. Another explanation could be a more dominant effect of some

probiotics in the small bowel rather than in the colon. Probiotics may provoke a

direct metabolic or immunologic effect in the small bowel [101, 103, 104]. In

addition, the applied methods were probably not sufficient to detect the underlying

microbial changes. In a subsequent study, the same group applied a similar qPCR

assay with a broader target of phylotypes to evaluate the effect of the same probiotic

combination on the fecal microbiota in 42 IBS patients and reported that a

phylotype with 94 % similarity to Ruminococcus torques was decreased and

Clostridium thermosuccinogenes 85 % increased in the probiotic compared to the

placebo group [58].

So far it is still not known if probiotics have a higher efficacy if administered as

monospecies or multispecies. As several pathophysiologic mechanisms are

involved in IBS and in addition, patients present with different aberrations along

the microbe–gut–brain axis, a probiotic multistrain combination could provide a

broader treatment comprising a variety of needs. In a multispecies mixture, one

strain could deliver a beneficial immune effect while another strain improves

intestinal barrier function. A multispecies probiotic could also potentially be

more effective in the various segments of the intestine. Furthermore, it was

shown in an in vitro human intestinal mucus model that individual strains may

strongly enhance each other’s adherence if combined with other strains, with some

combinations being more effective than others [22]. However, besides a potential

synergistic effect, probiotics could also exert antagonistic effects against each other

if administered in combination.

Even though further research is necessary, some probiotic strains seem to be

beneficial in the treatment of IBS. According to the current knowledge, their

efficacy is similar to antibiotics. One of the clear advantages of probiotics over
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conventional pharmacological medication is their favorable adverse effect profile,

which enables chronic administration and preventive treatment.

4 Prebiotics in IBS

Prebiotics are nondigestible food compounds that serve as substrates for specific

desirable bacteria in the intestine and stimulate their growth and/or metabolism,

resulting in beneficial effects on the host’s well-being and health [85].

Most prebiotics specifically increase the number of health-promoting

bifidobacteria and lactobacilli. Many compounds with prebiotic effects belong to

the group of nondigestible carbohydrates, more precisely oligosaccharides or poly-

saccharides, and include oligofructose (inulin) and trans-galactooligosaccharides.
They naturally occur in many edible cereals, fruits, and vegetables such as wheat,

bananas, onion, garlic, chicory, and artichokes, where they function as carbohydrate

stores [80, 92]. In addition, oligosaccharides with prebiotic effects are found in

human mother’s milk and are thought to contribute to the high amount of

bifidobacteria and lactobacilli detected in the feces of breast-fed compared to

formula-fed babies. Supplementation of infant formulas with human milk-like

prebiotics appears to have a beneficial immunological effect resulting in lower

incidence of allergies and infections [5]. In adults, suggested health benefits of

prebiotics include protection against traveler’s and antibiotic-associated diarrhea

[27, 53].

Few studies have investigated the effect of prebiotics on IBS symptoms. In a

double-blind crossover trial with 21 IBS patients no effect of oligofructose

(Raftilose 95) administration over a 4-week time course could be observed, even

after separate analysis of the diarrhea and constipation-predominant subgroups

[41]. The authors speculated that the administered dose of 6 g/day might have

been too low to show demonstrable effects. Another clinical trial tested the effect of

a novel trans-galactooligosaccharide in a 12-week parallel crossover design [96]. 44

IBS patients were included and two different doses of the prebiotic were used (3.5

and 7 g/day). Both doses significantly increased bifidobacteria and lactobacilli

numbers. The lower dose was able to improve stool consistency, flatulence and

bloating as well as total symptom score and subjective global assessment values of

the IBS patients, whereas the higher dose only improved subjective global assess-

ment and anxiety scores. It needs to be pointed out, however, that also the placebo

showed positive effects regarding flatulence, abdominal pain and total symptoms.

An important readout of these studies could be the absence of reported side

effects, which is not necessarily expected. Even though bifidobacteria and

lactobacilli themselves do not produce gases as part of their metabolism, the

rapid fermentation of the prebiotics in the proximal bowel often causes increased

intestinal gas production. This can lead to enhanced flatulence and bloating even in

healthy subjects, and would be an especially unfavorable feature in IBS, where

patients already suffer from these symptoms and often experience visceral
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hypersensitivity [59]. An ideal prebiotic to be used in IBS should therefore ferment

slowly throughout the entire colon, so that the produced gases are evenly distrib-

uted, thus causing fewer complaints.

Prebiotics have mostly been investigated regarding their effect on bifidobacteria

and lactobacilli. As described before, IBS patients tend to have a lower proportion

of butyrate-producing microbiota. The administration of butyrate via enemas

resulted in a substantial decrease of visceral perception in healthy volunteers,

suggesting a possible beneficial effect in disorders associated with visceral hyper-

sensitivity such as IBS [105, 106]. The interaction of butyrate with the receptor

GPR43 expressed on immune cells seems to play an important role in the regulation

of immune response in the gut [52, 63]. Thus prebiotic compounds that specifically

serve as substrates for butyrate-producing bacteria could be especially beneficial in

improving IBS symptoms.

The modes of actions of prebiotics are not only limited to the stimulation of

growth of beneficial bacteria and their metabolic products. Even though there are

only few high-quality human studies testing the effect of prebiotics alone on the

immune system, it has been suggested that prebiotic compounds are able to directly

interact with carbohydrate receptors on intestinal epithelial and immune cells

[92]. This has already been clearly demonstrated for other members of the group

of nondigestible carbohydrates, the β-glucans. These compounds can be found in

various grains, mushrooms, and yeast. Per definition they do not qualify as pre-

biotics, as they have not been shown to specifically affect certain beneficial

bacteria, but they have been widely studied with regard to their direct, receptor-

mediated effects on various immune cells [108].

Prebiotics and probiotics can also be administered in combination, and are

denoted synbiotics. The presence of the prebiotic aims at enhancing the viability

and activity of the administered probiotic and of resident beneficial bacteria, at best

resulting in a synergistic effect. So far, there is only one placebo-controlled trial

evaluating the effect of synbiotics on IBS symptoms. It included 68 IBS patients

and reported improvement of abdominal pain and bowel habits using a novel

synbiotic known as SCM-III that successfully increased lactobacilli, eubacteria,

and bifididobacteria [102]. Further beneficial effects have been described in several

open-label studies; however, those results need to be assessed with caution as the

placebo response in IBS is high [80].

5 Colonic Cleansing and the Effects on the Ecosystem

As many IBS patients, although taking prescribed medication, still suffer from

symptoms, it is not surprising that they often resort to self-treatment options offered

by complementary and alternative medicines [113]. A commonly used self-

treatment is the use of oral laxatives or self-administered enemas with the aim to

clean or even detoxify the colon and thereby improve symptoms such as diarrhea,

constipation or flatulence.

4 Modulation of the Gut Ecosystem in Irritable Bowel Syndrome 65



A recent study has shown that a standard bowel cleansing procedure using a

polyethylene glycol-based preparation, as it is routinely performed to prepare the

colon for colonoscopy, leads to changes in the composition of the mucosa-

associated intestinal microbiota in healthy individuals [38]. These changes might

be due to a loss of mucosa-associated bacteria and the associated biofilm. A similar

effect was observed with regard to the fecal microbiota composition [60].

The impact of such a bowel cleansing on IBS symptoms has never been

investigated, and similar to antibiotic use, both beneficial and harmful effects

seem possible. In IBS patients, it could be that the bowel cleansing leads to a

reduction in the overall amount of bacteria and gives the intestinal microbiota an

opportunity to reestablish a healthy balance. This effect could for instance be

promoted by a parallel administration of probiotics. However, at least to our

knowledge, there are no reports in the literature about a relief of symptoms after

performing colonic cleansing in IBS patients, indicating that there is probably no

long-term effect.

In healthy subjects, colonic cleansing could also lead to a dysbalance in the

normal microbiota. Especially in individuals whose microbial balance has been

challenged before, for instance by recent infections or the use of antibiotics, such a

bowel cleansing could be a final trigger leading to sustained aberrant intestinal

ecosystem.

6 Fecal Microbiota Transplantation in IBS

Fecal microbiota transplantation (FMT) consists of the infusion of suspended stool

from a healthy donor into the intestine of a patient with the aim to restore a

disturbed intestinal microbiota towards a normal ecosystem. Its use in Chinese

medicine goes back to the fourth century where it was applied to treat food

poisoning and severe diarrhea [114]. Nowadays, FMT is established as a highly

efficient treatment for recurrent Clostridium difficile infection, where perturbations
of the intestinal microbiota seem to be responsible for the overgrowth of pathogenic

Clostridium difficile strains [39]. In this disorder, FMT has a cure rate of over 90 %

[33], and has been proven to be a durable and safe method according to a recent

multicenter long-term follow-up study [15]. In addition, FMT treatment in this

study was highly acceptable to patients: 97 % of the treated patients would be

willing to undergo another FMT in case of recurrent Clostridium difficile infection,
and 53 % would choose it as their first treatment option before antibiotics.

FMT might be a promising treatment for other diseases that are causally linked

to alterations in the gut microbiota. Vrieze et al. demonstrated that the transfer of

fecal microbiota from healthy lean donors into patients with metabolic syndrome

increased their insulin sensitivity and reduced triglyceride levels [109]. FMT pos-

itively changed the gut microbiota of the recipients, resulting in a higher proportion

of health-promoting butyrate-producing bacteria.
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The successful application of FMT has also been reported in other disorders

including inflammatory bowel disease, multiple sclerosis, autism, and chronic

fatigue syndrome, mainly reflecting case studies [4, 11, 13, 14].

No randomized clinical trials investigating the impact of FMT on IBS have been

published so far. Only one study reported possible positive effects in patients with

IBS symptoms [12]. The same group applied a mixture of cultured, nonpathogenic

bacteria resembling normal gut microbiota into the cecum of IBS patients and

reported improved symptoms in 25 out of 33 [3].

The successful improvement of IBS symptoms using antibiotics, prebiotics, and

probiotics suggests that alterations in the gut microbiota are involved in the

mechanisms behind. However, these treatments are usually not very efficient and

tend to provide only moderate and transient effects, probably due to the fact that

only a small part of the complex microbial ecosystem is affected. FMT, however,

results in durable changes of the colonic microbiota that can still be detected

6 months after the treatment [34]. Exchanging the microbiota of an IBS patient

with the microbiota of a healthy donor holds the potential to be a lot more efficient

in reestablishing a normal, healthy microbiota, and FMT could therefore be a

promising novel treatment option for IBS.
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Chapter 5

Role of Omega-6 and Omega-3 Fatty Acids
in Inflammatory Bowel Disease

Kevan Jacobson and Philip C. Calder

1 Introduction

The intestinal immune system maintains both a state of tolerance toward intestinal

luminal antigens and the ability to eliminate enteric pathogens [1]. This balance is

achieved through several mechanisms including reciprocal regulation of

pro-inflammatory, effector CD4+T cells and tolerising, suppressive Tregulatory

(Treg) cells. Inflammatory bowel disease (IBD), which includes ulcerative colitis

and Crohn’s disease, is a chronic relapsing intestinal inflammatory disorder of the

gastrointestinal (GI) tract. In IBD, the balance between the pro-inflammatory

effector T cells and the tolerising suppressive Treg cells is altered. Consequently,

the deleterious effects of pro-inflammatory T cells outweigh the tolerising, anti-

inflammatory effects of Treg cells resulting in uncontrolled active intestinal inflam-

mation resulting in disease.
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2 Inflammatory Bowel Disease Subtypes

Ulcerative colitis is characterized by inflammation limited to the intestinal mucosa

with extension from the rectum in a uniform manner to involve part of, or the entire

colon [2]. In contrast, Crohn’s disease can affect any part of the GI tract, but most

commonly affects the terminal ileum and proximal colon, with patchy transmural,

granulomatous inflammation that results in inflammatory, stricturing, or penetrat-

ing/fistulising disease [2].

3 Inflammatory Profiles, Th1 and Th17 Responses,
and Eicosanoids

Crohn’s disease is associated with a predominant T helper (Th)1/Th17 cell-

mediated response induced by interleukin (IL)-12, IL-23, and IL-27 with a con-

comitant increase in production of IL-2, IL-17, IL-18, IL-26, interferon (IFN)-γ,
and tumor necrosis factor (TNF)-α [3–11]. The importance of Th17 cells, which

express the IL-23 receptor (IL23R) on their surface, is further supported by

genome-wide association studies, which have demonstrated the IL23R and other

genes involved in the differentiation of Th17 cells as IBD susceptibility genes [12–

14]. Furthermore, in transgenic mice that overexpress the IL-23 subunit p19, severe

systemic inflammation, involving both the small and large intestine, has been

observed [15], highlighting this pathway in promoting strong activation of effector

T cells and perpetuation of organ-specific inflammatory responses. While IL-23

stabilizes the Th17 phenotype [3, 7–10, 16–18], IL-12 and IL-27 promote Th1

responses [19–22], and suppress the development of Th17 effectors [23–25]. Eicos-

anoids produced from the omega-6 (n-6) polyunsaturated fatty acid (PUFA)

arachidonic acid (ARA; 20:4n-6) include the 2-series prostaglandin (PG) PGE2,

which promotes IL-23 and inhibits IL-12 and IL-27, and the 4-series leukotriene

(LT) LTB4, which is elevated in the mucosa of Crohn’s disease and ulcerative

colitis patients and in experimental models of IBD [26–29]. These same mediators

have been shown in experimental models to promote the accumulation of Th17

cells in inflamed tissue [26–28], leading to further neutrophil accumulation, and

activation of fibroblasts, epithelial cells, and macrophages to release

pro-inflammatory cytokines and chemokines and metalloproteinases [30]. Further-

more, IL-17synergizes with lipopolysaccharide (LPS) to induce cyclooxygenase

(COX) 2 expression in colonic sub-epithelial myofibroblasts [31] maintaining a

pro-inflammatory environment. In contrast, ulcerative colitis is associated with a

predominant Th2-mediated response characterized by natural killer (NK) T cell

secretion of IL-13 and increased production of IL-4 and IL-5 [32–34]. However,

there is now clear evidence that there is considerable overlap in inflammatory

profiles between Crohn’s disease and ulcerative colitis and Th1 and Th17 responses

are involved in both diseases [25, 35–37].
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4 Changing Incidence of IBD

The rising incidence of IBD has been highlighted by two recent comprehensive

reviews of temporal trends in worldwide incidence rates of pediatric and adult IBD

[38, 39]. These studies reaffirmed rising global rates in both children (due primarily

to a rising incidence of Crohn’s disease) and adults (with 56 % of Crohn’s disease

and 29 % of ulcerative colitis studies having shown a statistically significant

increased incidence since the 1980s) in both developed and developing nations

[38, 39]. Moreover, studies have shown that individuals migrating from low

prevalent regions (e.g., South Asia) to higher prevalent countries (e.g., England

and Canada) are at increased risk for developing IBD, particularly among first- and

second-generation immigrants, highlighting the importance of environmental influ-

ences [40–42].

5 Dietary Fat and IBD

Among the various environmental influences that potentially contribute to the

pathogenesis of IBD, dietary factors are decidedly plausible, potentially through

effects on the intestinal epithelial barrier, the mucosal and systemic immune

systems and mucosal inflammatory response, and through modulation of intestinal

microflora, each of which has been implicated in IBD. In Western countries, the

association between plasma LDL cholesterol and atherosclerotic heart disease has

led to the replacement of dietary sources of saturated animal fats with vegetable oils

high in the n-6 PUFA, linoleic acid (LA, 18:2n-6), as well as in margarines and

shortenings. Technological advances of the twentieth century associated with

increased availability and reduced cost has further augmented consumption of

liquid vegetable oils. This strategy associated with increased accessibility has

lead to increased consumption of LA from around 3 % dietary energy in the1930s

to about 7 % in the 1980s. Currently, n-6 PUFA intake represents approximately

7 % of dietary energy in the USA, about 5 % in Canada [43–48], and in most

European countries intake of PUFA ranges from 4 to 6 % of energy [49,

50]. Linoleic acid can be converted to ARA by the pathway shown in Fig. 5.1.

The intake of the bioactive n-3 PUFAs eicosapentaenoic acid (EPA; 20:5n-3) and

docosahexaenoic acid (DHA; 22:6n-3), found mainly in seafood, has either

remained the same or decreased resulting in a marked increase in the balance of

n-6 to n-3 fatty acid intake in the diet, with consequential changes in abundance of

ARA, EPA, and DHA in plasma membrane phospholipids and alterations in

inflammatory tone towards a pro-inflammatory environment [51]. Indeed, a con-

siderable body of experimental and clinical data has accumulated in recent years to

show the availability of unesterified ARA released from cell membrane phospho-

lipid is fundamentally linked to inflammation through mechanisms that involve

further metabolism to pro-inflammatory eicosanoids (Figs. 5.1 and 5.2), including
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Fig. 5.1 Metabolic pathway of conversion of the precursor n-6 fatty acid linoleic acid to the

eicosanoid precursor arachidonic acid. COX cyclooxygenase, LOX lipoxygenase

Fig. 5.2 The pathways of eicosanoid synthesis for arachidonic acid. COX cyclooxygenase, LOX
lipoxygenase, HPETE hydroperoxyeicosatetraenoic acid, HETE hydroxyeicosatetraenoic acid, LT
leukotriene, PG prostaglandin, TX thromboxane. Note that not all metabolites are shown
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PGE2 and LTB4, with an enhanced Th1/Th17 response [26–28, 52–54]. EPA and

DHA can act to counter the effect of ARA [51].

That the dietary changes described here coincide with the rising incidence of

IBD was first observed in studies in adults conducted in the US in Olmstead County

and in the UK in Cardiff [39]. Conversely a favorable n-6 to n-3 PUFA balance

should promote an environment more tolerant to immunological challenge. In

Japanese and Inuit societies with traditionally high EPA and DHA intakes from

fish or marine mammals, and low intakes of n-6 PUFA, the rates of IBD have been

low. However, as the Japanese diet has become increasingly westernized, the

incidence of IBD, and specifically Crohn’s disease, has increased and this was

linked to rising intake of n-6 PUFA [55].

6 Timing of Dietary Exposure

The variable age of onset of IBD and duration of subclinical disease makes it

exceedingly difficult to prove a causal relationship with diet. Moreover the timing

of dietary exposure is likely exceedingly important and probably precedes the onset

of clinical disease possibly by many years. Epidemiological studies suggest that the

early dietary experience wherein nutrient deficiencies or imbalances occur has the

potential to alter the normal developmental trajectory and lead to long lasting

effects on cell function and disease susceptibility [56, 57]. In a recent experimental

model, maternal dietary fat intake during gestation and lactation was associated

with altered colonic membrane fatty acids in the newborn and nursing rat, altered

colonic epithelial barrier integrity with long-lasting effects and perturbed mucosal

response to chemical-induced (dinitrobenzene sulfonic acid; DNBS) colitis in later

life, in the absence of long-lasting effects on colonic lipids [52]. This study supports

the double hit theory wherein changes in colonic membrane n-6 and n-3 fatty acids

in early life altered the developmental trajectory and predisposed or primed the host

to an exaggerated immunological response to an inflammatory insult in later life.

As PUFA are essential nutrients, the developing fetus and young breast-fed

infant depend solely on the mother for an adequate supply of both n-6 and n-3

fatty acids. Placental transfer and secretion into breast milk of n-6 and n-3 fatty

acids is variable and dependent on maternal dietary intake of n-6 and n-3 fatty acids,

which in turn influences plasma membrane phospholipids and inflammatory tone of

the offspring [52, 58–60]. Consequently, a marked increase in the balance of n-6 to

n-3 fatty acid intake in pregnant and lactating women associated with the changing

trends in dietary lipid consumption over the later half of the twentieth century has

likely been accompanying by marked changes in abundance of ARA, EPA and

DHA in intestinal plasma membrane phospholipids of offspring. This dietary

change has potential consequential effects on epithelial barrier integrity and intes-

tinal mucosal inflammatory tone. In this regard, 15-day-old neonatal rats in a high

LA maternal dietary group accumulated colonic membrane ARA and manifested

with a severe inflammatory response and tissue damage to dinitrobenzene sulfonic
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acid (DNBS)-induced colitis [60]. Alternatively, a more balanced maternal dietary

n-6 to n-3 fatty acid with high α-linolenic acid (ALA; 18:3n-3) was associated with
ALA, EPA and DHA accumulation in colon phospholipids and a shift in intestinal

mucosal inflammatory tone toward an anti-inflammatory milieu with a resultant

reduction in the intestinal inflammatory response to an inflammatory insult. Addi-

tionally, the changes in maternal diet in all likelihood influence the developing

intestinal microbiome of the offspring.

7 Dietary Intake of n-3 PUFAs in Healthy Human
Volunteers

Studies in healthy human volunteers have helped increase our understanding of the

anti-inflammatory potential of fish oil [51]. Supplementing the diet of healthy

volunteers with fish oil containing between 3 and 15 g of EPA and DHA per day

has shown a decrease in neutrophil and monocyte chemotaxis towards various

chemoattractants including bacterial peptides, LTB4, and human serum [61–63],

though a dose response study suggests that near maximum inhibition occurs at an

EPA and DHA intake of 1.3 g per day [63]. Similarly dietary supplementation with

1.5 g of EPA and DHA per day has been shown to decrease expression of major

histocompatibility complex class molecules and intercellular adhesion molecule-1

on the surface of human monocytes stimulated ex vivo with IFN-γ [64]. While some

studies have shown that fish oil supplementation providing least 2 g EPA and DHA

per day decreases production of TNF-α, IL-1, IL-6, or PGE2 by mononuclear cells

[65–70], several others have failed to show an anti-inflammatory benefit. Though

the reasons for these discrepancies remain unclear, technical factors, and the

relative contributions of EPA and DHA in combination with patient heterogeneity

and polymorphisms in genes affecting cytokine production are likely important

determinants [71, 72]. Studies suggest that the effect of dietary fish oil on TNF-α
production is dependent on the TNF-α-308, and the TNFβ +252 alleles [71, 72].

8 Dietary PUFAs and Adult Models of Experimental
Colitis

The pro-inflammatory consequences of high dietary n-6 fatty acid intake are

evident in adult models of experimental colitis. High dietary intake of LA prior to

and during the course of TNBS and Citrobacter rodentium-induced colitis enriched
colon phospholipids with LA and ARA and exacerbated host mucosal Th1/Th17

response with increased severity of tissue damage [73, 74]. Conversely, high intake

of EPA and DHA often given as fish oil prior to and during the course of an

infectious insult with Citrobacter rodentium [74], or an inflammatory insult with
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TNBS [73, 75, 76], DSS [77, 78], or acetic acid [79] ameliorated the inflammatory

response and colon tissue damage. Additionally, high intake of fish oil in IL-10

knockout mice that spontaneously develop colitis was associated with a significant

reduction in colonic inflammation [80]. Similarly, a study in Fat-1 transgenic mice,

which expresses the Fat-1 gene encoding ann-3 fatty acid desaturase enzyme, that

converts n-6 PUFA to n-3 PUFA, showed an attenuated inflammatory response to

DSS-induced colitis and the presence of resolvin E1, resolvin D3, and

neuroprotectin D1 in colon tissue [81]. Pretreatment of mice with resolvin E1

(a pro-resolving EPA metabolite) in TNBS-induced colitis significantly attenuated

the inflammatory response, colonic damage, and mortality, suggesting that the

generation of resolvins could be a potentially important anti-inflammatory mecha-

nism of action of n-3 PUFA [82]. Collectively, the experimental studies show

beneficial effects of n-3 PUFAs through influences on the local mucosal microen-

vironment to support a reduction in synthesis of pro-inflammatory mediators (e.g.,

MCP1, MIP2, KC, IFN-γ, TNF-α, IL-6, IL-12, IL-17, IL-21, IL-23, inducible nitric
oxide) [73, 74, 81, 82] and eicosanoids [75], resulting in a reduction in mucosal

Th17 cell accumulation and inflammatory damage.

9 Dietary n-3 PUFAs and Patients with IBD

Whilst the beneficial effects of EPA and DHA, often given as fish oil, have been

shown in a spontaneous model of intestinal inflammation [80] and in experimental

models of colitis [74–76, 78, 79], therapeutic benefit has not been consistently

observed in clinical trials in patients with IBD [83–87]. Nevertheless, in several

studies in patients with IBD who supplemented their diets with fish oil, EPA and

DHA was incorporated into intestinal mucosal tissues creating a mucosal microen-

vironment with the potential to reduce mucosal inflammation [88–94]. Some ran-

domized controlled trials in IBD patient treated with fish oil have reported

therapeutic benefit, including improved clinical scores, improved sigmoidoscopy

scores, and an attenuation in histological damage associated a lower relapse rate

and reduction in corticosteroid use [51]. The dose of EPA plus DHA used in these

clinical trials has typically been between 2.5 and 6 g per day, with an average intake

of about 4 g per day [51]. In a 1-year double-blind, placebo-controlled trial in

Crohn’s disease patients, a 33%absolute reduction in the 1-year risk of relapse was

observed in 39 patients treated with 2.7 g/d of enteric-coated n-3 PUFA compared

to 39 patients receiving placebo [85]. In contrast, no benefit was observed in a

second 1-year risk of relapse trial in Crohn’s disease patients in remission on

corticosteroids and supplemented with 5 g/d of n-3 PUFAs [95] or in two large-

scale multicenter, randomized, double-blind, placebo-controlled studies (EPIC

1 and EPIC 2) with 3 g/day n-3 PUFAs as maintenance therapy in patients with

quiescent Crohn’s disease conducted in Canada, Europe, Israel, and the USA

between January 2003 and February 2007 [87]. For EPIC-1, 188 patients were

assigned to receive n-3 PUFA and 186 patients to receive placebo and
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corresponding numbers for EPIC-2 were 189 and 190 patients, respectively. The

rate of relapse at 1 year in EPIC-1 was 31.6 % in patients who received n-3 PUFA

and 35.7 % in those who received placebo and corresponding values for EPIC-2

were 47.8 and 48.8 %, respectively. In a meta-analysis of 13 IBD studies with fish

oil supplementation that reported clinical outcomes, variable effects of n-3 PUFAs

were reported on clinical score, sigmoidoscopic score, histologic score, induced

remission, and relapse [96, 97]. However, there was only sufficient data to perform

meta-analysis on the relative risk of relapse and for ulcerative colitis with no benefit

reported [96, 97]. Nevertheless, there was a statistically nonsignificant reduction in

the requirement for corticosteroids for n-3 PUFAs relative to placebo in 2 studies

and no studies evaluated the effect of n-3 PUFAs on the requirement for other

immunosuppressive agents. Additional meta-analyses evaluating maintenance of

remission in ulcerative colitis and Crohn’s disease identified limited, if any, benefit

[86, 98–100]. Thus, the studies to date suggest only weak evidence that n-3 PUFAs

have clinical benefit in patients with IBD. It is important to emphasize that

differences in study design, patient selection, patient heterogeneity and differences

in formulation, dose, and duration of administration of n-3 fatty acids have con-

founded our ability to adequately assess the clinical benefit of n-3 PUFAs intake.

Moreover, in experimental models of IBD, most often n-3 PUFAs are administered

prior to and during the course of infectious/inflammatory insult in contrast to the

administration to patients with established intestinal inflammatory disease. Hence,

n-3 PUFA supplementation is not currently supported for clinical use in patients

with IBD, but further well-designed clinical trials with appropriate dosing and

duration of EPA and DHA should still be considered.

10 Conclusion

There is considerable evidence that EPA and DHA, the major n-3 PUFAs found in

seafood and in marine oils, are important regulators of the inflammatory response

with actions that are in part mediated through replacement of ARA in cell mem-

branes. However, they are also metabolized to weak eicosanoids and perhaps more

importantly to potent pro-resolving mediators, and they can attenuate T cell reac-

tivity, production of pro-inflammatory cytokines and chemokines, leukocyte che-

motaxis, and leukocyte–endothelial cell interactions [51]. Animal models of n-3

PUFA and intestinal inflammation and pathology consistently demonstrate a ben-

efit. Some trials of fish oil supplementation in IBD have shown clinical and

endoscopic benefit, but unfortunately the findings have been inconsistent and

meta-analyses have concluded that there is currently no clear evidence of benefit.

Dose-dependent actions of marine n-3 PUFAs on inflammatory responses have not

been well described, but it appears that a dose of at least 2 g of EPA and DHA per

day is necessary to achieve an anti-inflammatory effect [51]. Perhaps even a higher

dose is required in persons with active inflammatory disease. A better understand-

ing of the dose–response relationship is needed in patients with IBD. Conversely,
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an increased intake of n-6 PUFAs is associated with increased synthesis and

membrane incorporation of ARA with accompanying production of

pro-inflammatory mediators, and increased oxidative stress in n-6 fatty-acid-rich

membranes. Epidemiological, clinical, and experimental data suggest that high

dietary n-6 fatty acid intake as is typical in a Western diet has the potential to

exaggerate the inflammatory response suggesting a plausible link to increased

dietary consumption and increasing incidence of IBD. Accordingly, implementing

a diet appropriately high in n-3 fatty acids and lower in n-6 fatty acids with a more

balanced n-6–n-3 fatty acid ratio could provide a means to protect against the

development of aberrant inflammatory disease or to limit the inflammatory process

in established disease. Such an approach might be one environmental strategy

employed to limit the rising incidence in IBD, but will likely need to be

implemented prior to or early in the development of the disease.
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Alexeeva O, Rostom A, Kiudelis G, Spleiss J, Gilgen D, Vandervoort MK, Wong CJ, Zou

GY, Donner A, Rutgeerts P (2008) Omega-3 free fatty acids for the maintenance of remission

in Crohn disease: the EPIC Randomized Controlled Trials. JAMA 299:1690–1697

88. Hawthorne AB, Daneshmend TK, Hawkey CJ, Belluzzi A, Everitt SJ, Holmes GK,

Malkinson C, Shaheen MZ, Willars JE (1992) Treatment of ulcerative colitis with fish oil

supplementation: a prospective 12 month randomised controlled trial. Gut 33:922–928

89. Hillier K, Jewell R, Dorrell L, Smith CL (1991) Incorporation of fatty acids from fish oil and

olive oil into colonic mucosal lipids and effects upon eicosanoid synthesis in inflammatory

bowel disease. Gut 32:1151–1155

90. Lorenz R, Weber PC, Szimnau P, Heldwein W, Strasser T, Loeschke K (1989) Supplemen-

tation with n-3 fatty acids from fish oil in chronic inflammatory bowel disease—a random-

ized, placebo-controlled, double-blind cross-over trial. J Intern Med Suppl 731:225–232

91. McCall TB, O’Leary D, Bloomfield J, O’Morain CA (1989) Therapeutic potential of fish oil

in the treatment of ulcerative colitis. Aliment Pharmacol Ther 3:415–424

92. Stenson WF, Cort D, Rodgers J, Burakoff R, DeSchryver-Kecskemeti K, Gramlich TL,

Beeken W (1992) Dietary supplementation with fish oil in ulcerative colitis. Ann Intern

Med 116:609–614

93. Shimizu T, Fujii T, Suzuki R, Igarashi J, Ohtsuka Y, Nagata S, Yamashiro Y (2003) Effects

of highly purified eicosapentaenoic acid on erythrocyte fatty acid composition and leukocyte

and colonic mucosa leukotriene B4 production in children with ulcerative colitis. J Pediatr

Gastroenterol Nutr 37:581–585

88 K. Jacobson and P.C. Calder



94. Trebble TM, Arden NK, Wootton SA, Calder PC, Mullee MA, Fine DR, Stroud MA (2004)

Fish oil and antioxidants alter the composition and function of circulating mononuclear cells

in Crohn disease. Am J Clin Nutr 80:1137–1144

95. Lorenz-Meyer H, Bauer P, Nicolay C, Schulz B, Purrmann J, Fleig WE, Scheurlen C, Koop I,

Pudel V, Carr L (1996) Omega-3 fatty acids and low carbohydrate diet for maintenance of

remission in Crohn’s disease. A randomized controlled multicenter trial. Study Group

Members (German Crohn’s Disease Study Group). Scand J Gastroenterol 31:778–785

96. MacLean CH, Mojica WA, Morton SC, Pencharz J, Hasenfeld Garland R, Tu W, Newberry

SJ, Jungvig LK, Grossman J, Khanna P, Rhodes S, Shekelle P (2004) Effects of omega-3 fatty

acids on lipids and glycemic control in type II diabetes and the metabolic syndrome and on

inflammatory bowel disease, rheumatoid arthritis, renal disease, systemic lupus

erythematosus, and osteoporosis. Evid Rep Technol Assess (Summ) 89:1–4

97. MacLean CH, Mojica WA, Newberry SJ, Pencharz J, Garland RH, TuW, Hilton LG, Gralnek

IM, Rhodes S, Khanna P, Morton SC (2005) Systematic review of the effects of n-3 fatty

acids in inflammatory bowel disease. Am J Clin Nutr 82:611–619

98. Turner D, Zlotkin SH, Shah PS, Griffiths AM (2009) Omega 3 fatty acids (fish oil) for

maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev (1):CD006320

99. Turner D, Steinhart AH, Griffiths AM (2007) Omega 3 fatty acids (fish oil) for maintenance

of remission in ulcerative colitis. Cochrane Database Syst Rev (3):CD006443

100. De Ley M, de Vos R, Hommes DW, Stokkers P (2007) Fish oil for induction of remission in

ulcerative colitis. Cochrane Database Syst Rev (4):CD005986

5 Role of Omega-6 and Omega-3 Fatty Acids in Inflammatory Bowel Disease 89



Chapter 6

N-3 Polyunsaturated Fatty Acid
and Neuroinflammation in Aging: Role
in Cognition

Sophie Layé, Charlotte Madore, Jean-Christophe Delpech, Corinne Joffre,
and Agnès Nadjar

1 Introduction

The central nervous system (CNS) has long been considered as a privileged organ

from the point of view of immunity, as the blood–brain barrier (BBB), thanks to its

tight junctions, limits the entry of immune cells, notably lymphocytes, into the

brain. Research in neuroimmunology has shown that the brain possesses its own

system of defense, which, in addition to being activated by immune stimuli, is

closely linked to the immune system. Inflammatory cytokines, which are important

mediators of communication within the immune system, also act in the brain, in

particular by activating the innate immune cells of the brain that in turn, produce

inflammatory cytokines [30, 31]. The synthesis of brain cytokines is finely regu-

lated, allowing them to return to basal levels without leading either to a rupture of

the BBB or to cerebral lesion. On the other hand, when these factors are synthesized

in large quantities or in a chronic manner by the brain, they have toxic effects on

neurons, resulting in substantial neuronal dysfunction that can lead to cell death.

The alteration of neuronal functions induced by cytokines action is also seen during

aging, where microneuroinflammation, characterized by microglial reactivity and

the chronic production of low levels of inflammatory cytokines, occurs [75]. This

microneuroinflammation, which increases the vulnerability of the aging brain to

immune stimuli, is characterized by the increased production of brain cytokines and

the risk of developing delirium and/or neurodegenerative disorders with an inflam-

matory component, such as Alzheimer’s disease [97]. Accordingly, clinical and

epidemiological studies have shown a correlation between the systemic expression

levels of inflammatory cytokines and the incidence of functional/behavioral
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alterations (cognitive or mood disorders) in elderly subjects. In this context,

limiting the development of chronic neuroinflammation represents a key element

in the protection of the brain against neurodegenerative disorders.

Diet constitutes a strategy of choice for such an approach, since it represents an

environmental factor to which individuals are exposed throughout their life.

Increasing attention has been paid to omega-3 (n-3) and omega-6 (n-6) polyunsat-

urated fatty acids (PUFAs), micronutrients that are essential since they cannot be

synthesized de novo by the organism. An increasing database attests of the powerful

immunomodulatory effects of PUFAs [20]. Thus, n-3 PUFAs form the basis of lipid

derivatives (neuroprotectins and resolvins) with anti-inflammatory properties,

whereas n-6 PUFAs are the precursors of the proinflammatory prostacyclins and

stimulate the production and activity of inflammatory cytokines. The brain is

extremely rich in PUFAs and the accumulation of PUFAs in brain tissues takes

place during the perinatal period in proportions which are dependent on maternal

dietary levels. Conversely, their levels diminish as the individual ages, but can be

corrected by appropriate nutritional strategies. During the last few decades, the

lifestyle of Western societies has evolved towards a decrease in energy expenditure

mainly related to sedenterization and a change in our dietary habits towards the

consumption of energy-rich foods with high levels of saturated fats, n-6 PUFAs,

and sugar, and poor in vitamins and micronutrients [112]. This dramatic reduction

in the dietary supply of n-3 PUFAs and the corresponding increase in n-6 PUFAs,

leading to an imbalanced n-6–n-3 ratio currently estimated at 12–20 in developed

countries (of note, the current recommended ratio is 5), could therefore contribute

to the sensitization of the brain to inflammatory cytokines, and thus to the devel-

opment of neurodegenerative and/or neurobehavioral disorders.

2 The Innate Immune System of the Brain (BIIS)

At the periphery, tissue injuries caused by trauma or pathogens induce an immedi-

ate local inflammatory response involving local cells and characterized by the

synthesis and release of proinflammatory factors, among which cytokines and

chemokines, followed by systemic recruitment of immune cells. The purpose of

this local response is to eliminate pathogens and to promote tissue repair. However,

the failure of resolving the insult and deregulated injury result in chronic inflam-

mation, which is toxic for the tissue, and result in cytodestruction. In addition,

inflammation involving the peripheral innate immune system can affect the brain

[30, 31]. However, coming to the inflammation in the brain it appears that the very

well recognized principles of peripheral inflammation cannot be strictly applied to

the brain. The term neuroinflammation is broadly used then to discriminate brain

inflammatory response from peripheral inflammatory response. However, the def-

inition of neuroinflammation is still a matter of debate. Indeed, some authors claim

that neuroinflammation corresponds to the elaboration of neuroinflammatory

responses linked to the influx of peripheral innate immune cells (macrophages
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etc.) in the brain [53]. Other authors use the term neuroinflammation to describe the

brain inflammatory response involving not only peripheral immune cells influx in

the brain but also the discrete response of brain innate immune cells (BIIS) so called

microglia [49]. In this case, microglia response is not limited to sterile stimuli but

also to pathogens (virus, bacteria, etc.). In the case of microglial activation in the

brain associated to aging, obesity, neurodegenerative diseases such as Alzheimer

disease (AD) or Parkinson disease, the term pseudo-inflammation has been pro-

posed. Interestingly, the use of the term neuroinflammation suggests that the

reaction occurring in the brain is distinct from peripheral inflammation, since it is

mediated by microglia. In this review, as we focused of BIIS and in particular

microglia, the term neuroinflammation will be used.

2.1 Resident Microglial Cells and Blood Derived Monocytes

Microglial cells are the most important part of the innate immune system of the

brain (BIIS). These cells are the parenchymal resident macrophages of the brain and

constitute the first line of immune defense of the brain (phagocytosis, antigen

presentation and secretion of proinflammatory cytokines) [15]. They account for

5–20 % of the non neuronal glial cells. Microglia are distinct of brain macrophages

that are found in the meninges, choroid plexus, and perivascular space thanks to

their different developmental origin. Indeed, very recent data highlight that

microglia derives from macrophages produced by primitive hematopoiesis in the

yolk sac [47, 64] while brain macrophages derive from precursor blood monocytes

that are formed in the bone marrow from hematopoietic stem cells [105]. Microglia

precursors colonize the CNS during the embryonic and fetal phases of development

[102]. Interestingly, an increase of CD11b+/F4/80+ microglia occurs in the post-

natal brain of rodents [2]; however, whether this is due to the proliferation of

microglia precursors or the recruitment of monocyte-derived microglia precursors

is still unknown.

Despite a huge amount of data on microglia, little is known about the phenotype

and function of microglia in the brain under physiological conditions. It is anyway

largely accepted now that microglia has a surveillance and maintenance role in

normal brain function. Such an activity is supported by recent evidence that

microglia processes are highly motile in the uninjured brain and contact synapses

quite frequently [33, 95, 124]. Such an interaction is believed to be involved in

synapse maturation and elimination in the adult brain [121] and synaptic pruning

(phagocytosis of synapses) during brain development [96]. Synaptic pruning is

necessary for normal brain development [96, 107] and requires cellular contact

and involves the phagocytic receptor CR3 and CX3CR1 [107, 125].

Microglia are particularly sensitive to changes in their microenvironment and

readily become activated in response to infection, trauma, or disease [55]. Microglia

phagocytes apoptotic neurons and reduces debris and neuroinflammation which, in

turn is beneficial to alive neurons [94]. In inflammatory situation, the phagocytic
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adaptor protein MFG-E8 is released by microglia and binds to phosphatidylserine

(PS) exposed on apoptotic neurons. This activates neuronal phagocytosis by

microglia via the vitronectin receptor [93]. AnnexinA1, an eat-me signal released

by microglia serves as a bridge between PS and dying neuron, help the microglia to

discriminate between apoptotic neurons and healthy neurons [83]. Activated

microglia in inflammatory state appears to lose their ability to discriminate between

apoptotic and viable neurons, resulting in phagocytosis of healthy neurons.

In the adult brain, microglial cells have a ramified morphology when quiescent

(Fig. 6.1) and an amoeboid morphology when activated. Ramified microglia cells

generally do not display phagocytic activity and weakly express ligands and

receptors involved in macrophage function. Disseminated throughout the brain

parenchyma, they use their processes to receive signals such as nonself and

danger-self ligands from their microenvironment, which reveal the existence of

the presence of a pathogen or a lesion respectively. In order to do this, microglial

cells express a set of pattern recognition receptors (PRRs) including the Toll-like

receptors (TLRs) that allow the recognition of PAMPs (pathogen-associated molec-

ular patterns), such as the bacterial endotoxin [14, 81]. Besides pathogens, danger-

associated molecular pattern (DAMP) molecules, the endogenous PRR danger-self

ligands, activate the brain inflammatory reaction [132]. The activation of PRRs by

PAMPS and DAMPs induces the secretion of cytokines and chemokines by

microglia which thereby coordinate the inflammatory reaction, thanks to the

expression of membrane receptors for the inflammatory cytokines interleukin

(IL)-1β, tumor necrosis factor (TNF)α, and IL-6 and several chemokines. In vivo,

IL-1β, TNFα, and IL-6 are produced by microglia in response to peripheral immune

stimuli like the bacterial endotoxin lipopolysaccharide (LPS) [32].

2.2 Microglial Cells Plasticity

The BIIS response promotes the clearance of pathogens, toxic cellular debris, and

apoptotic cells and therefore protects the brain. Indeed, a complete blockade of

microglial activity exacerbates brain damage in adult and neonatal hypoxic ische-

mic injury models [71]. However, the sustained expression of inflammatory factors

such as cytokines can lead to neurodegeneration. The BIIS response is therefore a

double-edged sword representing a fine balance between protective and detrimental

effects and therefore need to be tightly controlled. Microglia phenotypes, so called

polarization, could be crucial in the protective or detrimental role of PRR-activated

BIIS response toward neurons. According to what was described for macrophages,

authors have suggested that activated M1 cells have cytotoxic properties, M2a are

involved in repair and regeneration, M2b have an immunoregulatory phenotype

while M2c have an acquired-deactivating phenotype [98] (Fig. 6.2). In vivo,

microglia express proinflammatory cytokines associated with an M1 response

(IL-1, IL-6, IL-12, and TNFα) in response to an immune stimulus [98]. Microglia

polarization into a M1 phenotype is transient. Microglia returns to a surveying M2
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Fig. 6.1 Photomicrograph of microglial cells (green, CX3CR1-GFP +/� mouse) and neurons

(Violet, nucleus labeled with anti-NeuN) in the dentate gyrus of mouse hippocampus. Left corner:
magnification of unitary microglial cell (maximum projection of Z-stack)

Fig. 6.2 Microglia phenotype plasticity. Microglia can adopt different phenotypes: M1 (classical

activation), M2a (alternative activation), M2b (immunoregulatory), and M2c (acquired-

deactivation). According to their phenotype, microglia cells express different clusters of differen-

tiation (CD) such as CD86 or CD206, or type-II proteins of major histocompatibility complex

(MHC) and secrete different cytokines and chemokines. CCL chemokine (C-C motif) ligand, IFN
interferon, IL interleukin, LPS lipopolysaccharide, TGF transforming growth factor, TNF tumor

necrosis factor, Ym1 chitinase 3-like 3
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state when the immune stimulus is resolved thanks to anti-inflammatory mediators

[15]. In particular, IL-10 and IL-4 are important mediators of M1 microglia

deactivation [42]. Importantly, M1/2b induces increasing and M2a-induced

decreasing neuronal loss [26]. Recently Girard et al. have nicely demonstrated in

organotypic hippocampal slices that infiltrating macrophages are cytotoxic while

microglia are protective, independently of its M1/M2 phenotype [48]. Some mol-

ecules emerge as potent regulators of the balance between M1 and M2 microglia,

opening new avenues for the treatment of neuroinflammation. As an example,

lipocalin-2 has very recently been shown as playing a key role in the M1 polariza-

tion of microglia through the inhibition of IL-10, an anti-inflammatory cytokine

M2-related [60].

2.3 Neuron–Microglia Interactions

The extent of neuroinflammation depends on the bidirectional interactions between

neurons and microglia. Recruitment and activation of microglial cells require well

organized reciprocal communication between neurons and microglia. Recent evi-

dence indicates that neurons control microglia activity. As a result, neurons release

ON or OFF signals to regulate the activation of microglia. OFF signals (CD200,

CX3CL1, CD47, CD55, and HMGB1) are produced by healthy neurons to keep

microglia in their surveillance mode. On the opposite, damaged neurons express

inducible ON signals (chemokines, purine, and glutamate) to activate microglia and

phagocytosis [15]. Interestingly, such neuronal–glial interactions are impaired in

the aged brain leading to amplified and prolonged microglial activation and pro-

duction of proinflammatory cytokines [118]. Recent data highlighted the impor-

tance of CX3CL1, a 73-amino acid protein with a chemokine domain, in the

communication between microglia and neurons and in the control of

neuroinflammation [12]. In the brain, CX3CL1 is expressed by healthy neurons

and binds to the fractalkine receptor (CX3CR1) which is exclusively expressed by

microglia [56]. CX3CL1 has anti-inflammatory and neuroprotective activities as it

reduces neuronal apoptosis [120]. In addition, CX3CL1 contributes to maintaining

a resting phenotype in microglia and controls the overproduction of nitric oxide

synthase (iNOS), IL-1β, IL-6, and TNFα in response to an insult. CX3CR1 knock-

out mice display increased IL-1β expression in microglia both in basal level and

after a LPS treatment [100, 103]. The increased IL-1β expression is associated to

the impairment of cognitive function, neurogenesis, and synaptic activity [5, 103]

and increased neuronal death [100]. These results reinforced the idea that CX3CL1

is a key factor to regulate microglial activity in both physiological and pathological

conditions.
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To end, the protective effects of microglia towards neurons have been suggested

to involve neurotrophic factors as demonstrated in vitro. Indeed, IL-4 conditioned

microglia release IGF-1 (insulin-like growth factor 1) which exerts neuroprotective,

survival, and pro-regenerative activities [19]. BDNF (Brain-derived neurotrophic

factor) is also thought to be released by microglia to stimulate axonal sprouting

toward wound edge [10]. However, whether microglia release neurotrophic factors

in healthy condition is poorly demonstrated.

2.4 BIIS Facilitates Cognition in Physiological Conditions

The idea that BIIS is involved in normal cognitive processes came from studies

more than a decade ago. As (1) cytokines, chemokines, and their receptors are

expressed in the brain, (2) neurons and microglia communicates, and (3) microglia

contacts both presynaptic and postsynaptic elements, it was suggested that the BIIS

is a neuromodulator in the healthy brain [130]. Transgenic mice for cytokines

(IL-1β, IL-6, and TNFα) or chemokines (CX3CR1) have memory impairment

[52, 68, 103], suggesting that these factors promote learning and memory. Mice

deficient in TNFα exhibit marked reduction in neuronal arborization in the hippo-

campus together with hippocampal-dependent memory test impairment [51]. IL-1

receptor deficient mice and brain overexpressing IL-1 receptor antagonist (IL-1ra)

mice displayed a slower rate of learning in the spatial memory paradigm [4,

52]. Interestingly, mice with genetic deletion of P2X7-ATP receptors, which are

critical for IL-1β production in microglia, displayed altered spatial memory and no

IL-1β expression and abrogation of hippocampal neural activation following expo-

sure to this memory test [68]. Icv administration of low dose of IL-1β results in

better memory [131]. All together, these data strongly support the idea that a low

level of IL-1β in the hippocampus plays an important role in learning and memory

processes. In addition, a huge amount of data clearly shows that cytokines are

involved in physiological synaptic plasticity, in particular long-term potentiation

(LTP), known to underlie memory storage in the hippocampus [117]. In the healthy

hippocampus, microglia also actively participates in adult neurogenesis [111]. As at

least half of the new cells produced die, microglia actively remove the apoptotic

cells through phagocytosis without being activated [111]. To end, chemokines

produced by microglia and neurons have been reported to facilitate memory,

together with neurobiological processes thought to be involved in memory [126].
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3 BIIS in the Aging Brain, Effect on Cognition

3.1 Microglia Are Primed in the Healthy Aged Brain

Aging is associated with senescence of microglia, impaired microglia phagocytic

activity, low-grade neuroinflammation, and cognitive impairment. Chronic low

grade inflammatory state in the aged brain is characterized by a higher expression

of proinflammatory cytokines IL-1β, IL-6, and TNFα to the detriment of anti-

inflammatory factors such as IL-10 and IL-4. This state is called inflammaging at

the periphery and in the brain. The overproduction of proinflammatory cytokines in

the absence of infection or injury in the aged brain could be linked to the impair-

ment of microglial activity. Indeed, microglia number and activity increase in

normal aging [35]. These cells, in addition to producing proinflammatory cyto-

kines, display the presence of lipofuscin granules, and decreased processes com-

plexity, a morphological change found in activated microglia [55, 121]. In addition,

microglia in the aged brain expresses higher levels of CD86, major histocompati-

bility complex II (MHC II), TLR, and CR3/CD11b which are markers of activated

microglia [98]. Senescent microglia has reduced phagocytic activities of beta-

amyloid in aged transgenic mice which could be due to its M1 phenotype

[57]. The mechanisms involved in increased microglia activation in the aged

brain is not fully understood; however, as CD200 and CX3CR1 expression are

impaired it could be possible that neuron–glia interactions are disturbed

[35]. Impaired interplay between neurons and glia may be responsible for derange-

ments from normal brain aging to neurodegenerative processes. When challenged

with immune stimuli or a stress, aged animals clearly mount an exaggerated

neuroinflammatory response, characterized by the overproduction of

proinflammatory cytokines (IL-1β, IL-6, TNFα, iNOS) compared to young conge-

ners [6, 50, 116]. In addition, microglia from aged animals is activated for a longer

duration when challenged, suggesting an alteration of the shut-off system.

Proinflammatory cytokine overexpression to insult or infection is linked to the

microglia priming or sensitization, which was first defined by Cunningham

et al. [29]. In adult, microglia shifted to a M2 phenotype under IL-4 treatment

while aged microglia retained a M1 phenotype [42]. Aged mice display a prolonged

downregulation of CX3CR1 together with decreased CX3CL1 in the brain after a

LPS treatment [128]. As a result, M1 polarization is associated with the initiation

and perpetuation of neuroinflammation, while M2 polarization of microglia is

involved in the resolution of neuroinflammation in the aged brain. The failure of

aged microglia to polarize from a proinflammatory to an anti-inflammatory pheno-

type supports the detrimental role of primed microglia in neurodegenerative dis-

eases with a self-sustaining and self-amplifying cycle of neurotoxicity. As an

example, the inhibition of lipocalin-2 expression reduces M1 polarization,

microglial M1 gene expression, and neuroinflammation-associated impairment in

motor behavior and cognition [60]. These new knowledge stimulate research
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aiming at developing drugs targeting the M1 polarization to promote M2 when

appropriate [73].

3.2 Inflammaging and Cognition

Recent clinical and experimental data have shown a strong association between

blood proinflammatory cytokines levels, especially IL-6, quality of life, and neu-

ropsychiatric symptoms in a cohort of elderly subjects [23, 24] and in aged

laboratory mice [69, 91]. Significantly elevated levels of pro-inflammatory cyto-

kines, such as IL-1β, in key brain regions responsible for mediating memory, such

as the hippocampus, have been shown to impair a wide range of memory processes

[7–9, 130].

The mechanisms underlying the effect of proinflammatory cytokine on mood

and cognitive disorders have been intensively studied in rodents [130]. Studies

using minocycline, a tetracycline derivative that inhibits microglial activation and

cytokine production, show a link between brain cytokine production and

depressive-like symptoms as well as spatial memory impairment [32]. In addition

to impairing the metabolism of serotoninergic and glutamatergic neurotransmission

systems, which are well known players in mood and cognition respectively, brain

proinflammatory cytokines alter hippocampal synaptic plasticity in adult and aged

rodents [79]. Importantly, we have recently showed in a population of elderly

subjects that age-related low-grade systemic inflammation was associated with

alterations in the activity of two enzymatic pathways, the indoleamine 2,3

dioxygenase (IDO) and guanosine-triphosphate-cyclohydrolase-1 (GTP-CH1)

pathways, which are involved in the metabolism of key monoamines [24]. Interest-

ingly, increased IDO activity was associated with the depressive symptoms of

lassitude, reduced motivation, anorexia, and pessimism in the same population. In

contrast, decreased GTP-CH1 activity correlated more with neurovegetative symp-

toms, including sleep disturbance, digestive symptoms, fatigue, sickness, and motor

symptoms.

Age-induced IL-1 overproduction in the brain, and more particularly in the

hippocampus, is associated with a decrease in synaptic plasticity measured by

LTP in the dentate gyrus, which could explain the cognitive impairment observed

in the elderly [9, 79]. Receptors for IL-1 are distributed with a high density in the

hippocampus, where IL-1 exerts inhibitory effects on memory [9]. There is also

evidence for a role of endogenous brain IL-1 in the normal physiological regulation

of hippocampal plasticity and learning processes [79]. Low levels of IL-1 are

essential for memory and plasticity, whereas higher levels of IL-1, similar to

those achieved during aging and neurodegeneration, can be detrimental [130]. Sev-

eral inflammatory factors, among IL-1b, induce neuronal hyper excitability through

the NMDA receptor 2B phosphorylation and Ca2+ influx (reviewed in [130]. In

susceptible rodents with synaptic loss (aging, prion disease), hyper-excitability

induced by inflammatory stimuli results in delirium, which further impairs
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cognitive functioning [92] and excitotoxicity, apoptosis, and neurodegeneration

[109]. IL-1βimpairs the release of glutamate from synaptosome in vitro [122];

however, whether its overexpression in the aging brain has the same effect remains

to be determined. IL-1-induced BDNF decrease in the hippocampus could account

for LTP impairment and memory deficit including in the aged rodents [9, 28].

Normal aging is associated to a decline in neurogenesis that could support the

cognitive decline [17, 36]. Among other factors, chronic neuroinflammation is

supposed to be an important contributor to such impairment. Indeed, long-term

administration of LPS suppresses hippocampal neurogenesis through decreasing

new neuron survival and the recruitment of new neurons in hippocampal networks

[66]. Such an effect could be mediated by high level of proinflammatory cytokines,

in particular IL-6, IL-1β, and TNFα [90, 108, 127]. On the opposite, anti-

inflammatory cytokines such as TGFβ, IL-10, and IL-4 enhance neurogenesis

through their effect on neuronal progenitor differentiation [3, 11]. Interestingly,

the administration of minocycline (an inhibitor of microglia activation) or IL-10 to

transgenic mice model of AD attenuates the reduction of neurogenesis observed in

these animals [16, 65]. In the aged hippocampus, decreased neurogenesis is corre-

lated with microglia activation and cytokines production [45, 67]. CX3CL1 admin-

istration and IL-1β blockade both restore neurogenesis in the hippocampus of aged

rodents [5, 45]. Whether chemokines and cytokines effect on neurogenesis is

involved in age-related memory impairment remains to be determined. However,

a very elegant study recently highlighted aged-related chemokines CCL2, CCL11,

and CCL12 as systemic factors of neurogenesis and memory impairment further

reinforcing this idea [123].

BIIS is considered to be important in AD. High levels of pro and anti-

inflammatory factors, increased PRR expression and chemokines are found in the

brain of AD patients [73]. However, whether these factors are a cause or a

consequence of AD is still a matter of debate as Aβ is known to activate microglia

cells, which in turn produce proinflammatory factors. Very recent data highlighted

that microglia, because of its impaired activity in the AD brain, cannot phagocyte

Aβ that therefore accumulate. In turn, Aβ accumulation activates microglia in a

chronic proinflammatory state that contributes to the disease progression and,

ultimately cognitive decline [73]. IL-1 overexpression has been implicated in

both the initiation and progression of neuropathological changes [104]. Accord-

ingly, overexpression of IL-1 in the Alzheimer brain has been linked to an increased

microglial activity, frequently associated with amyloid plaques. In addition, brain

from Tg2576 mice (a model of Alzheimer disease) exhibited significant increases in

IL-1 expression in comparison to healthy animals. Moreover, aged Tg2576 showed

mounted and exacerbated cytokine response to LPS, a process that may be respon-

sible for the amplification of degenerative processes. Recent data suggest however

that in transgenic mice overexpressing IL-1β, amyloid and tau pathology are

differentially regulated, with a reduction in amyloid deposit and an exacerbation

of Tau hyperphosphorylation [46]. Such effects could involve CX3CL1 as its lack

of activity has been reported to either decrease [27] or activate Aβ clearance
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[76]. Further studies are needed to precise the role of CX3CL/CX3CR in these

processes.

In the last decades, several trials aiming at reducing brain inflammation in AD

patients show poor positive results [1, 18]. Because the role of BIIS in the devel-

opment of AD is complex, other strategies aiming at optimizing microglia activity,

rather than just blocking inflammatory factors synthesis in the brain could be more

beneficial [73].

4 Polyunsaturated Fatty Acids and BIIS

PUFAs of the n-3 or n-6 families are essential nutrients, as they cannot be generated

de novo in mammals. In plants, they exist as precursors (linoleic acid (18:2 n-6, LA)

and α-linolenic acid (18:3 n-3, ALA)) that are metabolized by a series of elongation

and desaturation steps into arachidonic acid (20:4n-6, AA) in the first case and

eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA)

in the second (Fig. 6.3). These PUFAs are incorporated into cell membranes as

phospholipids. The liver is the principal site of conversion of the precursors LA and

ALA into long-chain PUFAs, although other organs such as the brain also express

the necessary elongases and desaturases. Since the two series of PUFAs compete

for the use of the enzymes necessary for their biosynthesis, and because they have

distinct physiological properties, the n-6–n-3 ratio in the diet is of particular

importance. Foods that were previously consumed by humans were rich in n-3

PUFAs (products of hunting), while those consumed today are poor in these

nutrients. Since the industrial revolution, the ratio of n-6–n-3 PUFAs in the diet

has increased from 1 to almost 20 in industrialized countries like the United States,

leading to a significant deficiency in n-3 PUFAs [113].

The dietary deficiency in n-3 PUFAs is associated with significant decreases in

DHA in the brain, and could thus promote neuroinflammatory processes and the

subsequent development of inflammatory-based CNS disorders [75]. Supporting

this notion is the very low incidence of inflammatory disorders (e.g., psoriasis,

asthma, multiple sclerosis) in populations, such as Greenland Inuits, with a high n-3

PUFAs dietary intake due to elevated fish consumption. The effect of n-3 supple-

mentation is currently subject to debate. While some clinical studies have reported

anti-inflammatory effects of n-3 PUFAs administered in the context of chronic and

autoimmune inflammatory disorders, other reports fail to reproduce these findings.

Conversely, dietary supplementation with fish oil rich in long-chain n-3 derivatives,

including EPA and DHA, leads to an improvement in symptoms in patients with

rheumatoid arthritis, chronic inflammatory intestinal disorders, or multiple

sclerosis [21].
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4.1 N-3 PUFAs and Age-Related Neuroinflammation

Experiments conducted in animals have highlighted brain DHA as a potent medi-

ator of the protective effects of dietary n-3 PUFAs. Because it cannot be synthe-

sized de novo in mammalian cells, brain DHAmust be provided in the diet, either in

the form of its precursor α-linolenic acid (α-LNA, 18:3n-3) or in the form of DHA.

Low dietary intake of n-3 PUFA decreases DHA levels in the animal brain. As a

result, emotional behavior (depressive-like symptoms and anxiety) as well as

learning and memory are impaired as shown by us and others [41, 70, 74, 91]. On

the opposite, positive effects of diet enriched in DHA on learning and memory have

been demonstrated in laboratory animals [25, 44, 129]. During aging, the levels and

the turn-over of brain PUFAs decrease, particularly in the hippocampus, cortex,

striatum, and hypothalamus. Brain levels of DHA and AA diminish in aging rats

with alterations in cognition and in LTP in the hippocampus [38]. In transgenic

SAMP8 mice, in which aging is accelerated, DHA decreases with age whereas lipid

peroxidation increases [99]. In addition, the conversion of the precursors LA and

ALA into their long-chain derivatives becomes less efficient. In fact, the activity of

Fig. 6.3 N-6 and n-3 polyunsaturated fatty acids (PUFAs). n-6 and n-3 essential fatty acids

precursors are linoleic acid (LA) and α-linolenic acid (ALA). These precursors are metabolized

into arachidonic acid (AA) and eicosapentaenoic (EPA) and docosahexaenoic acid (DHA),

respectively. AA is metabolized into derivatives that belong to the eicosanoid family, series

2 and 4. EPA and DHA metabolic derivatives belong to the eicosanoid family, series 3 and

5, resolving family (series D and E) and neuroprotectins
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the desaturases responsible for the conversion of LA and ALA into their respective

long-chain derivatives, and the activity of the Δ6 desaturase in particular, decreases
with age in the liver and the brain. Phospholipid synthesis pathways are also altered

with age, thus reducing the incorporation of PUFAs into membranes. The combi-

nation and interaction of these different alterations associated with aging contrib-

utes to a reduction in the level of DHA, i.e., a reduction in the index of membrane

fluidity, in the brain of elderly people. In animals, aging was found to be associated

with a decrease in the membrane content of AA in the hippocampus together with

an attenuation of LTP that can be reestablished by a diet containing AA [84]. These

data support the idea of the importance of DHA dietary supply in aged subjects.

As mentioned above, PUFAs represent potent immunomodulatory agents.

Increased levels of n-6 PUFAs, in particular AA is associated to increased inflam-

matory signaling and decreased DHA levels in the brain. Indeed, DHA decreases

the expression of brain inflammatory markers following systemic LPS administra-

tion [87], brain ischemia–reperfusion [72, 80], and spinal cord injury [59]; however,

the direct effect of DHA on BIIS is hard to conclude since primary injury was also

improved. We have recently demonstrated in vitro that the production of IL-1β and
TNFα by murine microglia induced by LPS was strongly inhibited by DHA through

its effect on LPS signaling pathway Nuclear Factor κ B [34]. In vivo, chronic

dietary n-3 PUFA deficiency significantly increased the production and release of

IL-6 and TNFα in the blood [85]. In addition, mice exposed throughout life to a diet

devoid of n-3 PUFAs displayed lower brain DHA level and higher LPS-induced

IL-6 in the plasma and in the hippocampus [87]. With aging, IL-6 expression was

increased in the cortex of both n-3 deficient and n-3 adequate mice while IL-10

expression was decreased with no effect of long-term α-LNA-deficient or -enriched
diet [91]. On the opposite, short-term exposure to dietary EPA reduced IL-1-

induced spatial memory deficit and anxiolytic behavior [114, 115] and improved

LPS and Aβ-induced inhibition of LTP in both adult and aged rats [88]. The

expression of markers of microglial activation (CD68, MHCII, and CD11b)

increases with age in animals, as does the number of microglia in the brain of

humans, attesting of the occurrence of age-related neuroinflammation

[50]. Microglial cell reactivity is involved in the age-dependent increase in the

production of inflammatory cytokines, as demonstrated by the inhibition of inflam-

matory cytokine overexpression by minocycline in aged rats [54]. In epidemiolog-

ical and observational studies, a higher level of blood n-3 PUFAs is associated with

lower proinflammatory cytokine production [37, 43, 61, 62]. In a cohort of elderly

subjects, depressive individuals with an elevated plasma n-6–n-3 ratio were found

to exhibit higher levels of TNFα and of IL-6 [62]. F2-isoprostane, used as an

oxidative marker and telomere length, used as an indicator of immune cell aging,

are decreased in the blood of subjects supplemented with EPA/DHA [63]. Addi-

tionally, n-3 PUFA supplementation in elderly subjects reduced the levels of

inflammatory cytokines produced by blood leukocytes stimulated in vitro

[86]. The production of PGE2 by monocytes is inversely correlated to the EPA

content of leukocytes obtained from aged subjects after the consumption of dietary

complements containing different doses of EPA [101]. In rats, microglial
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activation, production of IL-1β and alterations in hippocampal LTP with age were

attenuated by EPA [78, 82]. Importantly, a 2-month fish-oil dietary supply increases

DHA in the brain, prevented proinflammatory cytokines expression and astrocytes

morphology changes in the hippocampus, and restored spatial memory deficits and

Fos-associated activation in the hippocampus of aged mice [69]. To the extent that

the level of peripheral cytokines reflects that of cytokines in the brain, these results

suggest that dietary n-3 PUFAs modulate neuroinflammation and associated

neurobehavioral effects in elderly individuals [75] (Fig. 6.4).

N-3 and n-6 PUFAs are substrates for phospholipase (PL), cyclooxygenase

(COX), or lipoxygenase (LOX) which are enzymes involved in inflammatory

signaling cascades. As a result the inflammatory cascade involves PLA2 that

cleaves the PUFAs esterified to the sn-2 position of phospholipids and release

free n-3 and n-6 PUFAs. AA is then converted by COX-1/2 into derivates such as

prostaglandins, thromboxanes, orprostacyclins with proinflammatory activities,

while EPA is the precursor of series 3 prostaglandins with anti-inflammatory

properties. The mechanisms underlying the anti-inflammatory effect of DHA in

the brain are still poorly understood. Interestingly, DHA is metabolized by acety-

lated-COX-2 in the presence of aspirin in resolvins. The recent discovery of a novel

family of endogenously generated autacoids, namely, resolvins and protectins, with

potent anti-inflammatory and proresolving activities offer to better understand the

protective effect of DHA in the brain [110]. In particular, resolvin D1 (RvD1),

which originates from DHA via lipoxygenase, promotes the resolution of inflam-

mation and is found in the brain [58]. Very interestingly, DHA and resolvinD1

promotes macrophage polarization toward a M2 state in obese mice adipose tissue

[119]. In vitro, RvD1 promotes Abeta phagocytosis [89]. Neuroprotectin D1

(NPD1), aDHA derived docosanoid is expressed in the brain and have anti-

inflammatory and protective activities [13]. Chronic infusions of DHA or NPD1

in the brain significantly decreased neuroinflammatory processes triggered by a

middle cerebral artery occlusion [80]. NPD1 had a more potent effect than DHA

[77, 80]. However, it remains to demonstrate that NPD1 is the intermediary of the

anti-inflammatory effect of DHA in the brain.

Fig. 6.4 Potential role of n-3 PUFA in inflammaging. In the aged brain, microglia are primed and

polarized into a M1 phenotype and secrete pro-inflammatory cytokines that could play a role in

cognitive impairment. The protective effect of n-3 PUFAs toward cognitive deficit in aging could

be linked to the promotion of an anti-inflammatory M2 phenotype
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Epidemiological studies reveal the importance of n-3 PUFA levels in the devel-

opment of age-linked neurodegenerative disorders. Thus, decreases in plasma and

brain DHA levels have been shown in patients with Alzheimer’s disease. These

results, however, remain controversial, since other studies have demonstrated an

increase or an absence of variation in brain DHA levels in similar populations.

Nonetheless, the risk of dementia was found to be augmented in elderly subjects

presenting low levels of circulating EPA [106]. In addition, regular consumption of

diets rich in n-3 PUFA, such as the Mediterranean diet, appears to contribute to a

decrease in the risk of depression and/or dementia in the elderly [39, 40]. The use of

a mouse model of Alzheimer’s disease, the Tg2576 mouse, has demonstrated that a

dietary supply of DHA leads to a reduction in the formation of amyloid plaques.

However, the administration of dietary supplements containing DHA to patients

with Alzheimer’s disease or mild cognitive impairment has not yielded conclusive

results [22].

5 Conclusion

There is growing evidence that the expression and action of proinflammatory

cytokines in the brain are responsible not only for the development and mainte-

nance of mood and cognitive disorders during the host response to infection, but

also during chronic inflammatory states and aging. In addition, neuroinflammation

can have detrimental consequences on neuronal viability, especially when

maintained over long periods of time and transiently amplified by peripheral

infectious episodes. All of this points to the interest of finding new ways of

controlling inflammation in the brain. Because of their abundance in the brain

and their modulatory effects on inflammation and cell functions, PUFAs definitely

play a role in this process. However, this role needs to be better characterized by

multidisciplinary studies aimed at assessing the effects of these molecules at

different levels, from the molecular level to that of the organism as a whole.
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99. Petursdottir DH, Olafsdottir I, Hardardottir I (2002) Dietary fish oil increases tumor necrosis

factor secretion but decreases interleukin-10 secretion by murine peritoneal macrophages. J

Nutr 132:3740–3743

100. Ransohoff RM, Liu L, Cardona AE (2007) Chemokines and chemokine receptors:

multipurpose players in neuroinflammation. Int Rev Neurobiol 82:187–204

101. Rees D, Miles EA, Banerjee T, Wells SJ, Roynette CE, Wahle KW et al (2006) Dose-related

effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison

of young and older men. Am J Clin Nutr 83:331–342

102. Rezaie P, Male D (2002) Mesoglia & microglia—a historical review of the concept of

mononuclear phagocytes within the central nervous system. J Hist Neurosci 11:325–374

103. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA et al (2011)

CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic

plasticity. J Neurosci 31:16241–16250

104. Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology, pathology and thera-

peutic target. Trends Neurosci 23:618–625

105. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat

Rev Immunol 11:775–787

106. Samieri C, Feart C, Proust-Lima C, Peuchant E, Dartigues JF, Amieva H et al (2011) Omega-

3 fatty acids and cognitive decline: modulation by ApoEepsilon4 allele and depression.

Neurobiol Aging 32(2317):e13–e22

107. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012)

Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner.

Neuron 74:691–705

108. Seguin JA, Brennan J, Mangano E, Hayley S (2009) Proinflammatory cytokines differentially

influence adult hippocampal cell proliferation depending upon the route and chronicity of

administration. Neuropsychiatr Dis Treat 5:5–14

109. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

110. Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory

and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

111. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS

et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled

phagocytosis. Cell Stem Cell 7:483–495

112. Simopoulos AP (2001) n-3 fatty acids and human health: defining strategies for public policy.

Lipids 36(Suppl):S83–S89

113. Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic

variation: nutritional implications for chronic diseases. Biomed Pharmacother 60:502–507

114. Song C, Leonard BE, Horrobin DF (2004) Dietary ethyl-eicosapentaenoic acid but not

soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and

immune response in rats. Stress 7:43–54

115. Song C, Manku MS, Horrobin DF (2008) Long-chain polyunsaturated fatty acids modulate

interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain

inflammation in rats. J Nutr 138:954–963

116. Sparkman NL, Martin LA, Calvert WS, Boehm GW (2005) Effects of intraperitoneal

lipopolysaccharide on Morris maze performance in year-old and 2-month-old female

C57BL/6J mice. Behav Brain Res 159:145–151

117. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature

440:1054–1059

118. Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration

date? Trends Neurosci 29:506–510

119. Titos E, Rius B, Gonzalez-Periz A, Lopez-Vicario C, Moran-Salvador E, Martinez-Clemente

M et al (2011) Resolvin D1 and its precursor docosahexaenoic acid promote resolution of

adipose tissue inflammation by eliciting macrophage polarization toward an M2-like pheno-

type. J Immunol 187:5408–5418

6 N-3 Polyunsaturated Fatty Acid and Neuroinflammation in Aging: Role in Cognition 111



120. Tong N, Perry SW, Zhang Q, James HJ, Guo H, Brooks A et al (2000) Neuronal fractalkine

expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in

the central nervous system. J Immunol 164:1333–1339

121. Tremblay ME, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A (2011) The role of

microglia in the healthy brain. J Neurosci 31:16064–16069

122. Vereker E, Campbell V, Roche E, McEntee E, Lynch MA (2000) Lipopolysaccharide inhibits

long term potentiation in the rat dentate gyrus by activating caspase-1. J Biol Chem

275:26252–26258

123. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G et al (2011) The ageing systemic

milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94

124. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly

monitor the functional state of synapses in vivo and determine the fate of ischemic terminals.

J Neurosci 29:3974–3980

125. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A (2008) Developmental

neuronal death in hippocampus requires the microglial CD11b integrin and DAP12

immunoreceptor. J Neurosci 28:8138–8143

126. Williamson LL, Bilbo SD (2013) Chemokines and the hippocampus: a new perspective on

hippocampal plasticity and vulnerability. Brain Behav Immun 30:186–194

127. Wu MD, Hein AM, Moravan MJ, Shaftel SS, Olschowka JA, O’Banion MK (2012) Adult

murine hippocampal neurogenesis is inhibited by sustained IL-1beta and not rescued by

voluntary running. Brain Behav Immun 26:292–300

128. Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP (2010) Protracted downregulation

of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav

Immun 24:1190–1201

129. Yehuda S, Rabinovitz S, Mostofsky DI (1999) Treatment with a polyunsaturated fatty acid

prevents deleterious effects of Ro4-1284. Eur J Pharmacol 365:27–34

130. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and

neurogenesis. Brain Behav Immun 25:181–213

131. Yirmiya R, Winocur G, Goshen I (2002) Brain interleukin-1 is involved in spatial memory

and passive avoidance conditioning. Neurobiol Learn Mem 78:379–389

132. Zhang X, Mosser DM (2008) Macrophage activation by endogenous danger signals. J Pathol

214:161–178

112 S. Layé et al.



Chapter 7

Nutritional Programming of Immune
Defense Against Infections in Early Life

Alma J. Nauta and Johan Garssen

Abbreviations

LCPUFAs Long-chain Polyunsaturated fatty acids

DOHaD Developmental Origins of Health and Disease

HMOS Human milk oligosaccharides

Ig Immunoglobulin

lcFOS Long-chain Fructo-oligosaccharides

NK Natural killer

scGOS Short-chain Galacto-oligosaccharides

1 Introduction

The critical role of environmental factors during early-life development with

potential long-term effects on health has been addressed in the “developmental

origins of health and disease” (DOHaD) paradigm and is supported by accumulat-

ing evidence obtained from epidemiological and animal studies [31]. Early-life

programming is becoming an accepted scientific concept and leads some to suggest

that the genetic impact is perhaps overestimated. The concept of programming

during early life was proposed by studies of Barker et al., who revealed that events

in early life could influence longer-term disease risk and that under conditions of
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suboptimal in utero nutrition, the fetus must adapt to its environment to ensure

survival of the organism [9, 37]. Evidence is accumulating that early-life factors

play an important role in the development of the immune system and that events or

specific exposure during pregnancy can modify gene expression through epigenetic

mechanisms and thereby determine the functionality of the immune system. In

particular, the importance of nutrition and the effects of nutritional imbalances,

both deficiency and excess, on morbidity and mortality from infectious diseases in

infants and young children have been addressed [45, 49, 64, 65, 76, 80]. Early

alterations in the immune system are also relevant for other immune-mediated

diseases, such as autoimmune and allergic disorders; however, the focus of this

book chapter is on the consequences for the defense against infections.

2 Neonatal Immune System

Although the immune system at birth is competent and able to defend against

infections and to respond to immunization, it invariably differs to the immune

mechanisms present in adults. Exposures after birth are essential to further develop

certain aspects of the adaptive and innate immune system that are not fully

functional at birth. The relative immaturity of the immune system at birth is the

consequence of the low antigen exposure up to birth as well as the natural biased

status of the immune system against the production of pro-inflammatory cytokines

to prevent adverse immunological reactions between mother and fetus during

pregnancy [50]. Moreover, the delayed maturation may provide a window of

opportunity for the development of tolerance.

In newborns, the immune system is still adapted to antenatal life and thus a few

of its components are not yet adapted to postnatal challenges (reviewed by [55]). In

brief, the mucosal and epithelial layers are less developed and show a higher

permeability, indicating that the integrity of the physical immune barrier is not

complete. The secretion of proteases and antimicrobial peptides which are involved

in the chemical barrier are not fully developed [50]. Circulating levels of comple-

ment proteins are low and granulocytes including neutrophils and eosinophils and

tissue macrophages are reduced in number and functionality. Furthermore, natural

killer (NK) cell activity is low at birth, even though NK cells are predominant

during early infancy and early childhood and the high level of NK cell cytotoxicity

may make up for part of the immaturity of the adaptive immune system [90].

Neonatal T cells are able to respond to environmental antigens and in general

antigen-specific immune responses can be generated in infants. However, the

neonatal T cells exhibit a tolerogenic bias as to avoid inappropriate reactivity to

common and harmless antigens during the postnatal maturation process and the

acquisition of antigen-specific memory. As a consequence, during the neonatal

period, cell-mediated immune responses to infectious pathogens and vaccines are

inefficient [27, 79]. Recently, evidence has been provided that fetal hematopoietic

stem cells give rise to T cells that differ both genotypically and phenotypically from
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adult T cells [63]. These data support the hypothesis of “layered” immune devel-

opment as postulated by Herzenberg et al. [38]. In this hypothesis, different layers

of increasingly complex mechanisms arise during different stages of development

that recognize and control specific pathogens. Most data has been derived from

murine studies, describing an initial burst of γδ T cells playing an important role in

defense against infections [13]. Although relatively little is known about this

population of γδ T cells in humans, evidence is emerging and describing the

position of these cells to contribute to immune protection at birth [29].

Although the number of B cells in the neonate is very high, the maturation of

plasma B cells is not yet completed at birth, leading to an impaired antibody isotype

switching. As a consequence, the immunoglobulin (Ig) levels in the circulation of

the newborn infant are low, apart from IgG of maternal origin, and several studies

suggest that adult-equivalent levels of immunoglobulins are achieved by approxi-

mately the age of 10 years [2]. T cell-dependent B cell responses can be detected

shortly after birth to most protein antigens and the earliest layer of humoral defense

is represented by so-called unconventional B1a cells that are produced in fetus and

undergo self-renewal in the periphery instead of bone marrow [25].

The cells of the gut immune system develop in proximity to large communities

of microorganisms in the intestinal lumen. Available evidence indicated that

intestinal bacteria play a crucial role in establishing and in the maturation of the

immune system [55]. The first postnatal year of life seems to be a key period for

programming the immune system. The feeding (i.e., breast milk) and other factors

to which newborn is subjected (i.e., antibiotics) may have an influence on indige-

nous gut microbiota and subsequent immune development.

3 Role of Nutrition in Immune System Development

Different epidemiological studies support the hypothesis that modifications in

environmental factors, including dietary changes represent a critical factor under-

lying the rise in the immune disorders. Especially the early-life nutritional exposure

has been suggested to have a key impact on the developing immune system

probably via epigenetic mechanisms like DNA methylation, histone modifications,

and/or RNA silencing.

Human milk is the first dietary exposure in infancy. It is considered the best

nutritional option to stimulate the development of the neonatal immune system, as it

contains a wide range of immune modulatory factors including human milk oligo-

saccharides (HMOS), nucleotides, fatty acids, immunoglobulins, cytokines,

immune cells, lysozyme, and lactoferrin[12, 32, 72, 87]. Moreover, human milk

has been shown to be a consistent continuous source of bacteria to the infant gut,

including staphylococci, streptococci, bifidobacteria, and lactic acid bacteria [21,

35, 56, 57, 73] that may play a significant role in the postnatal development of the

immune system.
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The composition of human milk can be influenced by maternal diet, and there-

fore illustrating the importance of the maternal nutritional status. Though maternal

deficiencies have been demonstrated to contribute to deficiencies in their infants

[3], the association between maternal nutritional status and human milk immune

factors is less clear [71].

Nutritional factors prenatally may also influence the developing immune system.

Differences in the immune response are already detectable at birth, suggesting that

in utero environmental exposures have the capacity to modify the set-point of the

immune system at birth [58]. A range of other maternal dietary factors in pregnancy

have been implicated in immune development, including polyunsaturated fatty

acids (PUFA), and a range of specific vitamins and micronutrients [17]. One of

the most notable examples is the observation in mice that dietary folate intake in

pregnancy can specifically alter the allergic predisposition in offspring via epige-

netic mechanisms [40]. In line with this is an observation in a human study showed

that the folate intake during pregnancy was associated with risk of childhood

wheezing [36].

4 Early-Life Nutrition: Malnutrition and Infection

It is widely accepted that malnutrition leads to impaired immune status and

consequently influence the body’s immune defense against infections [18]. Malnu-

trition impairs immune responsiveness by different mechanisms, including

impaired mucosal barrier function, reduced complement activation, deficient anti-

body production, and reduced numbers of circulating T cells and dendritic cells.

Malnutrition and infections exists in a vicious circle whereby infectious episodes

contributes to nutrient deficiencies via decreased absorption, altered nutrient trans-

port, direct nutrient loss and increased energy requirements, impaired gut function

and microbiota, further impairing the immune defense and increasing susceptibility

to infections [81].

Most studies have dealt with the impact of undernutrition on immune status,

whereas the impact of overnutrition is less studied. The latter has recently gained

attention due to the obesity pandemic in both developed and developing countries.

4.1 Undernutrition and Infection

Studies have shown that undernutrition in critical periods of gestation and neonatal

maturation impairs the development and differentiation of the immune system

(reviewed by [24]). Permanent structural and functional changes in the developing

immune system may occur in malnourished infants. Undernutrition may also delay

the maturation of the infant gut microbiota or skew it toward a different and
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persistent configuration, and maybe more relevant, their metabolic activities,

thereby impairing the development of the immune system [33].

Cohort studies in Gambia demonstrated increased risk of death from infection in

adults born in the hungry season [64] that was associated with reduced thymic size

and function [23]. A recent study has offered a possible influence of prenatal

nutritional status on epigenetics regulation: different methylation patterns observed

depending the season of conception in Gambia whether it is dry or rainy season

[88]. Similar observations have been derived from other cohort studies, showing

association between low birth weight as an indicator of maternal malnutrition and

impaired functional response to vaccines [60, 67], although not confirmed by other

studies [66]. Limited evidence from murine and epidemiological studies suggests

that nutritional impairments can exert transgenerational effects.

Murine studies demonstrated immune abnormalities in first and second genera-

tion offspring of maternal malnutrition [10, 19]. Observations from the Dutch

famine also suggested that the effects of maternal intrauterine undernutrition may

be extending to the next generation [52]. These observations strengthen the concept

of programming by epigenetic mechanisms that can be transmitted to the next

generation.

Prenatal and perinatal deficiencies in micronutrients, particularly zinc, copper,

selenium, iron, and antioxidant vitamins A, C, and E have overall impact on both

cellular and humoral responses. Furthermore, oxidative stress during infections is

worsened if micronutrients are deficient (reviewed by [24, 46]). Results from

maternal supplementation trials strongly suggest the immune programming effect

of micronutrients [46, 71], although the relative clinical importance of different

micronutrients on immunity to infection is difficult to establish.

4.2 Overnutrition and Infection

Epidemiological and experimental data show that overnutrition during pregnancy

and/or lactation predisposes offspring to develop a metabolic syndrome-like phe-

notype. Recent studies provided evidence for the epigenetic regulation of a specific

gene in mice, JmjC-domain-containing histone demethylase 2A (JHDM2a) plays a

key regulator role in the development of obesity and metabolic syndrome

[43]. There is strong evidence indicating that obesity negatively impacts immune

responses against infections. Obesity is characterized by a state of low-grade,

chronic inflammation and altered immune cell function [61]. The fatty acid com-

position of immune cells is known to have a major regulatory effect on immune

responses [16] and also evidence is accumulating on the role of leptin in host

defense [61]. For example, greater susceptibility to respiratory infections is

observed in obese leptin-deficient humans and leptin-receptor deficient mice [54]

and increased amoebic colitis in congenital deficiency of leptin or its receptor [53]

suggesting a requirement for leptin in innate and adaptive immune response to
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infection. However, future research is required to understand the exact mechanisms

underlying the reduced immunocompetence in the obese.

Recent studies indicated the role of the microbiota in harvesting and storage of

energy, and described the alterations in the gut microbiota patterns in obese subjects

[8, 84]. A new paradigm has been postulated by a recent study that specific diets,

including a fat-enriched diet, induce a modification in the intestinal microbiota

[15]. Translocation of bacteria and bacterial antigens into the host, towards meta-

bolically active tissues, can trigger a chronic inflammatory status and consequently

impaired metabolic functions such as insulin resistance and excessive adipose

development via direct communication between inflammatory cells and metabolic

cells as described in a recent review on the underlying cellular and molecular

mechanisms [51]. In the case of pregnant overweight women, the aberrant

microbiota related to overweight or excessive weight gain may be transferred to

the infant, thereby predisposing the infants to unfavorable metabolic development

with consequences on the immunological programming and susceptibility to infec-

tions. Interestingly, Collado et al. reported that maternal overweight and excessive

weight gain also influenced the composition of the human milk microbiota and the

immunomodulatory potential of human milk [22], providing an additional mecha-

nism that explains the nutritional programming of the immune system.

In the context of nutritional programming, the development of vaccine response

has been determined as a broad indicator of the functionality of the immune system

respond to infections. As described in the previous paragraph, there is a lack of

consistency across the studies that examined the link between early-life nutritional

status and vaccine responsiveness [60, 66, 67], although the lack of an effect in the

study by Moore et al. may be due to the younger age of the individuals in which the

differences are not yet apparent. A recent review that critically analyzed the

available literature by Savy et al. indicated that there is little evidence to indicate

that current nutritional status or nutrient supplementation has clinically important

effects on vaccine efficacy [77], although different limitations have to be consid-

ered in this review, including the methodology to access vaccination efficacy and

the difficulty in separating effects of malnutrition from those of infection, that

mostly co-exist.

5 Nutritional Supplementation in Early Life and Infection

The concept of early-life nutritional programming and the inherent plasticity

conferred by epigenetic mechanisms also provides opportunities for nutritional

intervention strategies. The timing of nutritional interventions is critical, as early-

life events occurring during critical windows of immune vulnerability can have

long-term impact on immune development (Fig. 7.1). The strong association of the

gut microbiota composition with the development of the immune system has

prompted several studies to examine the effect of probiotic supplementation, both

prenatally and postnatally.
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5.1 Probiotics

Probiotics are defined as live microorganisms that, when administered in adequate

amounts, confer a health benefit on the host [1]. Animal models and clinical trials of

supplementation with probiotics have demonstrated diverse effects on immune

function against infections. Different studies have been conducted in order to

determine its efficacy in managing and preventing infections, including infectious

diarrhea, traveler’s diarrhea, necrotizing enterocolitis, Helicobacter pylori infec-
tions, and respiratory tract infections (reviewed by [89]). Sufficient and consistent

data exist for the management of infectious diarrhea in infants and traveler’s

diarrhea, antibiotic-associated diarrhea, and necrotizing enterocolitis for which it

could be concluded that certain probiotics, under certain conditions, and in certain

target populations, are beneficial in reducing the risk of infection. Certain probiotics

may also reduce the risk of various symptoms of respiratory tract infections in

adults and children, including ear, nose, and throat infections, although data are

currently far too limited to distill any clinical recommendations in this area [39,

75]. However, no general conclusions can be drawn due to the different types of

infections that have been examined. The lack of consistency among studies focus-

ing on specific infections, in study design, applied probiotic strains, outcome

parameters, and study population, along with the still limited number of studies,

complicated the analysis. For future studies it is recommended that researchers

provide adequate power, identify pathogens, and report both clinical outcomes and

immune biomarkers relating to putative underlying mechanisms.

Maternal 
microbiota

Breast milkEarly life 
nutri�on

Infant 
microbiota

Epigene�cs

Immune defense 
against infec�ons

Epigene�cs

Maternal

Infant

Fig. 7.1 The immune defense against infections in the offspring is influenced by maternal and

infant gut microbiota, by epigenetic regulation of gene expression, and by prenatal/neonatal

nutrition, in direct and indirect ways
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The exact mechanisms of action of probiotics and/or their metabolites has not

been fully elucidated yet, but it has been suggested that next to the known and well

described interaction with the immune system, the functional effects of probiotics

may also be the result of epigenetic modifications [17]. In addition, the effect of

probiotics supplemented during pregnancy has been reported to decrease vaginal

infections that may provide benefits for the infants [91]. Probiotics also have been

reported to provide an effective treatment in mastitis [5]. As mastitis can influence

the composition of human milk [42], and thereby the immune system of infants,

suppressing mastitis may provide a relevant strategy in strengthening the infant

immune system.

5.2 Prebiotics

Beneficial effects on both the gut microbiota and immune system have been

described for prebiotics. Prebiotics are nondigestible oligosaccharides that reach

the colon intact and are known for their ability to selectively stimulate the growth

and activity of bacteria that exert positive health effects [30]. A plethora of data is

available that indicate the effect of supplementation with prebiotic oligosaccharides

on the composition and activity of the gut microbiome (including [41, 47, 68]).

Studies in pregnancy are still limited, but in animal models prebiotics had been

shown to alter colonization in offspring [59]. To our knowledge there is only one

clinical study that demonstrated favorable effects on the maternal gut microbiota by

supplementation with prebiotics. However, the number of the subjects in the study

was too small (n¼ 48) to reliably assess any clinical effects [78]. Both clinical

studies and experimental animal models have shown encouraging results that

supplementation with specific mixtures of prebiotics may impact the immune

response to infections. Administration of a specific mixture of short-chain

galacto-oligosaccharides (scGOS) and long-chain fructo-oligosaccharides (lcFOS;

9:1 ratio) early in life has been shown to reduce the number of infections [6, 14]. In

the follow-up study, the protective effect against infections was still evident at the

age of 2 years [7], suggesting a longer-term effect of the specific mixture of

prebiotics, even beyond the intervention period. Although available data report

that there is no effect of prebiotics supplementation on the prevention of infections

[82], the effect may be specific for the examined prebiotic mixture. The risk of

using the definition of prebiotics is that all mixtures are defined as one category,

whereas the effects may be very specific. Therefore, careful interpretation of meta-

analysis on the existing data is warranted.

Modulation of the intestinal microbiota that affects early-life immune develop-

ment has been suggested to be one of the putative mechanisms for the protective

effect of prebiotics [44]. It has been hypothesized that prebiotics may also directly

interact with cells of the immune system in a microbiota-independent mechanism

[86]. Available evidence suggests that human milk oligosaccharides may have

systemic effects in infants as these oligosaccharides have been found in urine [20,
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70]. At present, there is no evidence for the direct effect of prebiotics on epigenetic

regulation of gene expression. It would be interesting to explore whether supple-

mentation with prebiotics can alter the composition of the human milk and thereby

exert their functional effects.

More trials are clearly needed, despite the promising early results that support

the importance of prebiotics in achieving a beneficial gut microbiota composition

and the host-microbe interactions at critical periods for the potential prevention of

human disease.

5.3 LCPUFAs

Essential fatty acids must be acquired from the diet and are the precursors for long-

chain polyunsaturated fatty acids (LCPUFAs) that have been implicated as being

important for the development of the immune system [34]. There is strong evidence

from experimental studies showing that supplementation with LCPUFAs influences

the immune system in the offspring. Supplementation with omega-3 PUFAs during

pregnancy and lactation have demonstrated higher provision to the offspring and

that early supplementation was associated with immunological changes, such as

increased cytokine production in cord blood [26, 28, 48, 74]. Epidemiological

studies suggest that dietary exposure to omega-3 LCPUFAs during pregnancy

and early in life may improve the immune defense against infections. However,

in contrast to the evidence from epidemiological studies, there are only a few

intervention studies reporting the effects of LCPUFAs on infections [11, 62, 83]

and the available literature seems to be limited to infections related to respiratory

disease. A recent study in animals demonstrated a programming effect of maternal

diet supplemented with LCPUFAs on the offspring’s immune response, and the

lactation period appeared to be the period that conferred most susceptibility to

immune programming [85]. The immunomodulatory effects of LCPUFAs may

program the infant’s immune system development via epigenetic mechanisms,

although no specific epigenetic markers have been defined yet which are associated

with the reported immune programming effects. Besides that, the knowledge on the

association of LCPUFA with the modulation of the gut microbiota is lacking and is

only addressed by a few scarce studies [4, 69].

6 Conclusion

The immune system of infants is not fully functional at birth, rendering them highly

susceptible to infections. It is now widely accepted that environmental exposures

during early life, in particular nutrition, is an important determinant of the effi-

ciency of neonatal and potential adult’s immune responses to infection. Emerging

understanding of the protective and predisposing effects of early nutrition on
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healthy development of the immune system provides opportunities to improve

health and reduce the risk of diseases later in life. A better understanding of the

biological mechanisms involved, including the important role of the (maternal)

intestinal microbiota, the relative contributions of individual components of the diet

as well as the time constraints (window of opportunity), is important to enable

design of effective intervention strategies and to combat the burden of infectious

diseases.
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Chapter 8

Impact of Nondigestible Oligosaccharides
on Gut-Associated Lymphoid Tissue
and Oral Tolerance Induction

Linette E.M. Willemsen

Abbreviations

AD Atopic dermatitis

ALDH Aldehyde dehydrogenase

AOM Azoxymethane

CCR Chemokine (C-C motif) receptor

CD Crohn’s disease

conA Concanavalin A

DC Dendritic cell

DTH Delayed type hypersensitivity

Foxp3 Forkhead box P3

GALT Gut-associated lymphoid tissue

HMOs Human milk oligosaccharides

IBD Inflammatory bowel disease

IEC Intestinal epithelial cells

IFN Interferon

Ig Immunoglobulin

IgfLC Immunoglobulin free light chains

IL Interleukin

lcFOS Long-chain fructo-oligosaccharides

MDP Macrophage-DC precursors

MLN Mesenteric lymph nodes

NOD Nucleotide oligomerization domain

PRR Pattern recognition receptors

PBMC Peripheral blood mononuclear cells (PBMC)
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pDC Plasmacytoid DC

PP Peyer’s patches

RA Retinoic acid

scGOS Short-chain galacto oligosaccharides

SCFA Short-chain fatty acids

sIgA Secretory immunoglobulin A

TLR Toll-like receptors

TNF Tumor necrosis factor

Th T helper cell

Tc Cytotoxic T-cell

TGF-β Transforming growth factor beta

Treg Regulatory T-cells

UC Ulcerative colitis

1 General Effects of Dietary Nondigestible
Oligosaccharides

The incidence of allergic and inflammatory disease is increasing rapidly in the

western societies. A main factor responsible for this may be dietary alterations.

These changes include enhanced lipid intake and altered quality of the lipids

(increasing ratio of n-6 polyunsaturated fatty acids (PUFA) over n-3 PUFA,

increasing intake of saturated versus non-saturated fatty acids) and reduced vitamin

and fiber intake. Neonates form a sensitive group in which these dietary alterations

may have impact. During gestation and up until weaning (approximately at 6 month

of age) their nutrient supply is provided by the mother via the placenta and after

birth via breast milk. The immune system is readily developed during gestation;

however in the neonatal period there is a critical window in which maturation of the

gastrointestinal (gut-associated lymphoid tissue) and systemic immune system

occurs. At birth the immune response is Th2 polarized, the Th1 counterpart is

weak and needs to be primed during immune maturation in order to reduce the

susceptibility to develop atopic disease. This occurs in the same time frame as gut

maturation. Increasing evidence indicates that maternal intake of n-3 PUFA during

pregnancy protects the child from developing atopic disease while the amount of

n-6 PUFA intake correlates with increased allergy risk [1–3]. These PUFA together

with numerous additional nutrients can pass the placenta barrier and hereby directly

affect health and growth of the child. After birth until weaning breast milk is the

main nutrient source of the newborn. Breast milk contains a whole range of

components that may enhance gut and immune maturation. In comparison to

bottle-fed children breast-feeding may prevent against the development of allergic

disease and reduces the incidence of infections (reviewed by Boehm and Moro [4]).

Although PUFA may well play a role in shaping the immune response after birth, in

this respect the most evidence of components in breast milk that protect neonates

from developing allergies is built around nondigestible oligosaccharides, after
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lactose and lipids the major component in human milk (7–15 g/L) [5]. The mech-

anistic immunologic basis by which human milk oligosaccharides (HMOs) may

affect the mucosal immune system and reduce the sensitivity to develop allergic

disease will be the topic of this book chapter.

1.1 Structure and Function of Nondigestible
Oligosaccharides

Breast milk contains 7–15 g/L HMOs and human colostrum even 20–23 g/L

[5, 6]. After lactose and lipids HMOs are the third major solid component in breast

milk and extremely complex comprising more than 1,000 different components

[5]. Only 85 of these have been isolated and identified [5]. HMOs start with lactose

to which galactose (Gal) and N-acetylglucosamine (GlcNAc) are repetitively

attached via a β-glycosidic linkage ([Gal(β1–3/4)GlcNAc(β1-]DP n¼ 0–25-3/6)Gal

(β1–4)Glc) [6]. Galactose is coupled to its lactose backbone and generates by 30,40,
or 60 galactosyl-lactoses, compelling of a total concentration of 1 g/L in human milk

[7]. These core structures are further coupled to fucose by fucosyltransferases in

mammary epithelial cells to form neutral oligosaccharides and/or sialic acid via

α-glycosidic linkage produced by sialyltransferases to form acidic oligosaccharides

which differs between individuals due to genetic factors [5, 6]. Alternatively sulfate

instead of sialyl groups is added to oligosaccharides that are categorized to the

acidic group [5]. This makes sialic acid, N-acetylglucosamine, L-fucose, D-glucose,

and galactose the most important sugars present in HMOs [7]. HMOs consist of 80–

85 % neutral oligosaccharides while 15–20 % are acidic. Depending on the time

postpartum and Lewis type, human milk contains different oligosaccharide profiles;

for example α1,2-fucosylated oligosaccharides decrease steadily during the first

3 month of lactation [5]. The Lewis type is important since this determines the type

of α-fucosyltransferase present [5]. Breast milk from woman with Lewisa (~17 % of

European population) nonsecretor blood group for example produces lower levels

of neutral oligosaccharides than woman with Lewisb (~73 %) secretor blood group

and lacks α1,2-fucosylated oligosaccharides [5]. Authors suggested that newborns

from this group of individuals would be less protected against stable toxin-E. coli

infection since this oligosaccharide can compete with the pathogen for the host

surface receptor [5]. Apart from lactose human cannot digest β-glycosidic galactose
linkages nor α-glycosidic fucose and sialic acid linkages, making these oligosac-

charides surviving intestinal transfer; however they can be selective fermented by

commensal microflora that do express these glycosidases [4, 6]. HMOs not only

survive intestinal transfer, they are also taken up and come available systemically.
13C labeled HMOs are detected in the urine of infants fed with breast milk of

lactating women who ingested a 13C-galactose load [8]. The 13C-galactose was
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retrieved in breast milk 8 h after ingestion. In the infant urine 13C was mainly found

back in fucosyl-lactose, -lacto-N-tetraose (LNT), -LNT, and difucosyl LNT; hence

lactose and neutral oligosaccharides but also N-acetylneuraminyl containing acidic

HMOs were detected [8, 9]. It was determined that 14 h after intake 1 % of the 13C

was excreted in the urine of the lactating woman. Twenty hours after intake by the

mother 0.6 % of the 13C reached the urine of the infant [8]. The intake of HMOs was

calculated on 50–160 mg per suckling of which 1–3 mg would reach the urine per

day [9]. Meaning that HMOs would reach blood concentrations of 100–200 mg/L

[10]. Based on in vitro results, the uptake of neutral HMOs by intestinal epithelial

cells was suggested to be mediated via receptor-mediated transcytosis while acidic

HMOs diffuse via the paracellular route [11].

Over 1,000 different oligosaccharides compose the HMO fraction, while that of

animal milk is much less complex since for example this is low in fucose linkages.

In addition, the oligosaccharide content is much lower (10–100 times) than in

human [4, 6, 7]. Other alternative sources for oligosaccharides are for example

plants. Although the HMOs composition is complex and functional aspects remain

to be elucidated, synthetic oligosaccharides have been marketed that are able to

mimic some of the functional aspects of HMOs. Short-chain galacto-oligosaccha-

rides (scGOS) ([Gal(β1–4)DP n¼ 3–8](β1–4)Glc) are generated via enzymatic elon-

gation of lactose, derived from the whey fraction of cow’s milk, using

β-galactosidase. Long-chain fructo-oligosaccharides (lcFOS) ([Frc(β2–1)DP n> 21]

(β2�1)Glc) are composed of fructose moieties derived from chicory inulin. The 9:1

scGOS/lcFOS mixture (ImmunofortisT) resembles the molecular size distribution

of neutral HMOs (Fig. 8.1). Although the composition of acidic HMOs is different

from citrus pectin derived acidic oligosaccharides [galacturonic acid (α1–4)DP n¼ 1–20],

it may be added to the scGOS/lcFOS mixture to provide a 9:1:2 ratio, since

HMOs are composed of neutral and acidic oligosaccharides. Besides inulin-derived

lcFOS also inulin-derived scFOS (Raftilose P95 dp 2–8) enhances Bifidobacteria
growth and is used as prebiotic [7, 12]. scGOS products contain about 24–55 %

oligosaccharides; further components are lactose, glucose, and galactose

[7]. Although it has been established that HMOs are taken up in the intestine,

since they can be retrieved in urine, it is not known for synthesized oligosaccharides

like scGOS/lcFOS whether they come available systemically. Many plant-derived

oligosaccharides have been identified such as manno-, pectic-, soybean-, isomalto-,

and xylo-oligosaccharides and lactulose in a majority of studies inulin/FOS

(SynergyT) or GOS/transgalactosylated oligosaccharides (TOS) is used [7]. Ran-

domized clinical trials performed with artificially prepared oligosaccharides

include scGOS, lcFOS, pAOS, scGOS/lcFOS/pAOS, oligofructose plus inulin,

polydextrose plus scGOS either or not with lactulose; however inulin/FOS or the

9:1 mixture of scGOS/lcFOS is used most often [13].
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1.2 Effect of Nondigestible Oligosaccharides on Bowel
Function and Microflora

In breast milk-fed infants as well as infants fed formula milk supplemented with

scGOS/lcFOS, and not in infants fed non-supplemented formula milk, the bacterial

flora is rich in Bifidobacteria and Lactobacilli resulting in the same short-chain fatty

acid (SCFA) profile upon fermentation of the oligosaccharides by the microflora

(reviewed by Boehm and Moro [4]). Both in preterm and term infants 28 days of

scGOS/lcFOS supplementation (4–10 g/L) was found to enhance the number of

fecal Lactobacilli and/or Bifidobacteria and improved stool consistency (softer

stools) and defecation [14–16]. Indeed prebiotic fibers scGOS/lcFOS supported

selective growth of Bifidobacteria (breve, infantis, bifidum) and Lactobacilli at the
cost of Bifidobacterium adolescents (found in adults) while pathogenic bacteria

such as Escherichia coli, Klebsiella, and Clostridium remained unaltered. This may

not only be caused by selective fermentation of oligosaccharides by Bifidogenic

flora but as well due to the drop in pH as a consequence of fermentation [14,

15]. The low pH inhibits the growth of pathogens while commensal bacteria are

unaffected [4]. The SCFAs which are generated upon bacterial fermentation of

fibers such as scGOS/lcFOS are known to affect immune function and target all

cells of the immune system [17]. They can bind the G-protein-coupled receptor

43 (GPR43) (acetate and propionate) and GPR41 (butyrate) [18]. SCFA patterns

Fig. 8.1 Structure of most used nondigestible oligosaccharides. (a) Short-chain galacto-oligosac-
charides (scGOS) derived from galactose, β(1–4) coupled galactose, and a terminal glucose

(dp 3–8). (b) Fructo-oligosaccharides (FOS) are derived from chicory inulin (dp 7–60, mean> 23),

scFOS (mean dp <20), and long-chain lcFOS (mean dp >20), β(1–2) coupled fructose and a

terminal glucose. Figures from thesis Bastiaan Schouten, ISBN 978-90-393-5210-6, with

permission
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and concentration alter due to bacterial fermentation of nondigestible oligosaccha-

rides. Typical SCFA concentrations in the intestine are around 70–120 mM

depending on the location and type of fiber, while this is 1–100 μM in the blood.

Not only the bacteria or bacterial products but also nondigestible oligosaccharides

themselves may protect against gastrointestinal infections since they may adhere to

intestinal epithelial cells thereby inhibiting the adhesion of pathogens [6]. Early

colonization upon use of scGOS/lcFOS may last for 6 months after scGOS/lcFOS

supplementation had stopped; Lactobacilli and Bifidobacteria counts were still

increased in children provided with scGOS/lcFOS for a period of 6 months starting

directly after birth [16]. Besides scGOS/lcFOS also an intervention trial with

healthy term infants comparing scGOS/lcFOS/pAOS (8 g/L) supplementation

with a control formula showed improved stool consistency in the supplemented

group [19]. In a placebo-controlled multicentre study (open label) supplementation

of scGOS/lcFOS (4 g/L) for 12 month resulted in 50 % reduction in acute diarrhea

and gastroenteritis. In addition, the use of antibiotics for treatment of upper

respiratory tract infections was reduced by almost 50 % [20]. Also supplementation

of scGOS/lcFOS (8 g/L) for 6 months to a group of 102 healthy term infants was

found to reduce the episodes of infections and the cumulative incidence of recurrent

upper respiratory tract infections by over 50 % compared to the placebo group

[21]. In a large trial in which mothers carrying high-risk children were provided

with a mixture of four different beneficial bacteria and scGOS (8 g/L) during

pregnancy, while their offspring was supplemented up until 6 months after birth.

It was observed that the supplementation was safe. At the age of 2 years it was

established that the cumulative incidence of respiratory infections was reduced in

the supplemented group [22]. A recent ESPGHAN report concludes that scGOS/

lcFOS has no adverse effects on growth in healthy infants and reduces risk of some

allergic reactions and some types of infection, although it was stated that there is a

need to confirm these results in other studies. It was concluded that specific

oligosaccharides are able to enhance fecal Bifidobacteria counts, lower pH, and

soften stool; an overview of typical studies is provided by Macfarlane

et al. [7, 13]. Hence via modulation of the intestinal microflora nondigestible

oligosaccharides may support gastrointestinal and immune maturation and preserve

immune homeostasis.

2 Effects of Dietary Nondigestible Oligosaccharides
on the Systemic Immune Response

The incidence of chronic inflammatory diseases such as allergies, inflammatory

bowel disease (IBD), and autoimmune diseases is steadily rising in the western

society. The hygiene hypothesis was installed to be able to explain this develop-

ment. It was suggested that altered composition of the gut microbiota and reduced

exposure of infants to pathogens affect postnatal maturation of the immune system
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resulting in increased disease susceptibility [23]. Effects of HMOs on the immune

system are largely unknown since not many studies are performed using isolated

HMOs. However synthesized nondigestible oligosaccharides have been shown to

modulate the bacterial flora and in addition affect the immune system.

2.1 Studies in Mice

Allergic sensitization is characterized by T helper 2 cell (Th2) polarization of the

immune response towards specific antigens which can be counteracted by Th1

immunity or suppressed by regulatory T-cells. In neonates the immune system is

Th2 oriented and HMOs in breast milk may help in immune maturation by

supporting the development of oral tolerance, a regulatory T-cell response (Treg)

and/or Th1 immunity capable of counteracting a Th2 response. scGOS/lcFOS have

been shown to dose dependently enhance the Th1-dependent antigen-specific

delayed-type hypersensitivity (DTH) response in a murine vaccination model in

association with enhanced Bifidobacteria and Lactobacilli counts when provided

prior to and during vaccination [24]. Inulin, short chain FOS, or a combination of

lcFOS/inulin (2w/w%) did not enhance the DTH. lcFOS/inulin however did

enhance Bifidobacteria and Lactobacilli counts similar to the scGOS/lcFOS mix-

ture [24]. Hence enhanced Th1 immunity induced by scGOS/lcFOS may include

mechanisms beyond the impact of these oligosaccharides on the commensal micro-

flora. Addition of acidic pAOS to the scGOS/lcFOS mixture in a 1:1 or 1.8:0.2 ratio

further enhanced the vaccination DTH response in association with additional

increase in Lactobacilli counts [24, 25]. However 2 % pAOS alone also success-

fully increased the DTH response, this effect was in the absence of prebiotic activity

(no increase in Bifidobacteria nor Lactobacilli), and was associated with a reduc-

tion in Th2 cytokines as measured in a splenocyte restimulation assay [24]. scGOS/

lcFOS/pAOS only was able to support the vaccination response when provided

prior to the first encounter with the influenza vaccine [25]. Prior to or after the

second vaccination it did not enhance the DTH indicating the relevance of the

presence of this type of immune priming oligosaccharides at first encounter of a

new antigen. Hence specific oligosaccharides may enhance Th1 polarization in a

murine vaccination model. Furthermore the oligosaccharides have been shown to

prevent allergic symptoms in a murine asthma model and a mouse model for orally

induced cow’s milk allergy [26, 27]. Dietary intervention with scGOS/lcFOS/

pAOS as well as scGOS/lcFOS was also able to reduce metacholine-induced airway

hyperresponsiveness in ovalbumin-sensitized mice (acute asthma model) which

was associated with reduced inflammatory cell counts in the broncho-alveolar

fluid [27].
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2.2 Studies in Human

Some studies have determined the effect of isolated HMOs on human immune cells.

In a study of Eiwegger et al. HMOs were analyzed for their capacity to induce

immune responses in cord blood mononuclear cells [28]. Acidic and neutral

oligosaccharides were isolated from human milk. Upon 20 days of culture with

the acidic oligosaccharide fraction (1 μg/mL) intracellular IFN-γ and surface

expression of CD25 were enhanced in CD4þ Th cells and IFN-γ and IL-13 in

CD8þ cytotoxic T-cells (Tc). Neutral HMOs (10 μg/mL) reduced the percentage of

IL-4 positive Tc cells. Hence HMOs may have the intrinsic capacity to modify the

adaptive T-cell response. In another study of Eiwegger et al., cord blood mononu-

clear cells were exposed to several HMOs or scGOS/lcFOS or pAOS [29]. In this

study 72 h of exposure to 100 μg/mL acidic HMOs resulted in increased secretion of

IFN-γ and a similar tendency for IL-10. Acidic HMOs also reduced Th2 type

cytokine expression in PBMC from allergic persons while increasing Th1 type

IFN-γ, hence skewing away from the allergic phenotype. In addition to affecting the

T-cell response acidic HMOs have been shown to reduce neutrophil activation by

20 % via suppression of platelet neutrophil complex formation [30]. These effects

were similar to sialyl-Lewis x and authors suggested that HMOs may be able to

bind P-selectin that facilitates complex formation thereby reducing interaction

between the platelets and neutrophils. Via similar mechanisms acidic HMOs may

be able to reduce monocyte, lymphocyte, and neutrophil rolling and adhesion to

endothelial cells [31, 32] which may also imply an anti-inflammatory role for

HMOs. In a large clinical trial the immune phenotype of peripheral blood mono-

nuclear cells (PBMC) was studied. Healthy term infants received either breast milk,

formula milk, or formula milk supplemented with scGOS/lcFOS (6 g/L) during a

6-month period [33]. After 6 months of supplementation in the breast milk group

the percentage of white blood cells was increased and the percentage of activated

Tc cells was decreased compared to the control group as well as the scGOS/lcFOS

group. The same tendency was shown for activated Th cells and serum IL-5 levels.

Hence in these healthy infants the oligosaccharides did not modify the T-cell

phenotype similar to values in the breast-fed group. However, serum tumor necrosis

factor (TNF)-α was increased compared to the breast-fed group and IL-10 showed

the same tendency implying some effect by the oligosaccharides. IFN-γ, IL-2, and
IL-4 serum concentrations were equal between groups. Effects of HMOs on the

B-cell response are largely unknown. In a study of Eiwegger et al. however, HMOs

did not affect total IgE and IgG1 production by cord blood mononuclear cells nor

CD22 and HLA-DR surface expression. These studies were performed in presence

or absence of anti-CD3 activated T-cells and contained a positive control group

using IL-4 and anti-CD40 in which these immunoglobulins were successfully

induced [28]. Oligosaccharides did also not affect the humoral response in healthy

human infants. Healthy infants receiving formula milk supplemented with scGOS/

lcFOS had comparable concentrations of serum immunoglobulin (Ig) E, IgG, IgA,

and IgM after 6 months of supplementation compared to breast-fed infants
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[33]. However, in the group of infants exclusively fed formula milk, the addition of

scGOS/lcFOS resulted in enhanced serum IgG levels compared to the control

formula milk group after 6 months of supplementation. In a dietary intervention

study in which 215 healthy infants were randomized to receive either a control

formula milk or formula milk supplemented with scGOS/lcFOS (6 g/L) for

6 months, fecal secretory IgA (sIgA) was almost three times higher than the placebo

group and comparable to breast-fed infants [34]. In addition, Bifidobacteria counts

were increased while clostridium counts were reduced.

3 Impact of Dietary Nondigestible Oligosaccharides
on the Gut-Associated Lymphoid Tissue (GALT)

The intestine not only functions as a digestive organ but contributes extensively in

the orchestration of the local and systemic immune response while containing 60 %

of all immune cells present in the body [35]. Dietary components such as

nondigestible oligosaccharides may be able to modulate immune responses gener-

ated in the gut-associated lymphoid tissue (GALT) which enables them to contrib-

ute to optimized immune function in health and disease. The sugar moieties in

nondigestible oligosaccharides may have a direct effect on the mucosal immune

system and in particular the epithelial layer or have indirect effects via adaptation of

the intestinal microflora and the fermentation pattern. In addition to sugar moieties,

bacterial cell components are able to modulate mucosal immune responsiveness via

activation of pattern recognition receptors present on intestinal epithelial cells and

underlying cells of the innate and adaptive immune system. The following para-

graph elaborates on how the mucosal immune response is regulated and the impact

that dietary nondigestible oligosaccharides and microbial components may have on

the mucosal immune function. It will be highlighted how the immune response in

the GALT is regulated and which cell types interact for its optimal function. Until

now little is known about the specific effects of oligosaccharides on the GALT;

therefore the effects on general immune cells which may translate to features that

take place in the GALT are described.

3.1 Innate and Adaptive Immune System of the GALT
and Oral Tolerance

The GALT is organized in inductive and effector compartments and has a key

decisive function in regulating immunity or tolerance towards intestinal contents

[36]. The luminal mass consists of residual dietary components such as food

antigens, bacteria, and digestive fluids. Within the GALT it is determined whether

an antigen or microbe should be regarded as harmful or harmless. Consequently
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regulated immunity or tolerance is generated. Local intestinal immune responses

can be transferred to systemic immunity or tolerance. An example of this is oral

tolerance induction, a food antigen that has been provided via the oral route prior to

systemic exposure will not elicit a systemic immune response for example when

applied to damaged skin (skin prick test) [36, 37]. When mucosally induced

immune tolerance (oral tolerance) is not fully established, allergic disease can

develop in neonates and autoimmune diseases (rheumatoid arthritis, type 1 diabetes)

or IBD is prone to develop later in life [23]. Environmental factors such as dietary

constituents and the colonization of commensal microorganisms at the mucosal

surface are crucial for the generation of mucosal tolerance [38] (Fig. 8.2).

The intestinal mucosa consists of a monolayer of epithelial cells (IEC) that

separates the luminal contents from the underlying immune cells. These IEC not

only provide a barrier function but also control the mucosal immune system via cell

contact-mediated signals as well as by the secretion of soluble mediators

[23, 39]. In the inductive compartments of the Peyer’s patches (PP) and mesenteric

lymph nodes (MLN), naı̈ve lymphocytes are gathered in an organized fashion ready

to be exposed to antigen-bearing dendritic cells (DC). These secondary lymphoid

Fig. 8.2 Organization of the gut-associated lymphoid tissue. A monolayer of epithelial cells

separates the luminal contents from the underlying immune tissues. Antigens are taken up by DC

and presented to naı̈ve T-cells in the PP or MLN. Here either immunity or tolerance is induced and

via the MLN T-cells traffic through the blood stream and home back into the lamina propria were

they exert their effector (a.o. Th1, Th2, Th17) or suppressive (Treg) function. Figure from thesis

Bastiaan Schouten, ISBN 978-90-393-5210-6, with permission
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tissues develop after birth depending on the presence of microflora [23]. The PP

have residence directly under the epithelial lining and are covered with M-cells,

which are epithelial cells that are specialized in antigen uptake. Consequently DC

pick up the antigen and present it to the lymphocytes. The lymphatics drain the PP

and lamina propria, and DC from these sites traffic to the MLN. Regulatory T-cells

or effector T-cells generated in the MLN gain gut homing markers and home back

to the lamina propria (the effector compartment of the GALT) were they remain to

exert their effector function. In addition, cells from the MLN traffic to the systemic

compartment. In this way immune responses generated locally in the intestine can

be transferred systemically contributing to optimal immune competence of the host.

3.1.1 Epithelial Lining

A monolayer of IEC separates the luminal contents from the mucosal immune

system. The epithelial lining consists IEC of several subtypes such as goblet cells

that produce mucins forming a protective mucus layer on top of the epithelial

lining; Paneth cells that are located in the crypts and produce microbicidal products

like beta-defensins, and absorptive enterocytes. IEC provide an intrinsic barrier

since they are connected with “zipperlike” structures, the intercellular tight junc-

tions. These prevent aspecific paracellular leakage of luminal antigens or bacteria

into the mucosal immune system. These extrinsic (mucus layer) and intrinsic barrier

properties are of great importance for intestinal homeostasis. Primary or secondary

(e.g., as consequence of inflammation) defects in epithelial barrier properties have

been shown to contribute to the pathogeneses of (chronic) inflammatory disorders

such as IBD, allergic disease, and arthritis. Neonates have an immature intestinal

immune system and leaky gut; hence in this phase of life critical developmental

steps (such as gut maturation) have to be taken to ensure mucosal homeostases

[40]. Pattern recognition receptors (PRR) such as toll-like receptors (TLR) and

nucleotide oligomerization domain (NOD) receptors are present on IEC and

immune cells. These receptors function in microbial recognition and selectively

recognize several bacterial cell wall components and CpG DNA. Currently 14 TLR

are known and 2 NOD receptors which have specific expression patterns on specific

immune cells or IEC. In IEC the expression of membrane-bound receptors like

TLR2 and TLR4 is constitutively low to limit immune activation. However during

(allergic) inflammation receptor expression is enhanced enabling PRR signaling

and activation of IEC [39]. In addition to PRR, the family of lectin receptors is

specifically distributed amongst IEC and immune cells. These receptors consisting

of the C-type lectin, siglec, and galectin family of receptors bind selective sugar

moieties [41]. Within the IEC galectins are abundantly expressed. Currently ten

different galectins have been recognized in human of which galectin-1,-2,-3,-4, and

-9 have been detected within the epithelial layer of human and also in mice.

Nowadays it is appreciated that IEC modulate the inductive as well as the effector

immune response. This may have implications for both the local intestinal as well

as the systemic immune response. IEC are capable of producing retinoic acid
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(RA) from retinal, since they have the enzyme aldehyde dehydrogenase (ALDH).

The level of expression and activity of ALDH is actively being regulated by

environmental influences [42]. Together with transforming growth factor beta

(TGF-β) epithelial derived RA is capable of instructing CD103þ dendritic cells

that are capable of inducing de novo generated FoxP3þ regulatory T-cells that

control tolerance induction and immune homeostasis [43–45].

3.1.2 Mucosal Antigen-Presenting Cells: Dendritic Cell
and Macrophage Phenotype and Function

GALT DC

In the intestine, DC are located in close proximity to IEC and the latter have been

found to regulate DC function. DC are key directors for tolerance induction and

maintenance of homeostasis. Several DC subsets have been defined in the different

compartments of the GALT and short lived DC but also macrophages are

replenished by bone marrow derived precursors. Lymphoid tissue DC,

plasmacytoid DC (pDC), and monocytes are derived from the macrophage/DC

precursor (MDP) [46, 47]. Monocytes only develop into DC in lymphoid organs

under inflammatory conditions but a specific subtype of monocytes can also

replenish DC under steady-state conditions [46, 47]. In the latter situation preDC

derived from DC localized in the lamina propria are CD103þ and are able to

migrate to the MLN. By contrast, monocyte-derived DC become fractalkine recep-

tor (CX3CR1) positive and remain localized under the epithelial layer in the lamina

propria [47–49]. CD103þCX3CR1� DC are located in the lamina propria and lie

in close proximity to IEC (15 μm, 1 cell per 200 μm villus) or in the PP [47,

49]. CD103 (integrin αEβ7) is a ligand for E-cadherin expressed by IEC, and hence
can be attracted to the epithelial layer. High constitutive chemokine receptor

7 (CCR7) levels ensure steady-state trafficking of this subpopulation to the MLN

and are essential for oral tolerance induction [47, 49, 50]. This tolerogenic

CD103þCD11bþ DC subset is able to instruct Forkhead box p3 positive

(Foxp3þ) regulatory T-cells (Treg) for example upon oral antigen exposure since

they have the intrinsic capacity to produce retinoic acid [51]. By contrast,

monocyte-derived DC/macrophages become fractalkine receptor (CX3CR1) posi-

tive and remain localized under the epithelial layer (10 μm, 4 cells per 200 μm
villus) in the lamina propria [47]. This CD103�CX3CR1þ DC/macrophage pop-

ulation in the small intestine and colon is known for its antigen sampling capacities

via formation of protrusions through the epithelial layer [49, 52]. A process which

depends on the expression of CX3CR1. The fractalkine positive DC/macrophages

are capable of producing TNF-α under inflammatory conditions which may inter-

fere with intestinal homeostasis and contribute or even drive intestinal inflamma-

tion in particular when CD103þ DC are absent [48]. By contrast, these fractalkine

positive DC, which have also been phenotyped as being macrophages instead of

DC, are capable of producing IL-10 as well which is involved in the establishment
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of oral tolerance and Treg expansion hence protection of intestinal homeostasis

[53]. Two types of tolerogenic DC, the CD103þ DC and plasmacytoid DC (pDC),

are known to instruct the generation of Treg. IEC and DC are involved in the

generation of tolerogenic T-cell responses since they contain RA-converting

enzyme ALDH. Under influence of epithelial-derived RA and TGF-β, the

CD103þ DC develop that express CCR7 and are attracted to the CCR7 ligands

CCL19 and CCL21 in the MLN. Although studies in mice have generated most

insight in the development and trafficking of tolerogenic DC in the GALT, also in

human some of these principles have been confirmed.

Hence these CD103þCCR7þ DC are able to pick up the antigen in the lamina

propria and migrate to the MLN [49]. In the MLN in general they are thought to

contribute to tolerance induction since they are able to induce Foxp3þ Treg via

DC-derived RA and TGF-β [43–45, 51, 54, 55]. These de novo-induced Foxp3þ
Treg are instructed to express gut homing receptors CCR9 and integrin-α4β7, also
under pressure of RA and via the blood stream they home back into the lamina

propria. However, CD103þ DC not always generate tolerogenic responses. During

mucosal inflammation the CD103þ DC drive an inflammatory T-cell (Th1, Th17,

IL-6, IFN-γ) response instead of regulatory response as was established in a mouse

model of T-cell-mediated colitis [42]. Besides RA recently DC-derived thymic

stromal lymphopoietin (TSLP) was also shown to contribute to the instruction of

Foxp3þ Tregs at the expense of Th17 cells [45]. Hence environmental factors

determine whether a tolerogenic or inflammatory response is generated within the

MLN by CD103þ cells [42]. In addition to the CD103þ DC, in mice tolerogenic

capacities by pDC have been shown. pDC are continuously produced in the bone

marrow, are TLR7 and TLR9 positive, and carry CCR9 which is responsible for

homing to the small intestine since the IEC located here produce CCL25/TECK

which serves as an chemoattractant [56].

GALT Macrophage

In the lamina propria not only DC but also resident macrophages are involved in

maintenance of homeostasis. The characterization of intestinal DC versus macro-

phages is challenging since they share several similar features. For example,

classical DC integrin (CD11c) is highly expressed by DC while it remains low in

macrophages except for CX3CR1þ myeloid DC/macrophages that also display

macrophage marker F4/80þ [57]. These intestinal DC/macrophages have a strong

capacity to destroy bacteria without inducing inflammation. Typically IEC express

CX3CL1, the ligand for CX3CR1, which may contribute to the suppression of

pro-inflammatory cytokine production by these DC/macrophages and support

secretion of regulatory IL-10 by these cells [57]. IL-10 expressing CX3CR1þ
gut-resident DC/macrophages have been shown to be essential for the local prolif-

eration of Foxp3þ Treg which were generated within the MLN and had trafficked

back into the lamina propria and contributed to the establishment of oral tolerance

[53]. CX3CR1 was shown to contribute to IL-10 expression within these
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macrophages [53]. Transmembrane receptor CX3CL1 is selectively expressed by

epithelial cells of the small intestine and colon and can be released upon proteolytic

cleavage providing a chemotaxis gradient [58].

3.1.3 T-Cell Response: Immunity Versus Tolerance

In the PP and MLN naı̈ve T-cells are instructed towards an antigen-specific

tolerogenic Treg response (tolerance via active immune suppression) or a Th1,

Th2, or Th17 type of immune response (immunity) [36]. Several subsets of Treg are

able to suppress excessive immune activation by means of cell–cell contact or

TGF-β and/or IL-10 secretion [38]. Natural arising CD4þCD25þFoxP3þ Treg

develop from the thymus and have been shown essential for immune homeostasis.

However CD4þCD25þFoxP3þ Treg can also be produced in the periphery such as

the GALT. These induced or de novo generated Foxp3þ Tregs are generated within

the naı̈ve T-cell pool for example in the MLN by CD103þ DC [51, 54, 55];

alternatively pDC may be involved. The Treg home back in the lamina propria

where they may further expand under influence of resident DC/macrophages

[53]. Besides effector cells generated in the inductive sites that home to the lamina

propria, intraepithelial lymphocytes contribute to the mucosal immune response

and maintain homeostasis and oral tolerance [35, 59].

Preservation of intestinal homeostasis and oral tolerance induction is essential to

prevent or cure food allergy. Oral tolerance is defined as the absence of a systemic

reaction upon previous oral feeding of an antigenic protein as consequence of active

immunological nonresponsiveness [37]. Oral tolerance to food proteins is

established when a local intestinal immune response is absent or a suppressive

antigen-specific immune response is generated within the intestine and systemic

compartment [53]. Germfree mice do not develop tolerance but allergy upon oral

delivery of a food protein and have impaired Treg function. Both can be restored by

colonization with Bifidobacteria and Lactobacilli respectively (reviewed by van der
Aa et al. [60]). In addition, it is hypothesized that commensal bacteria such as

Bifidobacterium infantis in infants and Clostridium cluster IV and XIVa in adults

are responsible for the instruction of Foxp3þ Treg in the intestinal mucosa [23].

Oral tolerance may involve deletion or anergy of reactive T-cells and the

induction of antigen-specific Treg [61, 62]. Indeed allergen-specific Treg are

expanded within a week upon oral allergen challenge in children who have out-

grown cow’s milk allergy while this did not occur in children that remained allergic

[63]. Both CD25þ and CD25� T-cell populations may be involved in the instruc-

tion of a regulatory response; however recently it was shown that expression of

Foxp3 is essential since loss of Foxp3þ Treg cells renders total loss of oral

tolerance in mice resulting in a systemic IgE response and allergic symptoms

[53]. The MLN that drain from the gut have been indicated as port that confers

local tolerance for food protein to systemic nonresponsiveness. In particular

FoxP3þ Treg that are induced in the MLN have been identified to confer oral to

systemic tolerance. However, they are only able to do this when they are allowed to
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home back to the lamina propria, a process requiring not only CCR7 expression by

these Tregs but also MADCAM-1 [53]. Furthermore these FoxP3þ Tregs generated

in the MLN need to be sustained in the lamina propria of the small intestine where

its number remains increased 5 up until 12 days after oral antigen challenge [53].

Co-administration of the antigen with cholera toxin breaks oral tolerance induction

which was associated with the lack of FoxP3þ Treg expansion within the lamina

propria [53].

3.1.4 B-Cells and Humoral Response

One of the main functions of the mucosal immune system is to maintain mucosal

homeostasis. Treg contribute to this via suppression of overrated immune activation

via cell–cell contact or IL-10 or TGF-β production. However TGF-β derived from,

amongst others Treg cells also contributes to the generation of IgA. IgA is

transported over the epithelial layer and secreted at the mucosal site as sIgA.

Here sIgA neutralizes and is involved in clearance of the antigen. Hence sIgA is

very important in mucosal surveillance. Newborn depend on passive transfer of

sIgA via breast milk and as the gut immune system matures the endogenous IgA

production develops. Fecal sIgA not only serves as a marker for mucosal immune

maturation it has also been associated with a reduced risk of IgE-associated allergic

disease. In a cohort of 237 infants it was observed that high fecal sIgA levels at the

age of 6 months associates with a 50 % reduction in chance of developing

IgE-associated allergic disease [64].

3.2 Effects of Dietary Nondigestible Oligosaccharides
on the GALT

The main function of the GALT is to control homeostasis. Therefore the GALT is

focused on instructing a self-regulating effector immune responses against

offending pathogens and acquirement of tolerance against the commensal

microbiota and harmless antigens such as food proteins. In the intestine tolerogenic

DC instruct the generation of Treg which control excessive immune activation via

cell–cell contact, IL-10, or TGF-β secretion and have been shown to contribute to

oral tolerance induction. In addition, local plasma cells produce IgA which has a

major protective function. Although basic mechanisms on how nondigestible oli-

gosaccharides affect the GALT are lacking, studies taking into account the above-

mentioned biomarkers of mucosal tolerance are mentioned below.
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3.2.1 Nondigestible Oligosaccharides and the GALT in Healthy
Rodents

In rats fed a 10 % inulin/FOS (Synergy) diet for 4 weeks the IL-10 secretion by PP

cells upon concanavalin A (conA) stimulation was found to increase in correlation

with increase in IFN-γ. Furthermore sIgA concentrations in the ileum were

enhanced [65]. Similar findings were done in mice receiving 10 % FOS for

15 days. FOS enhanced the number of B-cells in the PP, and 2.5 % FOS enhanced

IgA secretion by PP cells and fecal IgA contents [66, 67]. The dose of 7.5 % FOS

further enhanced IFN-γ, IL10, IL-5, and IL-6 secretion by PP cells upon stimulation

with components from fragmented Bifidobacteria [67]. The increase in IgA upon

FOS feeding (5 %) was confirmed in another study with healthy mice. In tissue

extracts of the jejunum, ileum, and colon, IgA levels were doubled as well as the

percentage of IgA positive B-cells in the PP [68]. Supplementation of 20 %

isomalto-oligosaccharides for 4 weeks also enhanced IgA levels in feces in associ-

ation with increased Lactobacillus counts [69]. In addition, ex vivo stimulation of

intraepithelial lymphocytes resulted in increased IFN-γ secretion by these cells.

Also rats fed 5 % pectin showed increased concentrations of IgA in MLN while IgE

was reduced and upon stimulation MLN cells tended to produce more IFN-γ and

TNF-α [70].

3.2.2 Nondigestible Oligosaccharides and the GALT in Disease

In particular the combination of inulin/FOS has been used in mice and small clinical

trials to prevent or treat IBD. IBD consists of Crohn’s disease (CD) and ulcerative

colitis (UC). During flare ups the Th1/Th17 prone inflammatory response in CD is

transmural and may occur in the whole gastrointestinal tract, but mainly establishes

in the terminal ileum. In active UC, the mucosal inflammation is superficially

localized in the mucosa Natural killer cell/Th2 polarized and restricted to the

colon. Prevention of dextran sodium sulfate (DSS) induced colitis in rats was

observed using inulin/FOS (Synergy 1) resulting in strong reduction in disease

activity and reduction in IL-1β, neutrophil activation marker myeloperoxidase in

colonic tissue while IL-10 and TGF-β remained unaltered. Similar effects were

shown in presence and absence of complimentary administration of commensal

bacteria [71]. In a double-blind placebo-controlled trial with 18 patients with mild

active UC the test group was supplemented with 6 g inulin/FOS per day in

combination with Bifidobacterium longum for 1 month in combination with drug

therapy. Colonic biopsies showed lower expression of epithelial derived beta

defensins. Furthermore, inflammatory markers TNF-α and IL-1β reduced in the

intervention group which was associated with an improved sigmoidoscopy score;

however the clinical activity index did not improve [72]. In an uncontrolled trial,

ten active Crohn’s patients were provided with 15 g FOS per day for three

consecutive weeks. FOS reduced the disease activity and enhanced fecal
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Bifidobacteria counts. The percentage of IL-10þCD11cþ DC isolated from the

lamina propria of rectal biopsies was increased upon FOS (inulin/oligofructose,

Prebio 1¼ Synergy) supplementation ( p¼ 0.06) [73, 74]. In addition to modulation

of mucosal inflammatory markers in IBD, inulin/FOS (Synergy) was found to affect

the GALT in rodent models for colon cancer. In azoxymethane (AOM, two times

subcutaneous) installed colon cancer in rats, which were 2 weeks prior to up until

33 weeks after AOM treatment fed a 10 % inulin/FOS diet, the tumor load was

significantly lowered. The IL-10 secretion of conA stimulated cells of the PP and

MLN was enhanced in the inulin/FOS rats sham or AOM treated, and IFN-γ was

increased in PP of sham rats [75]. A similar study by Femia et al. showed reduced

colonic tumors in association with increased SCFA production in rats fed inulin/

FOS and a tendency towards reduced pro-inflammatory cyclo-oxygenase (COX)

2 and inducible nitric oxide synthase (iNOS) expression [76]. Also in Min mice that

spontaneously develop intestinal tumors a 6 % scFOS diet reduced tumor formation

in the colon but not in the small intestine. However in the small intestine the number

of lymph node nodules increased which may relate to the decrease in colonic tumor

formation [77]. After 12-week supplementation in a randomized, double-blind,

placebo-controlled trial using inulin/FOS (Synergy) and Lactobacillus GG and

Bifidobacterium B, fecal bifidobacteria and lactobacilli counts increased and colo-

rectal proliferation in biopsies reduced [78]. However, 6-month inulin/FOS supple-

mentation did not reduce mucosal proliferation in colon cancer patients in a Phase II

clinical trial [79].

4 Dietary Intervention Using Nondigestible
Oligosaccharides in Allergy Prevention and Treatment

In western developed countries the incidence of allergic diseases has been steadily

rising during the past decades. It is hypothesized that immune maturation in early

life is hampered by improved hygiene and reduced exposure to microbes rendering

Th2 type immune polarization due to changes in intestinal colonization pattern

(reviewed by van der Aa et al. [60]). Food allergy (in particular milk and hen’s egg)

and atopic dermatitis (AD) are the first diseases to establish in early infancy;

affected children are more prone to develop allergic diseases like asthma and

allergic rhinitis later in life (atopic march). Atopic dermatitis is one of the first

manifestations of atopic constitution readily developing within the first year of life

with a peak at sixth month; allergic airway diseases can be diagnosed at a later age.

Currently the prevalence of atopic dermatitis is 5–20 % in primary school children.

Atopic dermatitis is often associated with food allergy and 40 % of the children

develop asthma later in life (reviewed by van der Aa et al. [60]). Nondigestible

oligosaccharides in human milk are thought to contribute to gut and immune

maturation of the new born either directly or via the establishment of a beneficial
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intestinal microflora composition and may suppress the susceptibility to develop

allergic disease in early childhood.

4.1 Allergy Rodent Models

Several studies have shown suppression of allergic disease by prebiotic oligosac-

charides. Nagura et al. showed that a 5 % raffinose diet, which was previously

shown to reduce allergic airway eosinophilia in rats [80], increased IL-12 secretion

by PP cells ex vivo in Balbc mice. DC from these mice stimulated IFN-γ secretion
by T-cells of ovalbumin receptor transgenic mice. Direct feeding in ovalbumin

transgenic mice suppressed ovalbumin-induced IL-4 secretion by MLN cells and

suppressed serum IgE levels [81]. scGOS/lcFOS þ/� pAOS was demonstrated to

prevent allergic symptoms in the mouse model for cow’s milk allergy in association

with reduced mast cell degranulation and scGOS/lcFOS/pAOS-enhanced Treg

function [26, 82, 83]. Transfer of splenocytes from scGOS/lcFOS/pAOS-fed

whey or casein-sensitized mice protected control diet-fed naive recipients from

the development of allergic disease upon sensitization. This effect was lost upon

in vivo and/or ex vivo CD25þ cell depletion, indicating functional Tregs to be

involved in the protective effect generated by the scGOS/lcFOS/pAOS in the donor

mice [82, 83]. Although mice were protected and functional Tregs were generated,

antigen-specific whey IgE levels remained unaltered high. Recent studies revealed

a novel mechanism of action of scGOS/lcFOS. scGOS/lcFOS have been shown to

alter the bacterial microflora, but they may as well be able to affect the function of

the epithelial layer. In an in vitro coculture model combining human intestinal

epithelial cells (IEC) with activated leukocytes in a separate compartment [39, 84],

scGOS/lcFOS were shown to further polarize the effector immune response

towards a Treg and Th1 response, skewing away from the allergic phenotype,

when combined with bacterial CpG DNA [93]. These effects were found to be

generated via epithelial release of soluble-type lectin galectin-9 which may con-

tribute to the mechanism of action of oligosaccharides. Galectin-9 is known for its

capacities to induce Treg and neutralize IgE [85, 86]. It was shown that dietary

nondigestible oligosaccharides are able to enhance bacterial CpG DNA-induced

galectin-9 expression in IEC [39, 93]. Indeed translational studies revealed this

finding to be a major breakthrough in the understanding of the mechanism by which

scGOS/lcFOS exert their protective effect in allergic disease. A scGOS/lcFOS-

containing diet was found to enhance polarized galectin-9 expression in IEC of

cow’s milk allergic mice, and in addition, serum galectin-9 levels were dramatically

elevated, suggesting epithelial galectin-9 release driven by the scGOS/lcFOS diet

[87]. Indeed serum galectin-9 levels were positively correlated with the reduction in

allergic symptoms in the cow’s milk allergic mice and contributed to reduced mast

cell degranulation. Furthermore serum galectin-9 concentrations increased in

infants affected with atopic dermatitis being supplemented with scGOS/lcFOS

and Bifidobacterium breve in association with reduced symptom scores [87].
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4.2 Human Studies Prevention

The risk of developing AD is associated with delayed maturation of a Th1 response

and an atopic constitution (high total and specific IgE). In a double-blind, placebo-

controlled clinical trial aiming to prevent occurrence of atopic dermatitis 8 g/L

scGOS/lcFOS (9:1) was provided in extensively hydrolyzed milk formula for

6 months, starting within 2 weeks of life. The cumulative incidence of AD in the

children at risk for atopy at the age of 6 months was over 50 % reduced in the

intervention group (n¼ 10/102) compared to the control group (n¼ 23/104) in

association with higher Bifidobacteria counts in the feces. Children of the inter-

vention group cried less and had improved stool consistency and frequency [88]. At

3 months of age all children received an Hexavac vaccination for diphtheria,

tetanus, and polio (DTP). At 6 months of age DTP-specific immunoglobulins

were established to similar levels in the scGOS/lcFOS supplemented children

similar to the control group. By contrast total IgE and IgG1 and cow’s milk

protein-specific IgG1 were reduced in the supplemented group [89]. In addition

to this reduction in atopic constitution of the intervention group, the oligosaccha-

rides were found to reduce serum kappa as well as lambda immunoglobulin free

light chains (IgfLC) in these children [90]. Like IgE, IgfLC can cause acute allergic

symptoms upon antigen challenge and IgfLC levels were found to be enhanced in

AD patients [90–92]. At the age of 2 years the cumulative incidence of AD was still

50 % lower in the scGOS/lcFOS group (13.6 % of n¼ 66) compared to the placebo

group (27.9 % of n¼ 68), while the supplementation was stopped at 6 months of

age [94]. In addition, the supplemented group had a reduced incidence of over 50 %

in recurrent wheezing and allergic urticaria. Furthermore, the overall infection rate

was lower which applied in particular to upper respiratory tract infections and the

number of fever episodes and antibiotic prescriptions was lower. Similar results

were obtained in a double-blind placebo-controlled trial with healthy term infants,

using a formula milk enriched with 8 g/L of a mixture of scGOS/lcFOS (9:1, 85 %)

and pAOS (15 %) (n¼ 414 in prebiotic group and n¼ 416 in the control group).

Children were supplemented for 12 months, starting before 8 weeks of age. At the

age of 12 months the prebiotic supplemented group showed over 40 % reduced

incidence of atopic dermatitis compared to the control formula group; the protective

effect was comparable to that of the breast-fed control group. Also the severity of

AD occurring in the prebiotic group tended to reduce compared to the control

formula group, and the use of corticosteroids was reduced by over 50 %. Serum IgE

concentrations did not differ between groups [95]. Atopic constitution may readily

develop during gestation and dietary factors may affect immune imprinting of the

fetus. In a placebo-controlled study, a mixture of four probiotic strains and scGOS

was provided 2–4 weeks prior to delivery to pregnant women at high risk of

delivering an atopic child (n¼ 461). This supplementation was continued in the

infants for 6 months. Also in this study the incidence of atopic IgE-mediated

eczema at the age of 2 years was reduced by 30 % [96]. This effect was associated

with enhanced colonization of lactobacilli and bifidobacteria species. The study
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outcome was promising with regard to prevention of atopic dermatitis and also the

cumulative incidence of IgE-associated allergic disease (food allergy, asthma,

eczema, allergic rhinitis) tended to reduce. However, sensitization (positive skin

prick test or IgE) as such did not differ between groups.

4.3 Human Studies Treatment

Allergic disease is known to be orchestrated due to an over-reactive Th2 response

on the one hand and compromised Th1 and/or regulatory T cell activity on the other

hand. This results in generation of allergen-specific IgE by B-cells, opsonizing mast

cells which degranulate and cause allergic symptoms upon allergen challenge.

Current drugs used, such as corticosteroids, mast cell stabilizers, or anti-

histaminica, are effective in suppression of symptoms. The allergy as such is not

cured. Antigen-specific immunotherapy is used to treat allergies and for some

allergens successful protocols are established to do so. Few studies are undertaken

to use dietary nondigestible oligosaccharides in the treatment of allergic disease and

in future these studies may be further expanded. In the Synbad study 90 infants with

atopic dermatitis aged <7 months were randomized to receive either a placebo

hydrolyzed milk formula or this formula supplemented with 8 g/L scGOS/lcFOS

and B. breve MV16. After 12 weeks of treatment the atopic dermatitis symptom

scores were reduced by 13.5 points in the placebo group and 18.1 points in the

subgroup of IgE-associated atopic dermatitis (n¼ 45) fed the synbiotic product

( p¼ 0.04) while IgE was not affected [97]. Children treated with the synbiotics had

increased fecal Bifidobacteria counts while pathogen counts were decreased. In the
serum of synbiotic supplement infants the serum galectin-9 levels were enhanced

by the end of the intervention period [87]. Galectin-9 is known for its capacities to

neutralize IgE [85] and may have contributed to the protective effect of the

synbiotics. In the 1-year follow-up of the Synbad study population the prevalence

of wheezing and noisy breathing apart from colds was assessed as early predictors

for asthma, since 40 % of children affected with atopic dermatitis develop asthma

later in life. In the synbiotic group this was dramatically lower and use of asthma

medication was reduced by 80 % [98], even though these children did not receive

synbiotics in the last 12 months. The same synbiotics, scGOS/lcFOS, and B. breve
MV16 were supplemented to 29 adult asthmatics with house dust mite allergy in a

randomized double-blind placebo-controlled trial. Although upon allergen provo-

cation the synbiotics did not alleviate symptoms, the peak expiratory flow as

measured by the patients in the morning and evening did improve after 3 and

4 weeks and serum IL-5 levels reduced after 4 weeks of intervention [99].
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5 Conclusion

HMOs are very complex and differ greatly between persons. Synthesized

nondigestible galacto- and fractionated fructo-oligosaccharides mimic some func-

tional aspects of HMOs. They induce growth of Bifidobacteria and Lactobacilli,
reduce infections in infants, and increase fecal IgA. In addition, evidence is

building that nondigestible galacto- and fructo-oligosaccharides can modulate the

GALT and systemic immune system in health and disease. In healthy rodents FOS

was shown to enhance IL-10 secretion in the PP in association with increase in

IFN-γ. FOS enhanced IgA in the PP, MLN, and intestinal tissues, while increasing

numbers of IgA positive B-cells. In rodent models of IBD and colon cancer

FOS/inulin improved clinical outcome, reduced inflammatory markers, and

increased IL10 positive DC and IL-10 secretion by MLN cells. In clinical trials

scGOS/lcFOS plus or minus pAOS have been shown to reduce the development of

IgE-mediated AD by 50 %. scGOS/lcFOS was limited capable of reducing IgE, but

may enhance serum galectin-9 known to neutralize IgE. Biomarkers of mucosal

tolerance have been studied in rodent models. Besides the increase in IL-10 and IgA

in healthy rodents, scGOS/lcFOS/pAOS was found to induce functional Treg in

spleens of mice affected with cow’s milk allergy, which may contribute to oral

tolerance induction. Studies are warranted that elucidate the impact of dietary

oligosaccharides and HMOs on GALT DC/macrophages and oral tolerance induc-

tion. Combining oral delivery of nondigestible oligosaccharides with allergenic

epitopes could further improve effectiveness and may add to future oral immuno-

therapy strategies.
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Chapter 9

The Endocannabinoid System: A Dynamic
Signalling System at the Crossroads Between
Metabolism and Disease

Renger F. Witkamp
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1 Introduction: The Changing Views
on the Endocannabinoid System

Endocannabinoids are signalling lipids playing important roles in a wide variety of

biological processes. Together with their receptors and enzymes involved in their

synthesis and breakdown they constitute the “endocannabinoid system” (ECS). By

definition the term endocannabinoid is limited to those compounds displaying

significant affinity to the cannabinoid receptors CB1 and CB2 [1, 2]. These receptors

were discovered in the late 1980s [3, 4] and were shown to bind (�)-trans-Δ9-
tetrahydrocannabinol (Δ9-THC) from the Cannabis plant. To date, nine “true”

endocannabinoids are being distinguished (Fig. 9.1), which are all derived from

long chain (C18 or longer) polyunsaturated fatty acids (LCPUFAs) [1]. The first

two discovered and still the most studied are anandamide (N-arachidonoyletha-
nolamine (AEA)), its name originating from the Sanskrit word “ananda” meaning

“the bliss”, and 2-arachidonoylglycerol (2-AG).

However, more than two decades of research have shown that the ECS per se is less

specific and distinct than originally assumed. It is nowwidely accepted that it is tightly

intertwined with other signalling mechanisms and that endocannabinoids are part of a

larger class of structurally related amides, esters and ethers of fatty acids which exist in

a continuous dynamic equilibrium with each other. The vast majority of these

molecules belongs to the fatty (acid-) amides like AEA, although analogues of

2-AG including 2-oleoylglycerol and 2-linoleoylglycerol have also been found (see

Sect. 2.3). Fatty acid amides (Lipid Maps class FA08; http://www.lipidmaps.org) are

conjugates of different long chain fatty acids and amines including ethanolamine,

neurotransmitters (serotonin, dopamine) or simple amino acids. They are abundantly

present in nature and involved in various regulatory processes. In animals, their

molecular targets go far beyond the classical CB receptors and include a wide range

of receptors including GPR55, GPR18, GPR119, TRPA1 (transient receptor potential

ankyrin 1), TRPV1 (transient receptor potential channel type V1), PPARs (peroxi-

some proliferator activated receptors) as well as several non-receptor targets [2, 5–7]

It has also become clear that some (if not all) of the “true” endocannabinoids

themselves display “promiscuous” behaviour by activating or blocking other

receptors besides CB1 or CB2 with potencies that differ little from those with

which they interact with “true” cannabinoid receptors [2, 6]. In addition, anandamide,

2-AG and other CB ligands interact directly or indirectly with non-receptor targets

[5]. Biochemical pathways for synthesis and degradation of endocannabinoids and

their congeners show several crossroads with those of other lipid mediators, in

particular eicosanoids. This not only creates a number of regulatory nodes but

also leads to the formation of “hybrid” structures including prostamides and other

oxidation products, often with bioactivity [8–11]. Taken together, an “expanded”

view of the ECS is increasingly considered a better concept to comprehend its full

dimensions [12]. In line with this, it has been suggested to apply the term

“endocannabinoidome” to describe this family of molecules (Fig. 9.2). Mediators

that are part of this endocannabinoidome are fluctuating in a time and tissue-specific

way, modulated by various endogenous (e.g. energy status, inflammation) and
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environmental factors, including diet. These network dynamics have major

consequences for drug development. Soon after its discovery it became clear that

the ECS is involved in a number of important processes and (chronic) diseases

including pain, anxiety/depression, GI/liver diseases, cancer, metabolic disease and

eating behaviour. Several promising new pharmacological targets were suggested

which often indeed showed encouraging effects in animal studies. In particular in

relation to weight management and metabolic diseases expectations were high to

develop CB1 antagonists or inverse agonists into a completely new drug class.

Therefore, the failure of the first in class compound rimonabant because of severe

anxiety and depression-related side-effects in predisposed persons [13] shocked the

pharmaceutical industry. By the end of 2008 at least nine companies terminated

active development projects with CB1 blockers. These included some with

compounds in a well-advanced stage of development such as Taranabant (Merck)

and CP-945,598 (Otanabant, Pfizer). In retrospect these failures illustrate that initial
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strategies to modulate a dynamic and pleiotropic like the ECS have been too narrow.

The endocannabinoidome still holds many promises for both “food” and “pharma-

ceutical” applications. However, its complexity demands for more subtle multiple-

target strategies instead of a classical one disease–one target–one drug approach. This

chapter aims to illustrate some recent developments and activities in the field of the

ECS, including some related receptors and mediators. Major therapeutic applications

will be briefly illustrated. This will be elaborated in Sect. 4 by examples from two

main domains, namely, “inflammation” and “weight management”.

2 From Phytocannabinoids to Endocannabinoids:
A classical Example of Reversed Pharmacology

2.1 Compounds with Pharmacological Activity
from Cannabis spp.

Earliest written records on the physiological effects and medical use of Cannabis go
back to about 2000 BC in the famous book Pe’n-ts’ao Ching attributed to the

Fig. 9.2 Cartoon depicting the “expanding” view on the endocannabinoid system (ECS). The

“classical” ECS (centre) is considered as part of an endocannabinoidome consisting of structurally
related ligands, metabolites and enzymes involved. Endocannabinoids per se and their congeners

interact with different non-cannabinoid receptors and other molecular targets
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Chinese emperor Shen-nung [14]. This ancient pharmacopoeia describes a number

of properties of Cannabis, including its capacity to “lighten one’s body”. Through-

out history, medical use of Cannabis has been widely accepted and very common in

different parts of the world until this began to decline around the beginning of the

1900s [15]. Since the last decades, there is a renewed interest in preparations and

compounds prepared from the Cannabis plant. The term phytocannabinoids (phyto-
used here to distinguish them from endocannabinoids) refers to a group of

terpenophenolic compounds with 22 carbons (or 21 carbons for neutral form) of

which more than 70 have been found so far and which can be categorised into ten

main structural types [16, 17]. In general, Cannabis refers to the species Cannabis
sativa, although there is ongoing discussion whether the genus Cannabis comprises

more than one species, i.e. Cannabis sativa and C. indica [16]. Preparations from

different Cannabis breeds show a great variety in absolute and relative concentra-

tions of phytocannabinoids [18], of which only a few are ligands for CB1 or CB2

receptors. However, as the adjective “cannabinoid” predates the discovery of

cannabinoid receptors by many years this term is still commonly used to describe

also other compounds with structures similar to the phytocannabinoid Δ9-THC,
irrespective of whether they are or are not cannabinoid receptor agonists or antag-

onists [2]. Recent breeding and selection of Cannabis for recreational purposes has
primarily focussed on increasing the content of the psychotropic compound (�)-

trans-Δ9-tetrahydrocannabinol (Δ9-THC, Fig. 9.3). At the same time, the renewed

interest in Cannabis for medical use initiated the search for cultivars with

completely different compositions and often much lower hallucinogenic activity.

It is expected that the unravelling of the Cannabis sativa genome [19] will further

stimulate these developments. In the plant, cannabinoids are produced as their

carboxylic acid derivatives, known as cannabinoid acids. Their neutral counterparts

can be formed through the action of heat (smoking), sunlight or during storage [20,

21]. Several cannabinoid acids themselves display biological activity, which are

often distinct from those of their decarboxylated products [17, 20–22]. Chemical

structures of some of the most studied phytocannabinoids are depicted in Fig. 9.3.
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Although Δ9-THC (Dronabinol, Marinol®) has been available as medicinal

preparation for oral use since the 1980s, its therapeutic use initially remained rather

limited. Efficacy was reported to be variable, at least partly due to significant first-

pass metabolism [23]. Since the beginning of this century there has been a slow but

steady growth in the development and application of medicinal products based on

herbal Cannabis or natural cannabinoids [23–25]. Differences between regions and
therapeutic viewpoints are among the factors which determine whether the focus is

more on the herb or on specific phytocannabinoids. Some countries and regions

(The Netherlands, Canada, several US states) have official medicinal Cannabis
policies, often referred to as “medical marijuana”. Herbal products are preferably

taken by inhalation using special vaporizers, and there is an increasing trend

towards “individualised” therapies using specially selected cultivars [18]. On the

other hand, formulations with purified Δ9-THC, CBD and/or THCV for oral or

oromucosal delivery are also being developed and implemented [26, 27]. Cannabis
or phytocannabinoid-based preparations are used for a number of indications,

including pain, the amelioration of chemotherapy-induced nausea and vomiting,

stimulation of appetite and management of spasticity in multiple sclerosis [25, 27,

28]. An in-depth discussion on the role of Cannabis or cannabinoid-based prepa-

rations in medical therapy is considered outside the scope of this chapter. It is

obvious though that the debate on this issue continues until today.

From a scientific and potentially therapeutic perspective it is of interest to note

that increasing data are becoming available on the activity of phytocannabinoids

other than Δ9-THC with only weak or no psychotropic effects. Compounds of

interest include cannabidiol (CBD), cannabigerol (CBG), cannabichromene (CBC),

Δ9-tetrahydrocannabivarin (THCV), cannabidivarin (CBDV) as well as (at least)

some cannabinoid acids, Δ9-tetrahydrocannabinolic acid (Δ9-THCA) and

cannabidiolic acid (CBDA). A detailed discussion of each of these molecules

falls outside the scope of this chapter. For an excellent overview readers are referred

to Izzo et al. [17]. However, two compounds are of specific interest and merit some

extra attention here, namely, CBD and THCV.

Among the non-hallucinogenic phytocannabinoids, CBD (Fig. 9.3) is currently

receiving the most attention. In dried Cannabis CBD contents range from very low

(<1 %) to equal or even higher (up to around 8 %) compared to those of Δ9-THC,
depending on the cultivar and preparation. The oromucosal spray Sativex®, pre-

scribed for the treatment of spasticity due to multiple sclerosis contains CBD and

Δ9-THC in a 1:1 ratio. Cannabidiol behaves like a typical multiple target com-

pound. For reviews, see for example [17, 29]. It displays a highly diverse spectrum

of activities including agonist activity for PPARγ, TRVP1 and TRPA1 receptors,

antagonist of GPR55, a complex antagonistic behaviour towards CB1 and CB2, etc.

(see also Sect. 3.2). Specifically in relation to neurodegenerative diseases and

(neuropathic) pain the effects of CBD on glia cells are of interest to note. Several

preclinical and an increasing number of clinical studies have suggested at least

promising activities in chronic inflammatory and autoimmune diseases including

IBD [30], MS [31], cancer [5, 32, 33] and different CNS disorders [34–36]. Remark-

ably, there is increasing evidence that CBD and Δ9-THC interact within the CNS

160 R.F. Witkamp



thereby reducing the psychoactive effects of Δ9-THC and possibly even its psy-

chogenic risks [37–39]. Future clinical studies, of which several are presently

ongoing (source: ClinicalTrials.gov) should further demonstrate the full therapeutic

potential of CBD, alone or combined with other cannabinoids or other compounds.

Δ9-tetrahydrocannabivarin (THCV, Fig. 9.3) occurs in Cannabis as a minor

component in varying amounts [18]. Interestingly, this compound has been found to

possess CB1 antagonist properties [40, 41]. Therefore, it is receiving attention as a

natural alternative to the CB1 blockers/inverse agonists like rimonabant. Recently,

THCV has been found to ameliorate insulin sensitivity in two mouse models of

obesity [42].

2.2 Phytocannabinoids from Plants Other than Cannabis

Remarkably, structures with affinity to CB1 and CB2 have also been found in plants

other than Cannabis [43]. These molecules may be divided into two categories.

First, plants like most other organisms contain lipid-derived structures which are

chemically related to the endocannabinoids as those found in mammals (see also

Sect. 2.3), albeit shorter acyl chains (C12 or C14) appear to be more common in

plant [43–46]. Next to this, an increasing number of other plant compounds with

affinity for CB2 or CB1 have been characterised. Examples include

(E)-ß-caryophyllene (present in many different spices and food plants including

oregano, cinnamon and black pepper), falcarinol (found in carrots, parsley and

celery), yangonin (present in Kava, Piper methysticum) and magnolol (from the

medicinal plant Magnolia officinalis) (Fig. 9.4) [43, 44, 47–50].
Considering the wide abundance in nature and “promiscuity” of the ECS and

related signalling systems, it does not seem unlikely that more natural compounds

with similar properties will be found in common spices and herbs. It is tempting to

speculate that such compounds may play a role in the culinary properties of some

plants by inducing “hedonic” signals in the brain via CB1 receptor stimulation.

2.3 Endocannabinoids and Beyond

As mentioned in Sect. 1, the discovery of the prototypical endocannabinoids per se

was followed by the finding that these molecules belong to much larger group of

fatty acid-derived structures of which the biological effects go far beyond effects on

CB1 and CB2.

The endocannabinoid anandamide (AEA) belongs to N-acylethanolamine (NAE)

subclass of fatty acid amides. In addition to the NAEs, several other classes of

fatty acid amides can be distinguished, including the primary fatty acid amides,

the N-acylamino acids (¼N-acylamines), N-acylarylalkylamines (N-acyldopamines,

N-acylserotonins) (Fig. 9.5) [51, 52].
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It has been shown that cells are able to “combine” different fatty acids and

biogenic amines to make several possible permutations of different fatty acid

amides [7, 51]. Several studies have demonstrated that the local relative availability

of fatty acid precursors, which in turn is modulated by dietary intake of lipids, plays

an important role in determining the pattern of amide conjugates formed. For

example, a number of studies in rodents and humans have shown that increasing

the relative proportion of n-3 LC PUFAs in the diet can lead to a decrease in the

formation of the “prototypic” endocannabinoids AEA and 2-AG, which are derived

from the n-6 fatty acid arachidonic acid [53–56]. These changes are a direct

consequence from a shift in n-3–n-6 balance of membrane lipids, resulting in

compensatory increases in n-3 LC-PUFA-derived acyl conjugates. The same

holds true for the local availability of amines. For example, we showed that

serotonin conjugates with fatty acids are formed by gut tissue, where most of the

body’s serotonin resides [57].

H H

(E)-b-Caryophyllene

OH

HO
Magnolol

O

O

O
CH3

O
H3C

Yangonin

OH

Falcarinol

O

N
H

N-alkylamide from Echinacea

Fig. 9.4 Some plant-derived compounds with CB1 or (and) CB2 affinity present in plants other

than Cannabis

162 R.F. Witkamp



Compared to the many fatty acid amides, only little has been reported on

2-acylglycerol esters other than the endocannabinoid 2-AG. However, it is likely

that several congeners will exist, for example formed out of triglycerides. In 1999,

Ben-Shabat et al. reported the isolation of 2-linoleoyl-glycerol and 2-palmitoyl-

glycerol (2-PG) from mouse spleen, brain and gut [58]. These two compounds did

not directly bind to CB1 or CB2 receptors but apparently potentiated the binding of

2-AG and its capacity to inhibit adenylyl cyclase. Furthermore, both esters caused

potentiation of some of the in vivo effects of 2-AG. Interestingly, 2-oleolyglycerol

(2-OG) was found to stimulate GPR119 receptors (see Sect. 3.2.4) in vitro, and did

this more potently than 2-AG, 2-PG and 2-linoleoyl-glycerol [59]. Subsequently

2-OG was given to human volunteers (2 g by jejunal delivery), which resulted in

increased levels of plasma GLP-1 compared to administration of the precursor oleic

acid. Triglycerides with oleic acid in the sn-2 position are very common in the diet

and from these 2-OG can be formed in the gut in amounts larger than the dose given

in the study of Hansen et al. [59]. Very recently, the presence of 2-linoleoyl-

glycerol and 2-oleoylglycerol (2-OG) has also been demonstrated in

Drosophila [60].

Fig. 9.5 Examples of fatty acid amide structures not belonging to the endocannabinoids per se

(see also Fig. 9.1)
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3 Biochemistry and Pharmacology of the ECS

3.1 Endocannabinoid Formation and Breakdown

Synthesis and release of endocannabinoids and many related compounds are con-

sidered to take place “on demand” via different multi-step processes which are

partly acting in parallel. For N-acyl-ethanolamines (NAEs) the most studied path-

way is their formation from glycerophospholipids via N-acylphosphatidyl ethanol-
amines (NAPEs), present in phospholipid membranes. NAPEs function as stable

precursors and source of their respective NAEs. Besides their role as precursor of

NAEs, NAPEs have bioactive effects themselves [61]. NAPEs are formed by

incorporation of fatty acids from the sn-1 position of a donor phospholipid like

phosphatidylcholine and transfer to an ethanolamine phospholipid,

e.g. phosphatidylethanolamine. This reaction is catalysed by a Ca2+-dependent N-
acyltransferase [61, 62]. Next, free NAE can be generated by a NAPE-hydrolyzing

phospholipase D (NAPE-PLD). In addition, other synthesis routes for NAEs have

been found [61, 63]. The glycerol-ester 2-AG is synthesised from diacylglycerol

(DAG), a very common second messenger, via the enzyme diacylglycerol lipase

(DAGL), of which more than one form has been described [64]. Biosynthetic routes

for other N-acylamides appear to be less well studied [52]. Huang et al. originally

suggested that N-arachidonoyldopamine (NADA) may either be synthesised by

condensation of dopamine with arachidonic acid (possibly via arachidonoyl-CoA)

or via a pathway involving N-arachidonoyl-tyrosine [65]. Later, Hu et al. [66]

reported that the latter may not be very likely. Instead they suggest a direct

involvement of FAAH either as rate-limiting enzyme that liberates arachidonic

acid from AEA, as a conjugation-enzyme, or both.

Conjugates of arachidonic acid (and possibly other fatty acids) with simple

amino acids can be synthesised via the formation of the acyl-CoA thioesters, as

was shown for N-arachidonoyl-glycine (NAGly) [67]. Interestingly, the arachidonic
acid that conjugates with glycine appears to be a result of the hydrolysis of AEA

[68]. An alternative pathway was proposed by Burstein et al. [69] who speculated

that NAGly is produced by the oxidation of the ethanolamine in AEA, presumably

through alcohol dehydrogenase. Evidence exists for both pathways [68].

Fatty amides and 2-acylglycerols are broken down by enzymatic hydrolysis. The

primary NAE degrading enzyme is fatty acid amide hydrolase (FAAH, now also

known as FAAH-1), localised on the endoplasmatic reticulum [70]. A second

FAAH enzyme is found in humans located on cytoplasmic lipid droplets [70,

71]. Recently, a third NAE hydrolysing enzyme, N-acyl ethanolamine-hydrolysing

acid amidase (NAAA) has been identified [72].

To reach their sites of catabolism within the cell, NEAs are bound to different

proteins including fatty acid binding proteins 5 and 7, heat shock protein 70, albu-

min and fatty acid amide hydrolase-like AEA transporter protein [73, 74]. Intracel-

lular trafficking of NAEs is also important to reach those receptors that are located

intracellularly [55, 75]. Next to hydrolysis, NAEs are substrates for oxidative
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enzymes including cyclooxygenases (COXs), lipoxygenases (LOXs) and cyto-

chrome P450 enzymes, yielding a range of prostaglandin-amides (prostamides),

prostaglandin-glycerol esters and hydroperoxy-derivatives [5, 76, 77]. At least a

number of these oxidation products show biological activity [76–78]. 2-AG is

hydrolyzed via the enzyme monoacylglycerol lipase (MAGL), to a lesser extent

by α/ß-hydrolase 12 (ABHD12) and α/ß-hydrolase 6 (ABHD6), and also by FAAH
[79, 80]. Interestingly, AA in brain formed by hydrolysis of 2-AG via MAGL has

been shown to serve as pool for pro-inflammatory eicosanoid synthesis, thus

representing a connection between endocannabinoid and eicosanoid pathways

[81]. 2-AG can also be oxygenated by COX-2 and LOX resulting in the formation

of prostaglandin glycerol esters (PG-Gs) [76].

3.2 Cannabinoid and Related Receptors

According to the IUPHAR classification system the CB1 and CB2 receptors are the

only bona fide cannabinoid receptors. They are phylogenetically restricted to the

chordate branch of the animal kingdom [2]. Among other GPCRs, those structurally

most closely related to CB1 and CB2 belong to the lysophospholipid receptors.

These receptors for endocannabinoids or lysophospholipid-like molecules have

evolved independently in different branches of the GPCR superfamily [1]. How-

ever, in terms of ligand binding characteristics the picture becomes more compli-

cated. As mentioned before, endocannabinoids have a multitude of structural

analogues. These compounds interact with different receptors and non-receptor

targets. Several endocannabinoids per se, including anandamide, but also Δ9-
THC and a number of synthetic CB1 or CB2 agonists and antagonists can activate

or block different non-cannabinoid receptors with potencies that differ little from

those with which they activate or block the “true” cannabinoid receptors

[1]. According to nomenclature criteria of the NC-IUPHAR cannabinoid receptor

subcommittee the TRPV1 channel might eventually come to be regarded as being

either an “ionotropic cannabinoid CB3 receptor” or a dual TRPV1/CB3 receptor. In

addition, some other receptors deserve further attention in this respect, namely,

GPR18, GPR55, GPR119 and the peroxisome proliferator-activated receptors

(PPARs) α and γ. Although these show little to no structural similarity to CB1

and CB2 they have been shown to respond to endocannabinoids, their endogenously

present congeners and (or) plant-derived “phyto”-cannabinoids.

3.2.1 CB1 Receptors

CB1 receptors are presynaptically located at central or peripheral nerve terminals

and act as modulators of synaptic transmission by a process which has been called

retrograde signalling {Wilson, 2002 #4848; Cachope, 2012 #3683; Vaughan, 2005

#4853}. Physiological stimulation of neurons induces the synthesis of
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endocannabinoids in the post-synaptic nerve terminal and this reduces synaptic

inputs in a highly selective and restricted manner (Fig. 9.6).

The majority of CB1 receptors are coupled through Gi/o proteins. Their stimula-

tion leads to inhibition of adenylate cyclase activity, effects on different Ca2+ and

K+ channels, and stimulation of mitogen-activated protein (MAP) kinase. In some

cases CB1 receptors signal through Gs proteins [1, 2, 80].

In contrast to what was originally assumed, the distribution of CB1 receptors is

not limited to the CNS, and CB1 receptors are also found in the immune system,

vascular endothelium, intestine, liver, skeletal muscles, peripheral nerve synapses

and reproductive tissues. As a consequence of their localisation at the terminals of

central and peripheral neurons where they mediate inhibition of neurotransmitter

release, CB1 receptors are involved in a wide variety of biological processes [1]

including learning and memory, anxiety, pain, eating behaviour, metabolism,

reproduction and growth and development. As a result they have been associated

Fig. 9.6 Schematic representation of the mechanism of retrograde signalling by endocannabinoids

at a synaptic cleft. Neuronal depolarization causes cleavage of membrane lipid precursors to

induce de novo synthesis and release of endocannabinoids such as AEA, PEA, OEA and 2-AG

into the synaptic cleft. These endocannabinoids activate cannabinoid CB1 receptors located on

presynaptic terminals of neurons which reduces release of neurotransmitters (such as GABA or

glutamate) onto the postsynaptic neuron. Endogenously released cannabinoids might also act via

TRP ligand gated ion channels (e.g. TPRV1) and other GPCRs (e.g. GPR 119). Endocannabinoids

are taken back up into neuronal and glial cells and then degraded by enzymes such as fatty acid

amide hydrolase (FAAH) and MAG-lipase (MAGL)
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with different disorders and diseases (Sect. 4). For example, their involvement in

food intake regulation (Sect. 4.2) takes place at different levels, starting from

receptors within the GI tract to the regulation of hedonic rewarding in the brain

[55, 82–84]. Its presence in peripheral tissues also provides an explanation for the

sustained effects of the CB1 inverse agonist rimonabant on body weight and the

improvement of insulin resistance and blood lipids, in addition to its short-term

appetite-decreasing effect. On Vagal afferents CB1 expression was found to be

regulated by CCK [85] and high/low fat diets [86]. Remarkably, peripheral stimu-

lation of CB1 receptors on Vagal afferents by anandamide was shown to reduce

appetite, whereas central stimulation of CB1 receptors increased food intake

[87]. In the brain, the CB1 is now regarded the most abundant G-protein coupled

receptor [2]. A pioneering study on its distribution in brain was published in 1990

by Miles Herkenbaum et al. [88]. More recent reviews include the following

references [89, 90]. As mentioned before, the central regulation of energy intake

and metabolism is one of the major functions of the “classical” ECS. Within the

brain, CB1 receptors have been linked to several both homeostatic and

non-homeostatic regulation mechanisms, with endocannabinoids acting as modu-

lators of orexigenic and anorexigenic neurotransmitters and neuropeptides by

presynaptic regulation of their release. The brain ECS shows numerous anatomical

and functional connections with other signalling pathways including dopaminergic,

opioid and GABA-ergic systems involved in pleasure and reward, pain, anxiety,

fear, etc. [55, 91–95].

3.2.2 CB2 Receptors

CB2 receptors are predominantly expressed on immune and haematopoietic cells,

but functionally relevant expression has also been found in specific regions of the

brain, other tissues and in various tumours. Like CB1 receptors they are coupled

through Gi/o proteins, negatively to adenylate cyclase activity and positively to

MAP kinase. Although several studies have suggested that CB2 activation is

immunomodulatory and neuroprotective [96–98], some data remain inconclusive.

This may be partly due to the fact that different components of the inflammatory

cascade can be affected in a different direction [99]. Furthermore, discrepancies are

caused by the use of different animal models, compounds and doses [100]. Disease-

induced changes (usually increases) in CB2 receptor expression have been reported

[101]. Furthermore, many synthetic CB2 receptor agonists have shown protective

effects in a variety of preclinical disease models and pathological conditions

(reviewed by ref. 101). Therefore, the application of selective CB2 agonists

would be of interest for a number of disorders (Review: [28]). At the same time

the wide abundance of CB2 receptors and the critical importance of retaining an

adequate pro-inflammatory balance present challenges for their application as

therapeutic targets [101]. Therefore, subtle and well-balanced approaches, includ-

ing multiple targeted and/or localised therapies are likely to provide the best

options [29].
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3.2.3 Transient Receptor Potential (TRP) Cation Channels

Transient receptor potential (TRP) cation channels constitute a superfamily of

receptors involved in the signal transduction of a wide range of stimuli, including

effects elicited by endogenous lipids [2, 102–104]. Mammalian TRPs are

subdivided into six protein families of which three are here considered of particular

relevance because they bind endocannabinoids and related compounds and

(or) phytocannabinoids. These are: the vanilloid receptor TRPs (TRPVs, in partic-

ular TRVP1), the melastatin or long TRPs (TRPMs, in particular TRPM8) and

ankyrin transmembrane protein 1 (TRPA1).

The TRVP1 receptor is particularly known as the receptor for the vanilloid

capsaicin present in red peppers. In addition it is perhaps the best established

non-cannabinoid receptor for endocannabinoids, and for anandamide in particular

[7, 95]. Several papers note the overlap between the ECS and what has been called

“endovanilloid system” [95, 105–107]. Based on this it has been suggested to

rename the TRVP1 receptor to “ionotropic cannabinoid CB3 receptor” or a dual

TRPV1/CB3 receptor (see also Sect. 3.2). N-arachidonoyl-dopamine (NADA) was

the first fatty acid amide shown to act as endogenous ligand of TRVP1 receptors

[65]. Meanwhile several other N-acyl amides have also been demonstrated to

activate TRPV1 [51]. TRVP1 is predominantly expressed in sensory neurons but

also on non-neuronal cells including epithelial, endothelial and smooth muscle cells

as well as in lymphocytes, hepatocytes and pancreatic cells [2, 5, 108]. Historically,

TRPV1 has been considered a pro-inflammatory receptor in several conditions,

including neuropathic pain, joint inflammation and inflammatory bowel disease. A

number of TRVP1 antagonists have been developed as potential drugs against

different forms of pain, but so far results in the clinic were not successful

[108]. Recent evidence also demonstrates paradoxical, protective functions of

TRVP1 in vivo [109]. The receptor also plays a role in energy metabolism and

weight management as recently reviewed by Ahern [102]. For example, there is

long-standing evidence that dietary consumption of chilli peppers can affect body

weight. Treatment with capsaicin, or related “vanilloid” compounds, reduces

weight gain and adiposity in animals consuming moderate to high-fat diets. An

interesting finding was that the endogenous endocannabinoid congener N-
arachidonoyl-serotonin (AA-5-HT) displays dual activity as both FAAH inhibitor

and TRPV1 antagonist. The compound has shown marked effects against both

acute and chronic peripheral pain in rodent models [110, 111]. Previous studies

from our lab showed that this conjugate is particularly present in the gut, but so far

its biological role has not been established [57]. In addition to TRPV1, other

members of this family, including TRPV2-4 have been associated with, in partic-

ular effects of phytocannabinoids and (or) Cannabis extracts [2, 5, 112].
The TRPM8 receptor is involved in the detection of sensations such as cold.

Activators include eucalyptol, menthol and icilin [113]. It is considered a thera-

peutic target for cold hypersensitivity and neuropathic pain [108]. Its expression

was also found to be important for the survival of androgen receptor-dependent
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prostate cancer cells [5]. Both anandamide and N-arachidonoyl dopamine, but not

2-AG, were shown to antagonise the stimulatory effect of menthol and icilin on

TRPM8 [114]. In addition, several phytocannabinoids show activity on TRPM8

[112, 114].

The TRPA1 receptor is receiving increasing attention as a key regulator of

neuropeptide release, neurogenic inflammation and pain. See [108, 115] for

reviews. TRPA1 was found to be activated by CBD [114]. Another phytocan-

nabinoid, cannabichromene can also act as TRPA1 agonist. The receptor was

shown to be involved in the inhibition of nitric oxide production in macrophages

and the amelioration of murine colitis by cannabichromene [116].

3.2.4 GPR119

GPR119 ([117] for a recent review) has been described as a class A (rhodopsin-

type) orphan GPCR but has no close primary sequence relative in the human

genome. Two of its endogenous ligands discovered so far are the fatty acid amides

oleoylethanolamide (OEA) and N-oleoyldopamine (OLDA). Furthermore the

receptor can be activated, albeit with less potency, by PEA, EAE and linoleyletha-

nolamine (LEA) [2, 118, 119]. As none of these compounds are ligands for CB1 or

CB2 receptors, GPR119 is not considered a cannabinoid receptor per se

[2]. Recently, GPR119 has also been found to respond to 2-oleoyl-glycerol, a

compound formed out of common dietary triglycerides (described in Sect. 2.3).

Following its de-orphanization in 2006 by Overton et al. [120] and the demonstra-

tion that small molecule agonists are able to reduce body weight gain in rodents,

GPR119 has attracted considerable attention. The receptor is Gαs-protein coupled

and predominantly expressed in pancreatic islets and gastrointestinal tract in

humans and rodents. GPR119 agonists were found to increase intracellular

cAMP, which in turn leads to increased GLP-1 secretion from entero-endocrine

cells. Following the synthesis of the first ligands, including PSN632408 and

AR-231,453 several pharmaceutical companies became active in developing

GPR119 agonists. Many of these compounds have shown interesting activities in

animal models of type 2 diabetes and obesity, including a reduction of blood

glucose without causing hypoglycaemia, a reduction of food intake and body

weight, and reduced diabetes progression. Presently, a number of GPR119 agonists

are in advanced stages of development [121].

3.2.5 GPR 55

The discovery of the orphan GPCR GPR55 was first described in 2007 [122]. The

receptor was shown to bind some CB1 and CB2 ligands. Therefore, it has been

considered a “novel” or “third” cannabinoid receptor for some time, but this

viewpoint has been abandoned. Structurally the receptor has no significant

sequence similarity with the CB receptors, in particular not in the areas responsible

for ligand binding [2]. GPR55 is expressed in the gut and found in cells of the
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immune system, including microglia in brain as well as in endothelial cells [123]. A

recent study suggested that GPR55 regulates CB2 function in human neutrophils

[124]. Following the report of Oka et al. [125] it is now assumed that its endogenous

ligand is lysophosphatidylinositol (LPI). It was suggested by Ross [126] that LPI

and GPR55 might play a role in driving cancer cell proliferation and migration. The

phytocannabinoid CBD shows antagonist activity towards GPR55, which may of

therapeutic relevance [127].

3.2.6 GPR18

The GPR18 gene was first cloned in 1997 [128] and at that time found to be highly

expressed in human testis and spleen. In addition, its presence was shown in

thymus, peripheral white blood cells and in the small intestine, whereas in many

other tissues and organs it appeared to be absent. McHugh et al. [129] demonstrated

that NaGly (N-arachidonoylglycine, see Sect. 3.1) serves as an endogenous ligand.

The same group also reported that two cannabinoid agonists, AEA and THC, are

full agonists at GPR18, whereas CBD displays low efficacy as agonist [130]. Con-

sidering its location on microglia cells [131] and on peripheral macrophages,

GPR18 and its endogenous ligand(s) are receiving increasing attention in relation

to inflammation.

3.2.7 Peroxisome Proliferator-Activated Receptors (PPARs)

PPARs can be activated by some non-cannabinoid NAEs including OEA and PEA.

The same has been shown for some 2-AG derivatives of the COX/LOX/CYPP450

pathways, and to a lesser extent also for AEA and 2-AG itself. PPARs are ligand-

activated transcription factors that play critical roles in very different biological

pathways such as lipid, protein, glycerol, urea, glucose, glycogen, and lipoprotein

metabolism, adipogenesis, trophoblast differentiation and cell migration. For recent

reviews see for example [132, 133]. Their best known agonists are various fatty

acids and their derivatives. Therefore, PPARs are commonly regarded as general—

not very selective—lipid sensors monitoring local metabolic changes. The PPAR

family consists of PPARα, PPARβ and PPARγ. The three PPAR iso-types are

similar in homology, but show their own distribution pattern. In humans PPARα
is localised in areas of high fatty acid catabolism (kidneys, liver, heart, brown

adipose tissue and intestines). PPARγ is found as two isoforms: PPARγ1 (predom-

inantly present in gut, brain, vascular cells and immune cells) and PPARγ2 (mainly

in adipose tissue). PPARβ/δ has been found in many tissues and is particularly

highly active in skeletal muscle, smooth muscle and skin [132].

The role of the PPARα receptor as a pivotal switch in different inflammatory and

pain signalling pathways in the CNS and periphery is widely acknowledged [132,

134, 135]. Two well-known N-acylamides that are linked to this PPAR are PEA and

OEA. For PEA (see also Sect. 4.3.2) it is assumed that its anti-inflammatory activity

170 R.F. Witkamp



can largely be assigned to an agonist activity on PPARα [135–137]. PPARα is also

playing a pivotal role in the satiety-inducing effects of OEA [138]. This NAE is

formed form oleic acid in the epithelium of the proximal small intestine. PPARγ
serves as the molecular target for the thiazolidinediones, an important class of anti-

diabetic drugs. Its major natural ligands and activators are PUFAs and fatty acid-

derived molecules. The beneficial action of PPARγ has typically been attributed to

increased insulin sensitivity and reduced inflammation. Agonism of PPARγ is

increasingly considered an important property of the phytocannabinoid CBD

(Sect. 2.1). PPARγ and CBD are also receiving attention in relation to CNS diseases

like Alzheimers’ disease because of the role of PPARγ in stimulating microglial

function [139, 140].

3.3 Interactions of Endocannabinoids with Non-receptor
Targets

Several studies suggest that the biological activities of at least some of the

endocannabinoids and their congeners are not exclusively mediated through

GPCRs or nuclear receptors. An example comes from the anti-inflammatory effects

of N-docosahexaenoylethanolamine (DHEA, Fig. 9.5), the ethanolamine conjugate

of DHA (docosahexaenoic; 22:6n-3). Its concentration in animal tissues and human

plasma increases when diets rich in fish or krill oil are consumed. Comparing a

series of NAEs from n-3 and n-6 LC-PUFAs, we found DHEA to be the most potent

anti-inflammatory compound in LPS-stimulated RAW264.7 macrophages

[141]. Later studies suggested that anti-inflammatory effects of DHEA are at least

partly independent from CB1, CB2 or PPARɣ receptors and probably take place via
inhibition of eicosanoids produced through COX-2 [56]. Interestingly, DHEA was

also reported to inhibit growth of prostate and breast cancer cell lines which was at

least partly independent from CB1 or CB2 interaction [142, 143]. Similarly, DHEA

was shown to stimulate neurite growth, synaptogenesis and glutamatergic synaptic

activity in developing hippocampal neurons via (at least) cannabinoid receptor-

independent mechanisms [144]. Another example is N-arachidonoyl dopamine

(NADA). Like DHEA, NADA was found to be potent inhibitor of PGE2 synthesis

in lipopolysaccharide (LPS) stimulated primary glia cells [145, 146].

4 Endocannabinoids and Targets in Disease

4.1 General Aspects, Targets and Examples

The broad involvement of the endocannabinoidome in various biological processes

and its many connections with other systems in terms of ligands, receptors and
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metabolic pathways explains why it is has been associated with so many disorders

and diseases. However, it should be noted that associations with pathologies like

those mentioned in Table 9.1 do not imply that suitable targets for prevention or

intervention are at an easy reach. On the contrary, its wide abundance and high

degree of pleiotropy present serious challenges to develop efficacious and specific

drugs. It has also become clear that initial strategies to modulate the ECS have

probably been too narrow and expectations too high. Two well-known examples in

this respect are the experiences thus far with CB1 inverse agonists (Sect. 4.2) and

FAAH blockers (Sect. 4.3). Furthermore, it is also clear that changes in the

expression of certain receptors or ligands are often the result of other (patho-)

physiological processes instead of being part of a modifiable cause of a disease. As

can be seen from the list of disease areas of interest (Table 9.1) many of these are of

a chronic and multifactorial character. It is increasingly acknowledged that such

disorders are often better managed by multiple target strategies, instead of a “one

disease–one target” approach. This involves the use of promiscuous drugs or

targeted drug (of drug–food) combinations [147]. These developments stimulated

by the evolution of “omics” technologies, system biology and bioinformatics and

the endocannabinoidome lends itself well for such an approach [148]. Table 9.1

lists a non-exhaustive overview of disease areas of interest. In the next sections, two

of these are further elaborated viz weight management (Sect. 4.2) and inflammation

(Sect. 4.3). For other field readers are referred to the literature.

4.2 The Endocannabinoidome in Weight Management

The modulation of food intake and energy metabolism is generally considered one

of the most pivotal roles of the ECS. It has also been the most intensively studied

topic in this field, in particular until 2008 when the withdrawal of rimonabant

caused a dramatic change. The ECS modulates food intake and energy metabolism

at different levels, starting from CB1 receptors within the GI tract to the regulation

of hedonic rewarding of foods in the brain [82–84, 190, 191]. From an evolutionary

perspective it is thought that one of its main functions is as a pleiotropic regulator of

energy uptake and storage and of non-homeostatic eating behaviour [192, 193]. In

the past these mechanisms were biologically advantageous in order to survive

periods of food shortage [194]. The discovery of the high abundance of CB1 in

brain, and the observation that CB1 antagonists and reverse agonists induce a

reduction of appetite and food-intake in animals fuelled an enormous activity of

research in academia and industry, resulting in the market introduction of

rimonabant 2006. Expectations, therapeutic and financial, were very high. The

failure of rimonabant because of depression-related side-effects [13] shocked the

research community and the pharmaceutical industry. By the end of 2008 at least

nine companies terminated active development projects of CB1 blockers. Next to

rimonabant, which has been on the market in Europe but not in the USA, several

related compounds were in advanced stages of development, including taranabant
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(Merck), surinabant (Sanofi) and CP-945,598 (otanabant, Pfizer). In the meantime it

has become clear that CB1 receptors are also abundantly present outside the CNS

[12, 191]. In fact, it is now assumed that the central effects of rimonabant are

responsible for the short-term reduction of food-intake, whereas the more sustained

effects on body weight and the improvement of insulin resistance and blood lipids

are largely due to its peripheral actions. In the gut, CB receptors show a specific

distribution, being largely distributed in the enteric nervous system (ENS)

[178]. Both CB1 and CB2 receptors are found on enteric neurons, nerve fibres and

nerve terminals in the ENS. The CB1 receptor is found on nerve fibres throughout

the wall of the gut, but with the highest density in the two ganglionated plexuses,

the myenteric and submucosal plexus, of the ENS. CB1 expression on Vagal

afferents was found to be regulated by CCK [85] and high/low fat diets [86]. Stim-

ulation of central CB1 receptors, for example by anandamide has been shown to

increase food-intake. Remarkably, stimulation of CB1 receptors on Vagal afferents

seems to do the opposite [87].

Notwithstanding the failure of rimonabant and other CB1 blockers/inverse

agonists, CB1 receptors remain of interest as a pharmacological target. The pres-

ence of CB1 receptors outside the CNS offers possibilities for treatment of type

2 diabetes and other complications of the metabolic syndrome. To improve tissue

specific activity and reduce CNS side-effects so-called peripherally restricted CB1

antagonists are under investigation [12, 28, 121, 191, 195]. Furthermore, the use of

CB1 neutral antagonists or partial agonists as opposed to inverse agonists such as

rimonabant has been proposed as a strategy [191].

As described in Sect. 2.1 there exist also (at least) one natural weak CB1

antagonist, THCV from Cannabis which might offer possibilities in this respect

[17, 41, 42].

Table 9.1 Non-exhausting overview of main disease areas in which the endocannabinoidome is

of potential interest

Obesity and metabolic syndrome See Sect. 4.2

Cardiovascular disorders [149–154]

CNS disordersa [155–161]

Neurodegenerative diseases (general) [162, 163]

Alzheimer’s disease [164, 165]

Trauma/brain injuries [166, 167]

Cancer [5, 32, 168–171]

Intestinal diseases [30, 172–178]

Inflammationb Section 4.3

Painc [29, 136, 148, 179–182]

Skin diseases [183–185]

Liver diseases [186–189]
aHere used as a collective term for various disorders (psychosis, stress, anxiety, fear, addiction);

only a few references are mentioned
bInflammation in a general sense. Often there are links with (chronic) pain
cHere used as a collective term for different forms of pain (nociceptive, hyperalgesia, neuropathic

pain)
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In addition to CB receptors, related receptors may offer interesting targets in

weight management, including TRVP1 (Sect. 3.2.3) and GPR119 (Sect. 3.2.4).

Although not discussed in further detail are the possibilities to target the ECS in

order to increase appetite or food-intake in general. The use of Cannabis prepara-
tions in AIDS and cancer patients for this purpose has already been introduced in

Sect. 2.1. The ECS is also receiving interest in relation to eating disorders like

anorexia and bulimia nervosa [161, 196, 197].

4.3 Inflammatory Processes

Several receptors which are modulated by endocannabinoids or their structural

analogues are involved in the regulation of inflammation, pain and immune-

functions in a broad sense [100]. Of particular interest are CB2 (Sect. 3.2.2),

TRVP1, TRPA1 and other TRP cation channels (Sect. 3.2.3), GPR18 (Sect. 3.2.6)

and PPARs (Sect. 3.2.7), and this list is likely to increase. Furthermore, a number of

endocannabinoids per se (Anandamide, 2-AG) and related compounds (PEA, SEA,

OEA, DHEA, etc.) have shown anti-inflammatory and (or) immune modulating

properties. Finally, the endocannabinoidome is deeply intertwined with other

important lipid-based signalling systems including those regulated by COX and

LOX. On the one hand, this broad involvement offers several potential targets for

intervention. On the other hand, this complexity provides challenges in terms of

specificity and side-effects. Some examples will be highlighted in this Section.

4.3.1 Modulators of Endocannabinoid Turnover

Inhibition of enzymes involved in the synthesis or breakdown of endocannabinoids,

in particular DAGL, MAGL, FAAH or NAAA (N-acylethanolamine acid amidase)

has been considered a manner to modulate inflammation and (or) pain.

Diacylglycerol lipases (DAGLα and DAGLβ) are involved in the synthesis of

2-AG. Inhibition of DAGLβ has been found to lower 2-AG, as well as AA and

eicosanoids, in mouse peritoneal macrophages in a manner that was distinct and

complementary to disruption of cytosolic phospholipase-A2 [198]. Mono-acyl

glycerol lipase (MAGL) catalyses the hydrolysis of 2-AG to arachidonic acids

(AA). Inhibition of peripheral MAGL in rats using the selective MAGL inhibitor

JZL184 was found suppressed LPS-induced circulating cytokines which in turn was

suggested to modulate central cytokine expression [199]. In brain, AA formed by

hydrolysis of 2-AG has been shown to serve as pool for pro-inflammatory eicosa-

noid synthesis, thus representing another crossroads between endocannabinoid and

eicosanoid pathways [81]. MAGL-disrupted mice displayed neuroprotection in a

model for Parkinson’s disease but showed no haemorrhaging in the gut as seen with

COX inhibitors [200]. Inhibition of Fatty Acid Amide Hydrolase (FAAH) aiming to

increase fatty amide levels has also been considered as intervention strategy in
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inflammation and (or) pain. A number of animal studies, for example with the

inhibitor URB597, indeed showed reduction of inflammatory pain or modulation

pro-inflammatory gene induction, although results were not always unambiguous

[201, 202]. It has been suggested that inactivation of FAAH can modulate 2-AG

tissue levels as well, either up or down, depending on the location [203]. Studies in

human volunteers with FAAH inhibitors confirmed increased NAE levels, includ-

ing that of AEA, OEA and PEA [204]. However, in a recent phase II clinical trial in

patients with osteoarthritic knee pain the FAAH inhibitor PF-04457845 failed to

show any effect [205, 206]. As FAAH activity was strongly inhibited and plasma

NAE concentrations consistently elevated, it was suggested that alternative targets

and pathways for breakdown might have counteracted the potentially beneficial

effects of elevated anandamide levels on pain and inflammation [207]. Inhibition of

NAAA provides an alternative approach to increase levels of for example PEA and

OEA. Recently, the selective NAAA inhibitor ARN077 has been found to inhibit

hyperalgesia and allodynia caused by inflammation or nerve damage [208]. Inter-

estingly, the antinociceptive effects of ARN077 were prevented by the selective

PPAR-α antagonist GW6471 and did not occur in PPAR-α knockout mice.

4.3.2 Endocannabinoid Congeners as Potential Anti-inflammatory
Compounds

Several individual endocannabinoids, fatty amides and phytocannabinoids have

been demonstrated to possess anti-inflammatory properties [100]. The n-3

LC-PUFA derived N-docosahexaenoylethanolamine (DHEA, Fig. 9.5) has already

been described in Sect. 3.3. The same holds true for the Cannabis-derived com-

pound CBD (Sect. 2.1). An interesting compound which is receiving increasingly

attention is N-Palmitoylethanolamide (PEA, Fig. 9.5), an endogenous NAE origi-

nating from palmitic acid (C16:0), the most common saturated fatty acid found in

animals [209]. Earliest reports on its anti-inflammatory properties date back to

1957. PEA shows a broad diversity of receptor affinities, including interactions with

PPARα, GPR55 and TRVP1, as well as indirect activity via an “entourage” effect

[137, 210]. The latter refers to a mechanism in which PEA reduces the enzymatic

breakdown of AEA through competition for FAAH, resulting in higher AEA

concentrations [211, 212]. The compound is presently receiving attention as poten-

tial drug or nutraceutical against chronic pain, (neuro-)inflammation and degener-

ative diseases of the central nervous system [137, 167, 209, 213, 214]. Increasing

evidence indicates that non-neuronal cells within the CNS are crucially involved in

mediating the effects of PEA [137, 215, 216]. These non-neuronal cells regulate

inflammatory processes in the CNS and are key players in the communication

between the immune system and the CNS during neurodegenerative disorders and

in neuropathic pain. The C18 homologue of PEA, N-stearoyl ethanolamine (SEA)

has also been associated with anti-inflammatory effects but this compound has been

far less investigated [217].
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5 Conclusions and Perspectives

More than two decades of research have changed our early view of the ECS. Initial

expectations on the possibilities to develop new drug classes based on its key

molecular targets have proven to be too high. It is now obvious that the “prototyp-

ical” ECS is deeply intertwined with other important signalling systems.

Endocannabinoids have numerous bioactive congeners and metabolites, which

often show “promiscuous” behaviour towards their receptors and other targets.

This so-called endocannabinoidome is modulated by various endogenous

(e.g. energy status, inflammation) and environmental factors in a time- and tissue-

specific manner. The complexity and dynamics of the endocannabinoidome pre-

sents technical challenges and its understanding and modulation demands for a

systems biology approach. At the same time the endocannabinoidome still holds

many promises for both “food” and “pharmaceutical” applications as it is crucially

involved in many disorders. Chronic diseases often involve tissue degeneration and

remodelling, inflammation and pain, and are orchestrated by different interacting

metabolic processes in which the “expanded” ECS is centrally involved.

Significant progress in their prevention and modulation is likely to come from a

paradigm shift as it is currently taking place in the discovery and development

process of drugs and nutritional products. These involve more subtle multiple-target

strategies instead of a classical one disease–one target–one drug approach.
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146. Navarrete CM, Pérez M, de Vinuesa AG, Collado JA, Fiebich BL, Calzado MA et al (2010)

Endogenous N-acyl-dopamines induce COX-2 expression in brain endothelial cells by

stabilizing mRNA through a p38 dependent pathway. Biochem Pharmacol 79:1805–1814

147. Georgiou NA, Garssen J, Witkamp RF (2011) Pharma–nutrition interface: the gap is

narrowing. Eur J Pharmacol 651:1–8

148. Maione S, Costa B, di Marzo V (2013) Endocannabinoids: a unique opportunity to develop

multitarget analgesics. Pain 154:S87–S93

9 The Endocannabinoid System: A Dynamic Signalling System at the Crossroads. . . 183



149. Wainwright CL, Michel L (2013) Endocannabinoid system as a potential mechanism for n-3

long-chain polyunsaturated fatty acid mediated cardiovascular protection. Proc Nutr Soc

72:460–469

150. Montecucco F, di Marzo V (2012) At the heart of the matter: the endocannabinoid system in

cardiovascular function and dysfunction. Trends Pharmacol Sci 33:331–340
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Chapter 10

Effects of Natural Products
on Pharmacokinetics
and Pharmacodynamics of Drugs

Shizuo Yamada, Shingen Misaka, Yoshihiko Ito, Hiroshi Watanabe,
and Keizo Umegaki

1 Introduction

The popularity of dietary supplements and natural products is rapidly increasing in

terms of the promotion of health and the prevention and treatment of diseases.

Herbal ingredients have received a great deal of attention in complementary and

alternative medicine and are used as dietary supplements or natural products in

many countries. Herbal ingredients are perceived as safe because they are natural

and have been used for centuries in Asian cultures. Elderly people frequently take

dietary supplements and natural products with prescription drugs, and this will

increase in the near future. A major concern is the adverse events caused by a large

excess intake or the interactions of dietary supplements and natural products

(including beverages such as fruit juices and green tea) with drugs. The potential

for their interaction with drugs is considerable because a large number of constit-

uents are contained in dietary supplements and natural products [43, 117]. Possible

changes may occur in the pharmacokinetics and pharmacodynamics of drugs:

absorption in the small intestine, metabolism in the intestine and liver, distribution

to target organs, transport across the cell membrane, and binding to specific
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receptors (Fig. 10.1). The induction and inhibition of hepatic drug-metabolizing

enzymes by herbal ingredients or dietary compounds have been investigated. For

example, St. John’s wort, a herbal medicine used to treat mild depression, has been

shown to decrease the blood concentrations of drugs by inducing hepatic cyto-

chrome P450 (CYP) 3A4 activity and thereby attenuates the efficacy of drugs such

as cyclosporin, indinavir, and digoxin [5, 27, 89] (Fig. 10.2). Furthermore, ginkgo

biloba extract (GBE) and saw palmetto extract (SPE) are commonly prescribed in

some European countries for the treatment of cerebral insufficiency and peripheral

vascular diseases [51, 67] and reduce the symptoms of benign prostatic hyperplasia

(BPH) [28], respectively. Coleus forskohlii extracts (CFE) contain the diterpene

forskolin, an activator of adenylate cyclase, and are expected to have various

therapeutic [7, 6] and weight loss effects [41, 35]. These herbs are used as dietary

supplements and natural products in the USA and Japan. Common beverages such

as fruit juice, green tea, and cranberry juice have been reported to affect the

pharmacokinetics and pharmacodynamics of drugs [71, 81, 104, 115].

This chapter focuses on the possibility of the pharmacokinetic and pharmaco-

dynamic interactions of GBE, SPE, CFE, grapefruit juice, and green tea with drugs.

2 Ginkgo Biloba Extract

2.1 Induction of CYP by GBE

GBE is one of the most popular herbal ingredients and is used to improve cognitive

function and peripheral arterial disease [96]. Recent randomized control trials failed

Fig. 10.1 Schematic representation of pharmacokinetic and pharmacodynamic interactions

between the ingredients of functional foods or herbs and drugs
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to confirm the effectiveness of GBE in reducing the incidence of dementia in

elderly individuals with normal cognition or mild cognitive impairment [19,

97]. Nevertheless, GBE has remained popular among the elderly. As elderly people

frequently take prescription drugs with dietary supplements [74], GBE–drug inter-

actions may represent a major concern.

GBE is a natural plant product containing many chemicals. Most commercially

available GBE products are standardized according to the amount of ginkgo

flavonol glycosides (glycosidic derivatives of quercetin, kaempferol, and

isorhamnetin) and terpenoids (ginkgolides A, B, C, and bilobalide), which comprise

22–27 % and approximately 5–7 % of GBE, respectively, and less than 5 ppm of

ginkgolic acid [10]. GBE products also contain 0.5–1 % of organic acids, such as

vanillic acid and p-hydroxybenzoic acid. The exact constituents of GBE may vary

among products due to the time and place of harvest and the extraction

methods used.

In pharmacokinetic studies with rats and mice, GBE induced the expression of

hepatic drug-metabolizing enzymes, particularly CYP, in a dose- and time-

dependent manner (Fig. 10.3) without causing hepatic damage [110, 111]. Signifi-

cant increases in the concentrations and activities of CYP enzymes were detected

on day 1 of feeding of a 0.5 % GBE diet and after the administration of 10 mg

GBE/kg body weight for 5 days by intragastric gavage. The human equivalent dose,

determined by the body surface normalization method [85], is 1.62 mg/kg body

weight, which is approximately 100 mg GBE/60 kg body weight and within the

recommended dose range (up to 240 mg) taken from dietary supplements. Among

Fig. 10.2 Effects of the intake of St. John’s wort (SJW) on plasma concentrations of cyclosporine

and its immunodepressant effect in patients with renal transplantation (cited from Barone

et al. Ann. Pharmacother. 34: 1013, 2000)
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the CYP enzymes, the activity of pentoxyresorufin O-dealkylase, a CYP2B

enzyme, was markedly increased, as confirmed by Western blot analysis and

expression of mRNA. GBE also increased CYP2B1/2, CYP3A1, and CYP3A2

mRNA levels and related CYP activities in the rat liver [95, 110]. A similar

induction of hepatic CYPs by GBE in rats was observed with EGb761, a standard-

ized GBE extract [14, 127].

It is important to identify which substances in GBE are involved in the induction

of CYPs. In vitro and in vivo studies revealed bilobalide to be a major substance

inducing hepatic CYPs [13, 20, 91, 107, 111] (Fig. 10.4). Although the contribution

of bilobalide is unclear, GBE activated mouse and human PXR, a nuclear receptor

involved in the transcriptional regulation of drug-metabolizing enzymes and trans-

porters [121]. The reported half-life of bilobalide in the blood is approximately 2 h

in rats and humans [9, 66], indicating that it is eliminated easily from the blood. A

single dose by gavage of bilobalide (30 mg/kg) in rats was found to produce a time-

dependent induction of hepatic CYP activity and protein expression, and mRNA

expression of CYP2B, which was maximal at 6 h and showed a similar response to

Fig. 10.3 Dose-dependent changes in hepatic CYP activities in rats administered various doses of

GBE. Rats were orally administered GBE at doses of 0, 1, 10, 100, and 1,000 mg/kg body weight

for 5 days. Subtypes of CYP enzymes were determined by HPLC. Each column represents the

mean� S.E. *Significantly different from untreated controls, p< 0.05 (cited from Umegaki

et al. Jpn J Pharmacol. 90: 345-351, 2002)
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that exhibited by plasma and liver bilobalide concentrations [106]. These findings

suggested that bilobalide markedly induced CYPs; however, the induction was

quickly turned off due to bilobalide’s rapid elimination from the liver. The rapid

recovery of CYPs was confirmed in rats given excess GBE [100]; continuous and

excess feeding of GBE (approximate dose: 500 mg GBE/kg and 21 mg bilobalide/

kg) for 1 week to rats markedly induced hepatic CYPs, while discontinuation of the

treatment led to normal levels of CYPs within 1 week. These findings suggest that

interactions with drugs could be avoided by discounting the GBE treatment.

2.2 CYP-Mediated Interactions

The induction of CYP by GBE suggested an interaction with various drugs. In rats,

GBE at 0.5 % in the diet for 2 weeks increased hepatic CYPs and reduced the

hypotensive effect of nicardipine, which is metabolized by CYP3A, with a decrease

in the maximal nicardipine plasma concentration (Cmax) and 23-h area under the

curve (AUC0–23) [53]. Similarly, 0.5 and 1.0 % GBE diets given to rats for 2 weeks

shortened the sleeping time of phenobarbital, which is known to be metabolized by

CYP2B, with a reduction in the maximal phenobarbital plasma concentration

(Cmax) and 24-h area under the curve (AUC0–24) [54]. The interaction of GBE

with tolbutamide, an oral antidiabetic agent, was also detected in young and aged

rats, where a 5-day pretreatment with a 0.1 % GBE diet attenuated the hypoglyce-

mic action of tolbutamide and corresponded well to the enhanced activity of

Fig. 10.4 Content of hepatic CYPs in mice given bilobalide or GBE containing an equivalent

amount of bilobalide. Mice were administered either bilobalide (10.5, 21, 42 mg/kg) or GBE

(1,000 mg/k; 42 mg/kg as bilobalide) for 5 days. Each value is expressed as the mean� S.D. for

five mice. *Significantly different from untreated controls, p< 0.05. NS: Not significantly differ-

ent from GBE (1,000 mg/kg) (cited from Umegaki et al. J Pharm Pharmacol. 59: 871-877, 2007)

10 Effects of Natural Products on Pharmacokinetics and Pharmacodynamics of Drugs 193



(S)-warfarin 7-hydroxylase, which is a CYP2C subtype and a major isoform

metabolizing tolbutamide [99] (Fig. 10.5). It is noteworthy that the interaction of

GBE with tolbutamide was clearly observed in aged rats, which have a lower basal

activity level of CYP subtypes in the liver, while induction by the GBE treatment

was greater than that in young rats. The effects of GBE on the pharmacokinetics and

pharmacodynamics of tolbutamide were significantly enhanced in rats maintained

on a low-protein diet [105]. In mice, GBE interacted with (s)-warfarin through the

induction of hepatic CYP2C by bilobalide, which resulted in increased warfarin

metabolism, thereby decreasing the concentration of warfarin and its anticoagulant

action [107] (Fig. 10.6).

Species differences exist for drug-metabolizing enzymes; thus, it is important to

investigate whether GBE has the potential to interact with drugs in humans at the

current recommended doses. In contrast to studies with rats and mice, reports of

GBE–drug interactions in clinical studies are inconsistent; some show interactions

[87, 108], while others do not [26, 40, 45, 59, 125]. The intake of GBE (240 mg/day

for 28 days) slightly decreased midazolam’s AUC0–infinity and Cmax in 14 healthy

subjects, indicating the interaction of GBE with CYP3A4 drugs [87]. The intake of

GBE at 360 mg/day for 28 days slightly lowered the area under the concentration

versus time curve (AUC0–infinity) of tolbutamide and blood glucose-lowering effect

of tolbutamide in healthy male volunteers [108]. On the other hand, GBE 400 mg/

day for 13 days did not influence the elimination half-life of antipyrine in a human

study [26]. The administration of GBE of 240 mg/day for 28 days to healthy

subjects caused no alteration in the activities of CYP3A4, CYP1A2, CYP2E1, or

Fig. 10.5 Effects of a simultaneous treatment and 5-day pretreatment with GBE on the hypogly-

cemic effect of tolbutamide in young (a) and old (aged) (b) rats. Young rats (7 weeks old) or old

rats (19 months old) were administered tolbutamide (40 mg/kg, p.o.) with or without GBE

treatment. The GBE-pretreated group was given feed containing 0.1 % GBE for 5 days, and the

simultaneous GBE-treated group was given a single dose of GBE (100 mg/kg, p.o.) with tolbu-

tamide. After the administration of tolbutamide, blood was collected for the analysis of blood

glucose concentrations. Each point represents the mean� S.D. for six rats. Filled circles: control
group; filled triangles: GBE-pretreated group; and open squares: GBE-simultaneous-treated

group. Each point is expressed as the mean� S.D. for five rats. *Significantly different from

controls, p< 0.05 (cited from Sugiyama et al. Life Sci. 75: 1113-1122, 2004)
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CYP2D6 assessed using a cocktail of specific substrates for individual CYPs

[40]. A 7-day pretreatment with the recommended doses of GBE did not influence

the pharmacokinetics or the pharmacodynamics of warfarin in 12 healthy male

subjects [45]. The intake of GBE of 240 mg/day for 12 days did not affect the

pharmacokinetics of voriconazole, a substrate of CYP2C19, in Chinese volunteers

genotyped as either CYP2C19 extensive or poor metabolizers [59]. No relevant

effect of GBE for the major CYP enzymes (CYP1A2, CYP2C9, CYP2C19,

CYP2D6, and CYP3A) was observed following an 8-day pretreatment with GBE

at 240 mg/day in 18 healthy men and women [125].

According to the above reports, the interaction of GBE with drugs appears to be

slight. In a study of GBE–atorvastatin interactions, treatment with 360 mg of GBE

daily for 14 days slightly decreased plasma atorvastatin concentrations, but had

little significant effect on its cholesterol-lowering efficacy [38]. The different

influences of GBE–drug interactions between humans and rats may be due to

species differences in CYPs, the dose of and intake periods of GBE, and the amount

of the active substance that induces CYPs.

One of the most concerning adverse events associated with GBE is bleeding,

which has been reported in those simultaneously taking GBE and anticoagulant

drugs such as aspirin and warfarin [109]. Although an in vitro study showed the

PAF antagonistic action of ginkgolide B [18, 57], human studies failed to demon-

strate enhanced bleeding by the intake of GBE [52, 55, 107]. In animal studies,

GBE attenuated rather than promoted the anticoagulant action of warfarin through

the induction of hepatic CYPs by bilobalide [107]. Nevertheless, careful observa-

tions for bleeding and hemorrhage and interaction with drugs related to

GBE-containing products are needed in clinical practice because of individual

differences in sensitivity.

Fig. 10.6 Effects of the GBE pretreatment on changes in anticoagulation parameters induced by

(S)-warfarin or (R)-warfarin. Mice were orally administered GBE (100 mg/kg) for 5 days and (S)-

warfarin or (R)-warfarin at a dose of 0.75 mg/kg for the last 3 days of the 5-day regimen. The

coagulation parameters shown are prothrombin time (PT), activated partial thromboplastin time

(APTT), and thrombotest (Owren) (TTO). Each column represents the mean� S.E. for 5–6 mice

(cited from Taki et al. Phytomed. 19: 177-182, 2012)
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3 Saw Palmetto Extract

The ripe berries of the American dwarf palm (Serenoa repens) have been tradi-

tionally used to treat genitourinary problems; to enhance sperm production, breast

size, or libido; and as a mild diuretic [28]. SPE is almost exclusively used to treat

BPH. Fujino et al. [32] showed that the repeated oral administration of SPE in rats

had little significant influence on the content and activities of hepatic drug-

metabolizing enzymes. Markowitz et al. [65] reported that SPE (320 mg/day for

14 days) for the treatment of lower urinary tract symptoms (LUTS) suggestive of

BPH did not alter the plasma concentrations of probe drugs for CYP2D6 and

CYP3A4 activities in normal volunteers (Fig.10.7). No effect of the repeated

treatment with SPE (160 mg/day for 28 days) was shown using each probe drug

for CYP1A2, CYP2D6, CYP2E1, and CYP3A4 [39]. Therefore, it is unlikely that

SPE at generally recommended doses alters the disposition of co-administered

drugs.

SPE has been shown to significantly improve urinary dysfunction possibly

through the direct action of drug targets such as pharmacological α1-adrenoceptors
and muscarinic cholinoceptors in the prostate and bladder [79, 101, 102]; and thus,

the combination of SPE and medicines (α1-blockers or antimuscarinics) may be

advantageous in terms of a reduction in the dosage, cost, and adverse effects of

drugs with pharmacodynamic interactions.

4 Coleus forskohlii Extract

Coleus forskohlii is a member of the mint family and is native to India [8], where it

has been used for centuries in Ayurvedic medicine to treat various diseases of the

cardiovascular, respiratory, gastrointestinal, and central nervous systems

Fig. 10.7 Effects of the

repeated treatment (320 mg/

day, 14 days) with saw

palmetto on the plasma

concentration of alprazolam

(CYP3A4 activity) in

normal volunteers (cited

from Markowitz et al. Clin

Pharmacol Ther

74, 536-542, 2003)
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[1]. Extracts of C. forskohlii (CFE) roots contain the diterpene forskolin, which

increases cAMP concentrations via the activation of adenylate cyclase, resulting in

various therapeutic effects against asthma and idiopathic congestive cardiomyop-

athy [6, 7]. Theoretically, an increase in cAMP induced by forskolin should

enhance lipolysis, leading to elevated fat degradation and physiological fat utiliza-

tion, thereby promoting fat and weight loss. CFE standardized with forskolin was

shown to induce favorable effects on body fat in overweight women and obese men

[35, 41]. Thus, CFE standardized with 10 % forskolin is a popular herbal ingredient

for commercial weight-loss dietary supplements.

Feeding mice a diet containing CFE (standardized with 10 % forskolin) was

clearly shown to dose and time dependently induce hepatic CYP enzymes such as

CYP2B, CYP2C, and CYP3A [112]. Significant induction was observed at a CFE

dose of 60 mg/kg body weight in mice, which corresponded to approximately 5 mg/

kg body weight of a human equivalent dose when calculated using the body surface

normalization method [85]. Furthermore, CFE also induced hepatic steatosis in

mice, although the effective dose was ten times higher than the dose that induced

CYPs [113]. CFE is composed of various substances; however, forskolin was not

involved in CYP activation or hepatic steatosis [112, 113], indicating the contribu-

tion of unidentified substances. A study of the solvent fractionation of CFE revealed

that the unidentified substances involved in CYP induction were mainly distributed

in the diethyl ether fraction [122]. The route of CFE administration, by a diet or an

intragastric gavage, did not influence the induction of CYPs as long as the CFE dose

and feeding diet were the same. In addition, the level of hepatic CYP in CFE-treated

groups was positively correlated with the level of starch in a semi-purified diet,

which indicated that dietary starch enhanced CYP induction by CFE [124].

Activation of the nuclear receptors pregnane X receptor (PXR) and constitutive

androstane receptor (CAR) was shown to regulate drug-metabolizing enzymes as

well as glucose and lipid metabolism [34]. Ding and Staudinger clearly demon-

strated that the constituents of CFE, namely, forskolin and 1,9-dideoxyforskoiln,

induced CYP3A gene expression through the PXR in cultured hepatocytes

[21]. Therefore, the activation of PXR and/or CAR may be involved in the

mechanism of action of CFE-induced drug-metabolizing enzymes and steatosis.

The induction of hepatic CYPs by CFE suggests the interaction of CFE with

prescribed drugs. Warfarin has a powerful anticoagulant action and is metabolized

by the CYP2C subfamily of enzymes, which were induced by CFE [112]. As

expected, CFE pretreatment attenuated the anticoagulant action of warfarin via

the induction of hepatic CYP2C in mice in vivo [123] (Fig. 10.8). CFE also directly

inhibited CYP2C activity in human and mouse microsomes to a similar extent

in vitro. These findings suggest the interaction of CFE and warfarin and that the

intake of warfarin together with dietary supplements containing CFE increases the

risk of thrombus formation. As CFE also induced CYP3A, which catalyzes 50 % of

prescribed drugs [86], the interaction of CFE and other prescribed drugs may also

occur. Healthcare professionals should observe and communicate with patients who

are receiving warfarin or other drugs metabolized by CYP2C and CYP3A while

consuming dietary weight-loss supplements containing CFE.
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5 Grapefruit Juice

Grapefruit juice was shown to increase the bioavailability of drugs such as calcium

channel blockers, benzodiazepines, and immunosuppressants [4, 3, 25, 31, 33,

56]. The main mechanism for this interaction is considered to be the irreversible

inhibition of CYP3A, a major drug-metabolizing enzyme in the small intestine, by

the furanocoumarins present in grapefruit juice [82]. Grapefruit juice inhibits not

only metabolic enzymes but also drug transporters such as P-glycoprotein [23, 64,

104], which play important roles in the function of the intestinal barrier in a

coordinated manner with CYP3A [103]. The inhibitory effect of grapefruit juice

on the intestinal barrier may enhance the oral bioavailability of drugs, which has

been associated with a higher incidence of side effects.

Morphine is the most commonly used opioid analgesic for the treatment of pain

associated with cancer. The antinociceptive effect of morphine, a substrate of

P-glycoprotein [92], was enhanced by the knockout of the P-glycoprotein gene in

mice and the administration of a P-glycoprotein inhibitor in rats [60, 118, 129]. Fur-

thermore, P-glycoprotein may be partly associated with morphine tolerance [2, 80],

which limits the clinical use of morphine. We examined the effects of grapefruit

juice on oral morphine antinociception and pharmacokinetics in morphine-tolerant

rats [81]. Morphine tolerance was developed by the repeated oral administration of

morphine for 5 days, and grapefruit juice significantly potentiated the

antinociceptive effect. Morphine concentrations in blood and intrathecal cerebro-

spinal fluid (CSF) were gradually reduced by the repeated treatment with morphine.

Grapefruit juice significantly increased the blood concentration of morphine in

morphine-tolerant rats. These results suggest that grapefruit juice enhances

antinociception by increasing the intestinal absorption of morphine. The inhibition

Fig. 10.8 Effects of the Coleus forskohlii extract (CFE) pretreatment and/or warfarin adminis-

tration in mice on (S)-warfarin 7-hydroxylase activities in the liver and prothrombin time in blood.

Mice were fed various doses of CFE standardized with 10 % forskolin for 1 week and were

administered warfarin by gavage on the last 2 days of the treatment regimen (cited from Yokotani

et al. J Pharm Pharmacol. 64: 1793-1801, 2012)
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of intestinal P-glycoprotein by grapefruit juice may partly overcome morphine

tolerance. However, there is absence of clinical evidence demonstrating an

enhancement in the effects of morphine by grapefruit juice. In humans, the absorp-

tion of morphine is regulated by the intestinal P-glycoprotein [48]. Thus, further

clinical studies are needed to examine the clinical effects of grapefruit juice on

intestinal P-glycoprotein activity.

6 Green Tea (Catechins)

Over recent decades, green tea has been recognized as a healthy beverage for the

prevention of cancer, cardiovascular disorders, and infectious diseases [47, 119]

and is consumed by a large proportion of the world’s population. Accordingly, it is

anticipated that opportunities for the concomitant use of various drugs with green

tea are increasing; thus, the evaluation of scientific evidence on possible drug

interactions with green tea catechins is of importance to reduce the risks of

unwanted side effects. Green tea catechin–drug interactions mediated by the inhi-

bition or the induction of enzymes such as drug-metabolizing enzymes and drug

transporters need to be considered.

Green tea (Camellia sinensis) is the most abundant source of catechins and

consists of (-)-epigallocatechin-3-gallate (EGCG), (-)-epigallocatechin (EGC),

(-)-epicatechin (EC), and (-)-epicatechin-3-gallate (ECG) [37], which accounts

for 30–42 % of the dry weight of the solids in brewed green tea [47]. In general,

a cup of infused green tea (150 mL) supplies 30–40 mg of EGCG [42]. After the

ingestion of a green tea extract containing 375 mg of EGCG, the plasma concen-

tration of EGCG reached approximately 4 μM [75].

6.1 Cytochrome P450 Enzymes

Many drug interactions are attributed to the inhibition or the induction of CYP

enzymes [116]. The effects of green tea on the activity of CYP enzymes were first

reported in rodents: drinking green tea significantly increased rat CYP1A1, 1A2,

and 2B1 activities, but not CYP2E1 or 3A activities [98]. Park et al. recently

demonstrated that repeated treatment with a green tea extract up-regulated

CYP2B1 and downregulated CYP3A mRNA expression in the rat liver [83]. Phar-

macokinetic interactions between green tea catechins and CYP substrate drugs

including clozapine [44], diltiazem [61], midazolam [77], nicardipine [15], tamox-

ifen [94], and verapamil [17] have been studied in rats. The main findings are

summarized in Table 10.1. These animal studies suggest that green tea catechins

markedly inhibit CYP3A activity in the liver or the intestine and increase the

plasma concentrations of its substrates. Regarding human CYP enzymes, Muto

et al. reported that ECG and EGCG inhibited CYP1A1, 1A2, 2A6, 2C9, 2E1, and
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3A4 activities in a concentration-dependent manner in a human CYP-expressing

membrane fraction [72]. Contrary to its inhibitory effects, treatment with green tea

extract for 6 h induced CYP1A1 and 1A2 expression and increased the mRNA

levels of CYP2E1, 2D6, and 2C isoforms in human tongue cells [120]. In a clinical

study, the chronic consumption of decaffeinated green tea extract did not alter

either the pharmacokinetics of alprazolam, a CYP3A4 probe drug, or the metabolic

ratio of dextromethorphan, an index of CYP2D6 activity, in healthy volunteers

[22]. Chow and colleagues conducted a clinical trial to determine the effects of

repeated green tea catechin administration on in vivo CYP activities using a drug

cocktail containing caffeine (CYP1A2), dextromethorphan (CYP2D6), losartan

(CYP2C19), and buspirone (CYP3A) [16]. Among the phenotypic indices investi-

gated, only the area under the plasma concentration–time curve (AUC) of buspirone

was significantly higher (by 1.2-fold) than the baseline value by green tea catechins,

suggesting that green tea caused a small reduction in CYP3A activity but had no

effects on CYP1A2, 2D6, or 2C19. More recently, Werba et al. showed that green

tea intake doubled the AUC of simvastatin, a cholesterol-lowering agent, and led to

intense leg muscle cramps and pain in a hypercholesterolemic patient [115]

(Fig. 10.9). Because simvastatin is mainly metabolized by CYP3A [76], this

interaction may be due to a reduction in CYP3A activity by green tea. Further

studies are required to clarify whether these interactions stem from the modulation

of CYP3A activity. Collectively, green tea catechins may have an inhibitory effect

on CYP3A in humans. However, considering the low bioavailability of catechins

[58], the pharmacokinetic interactions of green tea catechins with CYP3A substrate

drugs may mainly occur in the gastrointestinal tract, similar to grapefruit juice

[68]. It also cannot be excluded that green tea catechins have an inductive effect on

some CYP subtypes, especially during the chronic consumption of green tea.

Further investigations of the interactions between green tea catechins and CYP

Fig. 10.9 Effects of the ingestion of green tea on the plasma concentrations of simvastatin lactone

and simvastatin acid in hypercholesterolemic patients (cited from Werba et al. Ann Internal Med.

149: 286-287, 2008)
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substrates including the underlying mechanisms will help toward optimal pharma-

cotherapy in patients who drink green tea.

6.2 Other Enzymes

Interactions mediated by other drug-metabolizing enzymes, such as phase II con-

jugating enzymes, have received less attention than CYP enzymes [49]. However,

because many drugs and their metabolites undergo conjugation reactions, it is

important to enhance our understanding of phase II enzyme-mediated drug inter-

actions. Since green tea catechins undergo conjugate metabolism by

UDP-glucuronosyltransferase (UGT), sulfotransferase (SULT), and catechol-O-
methyltransferase (COMT) in rodents and humans [29], the coexistence of green

tea catechins and their substrates may cause drug interactions through the inhibition

of these enzymes. Zhu et al. reported that a green tea catechin mixture and EGCG

inhibited the glucuronidation of estrone in a concentration-dependent manner with

IC50 values of 12.5 and 10 μg/ml, respectively, in rat liver microsomes [128]. More-

over, recent studies revealed that UGT1A1 and UGT1A4 activities were markedly

inhibited by EGCG with IC50 values of 7.8 and 34.4 μg/mL in human liver

microsomes [69, 70]. EGCG showed weak inhibitory activities toward UGT1A6

and UGT1A9 [69]. On the other hand, EGCG was shown to have no effect on the

mRNA expression of UGT1A1 [11]. To the best of our knowledge, there is

currently no clinical evidence regarding UGT-mediated drug interactions with

green tea catechins. As for the other phase II enzymes, EGCG has been reported

to inhibit COMT activity with IC50 values ranging from 0.07 to 0.2 μM in human

liver cytosol [63, 73]. In in vitro experiments using human recombinant SULT1A1

and SULT1A3, green tea catechins, particularly ECC and EGCG, inhibited

SULT1A1 and SULT1A3 activities at around 10 μM [78]. In addition to the

inhibition of phase II enzymes, Golden and colleagues reported that EGCG directly

reacted with bortezomib, an anticancer drug, and blocked its antiproliferative

function in preclinical in vitro and in vivo models [36]. This interaction may have

arisen as a result of a physicochemical interaction leading to the formation of a

covalent cyclic boronate between EGCG and bortezomib. In summary, the findings

described above highlight the possibility of green tea catechin–drug interactions

through the modulation of not only phase II enzymes but also the chemical

structures of co-administered drugs.

6.3 Transporter-Mediated Interactions

Many findings from in vitro and in vivo studies suggest that drug transporter-

mediated drug interactions are of clinical importance [24]. The recognition of

drug interactions that lead to negative clinical outcomes, i.e., decreased
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effectiveness or tolerability, should support better medication and improve patient

care. Several dietary flavonoids were found to modulate the efflux transporter,

P-glycoprotein [12, 93]. Concerning green tea catechins, EGCG in green tea was

shown to inhibit the efflux of drugs mediated by P-glycoprotein in vitro [46]. Qian

et al. also demonstrated that EGCG modulated the function of P-glycoprotein and

reversed P-glycoprotein-mediated multidrug resistance in human cancer cells

[84]. To date, there is a lack of in vivo evidence to support the inhibitory effects

of green tea catechins on P-glycoprotein. A recent study showed that the intrave-

nous administration of EGCG (20 mg/kg) to rats inhibited the transport of

irinotecan and its active metabolite, SN-38, into the biliary tract, and prolonged

their half-lives in plasma, possibly by modulating P-glycoprotein activity

[62]. BCRP is another efflux transporter involved in cross-resistance to chemother-

apeutic agents [88]. Some flavonoids have been identified as potent inhibitors of

BCRP; however, EGC and EGCG did not exhibit such inhibitory activity

in vitro [126].

Uptake carriers such as OATP represent another class of drug transporters

[50]. Although no data are available regarding the in vivo impact of green tea

catechins on OATP activity, a few in vitro studies may facilitate further investiga-

tions of OATP-mediated drug interactions with green tea catechins. Using

OATP1B1-expressing HeLa cells, Wang et al. found that EGCG, but not EGC,

was a potential inhibitor of OATP1B1 with an IC50 of 14.1 μM [114]. As for

OATP2B1, which is expressed on human intestinal epithelia, green tea itself and

green tea catechins including EC, ECG, and EGCG, significantly inhibited the

OATP2B1-mediated transport of estrone-3-sulfate in human embryonic kidney

293 cells at concentrations considered likely to be attainable in the human intestine

[30]. Recently, Roth et al. showed that ECG and EGCG inhibited the uptake

activities of OATP1A2, 1B1, and 2B1 in a concentration-dependent manner,

while EC and EGC had minimal effects on OATPs [90]. Interestingly, EGCG

was found to be a potent stimulator of OATP1B3-mediated uptake for one substrate

examined, whereas EGCG behaved as an inhibitor of OATP1B3 for another

substrate [90]. This study suggested that potential inhibitors should be examined

using multiple and clinically relevant substrates when screening for OATP-

mediated drug interactions. In summary, more in vivo evidence is needed for a

better understanding of drug transporter-mediated drug interactions between green

tea catechins and drugs. We also note that such interactions may have beneficial

properties. For example, given that green tea catechins have potent inhibitory

effects on efflux transporters such as P-glycoprotein in vivo, drinking green tea

may be valuable for patients receiving cancer chemotherapy because

P-glycoprotein inhibition by catechins could suppress multidrug resistance in

cancer cells.
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7 Conclusions

The oral intake of some natural products has been shown to significantly influence

the pharmacokinetics and pharmacodynamics of co-administered drugs. Such

interactions may be partly mediated through the significant inhibition or induction

of drug-metabolizing enzymes and transporters in the small intestine, liver, kidney,

and brain. Whether the interactions of natural products with medicines have

clinically harmful or beneficial effects for drug therapies is needed to be clarified.

Furthermore, some ingredients of natural products may directly affect the pharma-

cological targets of medicines, thereby causing a significant augmentation or

deterioration in therapeutic effects. Further scientific and clinical evaluations of

the pharmacokinetic and pharmacodynamic interactions of natural products with

prescription drugs are prospectively encouraged to establish their proper uses in

clinical settings. Finally, it should be kept in mind that combinations of natural

products (including beverages) and medicines should be viewed cautiously in terms

of potential adverse interactions in patients treated with drugs, such as warfarin, that

have relatively narrow therapeutic windows.
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Chapter 11

Nutrition and Gastrointestinal Health
as Modulators of Parkinson’s Disease

Heather E. Rasmussen, Bryana R. Piazza, Christopher B. Forsyth,
and Ali Keshavarzian

1 Definition, Etiology, and Symptoms

Parkinson’s disease (PD) is the second most common neurodegenerative disease of

aging, affecting about 1 % of the population over 60 years old in North America

[94], and is projected to affect nearly 10 million citizens of the world’s most

populous countries by 2030 [38, 77]. Parkinson’s disease is a relentlessly progres-

sive disease, and the societal and personal burden of disability from PD is consid-

erable [59]. Parkinson’s disease diagnosis also results in reduced life expectancy,

ranging from 4 to 10 years depending on age of diagnosis, with a greater reduction

in life expectancy with earlier diagnosis [146]. Clinical symptoms vary depending

on disease state and include both motor and non-motor symptoms. Non-motor

symptoms such as constipation, loss of sense of smell, and rapid eye movement

(REM) behavior disorder may manifest years before PD diagnosis. Diagnostic

clinical symptoms of advanced PD include motor impairments involving resting

tremor, bradykinesia, postural instability, gait difficulty, and rigidity. Unfortu-

nately, there is no curative treatment for PD, and this is at least partly because the

majority of patients with PD will be diagnosed and receive treatment after the onset

of neurological symptoms when substantial neuronal dysfunction and neuronal loss
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has already occurred. The technology to identify PD before it reaches symptomatic

Braak Stage 3 (substantia nigra compacta [SNc] involvement) already exists [125];

thus, a more successful approach could be to diagnose and start treatment before

neuronal degeneration results in the emergence of clinical signs of PD.

It is believed that PD pathology is a consequence of interaction between genetic

susceptibility and toxic environmental factors [134]. Specific genes related to

dopamine metabolism such as Parkin and leucine-rich repeat kinase 2 (LRRK2)

have been associated with PD risk, and those with a first-degree relative with PD

have a 4–9 % increased risk of developing the disease. Therefore, risk is largely

influenced by environment; environmental factors that influence risk include age

(older age), gender (male), and exposure to environmental toxins such as pesticides

and certain solvents. While it is not yet known how dietary intake impacts PD risk,

it is thought that dietary intake may also play a role. The combination of these

genetic and environmental risk factors is thought to increase neuronal oxidative

stress; despite this, the exact etiology of PD is not known. However, the pathobi-

ology of neuronal loss in PD is well characterized. It is now well established that the

pathological hallmark of PD is neuronal inclusions termed Lewy bodies (LB) or

Lewy neurites (LN) whose main component is aggregated and phosphorylated

α-synuclein [18, 123]. It is believed that these α-synuclein aggregates are the first

steps resulting in neuronal loss that is responsible for neurological symptoms and

signs of PD [18]. Recent studies have shown that inoculation of α-synuclein
aggregates can transfer the disease to wild-type mice [79]. These and other recent

studies support that PD is a prion-like illness, and that α-synuclein is a prion-like

protein. This hypothesis suggests novel targets for the development of putative

neuroprotective therapies [96, 105].

In addition, many recent studies support a model in which PD pathogenesis

begins in the peripheral autonomic nervous system and/or the enteric nervous

system (ENS) and that the substantia nigra is spared in early stages of the disease

[37]. This theory explains why autonomic symptoms, especially gastrointestinal

symptoms such as constipation, occur early in the disease, as much as 20 years

before the onset of motor deficits [1, 37].

2 The Gastrointestinal Tract in the Pathogenesis
of Parkinson’s Disease

Although intestinal symptoms are described by Parkinson in his original writing

[102], Braak was the first to propose a possible direct role of the gastrointestinal

tract in PD pathogenesis. Braak originally suggested that the GI tract might be a

portal of entry for a putative PD pathogen, triggering pathological changes in the

submucosal/myenteric neurons, which then spread through the vagus nerve to the

dorsal motor nucleus and the medulla oblongata [19, 58]. From there, pathological

changes may move rostrally, ultimately resulting in the clinically defining motor
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symptoms of PD when there is extensive involvement at the level of the midbrain

substantia nigra [18]. Thus, the involvement of the GI tract in PD is of great interest

as a contributing factor to the development and progression of PD [73].

Consistent with the model of a possible GI tract origin for PD, GI symptoms of

PD are an important element of disease manifestation and represent a major

complication of PD [25, 73]. Gastrointestinal symptoms in PD include reduced

salivation, dysphagia, impaired gastric emptying, impaired GI motility, constipa-

tion, and defecatory dysfunction. These could be due to both central and peripheral

processes. It is generally believed that these symptoms are a consequence of PD and

are the result of intestinal motility disorders and associated intestinal bacterial

overgrowth. However, over the last decade there has been mounting evidence that

supports a role for the GI tract and the ENS in the pathogenesis of PD [58,

73]. Dysphagia occurs in about 80 % of patients with PD [37], and one of the

earliest descriptions of ENS Lewy bodies was esophageal staining in patients with

achalasia [106]. Only three reports of Lewy bodies in the stomach are known [17,

103, 142]. However, erratic gastric emptying is a well-described problem in PD and

can result in poor levodopa distribution [68]. The presence of Lewy bodies in the

colonic myenteric and submucosal plexuses in patients with PD was first described

in 1987 [67] and later substantiated and shown especially to occur in vasoactive

intestinal polypeptide-reactive neurons in the ENS [141] and substance

P-containing neurons [118]. Additionally, dopaminergic defects in the ENS of

patients with chronic constipation have been seen [127]. Several neuropathological

studies show accumulation of abnormal α-synuclein-containing inclusions (Lewy

neurites) in the ENS and dorsal motor nucleus of the vagus nerve, both in PD and in

incidental Lewy body disease (ILBD) [24]. Colonic biopsies in PD patients with

chronic constipation all showed significant α-synuclein staining [72], indicating

constipation as one key possible biomarker of PD, with significant constipation

occurring more than 20 years before the onset of motor symptoms [1, 116]. Indeed,

constipation is known to be overrepresented among individuals who later develop

PD [1], and colonic biopsies obtained 2–5 years prior to the onset of PD features

demonstrate α-synuclein aggregates in colonic submucosal neurons [118]. It should

be noted that α-synuclein aggregates in colonic submucosal neurons can occur in

PD patients even in the absence of constipation. Indeed, we recently showed the

presence of α-synuclein aggregates in Substance P containing neurons in the

sigmoid colonic submucosal neurons in newly diagnosed patients with PD who

did not complain of constipation [48]. These human studies provided compelling

evidence that the GI tract might be the initial site for neuronal damage in PD;

however, the data are still indirect.

To further determine whether the GI tract is involved in the initiation and/or

progression of PD, a series of animal studies were performed by several investiga-

tors. For example, Pan-Montojo et al. administered the mitochondrial toxin rote-

none locally into the intestine and reported α-synuclein aggregation in the intestinal
wall that, over time, propagated to and caused neurodegeneration in the dorsal

motor nucleus of the vagus nerve and eventually in the substantia nigra [99]. In a

follow-up study, the same team reported that cutting the vagus nerve or partially
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removing sympathetic ganglia could block the spreading of Lewy-like pathology

from the gut to the central nervous system [100]. However, it does not appear that

the vagus nerve is the only path for spread of α-synuclein aggregation because

α-synuclein aggregation is found in the sigmoid colon, which is not innervated by

the vagus nerve [119]. Lee and coworkers have also addressed the idea that the gut

could be a starting point for α-synuclein misfolding. They showed that injection of

brain extracts prepared from patients with dementia with Lewy bodies, but not from

normal brains, induced the deposition of α-synuclein aggregates in myenteric

neurons of transgenic mice that overexpressed human A53T α-synuclein
[76]. Thus, routine colonic biopsies have been proposed as a tool to monitor PD

patients [74]. This group has already shown that the degree of ENS Lewy body

staining in colonic biopsies correlates with patient constipation [75] and that rectal

biopsies are less sensitive at detecting α-synuclein pathology in the same PD patient

[103]. Thus substantial evidence supports a role for colonic inflammation and

α-synuclein pathology in PD that could be a valuable biomarker for not only

diagnosis of PD but also as a target of therapy [35].

While intestinal phosphorylated α-synuclein aggregates may be formed as a

consequence of oxidative injury [61, 124], the source of neuronal oxidative stress in

PD is not known. It is highly plausible that the GI tract is a major site and source of

oxidative stress in neuronal tissue based on several factors. First, the GI system and

the brain are directly linked anatomically through the dorsal motor nucleus of the

vagus nerve, a brain region proposed to express Lewy pathology very early in the

disease process [18]. In addition to the vagus nerve, the GI tract is connected to

the CNS by the sympathetic and parasympathetic neuronal network in the spine.

Second, the GI tract is the largest interface between neural tissue and the environ-

ment. These enteric neuronal cells are large in number in the submucosal plexus

and myentric plexus, large enough that the GI neuronal network is called the

“second brain” [73]. More importantly, this neuronal network is in close proximity

to the potentially injurious factors such as bacterial products capable of inducing

oxidative stress [117]. Indeed, the GI lumen harbors the largest and most diversified

human-associated microbiota community with the capability of inducing inflam-

matory and oxidative pathways [55].

2.1 Intestinal Barrier Function and Parkinson’s Disease

Central to the regulation of exposure to pathogens and oxidative processes is the GI

tract’s semipermeable barrier, which allows regulation of nutrient, ion, and water

absorption and regulates host contact with a large number of dietary antigens and

bacterial products [86]. Intestinal permeability can be defined as the facility with

which the intestinal epithelium allows molecules to pass through by non-mediated

passive diffusion. Several chronic autoimmune intestinal diseases including inflam-

matory bowel disease and celiac disease are associated with increased intestinal

permeability, also known as “leaky gut” [46, 62]. One particularly detrimental
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consequence of increased intestinal permeability is the translocation of bacteria

(e.g., E. coli) and bacterial products (e.g., lipopolysaccharide [LPS], also known as

endotoxin) that are key components of the outer membrane of gram-negative

bacteria. Lipopolysaccharide binds to Toll-like receptor 4 (TLR4) and stimulates

inflammation on a variety of intestinal cells including intestinal epithelial cells,

enteric microglial cells, and cells of the immune system. Other bacterial products

may also promote inflammation and oxidative stress through additional mecha-

nisms (e.g., other TLRs, NOD-like receptors) [50]. The result of this stimulation is a

proinflammatory environment, increasing the oxidative stress burden in the ENS.

Parkinson’s disease and other neurodegenerative diseases such as Alzheimer’s to

a large degree have now been shown to be associated with low-grade systemic and

neuronal inflammation, oxidative stress, and proinflammatory cytokines (TNF-α,
IL-6, IL-1β). Indeed, endotoxin-induced systemic inflammation has been shown to

involve microglia [57]. Thus, gut leakiness in patients with a genetic susceptibility

to PD or previous exposure to environmental insult independent of the gut may be a

pivotal early step promoting a proinflammatory/oxidative environment, contribut-

ing to the initiation and/or progression of the PD process. Studies from our

laboratory have recently shown that newly diagnosed and untreated PD patients’

tissue stains positive for colonic biopsy α-synuclein aggregates [119] and that these
patients have significantly increased intestinal permeability [48]. In addition,

increased intestinal permeability in these PD patients correlated with increased

colonic biopsy markers for bacterial translocation and oxidative stress as well as

α-synuclein staining. These data thus support a model in which increased intestinal

permeability (leaky gut) could result in exposure to luminal bacterial products

resulting in inflammation-triggered oxidative stress and α-synuclein misfolding in

susceptible individuals. We have proposed that a leaky gut may play a role in PD by

the resulting effects on systemic inflammation and oxidative stress that may

promote α-synuclein misfolding [48, 120]. Likewise, recent research on major

depression has shown an associated increase in intestinal permeability, blood

endotoxin, and inflammatory markers, as well as oxidative stress [80, 81, 108]. Sim-

ilar data for increased intestinal permeability and proinflammatory bacterial

endotoxemia have been shown in amyotrophic lateral sclerosis (ALS) and

Alzheimer’s disease [151], as well as autism [144]. In addition, the relationship

between neurological disease and inflammation may be bidirectional, creating a

vicious cycle [87].

As there is evidence for GI tract involvement in PD, specifically alterations in

intestinal permeability, we propose that such individuals might therefore benefit

from therapeutic interventions that positively impact the intestinal milieu by either

changing microbiota to produce less proinflammatory/injurious products or

preventing gut leakiness. These interventions include dietary or pharmacologic

therapies including diet, prebiotics, probiotics, and synbiotics directed at reducing

intestinal inflammation and hyperpermeability which might break this pathologic

vicious cycle in the gut. In the following sections, we discuss the scientific evidence

that supports possible nutritional therapy (i.e., whole foods, dietary patterns, and

supplemental nutrition such as probiotics and prebiotics) for PD and other

11 Nutrition and Gastrointestinal Health as Modulators of Parkinson’s Disease 217



neurodegenerative diseases, primarily through modulation of the gut milieu. We

will primarily focus on the dietary components in terms of PD risk, highlighting the

importance of mitigating exposure to neuro-oxidative substances for PD preven-

tion. We recognize that our knowledge of these mechanisms and thus these pro-

posed therapies are still at very early stages of development. However, we propose

that considerable solid scientific evidence has now been gathered to support two

important themes. First, there is a clear relationship in animal models and human

studies between the GI tract, intestinal inflammation and hyperpermeability (espe-

cially in conjunction with the microbiota), and neurological diseases. Second,

evidence supports that certain nutritional therapies can have a beneficial effect to

alleviate microbiome dysbiosis (shift from healthy state), ameliorate intestinal

hyperpermeability, and/or inhibit intestinal inflammation or oxidative stress. Spe-

cific nutritional therapies of focus for direct modulation of the gut microbiota are

products either containing “good” bacteria (lactobacilli, bifidobacteria) such as

cultured milk or yogurt products and probiotic products, or prebiotics which are

complex carbohydrates (fiber) that form the fuel for “good” fermentative bacteria.

We also include such traditional foodstuffs as found for example in the so-called

Mediterranean diet such as whole grains, unsaturated fats such as olive oil, and fish.

These may have anti-inflammatory/antioxidative stress properties related to their

modulation of the microbiota or may have direct beneficial anti-inflammatory or

antioxidative stress effects. In any case, the nutritional therapeutic themes we

propose are normalization of the microbiota diversity and promotion of lactobacilli

and bifidobacteria, restoration of normal intestinal barrier function, and prevention

of intestinal inflammation and oxidative stress. In addition to this novel, potential

key role of nutrition, the impact of these nutritional measures on symptom man-

agement will be discussed in brief.

3 Nutrition and Parkinson’s Disease

3.1 Evidence for the Role of Nutrition in Parkinson’s
Disease Risk

Specific dietary components that impact the risk of PD development are not clear,

but research indicates the potential for certain dietary components, as well as

overall dietary patterns, may modulate PD risk. Currently, many different dietary

components such as dairy products, fat, alcohol, coffee and tea, antioxidants, and

minerals have all been investigated for their role in PD risk. A select presentation of

these dietary components is in the following sections.

The most thoroughly studied dietary macronutrient in regard to PD risk is dietary

fat. In a population-based case–control study, energy-adjusted fat intake was

significantly associated with PD (OR, 5.3; 95 % CI, 1.8–5.5) when comparing the

lowest quartile to the highest quartile of fat intake. Specifically, intake of animal fat
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was associated with PD risk when comparing the lowest quartile to the third (OR,

3.61; 95 % CI, 1.32–9.83) and fourth quartiles (OR, 5.28; 95 % CI, 1.80–15.49)

[78]. In a retrospective assessment of past food intake in a case–control study,

intake of foods high in animal fat such as ice cream, hard and soft cheeses, milk,

liver, pork, and beef was associated with an increase in PD risk (OR, 3.30; 95 % CI,

1.43–7.61), specifically when comparing 3.2–4.8 servings and greater than 4.8

servings versus 2.1 servings or less per day [5]. However, this association between

PD and animal or saturated fat intake was no longer seen when a later analysis was

conducted using a larger sample of the same group [104]. A meta-analysis of

prospective studies investigating the contribution of dairy to PD showed a relative

risk of 1.6 (95 % CI 1.3–2.0) for the highest versus lowest quintile for milk or dairy

products overall; the relative risk was 1.8 in men and 1.3 in women [26]. Kyrozis

et al. examined dietary variables associated with PD development using the EPIC-

Greece cohort. Dairy products, specifically milk, were associated with PD risk (HR,

1.34; 95 % CI, 1.14–1.58; p< 0.001), while polyunsaturated fat intake was

inversely associated with PD [69]. While a recent case–control study reported a

null association of total and saturated fat with PD risk, when saturated fat intake

was examined in those with pesticide exposure, saturated fat intake (low versus

high tertile) was positively associated with risk of PD; it was suggested that

pesticide exposure modified the relationship between saturated fat and PD by

increasing oxidative stress [63]. Indeed, fat-induced increases in oxidative stress

are known, specifically saturated fat, providing a mechanism for an increased risk

of PD and other neurodegenerative disorders with saturated fat intake. Mechanis-

tically in PD, the potential for specific fats to impact oxidation status is suggestive

in animal studies as an intake of 60 % of kcalories from fat exacerbated the effect of

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity

[16]. Interestingly, the authors suggested that it was due to high-fat diet-induced

obesity, indicating a potential role for obesity in PD risk.

While it is suggestive that saturated fats may increase risk of PD, other catego-

ries of fatty acids may impact PD risk differently; polyunsaturated fatty acids

(PUFAs) and monounsaturated fatty acids (MUFAs) may reduce oxidative stress

and have neuroprotective effects. In the Nurse’s Health Study and the Health

Professionals Follow-Up Study, while overall fat intake was not associated with

PD risk, replacement of PUFA with saturated fat (5 % of the diet) in statistical

models increased risk of PD in men (RR, 1.83; CI, 1.10–3.03) but not women

[27]. In addition, omega-3 PUFA and α-linolenic acid were both inversely associ-

ated with PD risk when dietary intake was reported in tertiles (low versus high

tertiles) [63]. Specific PUFAs such as omega-3 fatty acids may beneficially impact

the brain through protection against a decrease in tyrosine hydroxylase and dopa-

mine [15], or through reduction in neuroinflammation [97]. In addition, one PUFA,

the omega-6 arachidonic acid, may actually increase the risk of PD; >0.17 g/day of

arachidonic acid (highest quartile) was significantly associated with an increased

risk of PD in humans (OR, 2.09; 95 % CI, 1.21–3.64) as compared to the lowest

quartile [88]; however, this association was reversed in the Nurse’s Health Study

[27]. While a diet high in PUFAs and MUFAs may be protective against PD [33],
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the amount of MUFAs and PUFAs to impart this benefit is unclear. In addition, no

other lipid intake, whether categorized as total fat, categories based on saturation

status, or individual fatty acids, has been examined for impact on PD risk.

In addition to dietary fat intake, other dietary components and patterns may

influence PD risk. Data from the Nurse’s Health Study and the Health Professionals

Follow-Up Study was used to examine the associations between dietary patterns

and PD risk. Two dietary patterns were identified: a prudent diet with high intakes

of fruits, vegetables, legumes, whole grains, and low intakes of saturated fat; and a

Western diet with high intakes of saturated fat from red and processed meats,

refined grains, French fries, desserts, and sweets. The prudent diet was inversely

associated with PD risk (RR, 0.78; 95 % CI, 0.56–1.07; p for trend¼ 0.04), while

the Western dietary pattern was not associated with PD risk. In addition, diet was

categorized through two dietary quality scores, Alternate Healthy Eating Index

(AHEI) and the alternate Mediterranean Diet score (aMed). The study indicated that

plant-based dietary patterns that included some fish and poultry may protect against

PD development as indicated by the relative risk for AHEI (0.70, 95 % CI 0.51–

0.94; P for trend¼ 0.01) and aMed (0.75, 95 % CI 0.57–1.00; P for trend¼ 0.07)

when comparing the bottom quintile (least accordant) to the top quintile (most

accordant) [51]. In addition, data from this study used in a meta-analysis indicated

that the Mediterranean diet may reduce incidence of PD and Alzheimer’s disease by

13 % [128]. This is further supported in a case–control study that assessed diet using

the Willett semiquantitative questionnaire that quantified dietary intake over the

past year; this information was used to generate a Mediterranean diet score. For

each additional point on the Mediterranean diet score (indicating higher adherence),

the odds of having PD were lower by 14 % (OR 0.86, 95 % CI 0.77–0.97;

p¼ 0.010). In addition, a lower diet score was associated with earlier age of PD

onset. The specific dietary components that were responsible for this association

were unable to be detected, possibly due to the lack of an adequate sample size [3].

While there is an indication that the Mediterranean diet may be protective

against PD risk, the mechanism of action is currently unknown. Recently, it was

suggested that the nicotine component in peppers could reduce PD risk [93]; this

food along with other foods containing nicotine such as tomatoes and potatoes are

components of the Mediterranean diet. In addition, smoking is strongly negatively

associated with PD risk, and this has been partially attributed to the nicotine

component. It is reasonable to consider that the Mediterranean diet could be

reducing oxidation and increasing neuroprotection from specific antioxidant

containing foods. Indeed, the Mediterranean diet pattern has been shown to reduce

both risk factors associated with cardiovascular disease (CVD) intermediate out-

comes, as well as limited evidence for reducing CVD and related death [43]. Foods

common in this eating pattern are high in polyphenols and include, but are not

limited to, tea, coffee, blueberries, dark chocolate, green olives, red wine, and

almonds. These foods function to benefit CVD through their antioxidant activities

and regulation of cellular activities of inflammation-related cells and their molecular

targets [132]. It is possible that these foods may be impacting risk or progression of

PD through similar mechanisms.
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For example, the Honolulu Asia-Aging study compared alcohol use (ever)

versus never; those that consumed alcohol had a relative risk PD of 0.76 (95 %

CI, 0.45–1.28) compared to those that never drank alcohol, but this was not

significant [56]. However, overall analyses of alcohol intake on PD risk do not

strongly suggest that it is protective. Both tea and coffee consumption has been

examined for its impact on PD, with some evidence for coffee consumption and

reduced PD risk. Ten or more cups of coffee a day was negatively associated with

PD risk as compared to no coffee intake (OR, 0.26; 95 % CI, 0.07–0.99) [114]. Spe-

cifically, it is thought that the caffeine component contributes to reduced risk

compared to those that do not consume caffeine; this may occur due to caffeine’s

effect on adenosine A2a receptors [89]. The association between tea intake and PD

is less defined, and it is also unknown if it is the caffeine component or the

polyphenols that may be beneficial in these beverages. Despite this potential

beneficial impact, the majority of studies associating single antioxidants such as

vitamins E, A, and C to PD have largely found that intake is not associated with PD

risk ([90], [153]). This lack of association may indicate that whole foods, rather

than individual components, are most influential for reduction of PD risk. It is

tempting to think, as discussed later, that the foods emphasized in a Mediterranean

eating pattern, and other healthy dietary patterns, beneficially alters microbiota,

intestinal permeability, or endotoxemia. Unfortunately, no current literature exists

that investigates the impact of the Mediterranean diet itself on these factors.

In summary, the available literature provides evidence, albeit limited, for the

role of specific dietary components in PD development. There is potential that

certain dietary components can have a negative impact (dietary fat and saturated

fat), or may provide benefit (omega-3 fats, coffee), as seen in a recent study

investigating the Mediterranean diet. While these components may systemically

reduce inflammation and oxidative stress as evidenced by reductions in CVD risk, it

is unknown if they have a similar role in PD.

In addition to dietary quality, quantity of dietary components may be important

in PD in relation to body weight status. Indeed, obesity is not only a risk factor for

other diseases (e.g., CVD, diabetes), but is deemed a disease itself by the American

Medical Association. Some evidence exists for a positive association between BMI

and PD risk [60], but this association was not seen in several other studies [28, 98];

therefore, it is unknown if obesity increases risk for PD, and further research should

be done to determine if the increased inflammation often seen in obese individuals

can have a detrimental effect on PD risk. We suggest that an important source of

inflammation is gut-derived, and that this modulation through diet, dependent or

independent of obesity, may influence PD risk.
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3.2 Dietary Intake for Parkinson’s Disease Progression
and Symptom Relief

While there is potential importance for diet in PD development, specific dietary

components have yet to show that they can slow disease progression or improve

motor function. The American Academy of Neurology does not recognize any

dietary therapies to slow progression of disease or improve motor function, with

more research needed on specific dietary components [130]. In contrast, modulation

of non-motor symptoms (GI-centered symptoms such as constipation) may be

benefitted by dietary components such as fiber. Briefly discussed is the current

literature on impact of anti-inflammatory foods and supplements for disease pro-

gression, and then fibers for GI-related symptom management.

3.2.1 Role of Nutrition in Disease Progression and Motor Function

Currently, there is no cure for PD, though lifestyle components, medications, or

medical procedures may slow the onset or severity of some PD symptoms. Amongst

the dietary components investigated include a decrease of pro-oxidant foods such as

saturated fat, and an increase in dietary compounds with purported antioxidant

activity such as creatine, CoQ10, vitamin E, and omega-3 fatty acids. The ability to

detect differences in PD progression by alterations in dietary intake is difficult, and

as mentioned, currently no dietary alterations have definitively shown to benefi-

cially alter disease course; however, current strategies under investigation are

discussed here in brief. While it is known that the timing of food, and specifically

protein intake, is important in respect to Levodopa absorption [95] and conse-

quently impacts the ability of the drug to benefit motor function, this aspect of

nutrition and PD will not be discussed.

Due to the potential connection between animal fat and PD risk, it has been

suggested that limiting dietary animal fat may be effective in reducing PD symp-

toms. In a case report study, a diet of minimally processed foods with less than 25 g

of animal fat per day was not seen to prevent decline due to PD, with worsening

motor symptoms and tremors despite alterations in the dietary pattern. However,

when the same diet was supplemented with the antioxidants fisetin and hexacosanol

through ingestion of strawberries and wheat germ, respectively, there was a clini-

cally significant improvement in motor symptoms such as cogwheel rigidity

micrographia, bradykinesis, dystonia, hypomimia, and retropulsion [110]. However,

this was a case report, and when weighing the significance of the data, this should

be considered. One category of fatty acids, omega-3’s, may have therapeutic

potential for those with PD due to their influence on dopaminergic activity and

neuroprotection; this evidence largely stems from mechanistic studies using animal

models and is not yet routinely recommended in those with neurodegenerative

diseases such as PD [14].
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As mentioned, foods with antioxidant capacity have been targeted in those with

PD as oxidation and inflammation are thought to play roles in the etiology and

progression of the disease. Several foods such as creatine have been investigated for

their ability to modify the trajectory of PD. Creatine is an organic acid that is both

endogenously synthesized and exogenously obtained primarily from dietary intake

of meat. While creatine’s most well-known role is to phosphorylate ADP to create

ATP, it also functions as an antioxidant, impacts mitochondrial energy production,

and attenuates the loss of dopamine caused by MPTP [85, 133]. Despite the

potential for creatine to positively impact the mitochondria, study results

supporting its use are mixed. The Deprenyl And Tocopherol Antioxidate Therapy

Of Parkinsonism (DATATOP) trial failed to identify supplemental creatine (5 g/

day) as effective, with effectiveness set at a 30 % improvement in the Unified

Parkinson’s Disease Rating Scale (UPDRS) score. However, a futility trial by the

Neurological Disorders and Stroke Exploratory Trials in Parkinson’s Disease

determined that further study of creatine (but not minocycline, coenzyme Q10

[CoQ10], and GPI-1485) was warranted to determine its efficacy in slowing PD

progression. As a result, a Phase III clinical trial is underway to determine the

impact of 10 g/day creatine versus placebo in slowing clinical decline in PD

between baseline and the 5-year follow-up visit against the background of dopa-

minergic therapy and best PD care [41].

CoQ10, also known as ubiquinone, is a cofactor in the electron transport chain

and is found largely in the liver and the brain. CoQ10 accepts electrons in the

mitochondria from complex I and II and acts as an antioxidant by reducing the

oxidized form of α-tocopherol in the mitochondria and the lipid membrane. Thus,

due to the role of mitochondrial dysfunction and oxidative stress in PD, CoQ10 may

have a role in treatment or symptom relief. Indeed, CoQ10 levels in the mitochon-

dria were significantly lower in patients with Parkinson’s disease compared to age-

and sex-matched controls [121].

A neurotoxin that selectively damages the nigrostriatal dopaminergic system,

MPTP, causes clinical, biochemical, and neuropathologic changes similar to those

seen in PD. To determine the effect of CoQ10 on MPTP administration, mice were

either fed a control diet or a diet supplemented with CoQ10 (200 mg/kg/day) for

5 weeks. After MPTP treatment at week 4, striatal dopamine concentrations and

dopaminergic axons were significantly higher in the group treated with CoQ10

versus the control [11]. In addition, supplementation of CoQ10 in mice resulted in

significant protection against loss of dopamine, the loss of tyrosine hydroxylase

neurons, and the induction of α-synuclein inclusions [30].

In a double-blind, randomized, placebo-controlled study, 80 subjects with early

PD that did not require medication were randomly assigned to either a placebo

group or CoQ10 at 300, 600, or 1,200 mg/day. The subjects were evaluated using

the change in total UPDRS score at baseline, 1, 4, 8, 12, and 16 months after

treatment administration. While there was less increase in disability in the CoQ10

groups versus the control, only the 1,200 mg CoQ10 group showed significantly

less increase in the UPDRS score as compared to placebo (þ11.99 vs þ6.69,

placebo and control, respectively; p¼ 0.04) [122]. Another study (n¼ 28) aimed
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to determine the symptomatic response of daily consumption of 360 mg/day CoQ10

supplementation for 4 weeks on PD-associated symptoms and visual function. After

4 weeks, the CoQ10 supplementation group had mild symptomatic benefit

( p¼ 0.01) and significantly better Farnsworth–Munsell 100 Hue test (measurement

of color discrimination) performance compared to the placebo group [91]. Despite

these encouraging data, CoQ10 is not currently recommended for PD as a standard

of practice, and larger trials with CoQ10 should be conducted to tease out its role in

PD progression and motor function.

In addition to creatine and CoQ10, vitamin E also has been investigated to

determine if consumption can reduce PD progression. While observational studies

indicate that vitamin E may reduce PD risk [44], little benefit of vitamin E intake

exists once PD is diagnosed. The DATATOP trial indicated that vitamin E at

2,000 IU did not slow the progression of PD over a period of 14 months as

compared to the control group. This is despite the more recent in vitro and

in vivo work supporting its ability to reduce oxidation and associated neuronal

death [23].

Although no conclusive data exist to support the routine use of dietary compo-

nents in PD progression or motor function, further investigation into the specific

food components or dietary patterns that impact progression is reasonable; the anti-

inflammatory nature of many foods gives hope that evidence will support con-

sumption of these foods in the future.

3.2.2 Role of Nutrition in the Relief of Gastrointestinal Symptoms

As mentioned, symptoms in PD are varied, ranging from motor symptoms such as

dyskinesia, tremors, and rigidity, to non-motor symptoms such as depression,

cognitive impairment, and gastrointestinal complaints. These GI complaints

include constipation, dysphagia, and lack of appetite, among others. It is generally

believed that these symptoms are a consequence of PD and are the result of

intestinal motility disorders caused by the impact of PD on the enteric autonomic

nervous system and the associated intestinal bacterial overgrowth and delayed

gastric emptying. This slows transit time and can cause defecatory dysfunction

such as constipation. While there is limited evidence for diet in the nutritional

management of non-motor symptoms, changes in dietary intake (i.e., fiber inclu-

sion) can be impactful for those PD patients with constipation-predominant GI

symptoms.

While constipation is one of the most common complaints for PD patients, it is to

be noted that these symptoms vary substantially by disease state; therefore nutri-

tional intervention for GI-related symptoms varies as well. While complications

such as dry mouth and swallowing difficulties in advanced stage PD make adequate

nutrient intake difficult, even those primarily with Hoehn & Yahr Stage II symp-

toms (and MDS-UPDRS part II mean [SD] subscore of 27.3 [12.1]) experience

sialorrhea (89 %), constipation (67 %), and incomplete bowel emptying (51 %)

[65]. Indeed, 59 % of patients with PD meet the Rome III criteria for functional
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constipation versus 21 % of older adults without known neurological conditions

[64]. In addition, constipation frequently manifests before PD diagnosis. A total of

96 men from the Honolulu Heart Study developed PD; those with< 1 bowel

movement (BM)/day had a 2.7-fold excess risk of PD versus men with 1 BM/day

(95 % CI, 1.3–5.5; p¼ 0.007), and this risk was increased when< 1 BM/day was

compared to greater BMs per day (4.1- and 4.5-fold risk when compared to

2 BM/day and> 2 BM/day, respectively). In an incident cohort of PD, constipation

was reported by 42 % of early PD subjects ( p< 0.001 compared to healthy

controls), and 60 % of patients with advanced disease suffer from constipation

that adversely affects quality of life and is resistant to therapy [115]. These GI

symptoms negatively impact health-related quality of life (HRQoL); for example,

incomplete bowel emptying had a negative impact upon HRQoL in early PD

patients [39]. As these non-motor symptoms are important determinants of PD

patients’ quality of life, appropriate treatment of constipation in PD will increase

quality of life and may enhance the absorption and therapeutic effect of PD

medications [82]. Although these intestinal symptoms are described by Parkinson

in his original writing [102], there is as yet no effective treatment for these

symptoms.

To alleviate this condition and help keep impact of drug intake consistent,

various means for reducing constipation are recommended. The American Acad-

emy of Neurology supports the use of polyethylene glycol (Miralax®); increases in

water and dietary fiber have also shown clinical benefit for constipation relief

[150]. Exacerbation of constipation may also occur due to the inability of those

with PD to consume adequate fiber and water due to PD-induced eating difficulties

(dysphasia, lack of appetite).

While nearly $300 million was spent on fiber supplement products in the United

States in the past year, limited literature exists that describes the effectiveness of

fiber supplementation specifically in PD patients. A diet supplemented with 28 g

insoluble fiber (wheat bran, pectin, and dimethyl-polyoxylhexane-900) was pro-

vided to PD patients with severe constipation. Constipation improved significantly,

with frequency of bowel movements increasing to four or more times per week. A

significantly increased UPDRS motor score was seen after both two weeks and

two months of fiber supplementation. Furthermore, there was a relationship

between the reduced constipation and higher bioavailability of Levodopa, which

suggests that Levodopa activity was increased by a decreased gastric emptying time

and increased intestinal motility [9]. Provision of 10.2 g psyllium per day increased

stool frequency (increase of 3�/week) and stool weight in constipated PD patients

[8]. As limited evidence for relief of constipation through fiber intake has been

documented in the literature, it is unknown what specific type of fiber is most

beneficial to relieve PD symptoms. In concept, individual or combinations of fibers

could be designed and utilized in a particular illness to alter the composition of the

gut microbiota, its function, and/or fermentation end products such as SCFAs

towards a desired condition-specific effect. Fibers such as prebiotics could meet

this need, by both reducing constipation and improving gut milieu to limit the

uptake of oxidative and inflammatory components through the gut barrier.
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3.3 Novel Proposed Role of Nutrition on Gut Health
and Systemic Inflammation for Parkinson’s Disease

As stated, PD risk is a combination of genetic and environmental factors. Known

environmental factors that truly impact disease risk are limited, with evidence

strongest for the inverse relationship of smoking and PD risk. While evidence for

dietary factors and PD risk in inconclusive, the data are also encouraging that

nutrition can play a role in modulation of PD risk. However, once one has the

disease, progression is difficult to slow, and symptoms are hard to manage. There-

fore, searching for novel mechanisms for PD prevention is essential to reduce

disease burden. Our recent work indicates that newly diagnosed and untreated PD

patients stain positive for colonic biopsy α-synuclein aggregates [119] and have

significantly increased intestinal permeability [119], which correlated with

increased colonic biopsy markers for bacterial translocation and oxidative stress.

Therefore, an intestinal-focused therapeutic intervention that could correct abnor-

mal milieu (including gut microbiota), normalize the intestinal barrier, and mitigate

ENS oxidative injury could be a paradigm shift approach for treatment of not only

GI symptoms of PD patients and possibly CNS symptoms of PD, but most impor-

tantly reduce risk of PD. While it is too early to identify the magnitude of this

dietary impact and whether this may play a larger role in disease risk or modifica-

tion of disease course, we propose that the aforementioned factors may be mitigated

through dietary means. Discussed will be both whole foods and supplements that

modify gut health and therefore have the potential to reduce PD-related neuronal

oxidation and inflammation. Specifically manipulation of the gut bacteria and

associated gut milieu and barrier function through probiotic, prebiotic, and symbi-

otic administration will be discussed.

3.3.1 Dietary Patterns and Whole Foods to Modulate Gut Health
and Systemic Inflammation

While the impact of specific dietary components and dietary patterns on the gut

microbiota, gut milieu, and endotoxin is not completely delineated, it is known that

what we consume can have profound effects on these parameters. Overall dietary

patterns can influence microbiota composition, with those eating more animal

protein and saturated fat resulting in a Bacteroides enterotype, and those eating a

dietary pattern high in plant-based foods, carbohydrates, and low in meat and dairy

exhibiting a Prevotella-dominated enterotype [149]. Despite the lack of literature

examining the impact of the Mediterranean diet on gut microbiota and associated

health, dietary components of the Mediterranean diet such as whole grains, unsat-

urated fat, polyphenol (e.g., olive oil, fruits, vegetables, coffee, tea) intake, and low

animal and saturated fat intake have been linked to a beneficial microbiota profile.

The commensal gut microbiota thrive on the substrates that escape absorption in

the small intestine and are available for colonic bacterial fermentation [147]. These
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substrates, often found in whole grain carbohydrates rich in fiber, can increase the

commensal gut microbiota and positively impact host health. A recent randomized,

crossover trial provided subjects with whole-grain barley (18.7 g fiber), brown rice

(4.4 g fiber), or a combination of both (11.5 g fiber) for 4 weeks each. All treatments

increased microbiota diversity; whole grain barley increased beneficial bacteria

such as Roseburia and Bifidobacterium. Both whole grain barley and the combina-

tion of both whole grain barley and brown rice reduced IL-6 concentrations

compared to baseline [84]. While fiber can modulate gut bacteria, other components

in the whole grains may also be beneficial. Indeed, polyphenols from various

dietary sources may reduce intestinal mucosal inflammation and permeability

[84]. Even the consumption of cocoa flavanols can selectively alter the gut bacteria

(increase bifidobacteria and lactobacilli) and promote systemic health [137].

In regard to evaluating dietary intake’s impact on gut milieu, a majority of the

focus has been on dietary fat and its role in compromising microbiota composition,

the intestinal barrier, and resultant endotoxemia. Several studies in murine models

indicate that a high-fat diet induces dysbiosis [21, 136]. Compared to a high-

carbohydrate diet, a high-fat diet (38–62 % fat) or a Western diet (high in saturated

fat and refined carbohydrates) may result in dysbiotic microbiota (e.g., lower

bifidobacteria, higher firmicutes and proteobacteria) [20, 32, 47]. Acute effects of

high calorie, high-fat intake have been investigated in healthy subjects. A single

meal consisting of toast and 50 g butter increased plasma LPS by 50 % (8.2 pg/mL

vs 12.3 pg/mL) [42]. In addition, a breakfast of egg and sausage muffin and hash

browns increased LPS as compared to a meal similar in energy but high in fiber and

fruit [52], indicating the type of foods eaten differentially impact gut health and

subsequent endoxotin levels. Ingestion of liquid glucose, orange juice, or cream

resulted in increased inflammatory makers (e.g., TNF-α, IL-1β), LPS concentra-

tions, and TLR-4 expression with cream, while glucose only increased inflamma-

tory markers; no increase in these measures were seen with orange juice intake

[34]. This increase in inflammatory markers by glucose also highlights the potential

for refined carbohydrates (e.g., sucrose, fructose, glucose) to negatively alter gut

bacteria. While most studies utilized high quantities (as a percent of total) of fat,

even a moderate fat meal (33 % of energy as fat) may increase LPS [70]. As the

average fat intake in the United States is 33 % and saturated fat intake is 11 % [138],

both above recommended intake levels (30 % and 10 % respectively for healthy

individuals), a better understanding of the impact of dietary fat intake on health

(PD included) is important. While high-fat diets may cause oxidative damage

independent of LPS, this gut-mediated mechanism could also contribute to dietary

fat-induced PD [26, 78].

While a high-fat diet, particularly in animal models, has been linked to dysbiosis

and endotoxemia, fewer studies have differentiated between types of dietary fat and

these outcomes. A recent study using a porcine model compared consumption of

coconut oil, fish oil, and olive oil on LPS concentrations [83]. Pigs fed a high

saturated fat meal (coconut oil) had a 2-fold increase in circulating endotoxin

compared to those fed fish and vegetable oil. In addition, fish oil-treated ex vivo
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porcine ileum transported less endotoxin than control or the other fatty acid-treated

groups [83].

Not only the type of food can impact microbiota composition, intestinal barrier,

and thus the level of endotoxemia, but the time of eating can also impact endotoxemia

through its impact on intestinal and liver circadian rhythms. It is well known that the

time of eating impacts intestinal circadian rhythm [7, 49]. We recently showed that

disruption of circadian rhythms in mice causes intestinal hyperpermeability and

endotoxemia [131]. We have also found that disruption of circadian rhythms by

light/dark phase inversion in mice on high-fat diet causes dysbiosis (unpublished

data). It is intriguing that core circadian genes like Per and disruption of circadian

organization have been proposed to be involved with PD pathology [145]. Thus, it is

reasonable to consider that time of eating could be an important factor for PD course.

Further studies are needed to assess the impact of circadian rhythms and impact of

time of eating on PD symptoms and PD course. In the meantime, it is prudent to

suggest that patients with PD consider consuming majority of their daily calorie

during sun light (breakfast and lunch) in order to optimize circadian alignment.

While this evidence is limited, it is tempting to think that these aforementioned

dietary factors can influence PD through this gut-mediated mechanism. We now

understand the importance of the gut microbiota and how its disruption, specifically

through dietary intake, can have negative health impacts. As our recent work

indicates that microbiota differs between those with PD and healthy controls

(unpublished data), it is essential to continue to research specific foods and dietary

patterns that can improve gut health for PD risk reduction.

3.3.2 Probiotics, Prebiotics, and Synbiotics to Modulate Gut Health
and Systemic Inflammation

While modulation of the health of the GI tract by whole foods is of primary

importance, it is possible that dietary supplementation may be beneficial in some

individuals. Supplementation of probiotics, prebiotics, and synbiotics has recently

been investigated for their ability to beneficially modulate gut milieu and systemic

health.

The World Health Organization (WHO) defines probiotics as “live microorgan-

isms which when administered in adequate amounts confer health benefits to the

host” [148]. These live microorganisms generally are comprised of various bacte-

rial strains such as the lactic acid-producing bacteria within Lactobacillus,
Bifidobacterium, and Streptococcus strains [40], but technically include other

microorganisms such as yeast. Strains within these groups of bacteria are selected

due to their ability to reach the large intestine, promote bacterial growth, and

produce related beneficial effects. Probiotics are available in both food and supple-

ment form and are increasingly in demand due to the marketing opportunity made

available by recent research supporting their health benefits. Most commonly,

probiotics are found in specific yogurts with added bacterial strains beyond that

found as a result of normal fermentation. Also, multiple supplements are available
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to consumers; however, until specific strains and quantity of those strains are

identified as being most appropriate for gut health and specific health conditions,

supplementation may not be as beneficial.

Gibson et al. first introduced the concept of prebiotics in 1995 as a way to

increase the survival rate of probiotics in the GI tract [54]. Since then, the definition

has evolved, and in 2010, Gibson et al. defined prebiotics as “a selectively

fermented ingredient that results in specific changes, in the composition and/or

activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host

heath” [53]. In order for a dietary ingredient be labeled a prebiotic, it must meet

certain criteria. Nondigestibility of the prebiotic needs to occur in the small

intestine for the prebiotic to reach the lower GI tract, fermentability has to be

demonstrated, and the prebiotic has to function as a selective substrate and stimu-

late the growth of the microbiota. Presently, there are a limited number of prebiotics

which meet these criteria of reaching the lower GI tract; fructooligosaccharides

(FOS), inulin, galactooligosaccharides (GOS), and lactulose meet these criteria as

these prebiotics are selective towards bifidobacteria and lactobacilli [111]; how-

ever, more recent identification of butyrate-producing strains exist, which are

promoted through prebiotic supplementation. With this and other new findings,

those substances categorized as a prebiotic are likely to change. As with probiotics,

prebiotics can be consumed as supplements or added to foods. Frequently inulin or

fructooligosaccharides will originate from chicory root, and will be listed as such

on food labels. While bananas, onions, garlic, and artichokes are examples of foods

that naturally contain prebiotic fiber, most appreciable amounts of prebiotics are

found through adding prebiotics to cereals, cereal bars, breads, and yogurt drinks

during food production.

A synbiotic is the combination of a probiotic and a prebiotic. Not only do the

synbiotics promote growth of the resident microbiota in the host, but they also

promote the survival of the new microbiota from the added probiotic strain; the

prebiotic can promote the growth of both the resident microbiota and the

supplemented probiotic [66]. For example, a particular strain of bifidobacteria

may be coupled with GOS as GOS can promote the growth of bifidobacteria both

originating from the supplement or in the GI tract. Currently, the majority of

synbiotic foods available on the market are yogurts or dairy drinks, but synbiotics

are also available in a supplement form.

Probiotics

The benefits that probiotics impart on the host are dependent on the strain and the

quantity of probiotic consumed. If the right strain is taken in adequate quantities,

probiotics can beneficially modify microbiota, stimulate the production of SCFA,

specifically butyrate, as well as improve intestinal barrier function.

In vitro experiments have identified bacterial isolates (Lactobacillus plantarum
299, L.rhamnosus HN001, and Bifidobacterium lactis) that increase transepithelial
electrical resistance (TEER) in Caco-2 cells challenged with 1 % penicillin–
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streptomycin, indicating tight junction integrity [6]. Incubation of T84 cells with

Lactobacillus casei DN-114 001 protected against the increase in paracellular

permeability induced by Escherichia coli as assessed by TEER, as well as by

monitoring zonula occludens-1 distribution [101]. Additional research has

supported the use of Lactobacillus for promotion of normal intestinal permeability

[2], as well as both lactobacillus and bifidobacterium for inflammation reduction in

RAW 264.7 macrophages [112].

In vivo experiments, primarily murine models, have been used to determine the

impact of probiotics on gut microbiota, barrier function, and endotoxemia. Mice fed

a high-fat diet for 5 weeks with Lactobacillus casei strain Shirota (Lcs) had lower

levels of lipopolysaccharide-binding protein (LBP) compared to the control fed a

high-fat diet without Lcs, indicating reduced high-fat diet-induced endotoxemia

through probiotic consumption [92]. In addition, supplementation of Bifidobacteria
adolescentis in rats improved gut barrier function and reduced bacterial transloca-

tion and endotoxemia after thermal injury; plasma endotoxin was significantly

negatively correlated with Bifidobacteria counts (r¼�0.4912 p< 0.001)

[143]. This was supported in a study by Chen et al; rats fed a high-fat diet (72 %

fat from corn oil and lard) supplemented with Bifidobacterium spp. had lower levels

of endotoxemia, metabolic endotoxemia and intestinal inflammation compared to

the high-fat group ( p¼ 0.006 and p< 0.001, respectively) [29].

While specific probiotic strains reduce intestinal permeability in vitro and in

animal models, limited evidence exists in humans. Supplementation of Lactobacil-
lus casei Shirota did not improve intestinal permeability in those with metabolic

syndrome [71]. In 41 preterm infants, adding 2� 107 cfu/g Bifidobacterium lactis
decreased intestinal permeability. Compared to matched preterm infants without

provision of Bifidobacterium lactis, the lactulose/mannitol ratio was significantly

lower in the probiotic group compared to the control group after 30 days of

supplementation [129]. In relation to the interconnectivity of the brain and the

gut, recent research has focused on probiotic supplementation and mood [12],

anxiety [107], and brain activity [135]. Chronic ingestion of a fermented milk

product containing five probiotic strains for 4 weeks modulated brain activity,

providing evidence of the potential for probiotics to influence brain–gut interac-

tions, especially in the context of PD. However, to date, there is no study that

provided any direct evidence for use of probiotics in PD.

Prebiotics

The commensal gut microbiota thrive on the substrates that escape absorption in the

small intestine and are available for colonic bacterial fermentation [147]. These

substrates, or prebiotics, can improve and stabilize the composition of gut

microbiota, which can lead to fortification of the intestinal barrier. In addition to

decreasing intestinal permeability, prebiotic effects also include reduction of met-

abolic endotoxemia, reduction of obesity risk, and reduction of metabolic syndrome

risk [111].
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In ob/ob mice, oligofructose fed for 5 weeks significantly decreased Firmicutes

and increased Bacteroidetes phyla, as well as changed 102 distinct taxa. Also, the

prebiotic diet improved glucose tolerance, increased L cells, and reduced fat-mass

development, oxidative stress, and low-grade inflammation ( p< 0.05) [45]. High-

fat-fed mice (60 % fat) fed oligofructose for 8 weeks had improved leptin sensi-

tivity, improved glucose tolerance, reduced fat mass, and increased muscle mass

compared to the control group ( p< 0.05) [45].

In addition, oligofructose restored the levels of Bifidobacteria in high-fat-fed

mice (72 % fat from total energy) which negatively correlated with endotoxemia

(r¼�0.41, p¼ 0.025) [21]. Oligofructose can also increase intestinal epithelial

ZO-1 and occludin as assessed by immunofluorescence analysis [22]. This benefi-

cial effect of prebiotics may be mediated in part through a mechanism involving

increases in GLP-2 production, thus improving gut barrier during obesity and

diabetes [22]. In rats fed an enteral formula (18.5 g protein, 53.5 g carbohydrate,

17.5 g lipid) with GOS, Bifidobacteria and sIgA levels were significantly higher in

the GOS-fed group compared to the enteral-fed group without GOS. In addition,

small intestinal epithelium apoptosis was lower ( p< 0.01) and occludin was higher

( p< 0.01) in the GOS-fed group after 7 days compared to control, indicating that

GOS can significantly improve intestinal barrier function in rats [152].

While animal models provide important mechanistic insight, dietary interven-

tions, including probiotics and prebiotics, can have divergent impacts in humans.

Intake of 2.5, 5.0, 7.5, or 10 g/d of short-chain fructooligosaccharides (scFOS) for

7 days increased Bifidobacteria compared to the placebo group (p< 0.03) in

40 human volunteers. While subjects experienced significantly more bloating

during scFOS consumption at doses of 2.5 and 5 g/day ( p¼ 0.03), no significant

increases in bloting were experienced at doses of 7.5 and 10 g/day [13]. A mix of

16 g inulin and oligofructose (50/50 mix) for 3 months in obese women increased

Bifidobacterium and Faecalibacterium prausnitzii; these bacteria also negatively

correlated with serum LPS levels ( p< 0.05), indicating that consumption of a

prebiotic lad to modest changes in host metabolism as evidenced by the correlation

of certain bacterial species with metabolic endotoxemia [36].

Vulevic et al. conducted a crossover study to examine the effects of a trans
galactooligosaccharide mixture on gut microbiota, immune function, and markers

of metabolic syndrome in overweight adults (BMI> 25 kg/m2) that had >3 risk

factors for metabolic syndrome. After 6 weeks and at the end of the study

(12 weeks), B-GOS increased the number of bifidobacteria in the feces and

decreased Bacteroides spp. and C. histolyticum ( p< 0.0001). C-reactive protein

was lower at the end of 12 weeks in the B-GOS group ( p< 0.0012), and sIgA was

significantly greater in the B-GOS group at treatment end compared to the placebo

group ( p< 0.0001) [140]. Intake of GOS at 0.0, 2.5, 5, or 10 g of GOS by 18 healthy

subjects for 3 weeks each increased bifidobacteria in the 5 g ( p< 0.05) and the 10 g

( p< 0.001) GOS groups compared to the control group. The bifidogenic effect was

inversely correlated with the bifidobacteria levels at baseline, indicating that the

subjects that started with lower numbers of bifidobacteria had a higher potential for

the prebiotic to induce a 100–1,000-fold increase [31]. In a crossover study, a total
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of 27 volunteers consuming bread with arabinoxylan oligosaccharide for 3 weeks

had increased SCFA, specifically 70 % higher butyrate, than at the end of the

treatment period of bread without the added arabinoxylan oligosaccharides

( p¼ 0.05). In healthy volunteers consuming inulin-enriched pasta for 5 weeks,

serum zonulin was lower and serum GLP-2 was higher when compared to baseline

and the control pasta group without inulin [113].

While the importance of the brain–gut axis is known, and that the microbiota

impact this relationship, investigation of prebiotics to impact the brain–gut axis is

limited. Intake of GOS in patients with irritable bowel syndrome resulted in lower

anxiety scores than at baseline [126]. The apparent beneficial impact of prebiotics

on gut microbiota, barrier function, and endotoxemia shows promise that prebiotics

may also play a role in modulating the ENS and reduce neuronal oxidation and

inflammation. However, to date, there is no study that provides any direct evidence

for use of prebiotics in PD.

Synbiotics

Because a synbiotic contains both a probiotic and a prebiotic that is intended to

increase that probiotic, synbiotics should be more beneficial compared to its

prebiotic and probiotic counterparts. Van Zanten et al. examined the effects of

eight different synbiotic combinations on the composition and activity of human

fecal microbiota. The well-studied probiotic Lactobacillus acidophilus NCFM was

combined with either isomaltose, cellobiose, raffinose, or an oat β-glucan
hydrosylate. Another commonly used probiotic Bifidobacterium animalis subsp.

lactis B1-04 was combined with melibiose, xylobiose, raffinose, or maltotriose. All

combinations of the synbiotics were tested in a model of the human colon; all

combinations significantly increased both Lactobacillus acidophilus NCFM and

Bifidobacterium animalis subsp, lactis B1-04 ( p< 0.05). Also, all of the synbiotic

combinations significantly decreased the ratio of Bacterioidetes/Firmicutes
( p< 0.05). Short-chained fatty acid levels increased, specifically acetic and butyric

acid by three- to eightfold compared to the control ( p< 0.05). The decrease in the

ratio of Bacterioidetes/Firmicutes correlated with the increase of acetic and butyric
acid production ( p¼ 0.04 and p¼ 0.03 respectively) [139].

Baffoni et al. conducted two trials on chickens to test the impact of a prebiotic or

a synbiotic on modulating the gut microbiota with an increase in beneficial bacteria

such as bifidobacteria and lactobacilli with a decrease in the pathogenic bacteria

Campylobacter jejuni. Campylobacter spp. was significantly decreased in the

synbiotic group after 14 days of supplementation, and the reduction was maintained

even after the washout period ( p< 0.05) [10].

Reddy et al. investigated if the combination of synbiotics, antibiotics, and

mechanical bowel preparation (MBP) would preserve intestinal barrier function

during colorectal surgery in a randomized control trial. Approximately half of the

88 surgical patients enrolled received synbiotics, consisting of 15 g oligofructose

and 4� 109 of Lactobacillus acidophilus, Lactobacillus bulgaricus,
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Bifidobacterium lactis BB-12, and Streptoccocus thermophiles. The researchers

took two bowel samples to determine bacterial translocation and intestinal perme-

ability was determined using a sugar test. The synbiotic group had the lowest

incidence of bacterial translocation ( p< 0.001) after surgery as measured by

urine sugar test, but there was no difference in intestinal permeability between

groups [109]. A total of 20 patients with at least a 4-day ICU stay with intragastric

tube feedings were provided synbiotics (1010 Pediococcus pentosaucus 5–33:3,

1010 Lactococus raffinolactis 32–77:1, 1010 Lactobacillus paracasei subsp

paracasei 19, 1010 Lactobacillus plantarum, and 2.5 g of β glucan, inulin, pectin,

and resistant starch), as well as a mixture of micro and macronutrients. After 7 days,

intestinal permeability decreased in the synbiotic group ( p< 0.05) [4]. However, to

date, there are no studies that provide any direct evidence for use of synbiotics

in PD.

4 Conclusions

Parkinson’s disease is the second most common neurodegenerative disease of

aging, and is characterized by neuronal inclusions comprised of α-synuclein aggre-
gates contributing to debilitating motor and non-motor symptoms. Parkinson’s

disease is thought to be caused by neuronal oxidative stress, and more recently, it

has been suggested that this oxidative stress may originate in the GI tract and be the

initial site for neuronal damage; this is based in part on the exposure of the GI tract

to potentially injurious factors such as bacterial products capable of inducing

oxidative stress. Those with PD have been shown to have increased intestinal

permeability, intestinal α-synuclein aggregates, and increased bacterial transloca-

tion and oxidative stress. While impact of diet on PD risk is limited, it is suggestive

that diets high in saturated fat from animal sources have a negative impact, and

unsaturated fats, and foods containing antioxidants may be protective as evidenced

by analysis of dietary patterns. Altering PD course through dietary means is

difficult, and further experimentation should be done to determine if this modula-

tion is impactful; however, potential exists for fibers such as prebiotics to benefi-

cially modify the gut milieu, reducing constipation in individuals with PD. Due to

the potential role of the gastrointestinal barrier in exposure to injurious factors,

therapeutic intervention through whole foods, dietary patterns, and supplemental

nutrition (probiotics, prebiotics, and synbiotics) may positively impact intestinal

milieu and result in reduced inflammation and oxidation and reduced risk for PD.
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Chapter 12

Eat to Heal: Natural Inducers of the Heme
Oxygenase-1 System

Matheus Correa-Costa and Leo E. Otterbein

1 Introduction

Tissue injuries can be assessed by a number of factors including hypoxia, drug

toxicity, diabetes, shock, and hormonal axes such as the renin–angiotensin system,

among others. Most of these lesions are characterized by increased oxidative stress,

exaggerated inflammatory sequelae, and pro-fibrotic stimuli that can lead to organ

damage and failure if not resolved efficiently. These factors influence local homeo-

stasis and can increase cell death and/or transdifferentiation. In response to changes

in the environment, both intra- and extracellular, nature designed intricate and

effective solutions, hardwired into all cells that offer elaborate defense mechanisms

against overwhelming conditions where the cell is placed in peril. The greater the

resilience of the tissue compartment the better the cell is able to manage the

stressful insult, and with it, better recovery from disease. Induction of HO-1 is

one such modality that offers profound protective effects and may explain one

mechanism as to how immune tolerance is achieved [1].

Heme (iron protoporphyrin IX) is part of the prosthetic group contained within

various proteins and enzymes including hemoglobin, nitric oxide synthase, mito-

chondrial oxidases, cytochrome P-450, cyclooxygenase, and catalase. Heme is

involved in critical functions, such as oxygen delivery, mitochondrial respiration,

and signal transduction [2, 3]. As such the need for heme processing is essential.

HO, described by Tenhunen in 1968, is the rate-limiting enzyme responsible for

heme degradation [4]. Heme oxygenase cleaves the heme ring, and, as a result,

biliverdin is generated, releasing as products iron and carbon monoxide (CO) in

equimolar quantities. Biliverdin is subsequently converted to bilirubin by biliverdin

reductase, which is located as a surface receptor and intracellular kinase in most

cells [5, 6].
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The HO enzyme exists as one of the two distinct isoforms, HO-1 (inducible) and

HO-2 (constitutive), which are products of different genes. HO-1 is primarily

localized in microsomes and is ubiquitously present in mammalian tissue, and

under normal physiologic conditions, its expression is relatively low. The only

exception is the spleen, where HO-1 is important for the recycling of iron from

senescent erythrocytes. Recent studies show that HO-1 deficiency affects stress

erythropoiesis and leads to reduced function and viability of erythrophagocytosing

macrophages, resulting in tissue damage and iron redistribution [7, 8]. Importantly,

these HO-1-deficient animals are exquisitely sensitive to stress of any kind, but

particularly so to heme.

HO-2 also functions as a regulator of cell function. It is present in mitochondria

and generally expressed in the brain, testis, endothelium, nephron distal segments,

liver, and gastrointestinal tract where it regulates vasomotor tone, neuronal signal-

ing, and circadian rhythms [9]. HO-2 shares 40 % of amino acid homology with

HO-1 [10].

2 Protective Effects of Heme Oxygenase-1

Of the two isoforms, HO-1 is the most studied and, when increased, provides greater

cytoprotection. Therefore in the context of this chapter, we focus on this isoform.

HO-1 functions primarily as an antioxidant indirectly first by removing excessive

heme from the milieu, the iron of which can act as a pro-oxidant by generating

hydroxyl radicals through Fenton chemistry [11]. The free iron released from heme

stimulates the expression of ferritin, an intracellular iron reservoir, that sequesters the

iron [12]. Furthermore, biliverdin and bilirubin formation display important antiox-

idant effects, as both molecules are potent peroxyl radical scavengers [13].

The effects of HO-1 on proliferation are intriguing as there are clear differences

depending on the cell type. Antiproliferative effects are observed in primary cells

including vascular smooth muscle cells, T cells, and epithelial cells but also cancer

cells [14–18]. A recent study showed that rapamycin could induce HO-1 expres-

sion, and this upregulation led to protection in a model of pulmonary disease. The

same work showed that smooth muscle cells derived from animals deficient for

HO-1 were not responsive to the antiproliferative or the cell cycle inhibition actions

of rapamycin [19]. Moreover, studies have shown that a possible mechanism related

to inhibition of cell growth by HO-1 could be the upregulation of inhibitory protein

p21cip; HO-1-deficient mice show profound hyperproliferative effects in response

to vascular trauma [15]. Interestingly, this pathway also contributes to anti-

apoptotic effects of HO-1 [20, 21]. HO-1 can also exhibit pro-proliferative effects

when induced in endothelial cells and hepatocytes [22, 23]. Such difference must be

due to the fact that, in some diseases, proliferation is beneficial for organ recovery.

A recent study showed that treatment with CO increased the protein levels of

cyclins D1 and E, with reduction of p21, leading to a better outcome after

hepatectomy [22].
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HO-1 can also act as an immunomodulatory enzyme, especially in T

lymphocyte-mediated diseases [24]. Burt et al. proposed that HO-1 contributes to

T cell homeostasis, maintaining these lymphocytes in a nonactivated state while

pharmacological inhibition of HO-1 leads to T cell activation and proliferation [18].

The importance of HO-1 in Treg cells was described by a couple of works showing

that CD4þCD25þ Treg cells constitutively express HO-1 and that this enzyme

could be induced by FoxP3 expression in CD4þCD25� cells, thereby conferring the

regulatory phenotype [25, 26]. Others showed in a murine model of colitis that

treatment with hemin, to induce HO-1, resulted in expansion of Treg cells while

decreasing the levels of Th17-related molecules. Inhibition of HO-1 led to opposing

effects and aggravated the disease [27]. The immunomodulatory effect of HO-1

also influences the priming of T cells. Cheng et al. showed that deletion of HO-1 or

use of small interfering RNA in dendritic cells promoted upregulation of major

histocompatibility complex class II, enhancing the alloantigen presentation to

CD4þ T lymphocytes [28].

Finally, the anti-inflammatory properties of HO-1 are perhaps the most well

described. Many have shown that the upregulation of HO-1 can directly inhibit the

inflammatory process [29–31] triggered by seminal early studies by Nath and Tyrell

who showed that administration of heme or hemoglobin in vitro or in vivo prior to

insult resulted in modulation of cellular activation and inflammatory or stress

responses. These works led to a tidal wave of reports showing that induction of

HO-1 decreased the intensity of the inflammatory response and in many cases

completely prevented it from occurring with decreased gene expression and protein

expression of the prototypical inflammatory cytokines, e.g., TNF-α, IL-6, and
IL-1β. Importantly, what was later discovered was that in these cells and animal

models, the decrease in pro-inflammatory molecules corresponded to a concomitant

increase in protein levels of immunomodulatory or anti-inflammatory cytokines

and mediators such as IL-10 [32]. How HO-1 was able to regulate for example

defined response remained clouded for years and was concluded to be due to the

enzymatic degradation of pro-inflammatory heme molecule and generation of

bilirubin. It was not until the early 2000s that each of the products of HO-1 activity

possessed powerful modulating effects on cells and tissues. The reader is directed to

excellent reviews in the literature on carbon monoxide and the bile pigments, the

discussion of which is outside the scope of this chapter [33–35].

As described above, free heme is a highly toxic compound driven by the release

of ferrous (þ2) iron, which increases the oxidative burden and stress to the cell.

Heme when present increases the influx of leukocytes into organs during experi-

mental inflammation [36]. In addition, heme is part of many pro-inflammatory

enzymes, like cytochrome p450 mono-oxygenases, inducible nitric oxide synthase,

and cyclooxygenase [37]. Therefore HO-1, by removing excessive free heme,

influences the optimal activity of those enzymes and their ability to contribute

actively to inflammation [38]. Degradation of heme by HO-1 liberates equimolar

concentrations of carbon monoxide, biliverdin, and iron, each of which has pro-

found effects on the cell to regulate function. HO-1 expression, induced by heme, is

in part regulated by p38 mitogen-activated protein kinase (MAPK). Lee
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et al. demonstrated that inhibition of this kinase results in impaired HO-1 induction,

and consequently, the protection of human proximal tubular epithelial cells is

abrogated [39]. One of the main chemoattractant proteins in the body is monocyte

chemotactic protein-1 (MCP-1), which can recruit leukocytes to the site of injury

(mainly macrophages, memory T cells, and natural killer cells) [6]. A recent study

in mice showed that renal epithelial cells directed to constitutively overexpress

HO-1 presented with decreased production of monocyte chemotactic protein-1

(MCP-1) after stimulation with albumin [40]. Moreover, in mice deficient in

HO-1 the basal levels of MCP-1 were significantly increased compared to wild-

type animals and the levels become even higher in response to nephrotoxic and

ischemic insults [41]. Importantly, given that HO-1 is accepted as a stress-

responsive enzyme, recent work showed that urinary HO-1 could be a useful and

sensitive biomarker for tubule interstitial inflammatory damage in renal

diseases [42].

HO-1 has largely been associated with organ protection, and one of the most

studied models where beneficial effects have been most clearly observed is in

ischemia reperfusion injury (IRI). In this model there is a break of ionic homeo-

stasis due to ATP depletion within the cells, which then initiate programmed cell

death. All this is accompanied by an initial intense vasoconstriction, increase in

adhesion molecules, reactive oxygen species production, and expression of

pro-inflammatory cytokines and chemokines [43]. HO-1 induction with cobalt

protoporphyrin prophylactically has been shown to protect animals from IRI [44,

45] [46]. Administration of cobalt chloride protected rats from IRI by increasing

hypoxia inducible factor (HIF)-1α, erythropoietin (EPO), glucose transporter

(Glut)-1, and vascular endothelial growth factor (VEGF) resulting in diminished

macrophage infiltration into the kidney and renal protection [47].

Provided above are a few examples of what has been very well dissected in the

literature regarding the salutary effects of having elevated HO-1 expression in

models of acute and chronic inflammation. There is no doubt that HO-1 has direct

links and regulates the innate inflammatory response. The role of HO-1 as a unique

immunomodulatory enzyme system continues to be described, and the reader is

referred to excellent reviews that summarize the voluminous number of reports and

reviews dedicated to this remarkable enzyme [38, 48–52].

3 Natural Heme Oxygenase-1 Inducers

Like many other investigators that study inducible gene expression, the field of

heme oxygenases has struggled with how best to take advantage of this powerfully

beneficial system. As described above, administration of heme to induce HO-1

carries potential detrimental effects and is costly. Gene therapy remains fraught

with many roadblocks. Many pharmaceutical companies are investing in small-

molecule inducers. One possibility with potential promise is to bypass the enzyme

itself and administer one or more of its products. While potentially useful this
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brings its own challenges to substitute for the pleiotropic effects of endogenously

generated products by HO-1 itself. What has exploded however is the discovery that

a variety of natural compounds present in foods and plants are proving to be very

effective inducers of HO-1 in a non-stressful and non-cytotoxic way when taken

through the diet (Fig. 12.1). Some of these substances have been used for centuries

as alternative medicines and are constituents of a variety of spices and herbs used

Fig. 12.1 Natural inducers of heme oxygenase-1 promote protection and improve health
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worldwide [53, Table 12.1]. The remainder of this chapter is dedicated to

discussing what is known regarding natural inducers of HO-1.

4 Curcumin

Curcumin, a member of the ginger family, is a popular Indian spice turmeric. This

compound comes from a plant named Curcuma longa, and if it is not used fresh it is
usually boiled for several hours and dried in hot ovens. Afterwards, the plant is

ground into a deep orange-yellow powder commonly used as a spice in curries.

Typically found as a yellow powder, it is used as food flavoring primarily by

tropical Asian cultures. It is perhaps the most infamous well-studied natural inducer

of HO-1. In vitro administration of curcumin upregulates HO-1 in a dose- and time-

dependent manner [54]. Although it is known that excessive curcumin is cytotoxic,

its beneficial effects at low doses are well studied.

Zhong et al. showed in macrophages that curcumin decreases the generation of

MCP-1 in a dose-dependent manner and attenuated the generation of reactive

oxygen species (ROS) induced by LPS. After treating cells with an HO-1 inhibitor,

the protective effects of curcumin were abrogated [55]. Further, curcumin treatment

was able to upregulate HO-1 and significantly decreased ROS production, TNF-α
expression, and paw thickness in a carrageenan-induced model of paw inflamma-

tion. Moreover, the combined treatment of curcumin with quercetin (another

flavonoid) enhanced the protective effects of HO-1 overexpression [56].

Curcumin-induced HO-1 expression has been shown to be protective in different

organs, indicating that the compound is not tissue specific. To corroborate this fact,

in a model of high-fat diet, curcumin, via Nrf2 (a master regulator of HO-1

transcription), was able to attenuate glucose intolerance and increase insulin sensi-

tivity. The authors suggested that this phenomenon was due to the HO-1

Table 12.1 Natural inducers of HO-1 and subsequent cytoprotective effects

Compound Mechanism of action Reference(s)

Curcumin # ROS, TNF-α, and lipid peroxidation [52–54]

Flavonoids # ROS production [59–62]

Isothiocyanates #Inflammatory cytokines and nuclear translocation of p65 [63, 64]

Resveratrol "Glucose signaling and #apoptosis, iNOS, lipid peroxidation,

VSMC proliferation, and inflammation

[66–71]

Ginkgo biloba #Liver damage [73]

Garlic-derived

organosulfur

compounds

#Apoptosis [75]

Polyunsaturated

fatty acids

"Activation of antioxidant response elements and #MMP9

expression

[76, 77]

Kahweol (coffee) #ROS production and apoptosis [79]
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upregulation and subsequent decrease in mitochondrial oxidative stress [57]. Cerny

and colleagues showed that administration of curcumin decreased transaminase

levels in a liver failure model. In this same work, they observed higher HO-1 levels

in liver tissue after curcumin treatment and, as a consequence, decreased levels of

lipid peroxidation and increased hepatocyte viability [58].

Curcumin showed protective effects in a simulated cold preservation and warm

reperfusion injury model of the liver. To further elucidate the role of HO-1 in this

model, the authors performed an in vitro H2O2-mediated oxidative injury. In such

set of experiments, the authors pretreated hepatocytes with curcumin and then they

added H2O2 and observed that such compounds were able to upregulate HO-1 and

provided a striking protection. The addition of ZnPPIX (a known selective HO-1

inhibitor) decreased cell protection otherwise afforded by curcumin treatment. On

the other hand, addition of CO or bilirubin in the same conditions listed above

substituted and reversed the deleterious effects of HO-1 inhibition [59]. Finally, one

of the possible molecular mechanisms that could be mediating this protection and

attenuating cell death is linked to autophagy. Such a process, which allows cells to

degrade and recycle damaged organelles, proteins, and other cellular components,

has been shown to be upregulated by HO-1 [60]. Curcumin induced a beneficial

form of autophagy in human endothelial cells in an oxidative stress model of H2O2

exposure, enhancing cell survival and potentially becoming a therapeutic target for

the treatment of oxidative stress-related diseases [61].

5 Flavonoids

Flavonoids are natural antioxidants that belong to the family of polyphenols. These

compounds are largely present in plants and include citrus fruits, berries, onions,

parsley, legumes, green tea, and cocoa and are used as food or medicine. It has been

well described that flavonoids possess important therapeutic properties [53]. One of

the most studied flavonoids is quercetin, which has been shown to ameliorate

ethanol-induced hepatic disease through HO-1 induction via p38 and ERK/Nrf2

pathways [62]. In a model of hepatic injury, Huang and collaborators observed that

the flavones (a subtype of flavonoids), chrysin, apigenin, and luteolin, were pro-

tective and decrease oxidative burst with a concommitant dose-dependent

upregulation of HO-1 mediated through ERK and Nrf2 signaling. Again, the

cytoprotective effects were reversed when HO-1 is inhibited [63]. Soy isoflavone

treatment was linked to improvement of antioxidant capacity in the mitochondria of

rat brain damaged by injection with beta-amyloid peptides. This compound was

even able to reverse beta-amyloid-induced downregulation of Nrf2 and HO-1

protein expression in brain tissue [64]. Corroborating this observation, the same

protective pattern was observed with anthocyanin-enriched bilberry extracts, which

halted oxidative stress and improved HO-1 levels in cultured human retinal pigment

epithelial cells [65].
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6 Isothiocyanates

Isothiocyanates are important inducers of cytoprotective enzymes, beyond known

anti-carcinogenesis properties. Brassica vegetables including cabbage, cauliflower,

broccoli, and Brussel sprouts contain high concentrations of glucosinolates, which

are the precursors of isothiocyanates. To test that such protection is, at least in part,

mediated by HO-1, an elegant series of experiments in macrophages stimulated

with endotoxin showed that addition of allyl-isothiocyanates reduced inflammatory

cytokines as well as decreased the nuclear translocation of p65, a subunit of NF-κB,
a well-described transcription factor that regulates the expression of many inflam-

matory proteins. The addition of the compounds was accompanied by increased

protein expression of Nrf2 and subsequent upregulation of HO-1 [66]. Of note, in

another study the authors showed that although this compound is an effective

inducer of Nrf2, it has little effect on delaying Nrf2 protein degradation as a

potential mechanism of action [67]. Ernst and collaborators evaluated the Nrf2-

inducing activity of the isothiocyanates iberverin, iberin, and cheirolin. The authors

were able to assess that all compounds effectively induced Nrf2 nuclear transloca-

tion with consequent expression of HO-1 and γ-glutamylcysteine synthetase

(γGCS), an enzyme important in regulation of the antioxidant glutathione. More-

over, the same study suggested that Nrf2 induction occurred via ERK-dependent

signal transduction [68].

7 Resveratrol

Resveratrol (3,5,49-trihydroxystilbene) is a natural polyphenol and a member of the

phytoalexin family. It can be isolated from the roots of Japanese knotweed, but it is

also present in several foods, like peanuts, blueberries, bilberries, and red grapes.

And last, but not least, resveratrol constitutes one of the valuable ingredients in red

wine. Its cytoprotective effects have been shown to modulate several diseases with

the HO-1 system shown to be an important mediator of such protection. Resveratrol

has been linked to slowing of the aging process by inducing members of the sirtuin

gene family [69, 70]. HO-1 expression has been linked to both sirtuins and

resveratrol, so one might posit by inference that HO-1 induction is in some manner

linked to the aging process by modulating oxidative stress.

In an in vitro model of pancreatic injury, Cheng and collaborators showed that

treatment with resveratrol increased glucose uptake and activated insulin signaling,

through an Nrf2–HO-1-dependent pathway [71]. Further, in a model of

doxorubicin-induced cardiomyocyte toxicity, the use of resveratrol increased

HO-1 expression and decreased cardiac injury and cardiomyocyte apoptosis. The

use of an HO-1 inhibitor in combination with resveratrol abrogated all protective

effects [72].
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Resveratrol has also been shown to induce the Nrf2/HO-1 axis, with consequent

beneficial effects in experimental models of neurotoxicity [73], cerebral ischemic

injury [74], and neointimal formation [75]. Further, Yu and colleagues described

that the resveratrol-mediated protection, in a model of hepatic injury after trauma-

induced hemorrhage, was due to Akt-dependent upregulation of HO-1 [76]. In

contrast, a recent report showed that resveratrol could also downregulate HO-1.

In a lung adenocarcinoma model, the authors showed that the presence of resver-

atrol inhibited HO-1 expression with a subsequent decrease in cell migration and

invasion and consequently reduced cancer metastasis [77].

8 Other Natural Compounds

In addition to the compounds discussed so far, recent published reports have shown

that the list of substances that are natural inducers of HO-1 continues to expand. In a

model of ethanol-induced liver disease, treatment with Ginkgo biloba extracts

reduced liver damage in an HO-1-dependent manner [78]. Also, garlic-derived

organosulfur compounds (diallyl sulfide, diallyl disulfide, and diallyl trisulfide)

were able to upregulate HO-1, through an Nrf2-dependent pathway in human

hepatoma cells [79] as well as in cardiomyocytes resulting in caspase-3 cleavage

inhibition and decreased glucose-induced apoptosis [80].

Further, polyunsaturated fatty acids present in fish oil, especially

eicosapentaenoic acid and docosahexaenoic acid (DHA), have been linked to

favorable outcomes. Yang et al. showed that DHA treatment upregulates HO-1,

increases Nrf2 nuclear translocation, and promotes higher antioxidant response

element (ARE) activation measured by luciferase reporter activity. Inhibition of

HO-1 in the majority of instances led to a reversal of these protective effects

[81]. Using the same DHA compound, another group described that

DHA-induced HO-1 expression promoted a decrease in the expression of matrix

metalloproteinase 9 (MMP9), thereby reducing the metastatic capacity of cancer

cells [82].

Perhaps the most popular beverage in the world is coffee. Scientifically speak-

ing, it is a complex chemical mixture composed of several compounds. Part of it is

formed by the caffeic acid esters, including caffeic acid phenethyl ester and caffeic

acid ethyl ester. Such substances have been described as being able to promote a

tremendous increase in HO-1 expression in macrophages. Moreover, the authors

established that the ability of the caffeic acid esters to upregulate HO-1 is dependent

upon their chemical structures, rather than their reductive activity [83]. Further-

more, another compound present in coffee with known cytoprotective properties is

kahweol. Hwang and Jeong showed in a model of neuronal disease that the use of

kahweol reduced ROS production and apoptosis and, consequently, cell death. The

authors showed that this protection was achieved by HO-1 induction in a mecha-

nism dependent on PI3K/MAPK pathways, especially AKT and p38 [84].
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9 Conclusions

Cultures worldwide have come to take advantage of the flora and fauna in their

geographical locale and take advantage of the “fruit of the land” not only for

sustenance but also for health applications. Aloe and witch hazel and the sap of

tropical trees known as dragon’s blood have been used for millennia for curing cuts,

for itchiness, and as disinfectants. How these agents act in and on the body

including the ones that are consumed, as described above, continues to be explored.

There is no doubt that their effects on the body must change the expression of gene

families including the ones that have come to be labeled as protective. The

increased incidence of infectious and chronic diseases worldwide has raised the

importance of searching for novel therapeutic targets. Since the 1960s, the HO-1

system has been widely studied and its cytoprotective mechanisms linked to better

outcomes in a wide spectrum of diseases. Although most of the research focuses on

purified elements for simplicity’s sake, the alternative medicine approach has

shown that natural elements can be terrific sources of innovative “laboratory sub-

stances” with highly specific biologic effects. In this chapter, we elucidated just a

few of the powerfully protective effects when Nrf2/HO-1 pathway is activated and

provided some examples of natural agents that clearly and simply function by

taking advantage of the great healing power of HO-1 in the cell and tissue. In this

era of industrialized food, perhaps the path of healing is to simply find a reliable

farm and learn from the generations before us that have benefited off what the land

has to offer.
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SARM Selective androgen receptor modulator

GH Growth hormone

IGF-1 Insulin-like growth factor-I

PIF Proteolysis-inducing factor

TGF-beta Transforming growth factor-beta

1 Introduction

Cachexia is a syndrome associated with severe illnesses such as cancer, AIDS,

chronic heart or kidney disease, chronic obstructive pulmonary disease, chronic

infection, sepsis and cancer.

Following statistics, it is the main cause of death in 22 % of cancer patients [1].

It is a complex metabolic syndrome, present in disease, characterised by loss of

body weight (at least 5 %), loss of muscle and fat tissue, inflammation and anorexia.

Cancer cachexia is also associated with metabolic alterations such as insulin

resistance and increased muscle protein breakdown [2]. A recently published

consensus states: “Cachexia, is a complex metabolic syndrome associated with

underlying illness and characterised by loss of muscle with or without loss of fat

mass. The prominent clinical feature of cachexia is weight loss in adults (corrected

for fluid retention) or growth failure in children (excluding endocrine disorders).

Anorexia, inflammation, insulin resistance and increased muscle protein break-

down are frequently associated with cachexia. Cachexia is distinct from starvation,

age-related loss of muscle mass, primary depression, malabsorption and hyperthy-

roidism and is associated with increased morbidity” [3].

The loss of body weight is due to a combination of two main factors: on the one

hand, anorexia, mediated by an increase in brain serotonergic activity, and on the

other, metabolic disturbances in the host (increased energy inefficiency, insulin

resistance, abnormal carbohydrate metabolism, adipose tissue dissolution, hypertri-

glyceridemia and muscle wasting) [2], and therefore, the use of total parenteral

nutrition is not the solution to avoid loss of body weight.

With these two factors in mind, the therapeutic strategies have to focus on how to

increase food intake and/or reversing catabolism and increasing anabolism in the

cancer patient.

2 Latest Developments in Cachexia Drug Discovery

2.1 Appetite Stimulants

Megestrol acetate: Tomı́ska et al. [4] showed that an oral MEGACE suspension

given to patients with far advanced cancer, suffering from anorexia and weight loss,
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improved their appetite and their quality of life. In animals, megestrol acetate

increases food intake, lean mass and improves physical performance [5].

Megestrol acetate and medroxyprogesterone (MPA) are synthetic, orally active

derivatives of the naturally occurring progesterone. In humans these compounds

stimulate appetite, caloric intake and nutritional status, as seen in several clinical

trials (Table 13.1). In the case of megestrol acetate, the associated weight gain is

probably partially mediated by the neuropeptide Y, a potent central appetite

stimulant (Fig. 13.1). MPA has also shown to reduce the in vitro production of

serotonin and cytokines (interleukin-1-b (IL-1), interleukin-6 (IL-6) and TNF-α) by
peripheral blood mononuclear cells of cancer patients. These humoral factors

participate in the cachectic-anorexic response. Oral suspension of the progesta-

tional agent may be particularly useful in patients with far advanced disease, unable

to take larger amount of pills.

Ghrelin: The orexigenic mediator ghrelin—an endogenous ligand for the growth

hormone secretagogue receptor—has a key role in increasing appetite. In addition

to increasing food intake, an experimental study [6] has shown that ghrelin

improves cardiac structure and function, and diminishes the development of cardiac

cachexia in CHF, suggesting that ghrelin has cardiovascular effects and regulates

energy metabolism through growth hormone-dependent and -independent mecha-

nisms (Fig. 13.1). Administration of ghrelin may be a new therapeutic strategy for

the treatment of severe CHF. A phase II randomised, placebo-controlled, double-

blind study, using an oral ghrelin mimetic, showed an improvement in lean body

mass, total body mass and hand grip strength in cachectic cancer patients [7]. Cur-

rently there are several clinical trials with ghrelin (Table 13.1). In particular,

ANAMORELIN [7] (Helsinn Therapeutics), a ghrelin receptor agonist, adminis-

tered orally, is on a phase II clinical trial for non-small-cell lung cancer patients

(Table 13.1). Asubio Pharmaceuticals is involved in a phase II clinical trial with

synthetic human ghrelin (SUN11031) in COPD patients (Table 13.1).

Other appetite stimulants present in clinical trials are PH 284 Pherin Pharma-

ceuticals (Phase II, end-stage cancer patients) (Table 13.1) and AEZS-130, an oral
peptidomimetic growth hormone secretagogue (Aeterna Zentaris), now in phase I

(Table 13.1). The exact target of PH 284 is not published yet.

MC4 receptor antagonists: Melanocortin (MC4) receptor is involved in the

anorexigenic cascade, decreasing the neuropeptide Y and therefore food intake.

The use of MC4 receptor antagonists has been proved to be effective in preventing

anorexia, loss of lean body mass (Fig. 13.1) and basal energy expenditure in

experimental animals suffering from cachexia [8]. Santhera pharmaceuticals have

developed several orally active MC4 receptor antagonists for the treatment of

cancer cachexia (Table 13.1). SNT207707 and SNT209858, two recently discov-

ered, non-peptidic, orally active MC-4 receptor antagonists and BL-6020/979, an

orally available, selective and potent MC-4R antagonist have all increased food

intake and attenuated the reductions in body weight and muscle mass in mice

bearing the C26 colon adenocarcinoma [9]. Unfortunately, only animal data are

available.
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Cyproheptadine: anorexia may be mediated by an increased serotonergic activ-

ity in the brain (Fig. 13.1) [10]. Therefore, attempts to block serotonin activity

during cancer cachexia have involved the use of cyproheptadine, a serotonin

antagonist usually used for the treatment of allergies, and quite common as appetite

stimulant. However, it did not prevent progressive weight loss in patients with

advanced malignant disease [11]. A pilot study demonstrates that cyproheptadine

treatment increases bodyweight in cachectic children [12].

2.2 Counteracting Pro-cachectic Cytokines

Cytokines act on multiple target sites such as bone marrow, myocytes, hepatocytes,

adipocytes, endothelial cells and neurons, where they produce a complex cascade of

biological responses accountable for the wasting in cachexia. The cytokines that

have been implicated in this cachectic response are TNF-α, IL-1, IL-6 and

interferon-gamma (IFN-γ). They share the same metabolic effects and their activ-

ities are closely interrelated. In many cases, these cytokines exhibit synergic effects

when administered together. Therefore, therapeutic strategies have been based on

either blocking their synthesis or their action (Fig. 13.1).
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Fig. 13.1 Anti-cachectic therapies based on stimulating appetite and interacting with both

pro-cachectic and anti-cachectic cytokines
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Thalidomide (α-N-phthalimido glutarimide) is a drug that brings back sad

memories. Indeed, its use for treatment against morning sickness in pregnant

women in the late 50s and early 60s caused over 10,000 cases of severe

malformations in newborn children. However, its use is being revised, since it

has been demonstrated that it suppresses TNF-α production in monocytes in vitro

[13] and normalises elevated TNF-α levels in vivo. A randomised placebo control

trial showed that the drug was well tolerated and effective at attenuating loss of

weight and lean body mass in patients with advanced pancreatic cancer [14]

(Fig. 13.1). Lenalidomide is a thalidomide derivative developed by Celgene,

approved for treating myelodysplastic syndromes, and is now being tested in a

phase II clinical trial with advanced cancer patients (Table 13.1).

Other anti-cytokine strategies such as Etanercept (fusion protein directed against
p75 TNF-α receptor) [15] showed, that patients with several advanced malignan-

cies, treated with Etanercept, combined with an antitumor agent (Docetaxel) had

more strength and tolerated better the antitumoural treatment (Fig. 13.1). There is

also the work of Steffen et al. [16] showing that anti-TNF reduces rat skeletal

muscle wasting in cardiac cachexia.

A humanised monoclonal anti-IL-6 antibody (Alder, Table 13.1) increases

haemoglobin levels and prevents muscle wasting in cancer patients (Fig. 13.1).

Targeting both TNF-α and IL-6 by means of a broad-spectrum peptide nucleic acid
(OHR 118, OHR Pharma), resulted in increases in body weight and physical

performance in patients with advanced cancer (Table 13.1).

The degree of the cachectic syndrome is dependent not only on the production of

the catabolic pro-inflammatory cytokines but also on the so-called anti-inflamma-

tory cytokines, such as interleukins-4, -10 and -12 (IL-4, IL-10, IL-12). Interleukin-
15 (IL-15) has been reported to be an anabolic factor for skeletal muscle [17], this

cytokine is able to decrease protein degradation, the rate of DNA fragmentation and

increase the mitochondrial uncoupling protein 3 expression in skeletal muscle,

these being the most important trends associated with muscle wasting during cancer

cachexia [17] (Fig. 13.1). In vitro experiments using isolated incubated muscles and

muscle cells, support the in vivo observations and indicate that the action of the

cytokine is direct upon skeletal muscle [18]. Although no clinical data are available,

treatment of cachectic experimental animals with IL-15 leads to an improvement of

muscle mass and performance (Table 13.1).

Cell growth may be controlled by the interaction of different types of prosta-

glandins: large amounts of these compounds are found both in tumour tissue and

plasma from cancer patients. Several studies have examined the role of cyclooxy-
genase (COX) inhibitors on tumour growth and cachexia. The results obtained are

not quite clear: Homem-De-Bittencourt et al. report that indomethacin, ibuprofen

and aspirin markedly inhibit tumour growth and reduce anorexia in rats bearing the

Walker-256 carcinosarcoma [19], McCarthy and Daun (using the same rat tumour

model) also report a decrease in tumour weight but no reduction of anorexia or body

weight loss [20]. Hussey and Tisdale have studied the effects of the COX-2

inhibitor meloxican on tumour growth and cachexia in the murine adenocarcinoma

MAC16 [21]. The results suggest that the inhibitor is able to effectively attenuate
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cachexia, possibly having a direct effect on skeletal muscle protein degradation

(Fig. 13.1). Celecoxib, a COX-2 inhibitor developed by Pfizer (Table 13.1), has

proved to be very efficient in a phase II study involving cachectic cancer patients.

Treatment with the inhibitor increased not only lean body mass but also grip force

and quality of life.

2.3 Other Drugs

The n-3 Polyunsaturated fatty acids (PUFA), as found in fish oil, have been

proposed as very active in reducing either tumour growth or the associated wasting,

especially of the adipose tissue. The interest in n-3 PUFA was originated from the

observation that populations consuming a diet rich in PUFA’s showed the lowest

incidence of certain types of cancer. Most of the results with PUFA’s showed a

decrease of tumour cell proliferation and/or aggressivity. An improvement in lean

body mass and in the quality of life was observed in a randomised double blind trial

using a protein and energy dense N-3-fatty acid-enriched oral supplement [22],

supplying 2.2 g or more of eicosapentaenoic acid (EPA)/day (Fig. 13.2). However,

data arising from a large multicentre double-blind placebo-controlled trial indicate

that EPA administration alone is not successful in the treatment of weight losing

patients with advanced gastrointestinal or lung cancer [23]. A meta-analysis based

on five trials concluded that there were insufficient data to establish whether oral

EPA was better than placebo [24]. Comparisons of EPA combined with a protein

energy supplementation versus a protein energy supplementation (without EPA) in

the presence of an appetite stimulant (Megestrol Acetate) provided no evidence that

EPA improves symptoms associated with the cachexia syndrome in patients with

advanced cancer. But several recent trials suggest that EPA-enriched nutrition

results in positive outcomes in cancer patients [25, 26]. In CHF, fish oils have

anti-inflammatory effects by decreasing TNF-α production and increasing body

weight.

β2-adrenergic agonists have important effects on protein metabolism in skeletal

muscle, improving protein deposition (Fig. 13.2). Apart from the older β2-adren-
ergic agonists, such as clenbuterol, recently newer drugs such a formoterol have

taken their place. Its use in experimental animals has proved to reverse muscle

wasting associated with cancer [27], with the positive aspect of a lower toxicity.

The anti-wasting effects of the drug were based on activation of the rate of protein

synthesis and on the inhibition of the rate of muscle proteolysis. Northern blot

analysis revealed that formoterol treatment resulted in a decrease in the mRNA

content of ubiquitin and proteasome subunits in gastrocnemius muscles, together

with a decreased proteasome activity. Probably the main antiproteolytic action of

the drug is the inhibition of the ATP-ubiquitin-dependent proteolytic system

[27]. The β2-agonist also diminished the increased rate of muscle apoptosis present

in tumour-bearing animals, and improved muscle regeneration by stimulating

satellite cells. It seems as if formoterol has a selective, protective action on heart
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and skeletal muscle by antagonising the enhanced protein degradation present in

cancer cachexia, being a potential therapeutic tool in pathologic states where

muscle protein hypercatabolism is critical, such as in cancer cachexia or other

wasting diseases [27]. Acacia Pharma has undertaken a phase IIa study investigat-

ing the effects of a combination of formoterol and megestrol acetate (APD 209) in

13 cachectic cancer patients. Six of the seven patients that completed the treatment

had better muscle size and strength, and three patients had improved levels of daily

physical activity (Table 13.1).

The administration of erythropoietin (EPO) to cancer patients has a clinical

benefit in patients with haemoglobin at or below normal levels. Kanzaki et al. [28]

have shown that the positive therapeutic effects of EPO in cancer cachexia in

tumour-bearing mice are due to an improvement in metabolic and exercise capacity

via an increased erythrocyte count, and to the attenuation of cachectic manifesta-

tions by decreasing production of the cachexia-inducing cytokine, IL-6 (Fig. 13.2).

ACE-Inhibitors: angiotensin I and II induce directly protein degradation in

skeletal muscle (Fig. 13.2). In CHF, inhibition of the angiotensin-converting

enzyme (ACE) by administration of enalapril reduces the risk of weight loss and

it is linked to improved survival. The results showed increased subcutaneous fat

(increased skin fold thickness) and greater muscle bulk (increased mid-upper arm

and tight circumferences), and increased plasma albumin and haematocrit. ACE

inhibitors like captopril seem to act by decreasing the production of TNF-a by

mononuclear cells, a mechanism to account for the beneficial effects (body weight)
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in heart failure patients. The highly lipophilic ACE inhibitor imidapril attenuated
the development of weight loss in mice bearing the MAC16 tumour, suggesting that

angiotensin II may play a role in the development of cachexia in this model

(Angiotensin II stimulates protein degradation through induction of the ubiquitin–

proteasome pathway). Ark Therapeutics is involved in a phase III study involving

non-small-cell lung cancer patients, with VITOR, another type of ACE inhibitor

(Table 13.1).

Beta-blockers can reduce body energy expenditure and improve efficiency of

substrate utilisation (Fig. 13.2). CHF patients treated with β-blockers can increase

total body fat mass and partially reverse cachexia [29]. A phase II clinical trial with

non-small-cell lung cancer patients is now under development with MT-102

(PsiOxus Therapeutics) (Table 13.1).

The treatment with derivatives of gonadal steroids has important side effects

such as masculinization, fluid retention and hepatic toxicity. Their benefits are that

they promote nitrogen protein accumulation, counteracting the progressive nitrogen

loss associated with cachexia (Fig. 13.2). A double-blind placebo-controlled trial

suggests that nandrolone decanoate is effective in the treatment of cachectic AIDS

patients, increasing lean body mass, quality of life and decreasing anti-AIDS

treatment toxicity [30].

A recent clinical trial using a non-steroidal selective androgen receptor modu-
lator (SARM) with the aim to increase lean body mass and improve physical

performance in healthy elderly subjects was successful and therefore the potential

activity of this class of drugs should be taken into consideration for cancer cachexia

[31] (Fig. 13.2). Selective androgen receptor modulators are promising as a new

function promoting anabolic therapy for several clinical conditions that manifest

muscle wasting. Different SARMs are being developed and essayed in clinical trials

at the present moment (Ostarine, GTx (Enobosarm), GLPG0492 (Galapagos) and

PS178990 (Pharmacopeia)).

Administration of growth hormone (GH) results in an increase in whole body

and skeletal muscle protein synthesis (Fig. 13.2). Animal studies have shown that

administration of recombinant rat GH to methylcholanthrene-induced sarcoma-

bearing rats resulted in considerable stimulation of protein synthesis without

changing tumour growth, protein degradation or host composition [32]. On the

other hand, Wolf et al. have reported improvements in whole body protein balance

in cancer patients receiving GH [33]. The same research group has demonstrated

that exogenous GH can attenuate weight loss and preserve host body composition in

tumour-bearing rats undergoing chemotherapy with doxorubicin without stimulat-

ing tumour growth [34]. In untreated HIV patients, growth hormone deficiency

contributes to loss of lean and fat mass. Administration of growth hormone suc-

cessfully reverses this wasting process. GH treatment resulted in an improved

nitrogen balance and attenuation of weight loss. Similarly, AIDS patients seem to

suffer from GH resistance that can be reverted by either low dosages of recombi-

nant insulin-like growth factor-I (IGF-1) or GH administration. O’Driscoll

et al. [35], in a pilot study involving GH administration at the end stage of cardiac

failure, suggest that GH has a beneficial effect in cardiac cachexia. However, the
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results of these case studies must be interpreted with caution, since spontaneous

improvement in functional and haemodynamic capacity cannot be ruled out.

Theratechnologies has introduced a GH releasing factor analogue (ThGRF), and

it is at present in different phase II trials in hip fracture and COPD patients

(Table 13.1).

Myostatin, a transforming growth factor-beta (TGF-beta) super-family member,

is a negative regulator of muscle growth and development; it is related to several

forms of muscle wasting, such as the severe cachexia seen in AIDS and liver

cirrhosis. McFarlane et al. [36] have demonstrated that myostatin induces cachexia

through an NF-kB-independent mechanism by antagonising hypertrophy signalling

through regulation of the AKT-FoxO1 pathway. Anti-myostatin strategies are

therefore promising and should be considered in future clinical trials involving

cachectic patients (Fig. 13.2). From this point of view, a phase II study in

sarcopenic patients has been undertaken using AMG 745, a peptibody against

myostatin (Table 13.1). Acceleron Pharma has performed a phase I study with

ACE031, a soluble Activin receptor type IIB (Table 13.1).

The corticotropin releasing factor 2 receptor (CRF2R) has many biological

activities, such as modulation of the stress response and the prevention of skeletal

muscle wasting. Therefore, the use of CRF2R agonists has proved successfully in

partially blocking muscle wasting in several models of experimental cachexia [37]

(Fig. 13.2). There is, however, a lack of clinical data.

As previously stated, enhanced protein degradation in skeletal muscle during

cachexia involves activation of the ubiquitin–proteasome system in muscle. There-

fore, inhibitors of the ubiquitin–proteasome system such as peptide aldehyde,

lactacystin and β-lactone—which effectively can block up to 90 % of the degrada-

tion of normal proteins and short-lived proteins in the cells—are potential drugs for

the treatment of muscle wasting (Fig. 13.2). The problem is the high toxicity of such

compounds, since they are not specific inhibitors of the proteolytic system in

muscle tissue. A substance that can specifically block myofibrillar protein degra-

dation in skeletal muscle has not yet been discovered. From this point of view, the

discovery of specific muscle ubiquitin ligases (Atrogin-1 and MuRF1) is particu-

larly interesting since a tissue-specific inhibition of ubiquitin–proteasome proteol-

ysis could be achieved if inhibitors of these ligases were discovered.

3 Summary

It remains quite clear that nutritional strategies are insufficient to reverse the

cachexia syndrome. Therefore, if we want to increase food intake, we have to

include pharmacological strategies [38].

Another very important factor is timing: in cancer patients, any therapy (nutri-

tional/metabolic/pharmacological) has to be started at the earliest stage of the

disease, before the weight loss reaches an irreversible state. Muscle mass and its

loss is a keystone in cancer cachexia, due mainly to an increased degradation of the
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myofibrillar protein (due to an activation of the ubiquitin-dependent proteolytic

system), accompanied often by a decreased protein synthesis. Therapeutic

approaches should aim for the neutralisation of the enhanced myofibrillar protein

degradation. Unfortunately no definite mediators of cachexia have been identified,

and it is difficult to apply a therapeutic approach based on the neutralisation of the

potential mediators involved in muscle wasting (i.e. TNF-α, IL-6, IFN-gamma,

proteolysis-inducing factor (PIF)) because many of them are involved at the same

time in promoting the metabolic alterations and the anorexia present in the cancer

patients.

Before designing any strategy, the molecular mechanisms of these mediators

have to be identified (Table 13.1). This is especially relevant because different

mediators may be sharing the same signalling pathways. Both tumoural and

humoral (mainly cytokines) factors—that trigger cachexia—may share common

signalling pathways and, therefore, it is not very likely that a single drug will block

the complex processes involved in cachexia. In addition, some of the mediators

proposed for the wasting syndrome also play a role in the regulation of body weight

in absolutely opposite states such as obesity. In conclusion, the future treatment of

the cachectic syndrome will no doubt combine different pharmacological

approaches.

Future treatments will combine anabolic and anticatabolic strategies, being

ghrelin agonists and SARMS amongst the most promising ones. Also the blockage

of myostatin could lead to the inhibition of muscle wasting.

Key Terms and Definitions

Cachexia Physical wasting associated with loss of body weight and muscle

mass, and often associated to severe diseases.

Muscle

wasting

Loss of muscle mass caused either by disease or by lack of use, with

corresponding decreases in strength and mobility.

Myostatin Growth differentiation factor involved in the regulation of muscle

size, being a potent inhibitor of muscle growth since embryonic

development and throughout life.

Ghrelin Peptide hormone produced by epithelial cells lining the fundus of

the stomach and epsilon cells of the pancreas that is a stimulant of

appetite and feeding, and also a stimulator of growth hormone

secretion.

Cytokines Regulatory proteins mainly released by immune cells and that act as

intercellular mediators in the generation of the immune response,

although some of them also have important metabolic effects.
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Chapter 14

Individualized Tumor Therapy: Biomarkers
and Possibilities for Targeted Therapy
with Natural Products

Thomas Efferth

1 The Resistance Problem

Together with surgery and radiotherapy, chemotherapy is a main pillar of cancer

treatment. Preoperative chemotherapy is used to reduce tumor size to enable either

complete resection of an otherwise non-resectable tumor or the conservation of

organs (e.g., breast) in patients with large tumors. Postoperative chemotherapy aims

to kill residual tumor cells in the body that could not be removed by surgery and that

could cause metastasis and refractory tumors. For decades, clinical trials have

sought to optimize combination therapies for various tumor entities. Although

many tumors respond to chemotherapy, not all patients benefit from anticancer

drugs. Tumors often develop resistance to drugs and concentrations sufficient to

eradicate all cancer cells in the body cannot be achieved due to the severe side

effects of chemotherapy. Tumors may either be intrinsically resistant to drugs at the

beginning of treatment (primary drug resistance) or initially be responsive to drugs

and then develop resistance in the course of subsequent treatment cycles (secondary

drug resistance). Some tumor types are sensitive to chemotherapy and have high

rates success, e.g., childhood leukemia and testicle tumors. Other tumor types, such

as brain tumors, pancreatic carcinoma, and kidney cancer, do not respond well to

anticancer drugs. Even tumors of the same organ, but of different histology may

respond differently. For instance, small-cell lung carcinoma (SCLC) is frequently

sensitive to chemotherapy initially, but develops transient resistance after subse-

quent treatment cycles (secondary resistance), whereas non-small-cell lung carci-

noma (NSCLC) is generally non-responsive to chemotherapy at the time of

diagnosis (primary resistance). Other tumor types show mixed reactions with a

good response in some patients and unresponsiveness in others, e.g., breast cancer.

Our knowledge of which patients will benefit from chemotherapy is still
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incomplete, although much progress has been made in cancer biology to better

understand the mechanisms of drug resistance during the past three decades.

Therefore, the remaining great challenge in clinical oncology is to predict which

individuals will benefit from preoperative or postoperative chemotherapy. Because

of the great heterogeneity between patients, tumors, and even between cells within

the same tumor, the response rates of advanced cancers to chemotherapy can vary

from 10 to 90 % [1].

Significant efforts have been undertaken to identify prognostic markers that

indicate the course of a disease and allow one to estimate patient outcomes and

survival times [2]. Pathoclinical parameters have been developed that are clinically

well established, e.g., tumor histology, tumor size, lymph node involvement, distant

metastasis, age and comorbidity of the patient. These parameters are used to

estimate the probability of progression-free survival (PFS) or overall survival

(OS) of large cohorts of patients suffering from the same tumor type. These

parameters indicate the survival likelihoods for subgroups of patients, but they do

not predict the benefit of a specific therapy to any given individual patient.

In contrast to prognostic markers, predictive markers indicate the probability

that an individual patient will to respond to a certain therapy [3]. Predictive markers

may serve to select an anticancer agent for optimal response in a single tumor.

Patients that are predicted not to respond to a specific chemotherapy could receive

an alternative regimen with a greater probability of success. If predictive markers

indicate that no possible successful treatments exist, a decision could be made not

to treat a patient with chemotherapy, thus avoiding unnecessary toxicities and

improving the patient’s quality of life. Therefore, the aim of identifying and

applying predictive markers is to improve effectiveness of tumor eradication and

to avoid unnecessary toxicity to normal organs. Hence, predictive markers contrib-

ute not only to treatment success but also to improved quality of life for the patient.

By avoiding ineffective treatment of unresponsive tumors, predictive markers may

also help to decrease health-care costs—an aspect that is worth considering in the

context of today’s ever-growing health-care systems.

2 Chemosensitivity Testing

The idea of finding predictive markers for individualized cancer therapy was

broached six decades ago [4]. Four decades ago, researchers investigated the use

of assays to determine drug responsiveness of isolated tumor cells in vitro and to

make predictions about the sensitivity or resistance of the patient [5–9]. Unfortu-

nately, none of these first generation chemosensitivity assays were clinically

established for routine diagnosis. Issues of practicality, e.g., long readout times,

handling of radioactive material, necessitated new assays that were easier to

perform. An important observation was that tumors resistant to one drug tend

also to be resistant to other drugs [10]. At a time when the phenomenon of

multidrug resistance was still unknown and most clinicians trusted combination
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therapy to overcome resistance, some oncologists were reluctant to accept the

resistance profiles (“oncogrammes”) to a panel of drugs obtained by these

chemosensitivity tests.

More recently, differential staining assays and ATP bioluminescence assays to

measure tumor cell death have been developed. These assays are better accepted in

the scientific community than the early chemosensitivity assays [11]. These newer

assays have demonstrated high sensitivity and reproducibility and significant asso-

ciations between in vitro results and drug response in patients for several tumor

types [12–14].

Owing to the fact that suspensions of isolated tumor cells might not sufficiently

reflect drug response in three-dimensional tumor issues, more sophisticated test

models have been developed. For example, some assays use three-dimensional

spheroid tumor cultures [15, 16] or measure in vitro metabolic activity of tumor

biopsy pieces or slices, which retain the original tissue architecture of a tumor [17,

18].

3 Biomarkers

A plethora of investigations have focused on determining the prognostic value of

cancer-related proteins or mRNA sequences. Drug resistance genes (ABC trans-

porters, glutathione S-transferases, DNA topoisomerases, etc.), apoptosis genes

(Bcl2-family members, survivin, Fas, caspases, etc.), DNA repair genes (MGMT,
BRCA1/2, ERCC1), oncogenes (RAS, EGFR, HER2, MYC, etc.), tumor suppressor

genes (TP53, RB1, etc.), metastasis genes (NM23 etc.), hormone receptors (ER,

PR), and many others have been investigated [19–21]. Except for some examples

(ER, HER2, EGFR, RAS) no reliable biomarkers are clinically available to predict

the drug response of a tumor in an individual patient. One major difficulty in

identifying biomarkers with prognostic value is the technical problems

encountered.

Immunohistochemistry is a simple technique that is well suited for routine

clinical application. However, it requires highly specific antibodies that do not

cross-react with anything else in the sample, and the antibodies must be suitable for

paraffin-embedded tissue. Guidelines exist for standardized semiquantitative eval-

uation of immunostainings. There is unexpectedly high variability between immu-

nohistochemistry results obtained in different laboratories necessitating a

standardized consensus on the assay protocol [22–24].

It turned out that multiple factors rather than single factors are involved in

determining drug resistance and that single biomarkers are generally not sufficient

to predict drug response. Investigations into the multifactorial nature of drug

resistance take advantage of the development of the so-called “-omics” technolo-

gies (genomics and proteomics, which determine gene and protein expression levels

at the proteome, transcriptome, and genome levels). The hope of such investiga-

tions is that obtaining a comprehensive picture of the gene and protein expression
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levels will facilitate the identification of factors associated with drug sensitivity or

resistance and improve biomarkers profiles for predictive diagnosis in individual

patients.

In the following paragraphs, we report on our experiences and results in the quest

for novel prognostic and predictive biomarkers.

3.1 DNA Biomarkers

3.1.1 Cytogenetic Aberrations

Chromosomal aberrations (amplifications, deletions, translocations, etc.) have been

shown to contribute not only to the development of cancer but also to the survival

time of patients and tumor response to therapy [25–27].

In 118 kidney carcinomas, classical cytogenetic staining techniques (DAPI

staining and G-banding) revealed that a gain of band 31 to the end of the long

arm of chromosome 5 (5q31qter) was significantly associated with better patient

prognosis [28].

A more advanced technique is comparative genomic hybridization (CGH),

which is able to detect unbalanced chromosomal aberrations (gains and losses of

DNA). In preliminary investigations of sensitive and drug-resistant leukemia cell

lines, we found that aberrations at the chromosomal loci 5q13, 5p13p15.2, 9p21,

9q31 and 14q21qter were associated with resistance to cytostatic drugs [29, 30]. We

also investigated solid tumors by means of CGH in terms of prognostic value for

survival time and predictive value for response to therapy. Among a total number of

35 oral squamous cell carcinomas, a gain at 7p12 was associated with decreased

disease-free survival of patients in a subset of tumors [31]. The chromosomal locus

7p21 harbors the gene for the epidermal growth factor receptor (EGFR), the
abundance of which is a well known prognostic factor in oral squamous cell

carcinoma and other tumor types [32–34].

3.1.2 Single Nucleotide Polymorphisms

Variations in the genetic code appear frequently in human genomes [35]. It was

estimated that up to 250,000 single nucleotide polymorphisms (SNPs) are located

within or close to coding regions of genes [36]. Therefore, the determination of

SNPs and their relation to prognostic and predictive power has been a thriving field

of research in the past years [37, 38].

Treatment of estrogen receptor-positive breast cancer by tamoxifen is a mainstay

in the management of this disease. In the body, tamoxifen is metabolized to

4-OH-tamoxifen and 4-OH-N-desmethyltamoxifen (endoxifen), which binds to

estrogen receptors with much higher affinity than tamoxifen itself. The conversion

takes place in the liver by the drug-metabolizing enzyme cytochrome P450

278 T. Efferth



monooxygenase isoform 2D6 (CYP2D6). Women with reduced CYP2D6 activity

due to single nucleotide polymorphisms produce significantly less endoxifen and

derive little benefit from tamoxifen therapy, despite positive estrogen receptor

status in their tumors [39, 40]. Hence, CYP2D6 polymorphisms contribute to

drug resistance and may serve as a predictive biomarker for therapy success.

Multidrug resistance is a severe obstacle to successfully curing cancer patients

via chemotherapy. Drug efflux transporters, such as those of the ATP-binding

cassette (ABC) transporter family, pump cancer drugs out of cancer cells and

thereby increase survival of cancer cells. The best-known ABC transporter is

P-glycoprotein, which is encoded by the ABCB1/MDR1 gene [41, 42]. A total of

29 SNPs have been found in the human ABCB1/MDR1 gene, some of which are

thought to be of prognostic and predictive significance [43]. In colorectal carcino-

mas and acute lymphoblastic leukemias, we found that the C3435T polymorphism

in the ABCB1/MDR1 gene seemed to have no association with prognosis or

response to therapy [44, 45]. These results are in accordance with the controversy

surrounding the prognostic value of this particular SNP [46, 47].

3.1.3 DNA Methylation

One factor that influences gene expression epigenetically is the methylation of CpG

islands in gene promoters. Among a panel of approximately 8,000 CpG island

fragments, 694 CpG island loci were identified to be hypermethylated in 14 colo-

rectal tumors. One subpopulation showed high levels of hypermethylation, while

the other one revealed little or no methylation [48]. This result pointed to a role for

the known CpG island methylator phenotype (CIMP) in colorectal tumors [49]. It is

a matter of ongoing discussion that the CIMP phenotype may be useful as a

prognostic and predictive biomarker [50–52].

3.2 RNA Biomarkers

While in the past many investigations focused on the mRNA expression of single

genes, the advent of microarray technology has revolutionized clinical oncology.

Microarray analysis makes possible the identification of novel biomarkers and

entire gene profiles with prognostic and predictive value at a transcriptome-wide

level. Microarray technology led to the identification of novel tumors subtypes of

otherwise histologically homogenous subgroups. It has also resulted in the associ-

ation of gene expression profiles with response to chemotherapy and radiotherapy

[53–56].

As mentioned above, ABC transporters translocate a diverse array of substrates.

The human genome consists of 49 different ABC transporter genes, many of which

have still not been well characterized. We have developed a low-density microarray

with the human ABC transporters as a tool to investigate the role of known and
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novel ABC transporters in drug resistance in cancer cell lines [57]. Applying this

microarray to human biopsies, we found that acute myeloid leukemia (AML) cells

overexpressed the ABCA2, ABCA3, ABCB2, and ABCC10 genes in comparison to

healthy bone marrow samples [58]. Of them, ABCA3 expression was three times

higher in tumors of patients who did not achieve remission after chemotherapy than

in patients in remission. In clinical samples of t-cell acute lymphoblastic leukemia,

we also observed an overexpression of ABCA2 and ABCA3 mRNA [59].

3.3 Protein Biomarkers

For more than two decades, immunohistochemical analyses have been performed to

identify prognostic and predictive biomarkers to complement established

pathoclinical parameters (stage, grade, age, comorbidity, etc.). Over the years, it

has become more and more clear that no single biomarker is sufficient to fulfill the

requirements. One possibility to cope with the phenomenon of multifactorial drug

resistance is to use a battery of selected known markers for prognostic and predic-

tive evaluation in immunohistochemistry assays [60–62]. Another possibility is to

apply proteomic methods and to analyze clinical samples in a comprehensive

fashion [63–66]. Both approaches have advantages and disadvantages. Immuno-

histochemistry is easy to perform, but laborious and time-consuming. This tech-

nique can, however, be made considerably faster by the use of tissue arrays [67,

68]. Proteomic techniques need careful technical adjustment for reproducible

measurements and may produce a high background of nonrelevant signals. On

the other hand, novel markers can be identified via proteomics that might be

overlooked by conventional techniques.

In NSCLC, we investigated the value of immunohistochemical markers for

prognosis of survival, metastasis, and drug resistance. A total of 40 protein markers

involved in drug resistance, proliferation, apoptosis, angiogenesis as well as

oncoproteins and tumor suppressors were analyzed. The results of the immunohis-

tochemistry were subjected to hierarchical cluster analysis to correlate them with

the survival times of 216 patients. The expression profiles of FOS, TP53, RAS,

ERBB1, JUN, PCNA, Cyclin A, FAS receptor, and HIF1B were significantly

correlated with longer patient survival times [19]. This is of considerable clinical

relevance, since patients with NSCLC usually have a poor prognosis for survival.

The fact that a specific expression profile was associated with better long-term

outcome in lung cancer patients indicates that this approach may be useful for the

identification of lung cancer patients with differing prognoses who belong to

otherwise histologically homogeneous subgroups. Such delineations would bring

us one step away from generalized management of patients with NSCLC and one

step closer to improved management of smaller subgroups of patients with this

tumor type.

The prognosis of cancer patients is largely determined by the metastasis process.

In view of this fact, we investigated 130 patients suffering from NSCLC by
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immunohistochemistry and correlated the expression profiles identified by hierar-

chical cluster analysis with the metastatic status of the patients [20]. The expression

of JUN, ERBB2, MYC, cyclin D, PCNA, BFGF, VEGF, and HSP70 were signif-

icantly correlated with lymph node metastasis, whereas the expression of Caspase-

3, FAS and FAS receptor, and PAI were inversely associated with lymph node

involvement. Our result that specific expression profiles can be associated with

metastasis for NSCLC is in accordance with reports for other tumor types [69–73].

The in vitro response of 94 patients with NSCLC to doxorubicin was determined

to identify factors that indicate sensitivity or resistance to this cytostatic drug. By

hierarchical cluster analysis of immunohistochemical data of 40 proteins, three

different subgroups of tumors were identified [21], each with various expressions of

P-glycoprotein, thymidylate synthase, glutathione S-transferase-π, metallothionein,

O6-methylguanine-DNA-methyltransferase and major vault protein, VEGF, FLT1,

ECGF1, PCNA, cyclin A and microvessel density. Hence, three different protein

expression profiles correlating with doxorubicin resistance appeared in our analy-

sis. This may be taken as a clue that different resistance phenotypes exist in

NSCLC.

4 Targeted Therapy with Natural Products

4.1 Synthetic Lethality

One strategy is to take advantage of cancer-specific mutations that are not present in

normal tissues to specifically target and kill cancer cells. If two parallel pathways

both contribute to the same cellular process and one pathway is switched off in

cancer cells by a specific mutation, the second pathway may be pharmacologically

inhibited, which can lead to tumor cell death. Normal cells, which still have one

intact pathway, can escape the detrimental effect of this pharmacological interven-

tion [74, 75]. An illustrative example for cancer treatment by synthetic lethality is

the inhibition of PARP-1, which specifically kills cancer with mutations in the

BRCA1 or BRCA2 genes. Tumors with BRCA1/2 mutations have an impaired

ability to repair double-strand breaks by homologous recombination, and are highly

sensitive to inhibition of DNA-single strand break repair by PARP-1 inhibitors [76].

In addition to tumors harboring BRCA1 or BRCA2mutations, PARP-1 inhibitors

are also effective against tumors with mutations in other DNA repair genes such as

ATM, NBS1, and genes involved in phosphatase and tensin homologue (PTEN)

signaling [77].

In our own investigations, we focused on a tumor-specific chromosomal dele-

tion, another class of mutation that provides opportunities for synthetic lethal

treatment approaches. The short arm of band 21 of chromosome 8 is frequently

deleted (9p21del) in many tumor types [78, 79]. The methylthioadenosine phos-

phorylase (MTAP) gene is located at 9p21 in addition to a cluster of interferon
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genes and the tumor suppressor genes INK4A, INK4B, and ARF [80]. MTAP

maintains the adenosine pool necessary for DNA synthesis. This enzyme represents

a salvage mechanism for DNA synthesis inhibited by anticancer drugs such as

methotrexate [81]. Tumors with the 9p21 deletion cannot use the MTAP salvage

pathway and thus should respond well to methotrexate treatment. The use of

methotrexate for 9p21del tumors represents a synthetic lethal approach comparable

to PARP inhibitors for BRCA1/2-mutated tumors. However, tumors frequently

develop resistance to methotrexate, e.g., by overexpression of the dihydrofolate

reductase (DHFR) gene. Therefore, it would be valuable to identify other drugs that

inhibit DNA synthesis in MTAP-deleted tumors without being involved in DHFR-

mediated drug resistance. L-alanosine is a chemotherapeutic amino acid analogue

isolated from the bacterium Streptomyces alanosinicus. We found that

methotrexate-resistant, DHFR-overexpressing tumor cells are not cross-resistant

to L-alanosine [82, 83]. Therefore, L-alanosine may be more suitable than metho-

trexate for MTAP-mediated chemoselective treatment of tumors with 9p21

deletion.

4.2 Inhibitors of P-Glycoprotein

Inhibition of ABC transporter-mediated drug efflux was suggested three decades

ago [84]. However, synthetic compounds to inhibit P-glycoprotein-mediated efflux

have not yet been clinically established. Although many synthetic compounds have

been described as P-glycoprotein inhibitors [85], these compounds have demon-

strated unacceptably high toxicities in clinical trials. The reasons for these adverse

effects are as follows:

1. P-glycoprotein is also expressed in certain normal tissues, e.g., in the gastroin-

testinal tract, liver, kidney, blood–brain barrier. Hence, inhibition of

P-glycoprotein may affect not only tumors but also normal tissues [86].

2. Some P-glycoprotein inhibitors were initially developed for other applications.

If these drugs are used to block P-glycoprotein in tumors, their primary phar-

macological activity may appear as a side effect. For instance, the cardiac

activity of verapamil may cause cardiotoxicity when verapamil is used as a

P-glycoprotein inhibitor in cancer therapy.

3. Some P-glycoprotein inhibitors induce Phase II liver enzymes (cytochrome

P450 monooxygenases), which leads to metabolization and deactivation of

established anticancer drugs more efficiently than in standard therapy without

P-glycoprotein inhibitors. Hence, chemotherapy is more likely to fail with

possibly fatal consequences for patients.

The fact that mdr1a/1b�/� knockout mice are viable indicates that

P-glycoprotein inhibition may not affect vital functions of organisms [87]. There-

fore, continuing the search for P-glycoprotein inhibitors is merited. In particular,

the use of natural products, which are generally considered to be less toxic than
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synthetic drugs, should be considered. We initiated a search for P-glycoprotein

inhibitors derived from natural sources [88]. Bufalin from the toad Bufo bufo
inhibited P-glycoprotein efflux as well as transport of another ABC-transporter,

MRP1 [89]. In multidrug-resistant cancer cells, dihydroevocarpine, evocarpine,

evodiamine, rutaecarpine, and 1-methyl-2-undecyl-4-quinolone isolated from

Evodia rutaecarpa as well as geranylated furocoumarins isolated from the fruits

of Tetradium daniellii (Rutaceae) inhibited the export of calcein, a substrate of

P-glycoprotein and can be used as a fluorescent probe to monitor P-glycoprotein

activity [90, 91].

As P-glycoprotein is expressed not only in multidrug-resistant tumor cells but

also in endothelial cells of brain blood vessels, P-glycoprotein-inhibiting phyto-

chemicals may also compromise the integrity of the blood–brain barrier. Under

physiological conditions, the blood–brain barrier protects the brain from toxic

compounds taken up in food. However, it also inhibits drugs to treat brain cancer

or neurodegenerative diseases from entering the brain. Therefore, delivery of such

drugs can be improved by co-treatment with inhibitors of the blood–brain barrier.

Investigating 57 compounds isolated from medicinal plants used in traditional

Chinese medicine, we identified several P-glycoprotein inhibitors that increase

calcein uptake of porcine brain capillary endothelial cells (PBCEC) (baicalein,

bufalin, ent-16-atisen-19-oic acid, ent-15-antisen-19-oic acid, 4-methoxy[2,3-b]

quinolone, glycomine A, glycomine B, deoxyserofendic acid, shogaol) [92]. Inter-

estingly, two of these compounds inhibited P-glycoprotein-mediated calcein trans-

port but were not cytotoxic (ent-16-atisen-19-oic acid and 4-methoxy[2,3-b]

quinolone). Compounds that are nontoxic to PBCBC and human brain endothelial

cells are needed to improve uptake of drugs for Alzheimer’s or Parkinson’s disease.

Therefore, these two blood–brain barrier inhibitors may be interesting candidates

for therapy of neurodegenerative diseases. Furthermore, four out of eight tested

alkamides isolated from Echinacea angustifolia inhibited P-glycoprotein-mediated

calcein transport in PBCEC [93].

4.3 Non-Cross-resistant Phytochemicals

Another strategy to overcome multidrug resistance is to use compounds that cannot

be transported by P-glycoprotein. Such compounds should kill multidrug-resistant

cells with similar efficacy as drug-sensitive ones. In the past, it has been shown that

drugs from certain drug classes (e.g., alkylating agents and antimetabolites) are not

recognized by P-glycoprotein as substrates and that multidrug-resistant cells are not

cross-resistant to these drugs. This observation reinforces the relevance of combi-

nation regimens for cancer therapy. Application of drugs with different modes-of-

action can minimize the occurrence of cross-resistance and increase the success of

chemotherapy. It is reasonable to search for novel cytotoxic phytochemicals that

are not substrates of P-glycoprotein and whose modes of action are different from

classical anticancer drugs. Among the phytochemicals that did not reveal cross-
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resistance in P-glycoprotein-expressing cancer cells were maslinic acid, N-p-
coumaryl tyramine, and (E)-3-(4-hydroxyphenyl)-[2-(4-hydroxyphenyl)-ethyl]-
prop-2-enamide, all of which were isolated from plants used in traditional Chinese

medicine [94]. In addition, we have recently started to investigate phytochemicals

isolated from medicinal plants from African folk medicines [95–99, 101]. We

found that multidrug-resistant P-glycoprotein-positive tumor cells lacked cross-

resistance against several compounds from African plants, i.e.,

6,8-diprenyleriodictyol from Dorstenia dinklagei, isoxanthochymol from Garcinia
punctata, and guieranone A from Guiera senegalensis [98, 100–102].

4.4 Collateral Sensitivity of Multidrug-Resistant Cells

Remarkably, we found some phytochemicals that provoked hypersensitive

responses in multidrug-resistant cells as compared to their parental drug-sensitive

cell lines. This phenomenon, termed collateral sensitivity, is when a drug kills

otherwise drug-resistant cells at lower concentrations than are needed to kill drug-

sensitive cells. The compounds that revealed collateral sensitivity in our investiga-

tions were cantharidin, tetracentronside, 3-(2-hydroxyethyl)-1H-indole-5-O-β-D-
glucopyranoside, kaempferol, and gancaonin Q [10, 100]. Collateral sensitivity is

a long-known phenomenon of drug-resistant tumors and many synthetic drugs have

been described that invoke collateral sensitivity in resistant tumor cells [103,

104]. In fact, this phenomenon is not restricted to tumor cells and can also be

found in drug-resistant E. coli or Saccharomyces cerevisiae [105, 106]. Collateral

sensitivity of multidrug-resistant tumor cells towards natural products has not yet

been analyzed in detail.

Collateral sensitivity to drugs may be used to specifically eradicate multidrug-

resistant cells and therefore has been compared to the concept of synthetic lethality

[107, 108]. In synthetic lethality, normal cells are spared from the cytotoxicity of a

small molecule since it specifically targets a mutation solely present in cancer cells

(see above). In the context of multidrug resistance, collateral sensitivity to certain

drugs results in specific eradication of P-glycoprotein-expressing cells while spar-

ing normal cells.

4.5 Inhibitors of the Epidermal Growth Factor Receptor

The epidermal growth factor receptor (EGFR, c-ERBB1, HER1) is an important

oncogene in many cancer types with prognostic relevance in estimating survival

time and predictive value for the response of tumors to chemotherapy (see

Sects. 3.1 and 3.3). Together with three other members of this gene family

(HER2-4), EGFR regulates proliferation, differentiation, apoptosis, and

metastasis [109].
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In addition to its prognostic and predictive importance, EGFR is an exquisite

target for the development of therapeutic antibodies and small molecules. Recently,

it has clinically been recognized that EGFR-expressing tumors can develop resis-

tance towards EGFR-directed drugs either by the emergence of point-mutated

tumor subpopulations [110] or through mutations in downstream-signaling path-

ways. Thus, novel compounds are required for targeting EGFR-expressing tumors

resistant to established EGFR inhibitors. The idea that novel EGFR inhibitors able

to attack EGFR-mutated cancer cells has been recently validated in a high-

throughput screening [111].

Starting from a library of 2,400 phytochemical compounds used in traditional

Chinese medicine, a bioinformatical molecular docking approach was used to

identify a panel of 20 candidate compounds that bind to EGFR’s tyrosine kinase

binding domain [33]. One of these compounds, dicentrine, is an aporphine-type

isoquinoline alkaloid that preferentially killed EGFR-transfected cancer cells com-

pared to the non-transfected control cells [112]. Using transcriptome-wide mRNA

microarray analyses and bioinformatical pathway profiling, a number of signaling

pathways were associated with the preferential cytotoxicity of dicentrine in EGFR-

transfected cells including p53 signaling, BRCA1 damage response, G1/S and

G2/M cell cycle regulation, and the aryl hydrocarbon receptor pathway [112].

Camptothecin derivatives were also found to exert preferential cytotoxicity in

EGFR-transfected cells. Camptothecins are generally classified as DNA topoisom-

erase I inhibitors. Since the relationship between expression of DNA topoisomerase

I and response of clinical tumors to camptothecins is rather weak, it has been

suggested that other mechanisms may also play a role in camptothecin-mediated

cytotoxicity. Our molecular docking results showed that camptothecin and its

derivative, camptothecin 20-N,N-glycinate, bind to the same pharmacophore, albeit

to partially different amino acids, as the clinically established EGFR-inhibitor,

erlotinib [113]. Microarray analysis and pathway analysis revealed that G2/M

DNA damage response, aryl hydrocarbon receptor signaling, and endoplasmic

reticulum stress were among the pathways that might explain the preferential

cytotoxicity of these camptothecins in EGFR-transfected cancer cells [113].

We also found one natural product derivative that targets signaling downstream

of EGFR. Artesunate is a semisynthetic derivative of artemisinin, the active prin-

ciple of Artemisia annua L. Microarray-based gene expression profiles of the

human kinome were correlated with the IC50 values for artesunate in 55 tumor

cell lines. Significant relationships were found to genes of the

RAS>RAF>MEK>ERK pathway [114]. These associations were corroborated

using cell lines transfected with cDNA for these signal transduction proteins.

Transfected cell lines displayed more apoptosis upon artesunate treatment than

non-transfected cell lines. The combination of erlotinib with artesunate resulted in

synergistic cell killing in EGFR-transfected cancer cells but not in non-transfected

control cells [115]. These results demonstrate that resistance of cancer cells to

erlotinib may be modulated by phytochemicals or plant-based derivatives.
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5 Conclusions and Perspectives

The search for prognostic and predictive markers over the past two decades has

shown that tumor cell response to therapy cannot be explained sufficiently by any

one single factor and that drug sensitivity and resistance is multifactorial in nature.

The “-omics” technologies can help to identify novel biomarkers at the genomic,

transcriptomic, and proteomic level. Various expression profiles are associated with

subgroups of drug-resistant tumors and may aid in identifying novel subgroups with

different therapy responses and survival times in otherwise histologically homog-

enous and non-distinguishable tumors [116–121].

On the other hand, we and others have often observed that the “omics”-based

determination of thousands of genes is not necessarily superior to the measurement

of a well-defined set of 10–50 genes or proteins [125]. As a result, test systems

focusing on a limited number of genes have been marketed as a robust clinical tool

for estimating prognosis and treatment response in breast cancer [122–124].

As in the cases of MTAP, EGFR, and P-glycoprotein, the identification of

molecular biomarkers also provides possible novel targets for developing tumor-

and target-specific treatment approaches [33]. Such targeted therapy opens an

interesting domain for molecular diagnostics and individualized therapy. For exam-

ple, overexpression of EGFR or HER2 indicates a worse prognosis if standard

chemotherapy is applied, but indicates sensitivity to specific EGFR inhibitors (such

as erlotinib or cetuximab) or HER2 inhibitors (such as trastuzumab). This raises the

question of how knowledge of prognostic and predictive biomarkers can be inte-

grated with inhibitors to specific cancer-related targets to develop a comprehensive

concept of individualized therapy (Fig. 14.1).

Although the idea of personalized medicine is four decades old, it seems that its

practical realization is still in its infancy. Given the diversity in the biology of

different tumor types and the wealth of new information that can be expected from

cancer genome projects, treatment schedules based on molecular diagnosis must be

developed individually for each tumor type in order to realize the ultimate goal of

personalized cancer therapy. Breast cancer may serve as a model cancer to exem-

plify how such a schedule for individualized drug treatment may be developed. A

recent study of the Cancer Genome Atlas Network described mutations in 30–50

genes that together are sufficient for breast cancer development. This result is based

on high-throughput screening of the tumor genomes of 825 breast cancer patients

[126]. Breast cancer can be divided into three therapeutically relevant subgroups:

1. Estrogen receptor (ER) positive tumors, which can be treated with antihormonal

therapy (tamoxifen) or aromatase inhibitors.

2. HER2 positive tumors, which can be treated with drugs directed against HER2

(trastuzumab).

3. ER-negative and HER2-negative tumors, which must be treated by standard

chemotherapy.
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Hence, immunohistochemical determination of the ER and HER2 status is

decisive in the choice of treatment. The recent investigation of the Cancer Genome

Atlas Network [126] based on whole genome sequencing classifies five subgroups

of breast cancer tumors:

1. Luminal A tumors, which express estrogen and progesterone receptors, were the

most common tumor type (44 %). They are sensitive towards hormonal therapy.

2. Luminal B tumors (24 %) show heightened proliferative activity compared to

luminal A tumors. Classical chemotherapy plus hormonal therapy is

recommended for this subgroup of tumors.

3. Basal-like tumors (19 %) are resistant towards hormonal therapy and HER2-

directed drugs. They are known as triple negative breast cancers and are difficult

to treat. There is some evidence that anti-angiogenic drugs might be suitable to

manage triple-negative breast cancers.

4. HER2-expressing tumors (11 %) are heterogeneous in their genetic profile. In

general, they can be treated with HER2-directed drugs.

5. Normal-like breast cancers (2 %) are rare tumors. There are no clear options for

providing treatment advantages.

This study provides an illustrative example of how genetic information can be

translated and how treatment recommendations might be delineated. This is an

important success for individualized tumor therapy. It can be expected that the

Cancer Genome Atlas Project, which is currently undertaking sequencing of the

50 most important tumor types, will provide information on specific gene mutation

profiles for each of these tumor types. This knowledge can then be used for the

development of novel targeted therapies.

Considering that the majority of cancer drugs are derived from natural sources

[127], natural products will also be an indispensable resource for the development
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Fig. 14.1 From standard chemotherapy to individualized therapy: A vision for the improvement

of cancer therapy
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of new targeted drugs. Chemicals in plants and microorganisms have evolved over

millions of years and their amazing bioactivity can be exploited for the develop-

ment of novel drugs with improved features compared to the classical anticancer

drugs. With this growing battery of biomarkers and corresponding targeted drugs, it

is likely that custom-tailored combination treatments will soon become a reality and

that each individual cancer patient will be treated based on his or her individual

molecular tumor architecture.
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Jakse G, Füzesi L (2001) Prognostic impacts of cytogenetic findings in clear cell renal cell

carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis.

Cancer Res 61:7731–7738

29. Efferth T, Verdorfer I, Miyachi H, Sauerbrey A, Drexler HG, Chitambar CR, Haber M,

Gebhart E (2002) Genomic imbalances in drug-resistant T-cell acute lymphoblastic CEM

leukemia cell lines. Blood Cells Mol Dis 29:1–13

30. Gebhart E, Thoma K, Verdorfer I, Drexler HG, Efferth T (2002) Genomic imbalances in

T-cell acute lymphoblastic leukemia cell lines. Int J Oncol 21:887–894

31. Gebhart E, Ries J, Wiltfang J, Liehr T, Efferth T (2004) Genomic gain of the epidermal

growth factor receptor harboring band 7p12 is part of a complex pattern of genomic

imbalances in oral squamous cell carcinomas. Arch Med Res 35:385–394

32. Kearsley JH, Furlong KL, Cooke RA, Waters MJ (1990) An immunohistochemical assess-

ment of cellular proliferation markers in head and neck squamous cell cancers. Br J Cancer

61:821–827

33. Konkimalla VB, Suhas VL, Chandra NR, Gebhart E, Efferth T (2007) Diagnosis and therapy

of oral squamous cell carcinoma. Expert Rev Anticancer Ther 7:317–329

34. Laimer K, Spizzo G, Gastl G, Obrist P, Brunhuber T, Fong D, Barbieri V, Jank S, Doppler W,

Rasse M, Norer B (2007) High EGFR expression predicts poor prognosis in patients with

squamous cell carcinoma of the oral cavity and oropharynx: a TMA-based immunohisto-

chemical analysis. Oral Oncol 43:193–198

35. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al (2001)

International SNP Map Working Group. A map of human genome sequence variation

containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

14 Individualized Tumor Therapy: Biomarkers and Possibilities for Targeted. . . 289



36. Risch N (2001) The genetic epidemiology of cancer: interpreting family and twin studies and

their implications for molecular genetic approaches. Cancer Epidemiol Biomarkers Prev

10:733–741

37. Robert J, Morvan VL, Smith D, Pourquier P, Bonnet J (2005) Predicting drug response and

toxicity based on gene polymorphisms. Crit Rev Oncol Hematol 54:171–196

38. Mao X, Young BD, Lu YJ (2007) The application of single nucleotide polymorphism

microarrays in cancer research. Curr Genomics 8:219–228

39. Hoskins JM, Carey LA, McLeod HL (2009) CYP2D6 and tamoxifen: DNA matters in breast

cancer. Nat Rev Cancer 9:576–586

40. Lash TL, Rosenberg CL (2010) Evidence and practice regarding the role for CYP2D6

inhibition in decisions about tamoxifen therapy. J Clin Oncol 28:1273–1275

41. Efferth T (2001) The human ATP-binding cassette transporter genes: from the bench to the

bedside. Curr Mol Med 1:45–65

42. Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding

cassette transporter genes. Biochim Biophys Acta 1775:237–262

43. Brinkmann U (2002) Functional polymorphisms of the human multidrug resistance (MDR1)

gene: correlation with P-glycoprotein expression and activity in vivo. Novartis Found Symp

243:207–210; discussion 210–212, 231–235

44. Efferth T, Sauerbrey A, Steinbach D, Gebhart E, Drexler HG, Miyachi H, Chitambar CR,

Becker CM, Zintl F, Humeny A (2003) Analysis of single nucleotide polymorphism C3435T

of the multidrug resistance gene MDR1 in acute lymphoblastic leukemia. Int J Oncol 23:509–

517
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Chapter 15

Nutrition in Oncology: From Treating
Cachexia to Targeting the Tumor

Alessandro Laviano, Chiara Gori, Martina Stronati, Alessia Mari,
and Serena Rianda

1 Introduction

The laws of physics dominate the universe and dictate that energy tends to equally

distribute itself in every corner of the universe. This unavoidable evidence has

major influence on life. Considering life as a highly specialized form of energy

organization, the constant acquisition, storage, and disposal of energy is mandatory

to preserve the energy-consuming intracellular compartments. In this light, it is no

doubt that the most important step in the evolution of life was the acquisition of

mitochondria by primordial cells, allowing for a more efficient extraction of energy

from available nutrients [1].

Energy availability is key for survival. However, its constant acquisition may not

be an efficient strategy to secure evolution. Particularly for multicellular organisms,

devoting large proportion of available energy to the continuing search, acquisition,

digestion, and absorption of nutrients may reduce the quota spendable by other and

not less important functions, including reproduction and cognition. Also, nutrients

are not constantly available due to seasonal changes, and periodical periods of

famine may occur. Therefore, primordial organisms obtained substantial survival

advantage when evolution selected biochemical strategies not only to store excess

energy and reuse it when needed but also to switch off cellular pathways to save

energy during famine [2]. It is no surprise that this biochemical package has been

preserved in human genome up to now.
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2 Nutrition: A Key Target in Human Diseases

Human diseases can be defined and described from different points of view,

including clinical, social, and economical perspectives. However, their intrinsic

nature pertains to thermodynamic. In fact, the constellation of signs and symptoms

reported by sick patients could be simply defined as the phenotypical expression of

the genetically programmed failure of energy metabolism [3]. The metabolic

program triggered by stress or trauma is complex and includes different manifes-

tations [3]. Energy stores are rapidly wasted, whereas its acquisition is reduced due

to anorexia. More importantly, available energy is not fully directed to enhance

functionality (i.e., immune response, respiration, blood pressure, etc.); rather, it is

largely tunneled toward futile cycles. It is acknowledged that such inefficient

pathways create a protecting inner environment against invading microbes and

traumatic injuries [3]. However, such defense strategy confers a survival advantage

lasting few hours, maybe few days. Therefore, this programmed energy failure has

minimal clinical impact, and actually it may become detrimental, in critically ill

patients surviving their injuries thanks to critical care medicine as well as during

chronic diseases, both now representing the vast majority of diseases affecting

global population.

It is self-evident that the effective therapy of human diseases is the effective

therapy of energy failure. Thus, it should include not only drugs (i.e., antibiotics,

vasopressors, etc.) but nutrition as well, as a source of energy, proteins, and

nutrients, reprogramming gene expression and redirecting deranged biochemistry.

3 Cancer Cachexia, Nutritional Support, and Clinical
Outcome

The recently released results of the Global Burden of Disease Study 2010 reveal

that, over the last 20 years, cancer maintained its top position among the most

prevalent diseases across the world [4]. Consequently, it represented the focus of

extraordinary and expensive efforts to develop effective therapeutic strategies,

particularly aiming at improving the outcome of patients with advanced disease.

Unfortunately, with limited results [5]. Interestingly, only recently nutrition has

received attention and has been considered in the multimodal approach to cancer

patients [6].

Among other pathological changes, the clinical journey of cancer patients is

characterized by a metabolic switch, which directs energy metabolism from anab-

olism to catabolism [7]. The interest in food and appetite is reduced (i.e., cancer

anorexia), thereby energy intake is limited. In the liver, protein synthesis is diverted

from albumin to acute phase proteins, whereas gluconeogenesis increases. In

muscles, insulin resistance occurs and protein catabolism is accelerated, which is

not counteracted by the compensatory increase of anabolic pathways [8]. In the
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adipose tissue, lipolysis increases leading to progressive wasting of adipose tissue.

The constellation of symptoms and signs related to abnormal energy metabolism in

cancer patients and ultimately leading to deterioration of nutritional status is

defined as cancer cachexia. Its main feature is muscle mass loss, but the now widely

accepted diagnostic criterion is simply based on the involuntary loss of body weight

[9]. This syndrome encompasses an extraordinary variety of phenotypes, in which

the specific contribution of reduced energy intake and abnormal metabolism to the

clinical pictures may amply vary.

The onset of cancer cachexia is progressive. As a consequence, cachexia repre-

sents a continuum of symptoms and signs, ranging from pre-cachexia to refractory

cachexia [9]. Pre-cachexia is the early stage of the syndrome and is characterized by

sickness behavior (i.e., anorexia, increased levels of circulating inflammatory bio-

markers) in the absence of significant weight loss. If not treated, pre-cachexia

progresses to cachexia, in which weight loss becomes manifest, together with

changes of body composition, muscle wasting being the most clinically relevant

effect. It is important to avoid reaching the status of refractory cachexia, since

attempts at reverting weight loss during this stage have generally failed. It should be

acknowledged that the border between cachexia and refractory cachexia is not well

defined since it is also related to the patients’ genetic signature. Indeed, specific

polymorphisms of key inflammatory mediators, including proinflammatory cyto-

kines (i.e., TNF-α, IL-1, IL-6), have been shown to significantly modify the

phenotype of cancer cachexia. However, recent data suggest that cancer patients

retain muscle anabolic potential up to 90 days from death, which may therefore be

considered as the “door of no return” [10].

Cancer cachexia is a clinically relevant syndrome. Cachectic patients have

shorter survival, worse quality of life, and increased number of complications

associated with antitumor therapies [11]. Therefore, the investigation of the path-

ogenic mechanisms of cachexia is key to develop effective preventive and thera-

peutic strategies. The inflammatory response triggered by the tumor is the key

pathogenic mechanism. Although the degree of inflammation in cancer cachexia is

usually mild to moderate, its chronic impact on energy metabolism leads to

progressive wasting. The organs targeted by inflammation include the brain, and

in particular the hypothalamic area, where the physiological balance between

prophagic and anorexigenic pathways is deranged to promote anorexia and reduced

food intake [12]. Clearly, skeletal muscles and the adipose tissue are also involved

in the programmed deterioration of nutritional status during tumor growth [8]. In

fact, catabolic pathways have been found hyperexpressed in muscles and adipose

tissue of cancer patients. Also the liver is targeted by cancer cachexia, since protein

synthesis is diverted into energy-consuming futile cycles, leading to reduced

albumin synthesis.

The clinical phenotype of cancer patients may largely vary. However, all tumor

cells share specific biochemical properties. In particular, all cancer cells are not

sensitive to growth inhibitors, can invade tissues and give metastasis, sustain

angiogenesis, are self-sufficient in growth signals, have limitless replicative poten-

tial, and evade apoptosis [13].
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Quite recently, the ability to create an inflammatory microenvironment has been

added to the common features of cancer cells [14]. This biochemical feature

appears to be key for tumor initiation, promotion and progression. The initial

clone of mutating cells triggers an inflammatory response limited to the surround-

ing environment, which is sensed by neural afferents. This information is

transported to the brain where it activates the physiological response, i.e., the

vagal anti-inflammatory pathway [15]. The effect is to reduce inflammation and

activate dendritic cells which hyperexpress the enzyme indoleamine-dioxygenase

(IDO). The mechanistic role of IDO in tumor control is to deplete the microenvi-

ronment of the essential amino acid, tryptophan, and therefore to reduce cell

replication [16]. However, cancer cells may fight back against immune surveil-

lance, by expressing IDO by themselves to starve dendritic cells and reduce

immune response.

It is now widely accepted that cancer cells replicate and tumors grow not despite

but because of inflammation. Inflammation is used to stun immune surveillance and

consequently may potently stimulate tumor growth. Supporting this view, many

clinical trials have consistently demonstrated that the greater the inflammatory

response measured in cancer patients by means of even gross markers, i.e.,

C-reactive protein, the lower the survival rate [17]. It is not surprising that inflam-

mation is now being considered as a key target for anticancer therapies [18].

Considering that cancer cachexia results from the combination of reduced

energy intake and increased catabolic drive, nutritional supplementation providing

calories and proteins may have limited effects and only partially counteract the key

feature of cachexia, i.e., muscle loss. In fact, although it has been demonstrated that

the anabolic response to hyperaminoacidemia of cancer patients’ muscles is not

different from that of healthy volunteers [19], still the coexisting anabolic resis-

tance impairs the complete utilization of exogenous nutrients. Therefore, the

simultaneous use of anti-inflammatory agents has been advocated, i.e., cyclo-

oxygenase inhibitors. Results from clinical trials demonstrated that this approach

is effective in promoting preservation of muscle mass in cancer patients, particu-

larly when integrated into a multimodal approach which includes nutritional sup-

port [20]. However, specific nutrients exert a similar anti-inflammatory activity

when provided at larger doses than those provided by a regular diet. Among these

nutrients, defined as nutraceuticals, omega-3 fatty acids, namely, eicosapentaenoic

acid (EPA) and docosahexaenoic acid (DHA), have been extensively studied [21].

By replacing omega-6 fatty acids as substrates of cyclo-oxygenase and lipo-

oxygenase, omega-3 fatty acids lead to the production of metabolites whose

pro-inflammatory effects are reduced when compared to those deriving from the

metabolism of omega-6 fatty acids. The supplementation of EPA and DHA to

cancer patients, alone or as part of energy-dense oral nutritional supplements, has

been demonstrated to improve body composition and function, which translates into

better clinical outcome [21]. In fact, based on the available evidence, it is now

possible to demonstrate that nutritional therapy in cancer patients improves survival

and quality of life by targeting cancer cachexia [22].
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4 Nutrition and Treatment of Diseases

Nutrition support is a key component, together with pain control and psychological

support, of palliative care. Within this context, the goal of nutrition is not to target

directly tumor cells, but to support the host in order to allow him/her to withstand

the side effects of anticancer therapy (i.e., surgical stress, toxicity, fatigue, psycho-

logical distress). It is important to note that in the definition of palliative care there

is no mentioning of the timing of its delivery. However, in daily practice, palliative

care is generally provided in patients with advanced disease for whom further

therapies are not indicated. In contrast with this non-evidence based practice, a

recent study showed that lung cancer patients receiving active treatment and

concomitant palliative care, which included nutritional counseling, improved

their mood and extended their survival when compared to patients receiving the

standard of care [23]. Based on this evidence, the American Society for Clinical

Oncology has issued a provisional clinical opinion urging the early integration of

palliative care in the care of cancer patients [24].

Although it is difficult to ascertain the specific contribution, within palliative

care, of nutrition support in improving mood and survival, it is tempting to suggest

that nutrients may also have played a direct antitumor activity, beyond their impact

on nutritional status. This hypothesis should not be surprising since animal behavior

provides a large number of examples of self-medication as achieved by acute

changes of the diet [25]. Therefore, it would not be surprising that Clinical

Medicine is now discovering practices which are still found among living organ-

isms, but have been abandoned by human beings hundreds of years ago.

During the last decades, the approach to diseases has been largely based on the

introduction in the clinical practice of new drugs. Although it is acknowledged that

drugs have redefined the global clinical scenario, on the other hand it cannot be

denied that, at least in the oncology arena, the results obtained have been disap-

pointing, in terms of limited response rate, increased toxicities, and impinged

quality of life of patients [26]. This critical reappraisal led to strong recommenda-

tion requiring a thorough rethinking of the care delivered to cancer patients [5]. As a

consequence, nutritional support has been recommended during radiotherapy and

chemotherapy, in order to protect skeletal muscle mass and therefore reducing

chemotherapy-induced toxicities. However, recent data seem to suggest that

omega-3 fatty acids may also directly act on the tumor itself and increase

chemosensitivity [21]. This would not be surprising if we consider that human

metabolism and genome have been primed by food for thousands of years, and

therefore are likely to be modified by nutritional strategies while drugs have been

“interacting” with human metabolism since a few decades.
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5 Omega-3 Fatty Acids as Anticancer Agents

In general, the response rate achievable by chemotherapy in cancer patients with

advanced disease ranges at around 30–40 %. Many factors may explain the limited

benefits achievable in metastatic cancer patients. Although genetic plasticity of

tumor cells allowing rapid adaptation to environmental changes is a key factor,

recent data suggest that excess cancer treatment toxicity may occur if sarcopenia is

not considered when dosing chemotherapy, leading to dose reduction and failure to

complete the treatment schedule [27]. Therefore, prevention and/or treatment of

muscle loss during cachexia may alleviate the side effects of antitumor therapies.

However, beyond reducing toxicity, nutrition therapy may also favor response rate.

Omega-3 fatty acids are polyunsaturated fatty acids and therefore contain more

than one double bond in the carbon chain of the molecule. Since double-bonds are

preferential target for reactive oxygen species leading to peroxidation and cellular

damage, omega-3 fatty acids make cells more prone to oxidative stress-mediated

damage when incorporated into cell membranes. Interestingly, many chemothera-

peutic agents exert their antitumor effects by inducing oxidative stress. Therefore, it

has been hypothesized that the supplementation with omega-3 fatty acids could

sensitize cancer cells to chemotherapy, resulting in enhanced response rate and

possibly less side effects. This hypothesis has been extensively tested in experi-

mental models [28], but only recently the results of preliminary clinical trials have

been made available. Bougnoux et al. showed that in metastatic breast cancer

patients, the supplementation of DHA during therapy increases omega-3 fatty

acids content in the cell membranes of a specific, high-incorporator subset of

patients [29]. Interestingly, the high incorporators also showed a significant exten-

sion of survival. Murphy et al. investigated in patients with advanced lung cancer

and receiving first-line chemotherapy whether the supplementation of fish oil

containing EPA+DHA during chemotherapy could influence clinical outcome

[30]. In patients receiving the standard of care, the response rate was approximately

26 % but it rose to 60 % in patients supplemented with fish oil. It is important to

note that these exciting results should be considered as preliminary since the

number of patients tested is very limited. Also, it remains to be elucidated how

omega-3 fatty acids incorporation into cell membranes could be increased. How-

ever, these results represent a strong signal pointing to the possibility that combi-

nation of nutrition therapy and radiotherapy or chemotherapy may increase the

efficacy and effectiveness of antitumor approaches, without increasing toxicity.

This possibility is now being tested by ongoing clinical trials.

Fatty acids are energy sources but also precursors of bioactive compounds.

Omega-6 and omega-3 fatty acids are substrates of lipo-oxygenase and cyclo-

oxygenase, resulting in mediators of inflammation with more or less potent activity.

Recently, considerable attention has been devoted to other metabolic pathways of

fatty acids. Omega-3 and omega-6 fatty acids are also substrates of cytochrome

P450 epoxygenases, which convert them to epoxy signaling lipids including

epoxyeicosatrienoic acids derived from omega-6 arachidonic acid and
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epoxydocosapentaenoic acids (EDPs) from omega-3 DHA [31]. Recent data show

that DHA-deriving epoxy metabolites suppress angiogenesis and endothelial cell

migration in vivo [31]. More interestingly, when EDPs are coadministered with a

low-dose soluble epoxide hydrolase inhibitor, EDPs are stabilized in circulation,

causing inhibition of primary tumor growth and metastasis in an experimental

model of cancer [31]. These exciting results suggest that nutritional modulation

of nutrient intake may offer an alternative strategy to increase the efficacy of drug-

based approach to cancer patients.

6 Calorie Restriction and Disease Prevention: Is This
the Solution?

During famine, a number of metabolic pathways are shut down and energy stores

are preserved. Thus, the production of waste products of energy metabolism is

reduced, including reactive oxygen species, which largely mediate oxidative stress.

Considering that oxidative stress is implicated in ageing and disease, reducing

energy intake without causing malnutrition may appear as an effective strategy to

reduce oxidative stress, slow ageing process and prevent diseases [32]. The bene-

ficial effects of calorie restriction (i.e., reduced energy intake by 20–40 % below

requirements) have been tested in cell cultures and invertebrates with positive

results [32]. However, evidence in large and superior animals appears contradic-

tory. Colman et al. showed in rhesus monkeys that calorie restriction results in

reduced incidence of chronic diseases, including cancer, cardiovascular disease,

and diabetes over a period of approximately 30 years [33]. In humans, compelling

evidence for the beneficial effects on health of calorie restriction are not available,

due to the complexity and financial implication of a long-term clinical trial.

However, evidence have been produced showing that short-term calorie restriction,

i.e., 6 months, results in improved surrogate markers of longevity, including core

body temperature [34]. Subverting the then-flourishing concept of the key role of

calorie restriction in slowing ageing, Mattison et al. have more recently demon-

strated in the same animal model as Colman et al. that calorie restriction does not

prevent the onset of chronic diseases [35]. Explanation of these conflicting results

could lay in the diet the control animals were receiving in the two studies. In fact, in

the Mattison et al.’s study, the control animals were receiving a healthier diet when

compared to that used in the Colman et al.’s study, which contained an astonishing

28 % of sucrose [36]. Therefore, it cannot be excluded that the results obtained by

Colman et al. were more influenced by the toxicity of the control diet rather than by

the beneficial effects of calorie restriction. Based on these results, it is now

generally accepted that longevity is enhanced by factors other than only calorie

restriction, and particularly by genetic background, healthy diet and active lifestyle

[36]. Also, it is becoming clearer that a calorie is not a calorie and that the metabolic
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effects of nutrients may be different even if providing the same amount of calories

and nitrogen.

7 Fasting and Fasting-Mimicking Diet in Cancer

The metabolic effects of calorie restriction or even fasting may appear of clinical

benefit in patients with cancer. In particular, fasting is a potent inducer of cellular

protective responses, and therefore, short-term fasting has been proposed as a

strategy to increase resistance of normal cells to the toxic effects of chemotherapy

[37]. In contrast, cancer cells have lost the ability to protect themselves in the

presence of limited availability of nutrients due to the activation of oncogenes.

Therefore, short-term (i.e., 48–72 h) peri-chemotherapy fasting may reduce cancer

therapy associated toxicity and increase antitumor effects [38]. This hypothesis has

been tested in experimental models [39], but only anedoctal reports have been

reported in cancer patients [40].

Particularly in cancer patients, fasting represents an extreme approach and

compliance may be difficult. Considering the metabolic effects of specific nutrients,

it is conceivable that specifically formulated diets may reproduce the same biolog-

ical effects of fasting. Therefore, excluding or including specific nutrients in the

diet may confer health benefits, by increasing sensitization of cancer cells to

therapy, or increasing normal cell resistance to chemotherapy, or by directly

targeting cancer and stromal cells. Many animal studies support this concept.

Abdelwahab et al. showed that the ketogenic diet is effective as adjuvant treatment

in rats receiving radiotherapy for malignant glioma [41]. Maddocks

et al. demonstrated that selective serine starvation reduces tumor growth and

extends survival in an experimental cancer model [42]. Peng et al. reported that

increased resistance to surgical stress can be induced by single amino acid depri-

vation, i.e., tryptophan [43]. Whether fasting-mimicking diets could also benefit

cancer patients remains to be addressed by adequately powered, prospective ran-

domized currently ongoing trials.

8 Conclusion

Modulation of food intake robustly induces metabolic responses. Dietary habits are

key factors in perturbating inner metabolic environment and favoring the onset of

chronic diseases, including cancer, diabetes, and cardiovascular diseases. It is

surprising to note that the impact of nutrition on health, and particularly on disease

prevention, is widely recognized by doctors, politicians and lay people, but its role

in favoring recovery from diseases or even in treatment of diseases is completely

neglected. It is acknowledged that more statistically robust clinical trials addressing

clinically relevant outcomes rather than simple nutritional variables are needed.
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Also, it is acknowledged that translation into clinical practice of animal studies may

not yield impressive and positive results since human diseases are far more complex

than their laboratory models. Nevertheless, when the signal is separated by the

noise, it is evident that nutrition remains an unexplored, cheap and already available

opportunity to enhance global health by preventing and treating diseases. It would

be extremely unwise to lose it.
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Chapter 16

Nutraceuticals in Preventive Oncology:
Chemical Biology and Translational
Pharmaceutical Science

Ruiwen Zhang and Subhasree Nag

1 Introduction

Cancer is a leading cause of mortality and morbidity worldwide. The majority of

human cancers are considered as a chronic disease resultant from genetic and

epigenetic variations, mutations, and dysfunction that ultimately culminate into

the cancer phenotype. The cancer phenotype is characterized by certain “hall-

marks” such as sustained proliferative signaling, evasion of growth suppressors,

resistance to cell death and replicative mortality, increased angiogenesis, and

activation of invasion and metastasis [1]. Archeological and historical evidence

suggest that there has never been a time in recorded human history when cancer was

absent. Although not referred to specifically as cancer, ancient Egyptians called it

the disease for which ‘there is no treatment’ [2–4]. While still controversial, cancer

can be thought of as a chronic disease that usually goes through a precancerous

stage prior to advancing to invasive and metastatic disease, providing an opportu-

nity for early detection and prevention. Although the etiology for the majority of

cancers is not fully understood, epidemiological, preclinical, and clinical investi-

gations have identified several cancer risk factors, such as tobacco smoking,

obesity, family history, sedentary lifestyle, infection and inflammation, and sun

exposure, indicating that many cancers are preventable [5].

Epidemiological studies and cancer statistics indicate that the predominant

forms of cancer and cancer-related deaths are those of the lung, breast, colorectal,

and prostate [6], suggesting that the prevention of these leading cancers can reduce

the total cancer burden, in terms of health, social, and economic impact. It is also

noted that some of these cancers are more prevalent in the Western countries than

Asian countries where a diet rich in vegetables and fruits with less fat/meat intake is

often consumed [7, 8]. Many published studies demonstrate that dietary and

R. Zhang (*) • S. Nag

Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health

Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA

e-mail: ruiwen.zhang@ttuhsc.edu

G. Folkerts and J. Garssen (eds.), Pharma-Nutrition, AAPS Advances in the

Pharmaceutical Sciences Series 12, DOI 10.1007/978-3-319-06151-1_16,

© American Association of Pharmaceutical Scientists 2014

305

mailto:ruiwen.zhang@ttuhsc.edu


environmental factors greatly influence cellular function, metabolism, health, and

diseases [9–21]. In addition to cancer chemopreventive agents, the evidence is

mounting that relatively simple changes in lifestyle, especially in diet, can reap

significant long-term health rewards [5]. Dietary supplements that provide physio-

logical benefit or protection against chronic disease are generally defined as

nutraceuticals [21]. This chapter primarily deals with the implications of

nutraceuticals in chemoprevention and the mechanistic pathways that are modu-

lated by nutraceuticals. We believe that more basic and translational researches on

nutraceuticals as cancer preventive agents, including molecular targeting, effects on

both tumor and tumor environment, and pharmacological characteristics, will

ultimately demonstrate the use of nutraceuticals as an effective and safe approach

to cancer prevention and therapy.

1.1 Carcinogenesis and Cancer Chemoprevention

Clinically, cancer may be considered to arise from interplay of inherited factors and

environmental exposures, resulting in genomic instability, abnormal cellular/tissue

growth and proliferation, and other cardinal features of cancer or so-called “hall-

marks of cancer” [1, 22]. Inherited or germ-line factors include major defects in

oncogenes such as Ras or tumor suppressor genes such as p53, APC (adenomatous

polyposis coli)/BRCA (breast cancer) or subtle differences in gene expression, as

exemplified by single nucleotide polymorphisms within key areas of the genome

[22–28]. Both inherited mutations and mutations resultant from environmental

exposure have the potential to be used as either molecular biomarker of cancer

progression and/or targets for chemopreventive intervention.

Carcinogenesis, a continuous process involving the onset, development, growth,

and progression of human malignancies, is experimentally categorized into three

broad stages—initiation, promotion, and progression [22–27]. Accordingly, cancer

chemoprevention is the inhibition or reversal of carcinogenesis at various stages

[29]. The goals of primary, secondary, and tertiary chemoprevention are to prevent

the development of precancerous lesions, to reverse prevalent lesions, and to

suppress recurrent primary cancerous lesions, respectively [29–31]. Although can-

cer prevention generally is considered to be a relatively new field of medicine [29],

the linkage between cancer and environmental factors has been observed and

recorded for at least the past three hundred years. For example, in 1727, Le Clerc

suggested cutting out swellings, polyps, and tumefactions before they became

cancerous, and in 1775, Percival Pott, an English physician, reported a causal

relationship between soot exposure and cancer of the scrotum (later identified as

squamous cell carcinoma) in chimney sweeps [2, 3]. This increased incidence of

cancer was seen to be obliterated in sweeps who wore protective clothing. In early

20th century, Lathrop and Loeb reported a linkage between mammary cancer and

ovarian hormones in mice; the result was in agreement with earlier findings by

Beatson in 1896 that oophorectomy in a patient with breast cancer resulted in

306 R. Zhang and S. Nag



disease recession [2]. In 1925, Wolbach and Howe reported that epithelial tissues of

rats on vitamin A-deficient diets acquired neoplastic characteristics which were

readily reversed upon incorporation of the deprived vitamin back into diet. The

seminal work in 1950s provided critical evidences supporting systemic cancer

prevention, when the linkage between cancer development and environmental

insults such as smoking and exposure to tar was firmly established. In the 1960s,

several groups demonstrated the relationships between metabolic enzyme activity

and carcinogenesis [2, 3, 29]. Talalay helped extend this work in late-1970s studies

he called “chemoprotection,” linking basic molecular studies with preventive

effects of the food preservatives BHA (butylated hydroxyanisole) and BHT (butyl-

ated hydroxytoluene) and dietary approaches involving vegetables such as broccoli.

He hypothesized that these antioxidant moieties not only would enhance potential

therapeutic and preventive effects of natural vitamin A but also would reduce its

well-known severe toxicity (hypervitaminosis A) [32, 33]. In 1976, Sporn intro-

duced the term “chemoprevention” for describing such preventive studies. Subse-

quently, several preclinical and clinical studies have demonstrated the inverse

association of dietary factor intake such as vitamins and trace micronutrients with

cancer [16–19, 29].

1.2 Nutraceuticals

“Nutraceutical” is a portmanteau word first coined by Stephen DeFelice in 1989

from “nutrition” and “pharmaceutical” [34]. It may refer to any dietary components

that provide medical and health benefits. A number of nutraceuticals have been

identified during the past decades; several studies have demonstrated the associa-

tion between consumption of vegetable/fruit-rich diets and decreased risk of cancer

[16–19, 21, 35, 36]. These observations have led to the development and usage of

various phytochemicals for cancer chemoprevention. An ideally effective nutra-

ceutical should be able to induce a quantifiable degree of change in tumor dynamics

at a low, nontoxic dose. Thus, a dietary component must be efficacious and acting at

a low dose to qualify as a nutraceutical. If anticancer effects are achieved slowly,

several issues, such as maintenance of a tolerable dose, reaching effective levels in

the plasma/tumor site, compound stability and bioavailability, may become serious

challenges. In addition, there is increasing evidence supporting the use of a com-

binatorial approach to cancer therapy, i.e., combining a nutraceutical with either an

effective synthetic drug or another nutraceutical, and the development of novel

delivery systems for nutraceuticals and combined therapy, including nanoparticles

[37–42]. On the other hand, cancer researchers and oncologists should be aware of

the fact that the use of dietary supplements for promoting health and/or treatment

diseases, including cancer, has been becoming a common practice. The potential

drug–nutraceutical, food–nutraceutical, nutraceutical–nutraceutical interactions

may affect the outcomes of cancer prevention and treatment, especially when the

nutraceuticals of interest have inhibitory or inducible effects on drug metabolism,
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such as P450 enzymes. Therefore, future evidence-based cancer chemoprevention

should rely on a better understanding of mechanisms of action, especially at gene

and molecular levels.

2 Mechanisms of Action of Natural Product Anticancer
Agents

As aforementioned, cancer is a class of complex and chronic diseases that develop

over an extended period of time. Research indicates that the process from initiation

to cancer to clinically detectable disease can take as long as 10 to 20 years.

Carcinogenesis is initiated when a normal cell is transformed through various

mechanisms such as the activation of proto-oncogenes and the suppression of

tumor suppressor genes. Such transformed cells gain the ability of uncontrolled

proliferation through “self-sufficiency in growth signals and insensitivity to anti-

growth signals” [1], and, at the same time, they evade apoptosis, resulting in tumor

growth. The development of new blood vessels (angiogenesis), which provide

nutrients and growth factors to the tumor, enables tumor sustainability and tissue

invasion, leading to metastasis that is ultimately lethal. During this entire process,

cells often accumulate alterations in multiple cellular signaling pathways. Addi-

tionally, gene mutations can occur after conventional cancer therapy, resulting in

decreased therapeutic response, drug resistance and tumor reoccurrence. Consider-

ing that cancer is a multifactorial disease with the causative cellular genomic

instability resulting in pleiotropic effects [1, 22–27], mono-modal therapy is not

very effective in several cancer types [43], and combination therapy has become a

mainstay in the treatment of human cancer. Similarly, targeting multiple steps of

carcinogenesis is needed to develop effective cancer prevention approaches.

There is an increasing interest in developing multi-modal disease prevention

strategy, including healthy diet and changes in life style [16–19, 21, 44–

46]. Nutraceuticals have been shown to target one or more of the various targets

in carcinogenesis, including inflammation, cell proliferation, apoptosis, invasion,

and angiogenesis. Over two hundred nutraceuticals have been identified and some

of these nutraceuticals have been demonstrated to have anticancer activities,

through downregulation of transcription factors, e.g., NFκB (nuclear factor κB),
anti-apoptotic proteins, e.g., Bcl-2 (B-cell lymphoma 2) and Bcl-xL (B-cell lym-

phoma-extra large), cell proliferation promoting proteins, e.g., cyclin D1, c-Myc

(cellular myelocytomatosis oncogene), and invasive/metastatic genes, e.g., matrix

metalloproteinases (MMPs), intracellular adhesion molecule-1 (ICAM-1), and vas-

cular endothelial growth factor (VEGF) [47, 48]. Figure 16.1 depicts the exemplary

nutraceuticals that have been reported to have anticancer activities, representing a

variety of naturally occurring compounds with diverse, complex chemical struc-

tures [48, 49]. Natural compounds, owing to their intricate chemical structures, can

serve as prototype compounds, allowing the rational design of new drugs, biomi-

metic synthesis development, and the discovery of new therapeutic compounds
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[50–52]. Intensive investigations on the structure–activity relationships (SAR) of

natural compounds, using combinatorial techniques, often lead to the generation of

vast libraries of analogous molecules and the selection and development of novel,

more potent, and less toxic compounds. Additionally, combinatorial biosynthesis

allows complex metabolic pathways to be explored, making it possible to improve

the production of a given natural compound and its metabolites [50–52]. These

synthetic analogs and/or metabolites would further aid the SAR studies. It is

generally believed that natural products have multiple molecular targets that can

be linked to both therapeutic effects and possible side effects. The newly developed

genomic and proteomic technologies help identify novel pharmacological targets,

permitting the validation of novel targets and the generation of novel lead com-

pounds directed to these targets. An integrated approach that combines the use of

structural chemical databases with databases on target genes and proteins should

facilitate the creation of new chemical entities for better efficacy and less

toxicity [53].
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One of the best examples in this research area is the intensive investigations on

curcumin, a flavonoid obtained from the dried rhizomes of Curcuma longa, a spicy
Indian food, which has gained immense interest due to its antioxidant, antiproli-

ferative, antiangiogenic, and anti-tumorigenic properties [54–68]. However, owing

to its poor bioavailability, it has not been successfully developed as an effective

therapeutic drug [69]. The significant anticancer activity of curcumin in various

cancer models, along with its drug-like properties such as low molecular weight and

lack of severe toxicity, makes this molecule a good natural lead compound for the

development of chemotherapeutic derivatives or analogs. Consequently, several

curcumin analogs have been prepared; one widely used structural modification

truncates the central conjugated beta-diketone in curcumin to a monocarbonyl

dienone [70]. These compounds exhibit remarkable cytotoxic activity against

various cancer cell lines and anti-angiogenic activity in cell cultures and, more

importantly, retain toxicity profiles comparable to that of the parent compound,

with some of them exhibiting good oral bioavailability and good pharmacokinetic

profiles [70].

As discussed earlier, naturally derived compounds often possess more than one

biological target. This is particularly true for curcumin. To date, it has been

demonstrated to affect more than 50 different cellular factors that have a role in

regulation of various cellular pathways such as cell cycle, apoptosis, and cell

division (mitosis), in inflammatory response and in cancer metastasis [54–68]. In

comparison to rationally designed synthetic molecules which are often designed to

act on a particular molecular target, natural compounds act on a “molecular

network” of cellular signaling factors, possessing multi-path, multi-target, and

multi-system actions. Research on such complex drug–target interaction networks

is imperative for the discovery of novel targets and for repurposing a known drug or

nutraceutical for cancer prevention and treatment.

To develop an effective and safe cancer chemoprevention approach, one cannot

overlook the fact that some nutraceuticals, such as ginseng saponins, significantly

modulate the activity of drug-metabolizing enzymes (notably the cytochrome P450

family) and/or the drug transporter P-glycoprotein [71]. For example, the

ginsenoside Rd (from ginseng) shows potent inhibitory effects on CYP2C9 and

CYP3A4 activities in human liver microsomes [72]. To complicate matters more,

the ginsenoside Rb1 exhibits complex site-specific metabolism. The decomposition

mode of Rb1 in rat stomach differs from that of Rg1 in rat large intestine.

Hydroperoxidation of Rb1 occurs in rat stomach, which is identified as the

25-hydroperoxy-23-ene derivative of Rb1 (gypenoside VIII). But in rat large

intestine, five decomposition products of Rb1 are observed, which are identified

as gypenoside XVII, ginsenoside Rd, ginsenoside F2, compound K and VIII [73,

74]. Compound K, an oral metabolite of the protopanaxadiol and protopanaxatriol

ginsenosides, exhibits moderate inhibition of the CYP2C9 activity, while

ginsenosides PPD and PPT exhibit potent competitive inhibition against CYP3A4

activity [75–77]. These studies have clear implication in the use of natural product

anticancer agents in the clinic. First, their effects on drug metabolizing enzymes

may be better used in modulating the metabolism of carcinogens and/or anticancer
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agents. Second, the differential effects of these natural compounds on different

members of the drug metabolizing enzymes may affect both therapeutic response

and toxicity profiles when chemotherapeutic agents are used in combination with

nutraceuticals, as a result from physician directed use or patient self-medication.

Finally, since these dug metabolizing enzymes often have genetic variations in

humans, the effects of nutraceuticals on these enzymes may have different impact

on individual patients. These considerations should be given when nutraceuticals

are used alone or in combination with conventional therapeutic or preventive

agents.

3 Chemical Biology and Translational Pharmacology
of Nutraceuticals

In a diet, the entire plant/edible part of the plant is often used. Traditional medical

practice such as Traditional Chinese Medicine (TCM) and Ayurveda advocates the

use of the entire plant for treatment regimens [78]. It is now generally recognized

that only one or few particular components are responsible for the observed

therapeutic activities and the entire plant or its crude extracts might not be needed

for the treatment. For example, the ginseng saponins are more effective than the

whole plant, in relation to several suggested actions as diverse as anti-

inflammatory, immunomodulatory, antidiabetic, cardioprotective, and anticancer

effects [72].

Investigations using modern technologies in molecular pharmacology and chem-

ical biology would facilitate the identification of the actual bioactive components

and their corresponding molecular targets. Once the presence of a certain molecular

target is correlated to the disease state, it may also serve as a biomarker for that

disease [79]. The validation of molecular targets can be complicated and the value

of such target in drug discovery and development should be examined on a case-by-

case basis. For example, oncogenes, as opposed to tumor suppressor genes, may

present as a more attractive therapeutic target since it is relatively easier to inhibit

the increased activity of a gene/protein than to restore one which is lost in cancer

development and progression. Oncogene addiction has been suggested as one of the

characteristics of cancer. Several natural product anticancer agents have been

recently found to inhibit oncogene expression and/or function [72].

Presently, cutting-edge technologies incorporating multidisciplinary sciences

such as bioinformatics, molecular biology, molecular pharmacology, and clinical

medicine are used for target identification and validation. Cancer models (both

in vitro cell lines and in vivo models) with tailored expression levels of the putative

drug target are often used in new drug development and efficacy studies of

nutraceuticals for cancer prevention and treatment. Preclinical studies identify

lead compounds and evaluate them for “drug-like” properties such as minimal

host toxicity, sufficient bioavailability, and therapeutic efficacy in well-
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characterized tumor models. Finally, the candidate with maximum optimum ther-

apeutic characteristics may proceed to clinical trials [53, 80, 81]. It should be noted

that, thus far, there are limited clinical successful cases of nutraceuticals as cancer

preventive agents.

3.1 Lessons from the SELECT Trial

The Selenium and Vitamin E Cancer Prevention Trial (SELECT) was one of the

biggest controlled chemoprevention trials in history (with more than 35,000 male

participants) [82–94]. The SELECT trial was conducted to assess the effectiveness

of selenium and vitamin E alone, and in combination, on the incidence of prostate

cancer, and employed a methodology superior to the traditional correlation-based

trials that tested the association between ingestion of a certain dietary component

and incidence of disease. The basis of the SELECT trial was the preclinical animal

studies and correlational population studies. The randomized, double-blind, pla-

cebo-controlled clinical trial, surprisingly, found that neither selenium nor vitamin

E reduced the incidence of prostate cancer and that vitamin E alone was associated

with a 17% increased risk of prostate cancer compared to placebo [82–87].

The potential role of selenium in chemoprevention was initially suggested by a

large randomized trials conducted in the selenium-deficient regions of Qidong and

Linxian in China [90]. The Qidong/Linxian trials assessed the cancer preventive

activities of selenium against cancers of liver, stomach, and esophagus, but not

prostate, by supplementation of dietary common salt with sodium selenite, which

provided 50–80 μg of selenium per day [90]. The primary hypothesis-generating

trial prompting inclusion of selenium in SELECT was the randomized double blind

Nutritional Prevention of Cancer (NPC) Trial with 1312 American participants who

had a history of skin cancer. Another trial, the ATBC (α-Tocopherol/β-carotene)
trial gave the inspiration for inclusion of vitamin E in the SELECT trial [82–87, 90].

Retrospectively, the SELECT trial was initiated on the basis of sound evidence

suggesting the potential of selenium and vitamin E in reducing the risk of prostate

cancer. However, the trial was terminated early on account of both safety concerns

and negative data for the formulations and doses given. It is suggested that the use

of L-selenomethionine rather than high-selenium brewer’s yeast as used in the NPC

trial in SELECT did not possess good cytotoxic activity in vivo [68]. Since, the oral

doses or formulations required to deliver selenium metabolites to prostate cells

in vivo were not yet established, this could explain why SELECT did not duplicate

earlier results. Additionally, participants in the earlier NPC study who benefited

from selenium administration were recruited from eastern USA, a traditionally

seleno-deficient region, had lower baseline selenium levels. Thus, it might have

been more beneficial to conduct a trial such as SELECT in a seleno-deficient

region, to better replicate the conditions under which selenized yeast provided

chemopreventive benefit in the earlier NPC trial. A better understanding of sele-

nium biology would have also helped design a more effective and well-balanced
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trial. Thus, the major lesson from the SELECT trial is that thorough understanding

of molecular mechanism of action, strong preclinical evidence in different disease-

relevant models, careful pharmacological and pharmaceutical design are necessary

before advancing to large-scale, time-consuming, and costly clinical trials, espe-

cially for prevention trials.

3.2 Development of Anticancer Nutraceuticals

As discussed above, understanding the chemical biology of a dietary compound

provides important insights as to its perceived therapeutic effects and molecular

mechanisms of action. In this discussion, we will use the example of inhibitors of

the mdm2 (mouse double minute 2 homolog) oncogene. The mdm2 overexpression

is associated with poor prognosis, drug resistance, and lower overall survival in

cancer patients [95–103]. As a negative regulator of the tumor suppressor p53,

MDM2 has been proven to be an important oncogenic molecule with several

cancer-promoting activities [95]. Many of its oncogenic activities even occur,

independent of p53 [95, 104, 105]. Advances in the understanding of the confor-

mation and structure of MDM2 have sparked the discovery and development of

MDM2 inhibitors as anticancer agents [106–115]. Molecular modeling approaches

including pharmacophore-based, molecular docking studies have helped in

structure-based drug design [106]. In a high-throughput electrochemiluminescent

screen of more than 144,000 natural product extracts, sempervirine, a natural indole

alkaloid was identified as an inhibitor of MDM2’s E3 ligase. Further studies have

shown that sempervirine can activate p53 through inhibiting the MDM2-mediated

ubiquitination and degradation of p53. These effects have now led to further studies

on the anticancer potential of Sempervirine [116].

Extensive studies on the biology of carcinogenesis prove that all malignant cell

transformation and subsequent tumor growth cause concomitant alterations in

multiple cellular signaling pathways. Thus, synthetic chemotherapeutic agents

attempting to treat neoplastic tumors via the so-called “one gene–one target”

approach, often result in abject failure. Natural compounds, on the other hand,

show the capability to have multiple targets. Ji et al.[117] explain this paradigm,

using the example of the flavonoid quercetin, which occurs naturally in tea and

grapes. Quercetin can inhibit structurally diverse enzymes in different biosynthetic

pathways, possibly due to the fact that quercetin, with its complex carbon frame-

work, has multiple structurally diverse binding groups, a subset of which is suffi-

cient to bind to the enzyme binding cavity. Core structures of natural compounds

with diverse ligand binding groups are able to bind more easily with the enzyme;

what with both the cavity as well as the ligand being flexible entities allowing them

to adapt their configuration for optimal binding [118, 119]. This diversity and

flexibility thus allows them to interact with their therapeutic target(s). Pharmaco-

kinetic studies in humans indicate that the disposition of quercetin is largely

dependent on the sugar moiety attached to it (quite similar to the ginsenoside
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saponins) and may contribute to its cancer protective effects [120]. Similar results

are also seen in the ginseng metabolite Compound K which also exhibits potent

antitumor activity [72, 77].

It must also be appreciated that natural compounds often have several draw-

backs, such as toxicity, complex structure, poor water solubility, low bioavailabil-

ity, and low content of actual therapeutic component in natural sources [50–

53]. Therefore, most of the candidate natural compounds need structural modifica-

tions and SAR research to develop next-generation compounds with better antican-

cer activity and less host toxicity. At the same time, the series of compounds

derived through structural modification are useful in studies aiming at a better

understanding of the mechanisms of action. Artemisinin is a fitting example of a

successfully modified natural compound [121–125]. Artemisinin is an antimalarial

drug with low water solubility and consequently low bioavailability. Upon reduc-

tion to dihydroarteannuin, a notable increase is seen in its antimalarial activity

[123–125]. The methyl ether derivative of artemisinin, artemether, is soluble in oil

and can be formulated as an oil-based injection with a concomitant increase in

bioavailability. In the 1990s, artemisinin was rediscovered as antitumoral com-

pound with excellent cytotoxic activities, with even the structural analogs of the

artemisinin parent nucleus showing impressive antitumor effects. Several groups

have elucidated the molecular mechanisms of action for artemisinin as an antican-

cer agent, including apoptosis through a caspase-dependent mitochondrial pathway,

G1-phase cell cycle arrest in a p53 independent manner, and cellular iron depletion

via a nonclassical endocytic pathway [126–128]. In addition, dihydroartemisinin

also increased the efficacy of the chemotherapeutic agent gemcitabine. Thus,

artemisinin presents a classical example of development natural compound into

an effective drug for use in the clinic. Similar approaches can be used in discovering

and developing anticancer nutraceuticals, including validating anticancer proper-

ties, identifying molecular targets linked to anticancer effects, performing chemical

structure modifications and/or synthesis or semi-synthesis of derivatives, and test-

ing novel derivatives with better physicochemical properties for therapeutic effi-

cacy and safety in preclinical and clinical studies.

3.3 Identification of Molecular Targets of Anticancer
Natural Products

As indicated above, natural products often possess more than one biological target,

and a better understanding of the “molecular network” of targeted signaling path-

ways is imperative in designing better prevention and therapies incorporating one

or more nutraceuticals/dietary agents which affect different targets, thus providing

a synergistic mechanism. In this section, we discuss this multi-target concept, using

a few exemplary phytochemicals that have been widely investigated for their

chemopreventive activities (Fig. 16.2).
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3.3.1 Genistein

Several population studies have demonstrated that people with cultures adhering to

a soy-rich diet show lower incidence of breast cancer [7, 8]. The isoflavones in a

soy-based diet are majorly responsible for conferring the anticarcinogenic proper-

ties [8]. Among isoflavones, the major constituents that are majorly involved in

cancer prevention and therapy include genistein and diadzein [129]. Genistein

influences multiple biochemical functions in living cells, including activation of

PPARs (peroxisome proliferator-activated receptors), inhibition of tyrosine

kinases, inhibition of topoisomerases, and induction of autophagy [130–136]. Evi-

dence of the anti-proliferative activity of genistein in vitro stems from its ability to

inhibit the tyrosine kinase enzyme that is most often upregulated in cancer cells

[130]. As a chemopreventive agent, genistein affects the differentiation process of

mammary tissue, causing early differentiation of rat mammary tissue into terminal

buds while making them less susceptible to carcinogens or estrogen. Many aggres-

sive cancers present altered epidermal growth factor (EGF) receptors on their cell

surface activating the downstream cell division signaling pathway. When EGF

binds to its receptors, the tyrosine kinase activation results in the phosphorylation

of tyrosine residues of proteins involved in downstream cell signaling pathways that

trigger cell division [21, 130]. Studies indicate that genistein increases the EGF

transcription early in development of breast tissue, driving differentiation and faster

Fig. 16.2 Exemplary biochemical pathways affected by selected dietary chemopreventive agents
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development. However, over the course of time, this prevents breast lesion forma-

tion in ducts. Another mechanism by which genistein may contribute to chemopre-

vention is downregulation of the MDM2 oncogenes. We have demonstrated that

genistein downregulates MDM2 at both the transcriptional and posttranslational

levels [133], regardless of the p53 status of the cells. These activities are also

independent of the tyrosine kinase inhibitory activity of the compound, implying

that there is no cross-talk between these two mechanisms. Genistein also increases

p21 expression levels, thereby inhibiting uncontrolled proliferation [133]. Encour-

aged by the excellent anticancer activity of genistein, several semisynthetic analogs

such as synthetic genistein glycosides and 7-O-modified genistein derivatives are

being developed as anticancer agents [136]. One of the biggest problems with

development of genistein as an effective chemopreventive agent is its low oral

bioavailability, which may also be responsible for its unclear therapeutic effects

and large inter-individual variations in clinical trials.

3.3.2 Ginsenosides

Ginseng, a common and widely used ingredient in traditional Chinese medicine, is a

highly popular dietary supplement in the USA. In fact, the sale of ginseng products

in the USA alone was estimated to reach US$83 million in 2010. Ginseng has been

used traditionally for the treatment of fatigue, to stop bleeding, and for maintaining

cardiovascular health. The Shen Nong’s Herbal Classic attributes life enhancing

and health boosting properties to ginseng and states that it is good for “enlightening

the mind and increasing the wisdom” [72]. It is now known that ginsenosides, the

steroidal active components present in the Panax species, contribute to the diverse

pharmacological activities of Panax plants, including their anti-inflammatory,

immunomodulatory, antidiabetic, cardioprotective, and anticancer effects

[137]. To date, more than 40 different saponins have been isolated and most of

them show excellent cytotoxic profiles. Several reports have elucidated the anti-

cancer properties of these ginsenosides [72].

Ginsenoside saponins exhibit diverse molecular mechanisms of action, regulat-

ing most known modulators of carcinogenesis, including regulation of cell prolif-

eration, growth factors, tumor suppressors, oncogenes, cell death mediators,

inflammatory response molecules, and protein kinases. The anticancer activities

of ginseng saponins follow a well-defined structure–activity relationship with the

aglycone moieties possessing more cytotoxicity than compounds with attached

sugar molecules [72]. Recently, we have identified several new ginsenosides,

including 20(S)-25-methoxyl-dammarane-3β,12β,20-triol (25-OCH3-PPD), a

protopanaxadiol from Panax notoginseng, which exhibits excellent anticancer

activity against various human cancers, including prostate, pancreatic, lung, and

breast cancers. In fact, it may be the most potent anticancer ginsenoside discovered

to date. It downregulates MDM2 expression in the different cancer types in vitro

and in vivo [72, 137–140]. Another two ginsenosides, 20(R)-dammarane-

3β,6α,12β,20,25-pentol (25-OH-PPT) and 20(R)-dammarane-3β,12β,20,25-tetrol
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(25-OH-PPD) from P. notoginseng also show greater cytotoxic effects against

several cancer cell lines than Rg3, which is marketed as an anticancer agent in

China [137]. As seen with 25-OCH3-PPD, MDM2 protein levels are decreased after

exposure to both 25-OH-PPD and 25-OH-PPT. Preclinical studies on ginsenosides

reveal that they are substrates for the CYP enzymes, and are absorbed well from the

small intestine. Ginsenosides are, typically, metabolized to active metabolites

in vivo, the most noteworthy being Compound K [77].

Because of the pleiotropic actions of the ginsenosides, drug resistance to these

compounds may not be readily developed. Furthermore, the selective ability to kill

tumor cells with little or no toxicity to normal cells makes ginsenosides attractive

anticancer drug candidates. However, there still are several challenges. Different

species of ginseng have different saponin profiles, and the mode of isolation from

the plant or subsequent treatment of the plant extracts affects the quantity of its

active anticancer principles. For example, heat treated ginseng extracts possess

higher quantity of Rg3, Rh2, and PPD [72]. As a result, it is often difficult to

standardize studies and varying results are seen. Also, sometimes conflicting results

in clinical trials involving ginsenosides have been noticed. Both a large case–

control study as well as a small cohort study has suggested that ginseng use is

associated with a significant (more than 60%) reduction in gastric cancer risk in

Korean populations [72]. However, when this study was attempted to be duplicated

in a large prospective cohort study in a Chinese women population, no association

between ginseng intake and gastric cancer risk was found. Whether these differ-

ences were due to the mode of preparation of the plant extracts (since no isolated

compound was used) has not yet been proven.

3.3.3 Curcumin

Curcumin has multimodal properties and affects simultaneously numerous molec-

ular and biochemical signaling cascades, including the inflammation-related TNF-α
(tumor necrosis factor-α)/NFκB survival pathway [54–68]. The anticancer potential

of curcumin stems from its ability to suppress proliferation of different types of

tumor cells, to downregulate transcription factors NFκB, AP-1 (activating protein-

1), and Egr-1 (early growth response protein 1), to decrease the expression of COX2

(PTGS2, prostaglandin-endoperoxide synthase 2), LOX (lysyl oxidase), iNOS

(Inducible nitric oxide synthase), MMP-9, TNF, chemokines, cell surface adhesion

molecules, and cyclin D1 [48, 141]. It is well known that chronic inflammatory

conditions caused by genetic mutations, autoimmune diseases, and exposure to

environmental factors such as bacteria (H.Pylori) increase the risk of cancer. In fact,

epidemiological studies attribute up to 25% of cancer deaths worldwide to chronic

inflammation [141–144]. Surprisingly, cancer tissues without any history of pre-

cancerous inflammation also exhibit inflammatory markers and morphology. It is

suggested that the inflammatory state helps maintain and promote cancer progres-

sion and achieve the complete malignant phenotype, including tumor tissue

remodeling, angiogenesis, metastasis, and the suppression of the innate anticancer
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immune response [142]. Oncogenic signaling pathways such as Ras-Raf or NFκB
mediate inflammation to facilitate cell transformation. The NFκB signaling plays

crucial roles in both precancerous chronic inflammation as well as cancer induced

inflammation [142–144]. Activation of NFκB induces expression of inflammatory

cytokines, adhesion molecules, enzymes in the prostaglandin-synthesis pathway

(such as COX2), inducible nitric oxide synthase (iNOS), angiogenic factors

(VEGF), and anti-apoptotic genes (such as Bcl-2). COX2 and PGE2 (prostaglandin

E2) synthase regulate various aspects of tumor progression, angiogenesis, and

metastasis. Similar to NFκB, the STAT3 (signal transducer and activator of tran-

scription 3)/ TGFβ (transforming growth factor β) signaling pathway is constitu-

tively activated in tumor cells and is involved in oncogenesis and inhibition of

apoptosis. The activation of STAT3 in tumor cells has also been implicated in

immune evasion via inhibition of dendritic cell maturation and the subsequent

immune response [142, 145–148].

Curcumin also downregulates growth factor receptors (such as EGFR (epidermal

growth factor receptor) and HER2 (human epidermal growth factor receptor 2)) and

inhibits the activity of c-Jun N-terminal kinase, protein tyrosine kinases and protein

serine/threonine kinases. It inhibits the growth of LNCaP xenografts in nude mice

by inducing apoptosis and inhibiting proliferation and sensitizing these tumors to

undergo apoptosis by TRAIL (NF-related apoptosis-inducing ligand) [48, 141]. In

xenograft tumors, curcumin upregulates the expression of TRAIL-R1/DR4,

TRAIL-R2/DR5, Bax (bcl-2-associated X protein), Bak (bcl-2 homologous antag-

onist/killer) p21/WAF1, and p27/KIP1, and inhibits the activation of NFκB and its

gene products. Curcumin treatment with TRAIL in combination with genistein

sensitizes TRAIL-resistant AGS gastric adenocarcinoma cells to TRAIL-mediated

apoptosis. Curcumin has also been reported to induce apoptosis in human mela-

noma cells through a Fas receptor/caspase-8 pathway independent of p53. Another

property ascribed to curcumin is that of inhibition of c-jun/AP-1 (activator

protein 1) function and JNK (c-Jun N-terminal kinase) activation [141].

One of the likely mechanisms underlying inhibition of NFκB activation by

curcumin involves suppressing the degradation of the inhibitory unit of I kappa B

alpha (IκBα) which prevents subsequent nuclear translocation of the functionally

active subunit of NFκB. Curcumin inhibits tumor formation in several chemically

induced carcinogenesis models such as benzopyrene induced forestomach carcino-

genesis, N-ethyl-N’-nitro-N-nitrosoguanidine (ENNG)-induced duodenal carcino-

genesis, and azoxymethane (AOM)-induced colon carcinogenesis. Recently, we

discover another important mechanism by which curcumin exerts its anticancer

activity, i.e., downregulation of MDM2 transcription through the PI3K (phosphati-

dylinositol 3-kinase)/mTOR (mammalian target of rapamycin)/ETS2 pathway

[55]. We further demonstrate that curcumin can sensitize human cancer cells to

chemotherapy and radiation by the MDM2-knockdown. However, curcumin is

notorious for its poor bioavailability in vivo. This has prompted medicinal chemists

to synthesize curcumin derivatives with better pharmacokinetic properties, which

has led to several potent new candidate anticancer agents [48, 56, 141].
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In Table 16.1, we further summarize the chemopreventive mechanisms of action

of major phytochemical classes, along with additional information as to their

clinical status.

3.3.4 Epigallocatechin-3-Gallate (EGCG)

Epigallocatechin-3-Gallate (EGCG) is one of the major food-derived phytochem-

ical constituents that are extensively studied for their chemopreventive and che-

motherapeutic use. It is polyphenol tannin present in green tea. EGCG exerts its

anticancer properties via several mechanisms such as inhibiting angiogenesis by

affecting VEGF transcription, inhibiting growth promoting signal transduction

pathways via PI3K/Akt/NFκB, inhibiting EGFR, inhibiting HER2 receptor phos-

phorylation in breast carcinoma cells that constitutively expresses HER2/neu

receptor [21, 236–238], inducing apoptosis in estrogen receptor-(ER-) independent

breast cancer cells, preventing metastasis [21]. However, high doses of EGCG can

induce hypoxia-inducible factor 1 (HIF-1) which can lead to tumor cell prolifera-

tion through alternate survival pathway mechanisms [21]. Most studies indicate that

anticancer properties of EGCG are shown at higher doses which may be physio-

logically unachievable through dietary consumption. Also, at higher doses EGCG

may mediate pro-proliferative effects. Therefore, clinical trials aimed at achieving

desired antitumor effects at much lower doses combine EGCG with chemothera-

peutics such as taxol [21]. Thus, EGCG can be exploited as a chemopreventive

agent if it prevents neoplastic lesions from appearing at low concentrations and for

prolonged periods of time. In vitro studies that use relatively high doses of EGCG

may actually translate into tumor promoting than preventive effects, when admin-

istered over longer exposure periods. Over time, EGCG can also induce drug

resistance via NFκB mediated pathway. The above observations emphasize the

importance of a dual-drug treatment approach for cancer therapy. In a recent

review, Saldanha et al. [21] postulate that EGCG will be more effective if admin-

istered early in combination treatment, followed by other phytochemicals or drugs,

so that can further potentiate the efficacy of the treatment regimen.

4 Perspective and Future Directions

It is now well accepted that nutrition/diet plays an important role in the prevention

and treatment of chronic diseases such as cancer. Epidemiological studies have

demonstrated that vegetable and fruit consumption is constantly associated with a

reduced risk of a variety of cancers [7–9], and that dietary intake of vitamins,

minerals, and antioxidants such as carotenoids from these sources is similarly

correlated with a reduced cancer risk [16–19]. The very nature of cancer that

includes progressively accumulating genetic and molecular alterations offers mul-

tiple targets for putative chemopreventive strategies. The lengthy process of carci-

nogenesis and cancer progression also permits screening of high-risk individuals
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and early detection of cancers. Effective early stage cancer screening identifies not

only malignancies that are more responsive to therapy, but also premalignant

lesions that can be removed and/or prevented from progressing to invasive disease

stages. Thus, a successful chemoprevention program requires an in-depth under-

standing of the entire carcinogenesis process. Basic and translational researches

capitalizing on these cutting-edge technologies are necessary to facilitate the

development of chemopreventive agents. The identification and validation of

molecular and genomic biomarkers will be necessary to identify and quantify risk

in prospective cohorts as well as finding use as surrogate end points in clinical

studies. Another direction is to generate new animal models of carcinogenesis that

mimic human disease (including transgenic and gene knockout mice) which can be

used to validate surrogate end points. Besides epidemiological studies, basic

researches to determine the mechanisms of action and evaluate the chemopreven-

tive efficacy of dietary components are indispensable.

As we progressively inch towards a better scientific understanding of the mech-

anisms of the carcinogenic process, a prudent strategy to reduce the risk of cancer

incidence and mortality would include increased consumption of vegetables and

fruits as a part of a healthy, balanced diet. This would include eating between five to

nine servings of fruits and vegetables every day. At the same time, in order to lend

further credibility to chemoprevention studies, a standardized evidence-based

approach to the development of nutrition-related guidelines is needed. For this

purpose, one needs to follow the principles of evidence-based medicine such as

GRADE (Grading of Recommendations Assessment, Development and Evalua-

tion) which are based on randomized clinical trials. However, in chemoprevention,

one has to rely on trials with risk factor or surrogate end-points, since studies

sufficiently powered for clinical end-points or mortality, the usual expectation of

evidence-based medicine, might not be feasible. Defined criteria must be developed

for determining whether a risk factor may be deemed to be an appropriate

end-point.

Many of the natural products do not possess “drug like” qualities and present

disadvantages like poor bioavailability and inability to reach site of action. There-

fore, it is essential to further develop these compounds by structural modification

and/or better delivery. In contrast to the classical way of cancer treatment studies,

where research starts from the disease followed by gene identification and con-

cludes with specific cancer gene targeting and drug development, in chemopreven-

tion trials, natural products are at the top of the pyramid: based on epidemiological

and experimental studies, these agents are isolated from their natural sources,

purified and assayed to investigate their ability to kill precancerous and cancerous

cells. Since the end point for both studies is cancer eradication, a concerted effort

must be made to complement each other in order to discovery novel ways to fight

cancer. Diverse dietary constituents such as vitamins A and D, genistein, EGCG,

sulforaphane, curcumin, piperine, theanine, and choline have also been shown to

modify self-renewal properties of cancer stem cells, further indicating the impor-

tance of these dietary factors in cancer prevention.

In the past three decades, the approach to cancer prevention research has evolved

to a comprehensive process, from population and epidemiological studies, to
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molecular targeting and immunological intervention, and to identifying high-risk

precancerous lesions in individuals using emerging early detection technologies, to

controlled, randomized clinical trials. Therefore, the future of chemoprevention lies

on the better identification of risk cohorts who are more likely to benefit and to be

more tolerant of risks through improved risk models, more insights into molecular

carcinogenesis and validation of molecular targets, the identification and develop-

ment of more specific and highly targeted agents that can achieve dramatic

improvements in efficacy with fewer side effects, and the testing of agent combi-

nations that appear to offer another path to greater efficacy with fewer, more

tolerable risks in chemoprevention. The future of molecular prevention is highly

promising due to a wealth of promising new natural compounds for clinical

development as preventive agents and the greater appreciation of the need to

balance risks and benefits. Additional strategies should specifically be focused on

interrupting the late-stage, but still premalignant, processes that lead to in situ

cancers, with the goal of averting progression to invasive cancer. It is hoped that

the global implementation of these scientifically sound lifestyle-based and

evidence-based cancer prevention strategies has the potential to reduce cancer

incidence, prevalence, and mortality and social economic impact of cancer

worldwide.
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Chapter 17

The Onset of Atopic Dermatitis: Underlying
Mechanisms

Alma J. Nauta and Hugo van Bever

1 Introduction

Eczema or atopic dermatitis (AD) is the most common chronic skin disease in

children with an increasing prevalence worldwide. The incidence has increased

during the last 30 years, with 20 % of infants and children experiencing symptoms

[6]. The wide range in the prevalence and the more frequent occurrence in urban

areas suggest that environmental factors play a role in the development of atopic

dermatitis. Atopic dermatitis often precedes asthma and allergic disorders, and

more than 50 % of children with AD will develop asthma and/or allergies [34]. Sev-

eral epidemiological studies provide evidence for the so-called “The Atopic March”

from AD, suggesting that AD is the starting point for subsequent allergic diseases

[61]. Most of the children develop AD before the age of 2 years, and usually AD

starts during the first months of life [38], however, AD is not present at birth. The

etiology and pathophysiology of AD is not completely defined, though it is unlikely

that allergic reactions are involved in the initiation of AD. This review aims to

highlight recent insights into the pathophysiology of the onset of AD, focusing on

the interplay between skin barrier abnormalities, inflammation, and skin microbiota

and to discuss potential strategies for prevention and treatment.
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2 The Normal Skin at Birth

An intact, healthy skin barrier is important in the first line defense against environ-

mental substances, including various pathogens and allergens. Although infants are

born with a competent skin barrier, their skin is still developing through the first

year of life and is different from adult skin (reviewed by [65]). The differences

between infant and adult skin can be divided into structural differences, composi-

tional differences and functional differences. Neonatal skin is drier and has a higher

pH compared to that of adults, although both features are rapidly changing during

the first months of life. In addition to structural and functional changes, the

composition of commensal bacteria residing the skin surface evolves during the

first year of life [13].

AD is not present at birth, but starts during the first weeks or months of life,

especially in children who are born with a dry skin. Alterations in skin barrier

properties that are observed in AD in older subjects include increased

transepidermal water loss (TEWL), changes in skin surface pH, increased skin

permeability, altered bacterial colonization and compromised skin barrier integrity.

Whether these skin barrier abnormalities are primary in the pathophysiology of AD

or whether it is merely a reflection of downstream consequences of intrinsic

inflammatory disease remains to be fully elucidated.

3 Atopic Dermatitis in Young Children: Epidemiological
and Clinical Features

The prevalence of allergic diseases is increasing in most countries, although the

latest data from the ISAAC showed that in some countries the prevalence of atopic

dermatitis seems to be leveling or decreasing [68]. For other countries, mainly

formerly low-allergy prevalence developing countries, a substantial increase has

been reported, especially in the younger age group [68]. It is not possible to attribute

the change in atopic dermatitis prevalence to a singular environmental or genetic

risk factor and it is likely that different risk factors are playing a role in specific

types of atopic dermatitis. For example, mutations in the skin barrier protein,

filaggrin, have been defined as a strong risk factor for atopic dermatitis in selected

populations, with a reported filaggrin mutation carrier frequency between 14 and

56 % in patients with atopic dermatitis [16].

The distribution of AD is largely age dependent. In the first 2 years of life (the

infantile phase), the clinical features of AD are being characterized by lesions

mainly localized to the head, the scalp and extensor areas of the limbs, and are

made up by edema, erythema, oozing, and crusting (Fig. 17.1). The exposure to

saliva and food exacerbates the clinical lesions. Secondary infection and xerosis are

common [61]. The childhood phase (from 2 years to puberty), is characterized by

lichenification and dryness, primarily affecting hands, feet, and flexural areas of
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elbows and knees, the wrists, neck, and face. For the clinical evaluation of the

severity of AD, the SCORAD index is being used [2]. Infants and young children

with AD have distinctive intensity items of the SCORAD index and it has been

postulated that different immune mechanisms are involved. The acute inflammation

characteristic of the infantile phase shows marked infiltration with Th2 cells, while

during the chronic childhood phase a switch to Th1 response has been reported [42].

4 The Role of Allergy in Atopic Dermatitis

There is a continuing controversy whether allergic sensitization is an essential

feature of AD and the exact link remains to be elucidated. Different contrasting

hypotheses have been postulated. Some suggest that allergic reactions can cause

AD [57], while others suggest that allergy is a consequence of chronic AD, caused

by percutaneous allergen penetration through a defective skin barrier [47]. A recent

study suggested that allergic sensitization occurs through the skin resulting in

specific allergen-specific cutaneous T cell responses [15].

Although most patients with AD show high levels of IgE, some do not show

clinical features of allergy differentiating an IgE-associated extrinsic type from a

nonallergic or intrinsic type of atopic dermatitis [54], although new insights may

reveal more types of atopic dermatitis. In infancy, intrinsic AD is more prevalent

than extrinsic AD. Moreover, in infants AD lesions occur before allergic symptoms,

and therefore, it is questionable whether allergic reactions are responsible for the

initiation of AD.

The causative role of food allergy in the initiation of AD has been a subject of

debate and controversial results have been reported [22]. Studies have demonstrated

Fig. 17.1 The clinical features of AD in children. The face, especially the cheeks and the chin,

and flexural areas such as the elbows often show edema and erythema
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that a low food allergen diet is associated with a significant reduction in the

prevalence of AD in infancy, and using double-blind placebo-controlled food

challenges (DBPCFC), food has been demonstrated to induce AD [9], although

the occurrence of true food-induced AD is rare [1]. The difficulty to provide

conclusive evidence that food allergy can induce AD is associated to the compli-

cated diagnosis of food allergy. The presence of food-specific IgE support sensiti-

zation, but does not always correlates with clinical allergy. Recently, the diagnostic

value of specific IgE have been determined and may offer a better positive predic-

tive value [26]. In addition, there are reports suggesting that the use of the atopy

patch test in combination with IgE testing increases the positive predictive value of

the diagnosis of food allergy [1], although others have reported only a small added

benefit of atopy patch test [19]. Moreover, food allergy can also be non-IgE

mediated which further complicates diagnosing the interplay between food allergy

and AD.

Recent research indicates the role of house dust mites (HDM) as a cause of AD

[22]. Different mechanisms have been suggested, including the inherent proteolytic

enzyme activity that can contribute to skin barrier impairment, activation of

proteinase-activated receptors-2 (PAR-2) inducing epidermal barrier dysfunction,

the superantigenic function, and IgE-mediated inflammation, resulting in tissue

damage. However, the causative role of HDM-allergy in AD is still controversial

as it was suggested that HDM allergy is a consequence of the impaired skin barrier

function.

5 Differences Between Normal and Eczematous Skin

The skin barrier function resides primarily within the stratum corneum (SC), the top

layer of the epidermis, and has until recently relatively been ignored as an important

factor in AD [29]. Differences between the skin barrier properties between normal

and eczematous skin involve at least four elements (Fig. 17.2): (1) the physical

barrier, characterized by increased transepidermal water loss (TEWL) and

compromised skin permeability barrier integrity, (2) the chemical barrier reflected

by changes in skin surface pH and alterations in expression of antimicrobial

peptides (AMPs), (3) the microbiological barrier reflected by altered bacterial

colonization, and (4) the immunological barrier, illustrated by reduced expression

of TLRs. However, the question remains whether these defects are cause or

consequence of AD.

TEWL measurement is performed by a noninvasive method that can be used to

monitor changes in SC barrier function. High TEWL is suggestive of incomplete

skin barrier function. In patients with AD, TEWL was found to be increased in both

dry non-eczematous skin and clinically normal skin [67]. Recent studies indicated

that the expression of thymic stromal lymphopoietin (TSLP) is increased in the SC

of AD patients and correlates with SC hydration and SCORAD [58]. The expres-

sion of TSLP can be induced by different stimuli, including allergen-driven
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proteases, as well as endogenous proteases, such as kallikrein 5, which is

overexpressed in patients with AD [37], and by specific TLRs [39].

Moreover, the antimicrobial barrier is compromised in AD due to an impaired

expression of antimicrobial proteins (AMPs) that play a key role in the innate

immune defense system of the skin. AMPs are produced by keratinocytes and the

expression of some of these peptides is constitutive, whereas the expression of

others is triggered by inflammation. Several studies showed a deficiency in the

expression of AMPs in subjects with AD [51]. The reduced expression of AMPs

Fig. 17.2 Complex interplay between impaired skin barrier, altered skin microbiome, and dys-

functional immune response in pathophysiology of AD. The onset of AD may start with an

impaired skin barrier, either genetically programmed or due to specific environmental factors

that via epigenetic mechanisms impair the skin barrier. The alterations in the skin barrier,

physically and or chemically, may lead to altered skin colonization and impaired skin immune

defense (e.g., reduced expression of IL-1). Moreover, disruption of the skin barrier may enable the

uptake of allergens, irritants, and microbes by dendritic cells, thereby triggering inflammatory

immune responses involving immune components like TSLP. The inflammatory immune reaction

subsequently can further impair the skin barrier functionality by decreasing the expression of skin

barrier proteins like FLG, contributing to the onset of AD
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together with the observed higher pH in the skin of AD patients [59] is most likely

playing a role in bacterial colonization, including colonization with Staphylococcus
aureus, although other abnormalities could be involved. Approximately 90 % of

AD patients are colonized with S aureus that can trigger multiple inflammatory

cascades [41]. Toxins produced by S aureus can act as superantigens and thereby

activate T cells contributing to Th2-mediated inflammatory reactions [40]. The

question remains whether this is primary or secondary.

6 The Role of Skin Barrier Proteins in Atopic Dermatitis

Different proteins of the epidermis playing an important role in the barrier function

are impaired in the skin of patients with AD (Table 17.1). Filaggrin (FLG) has been

the most studied and its gene has the highest association with AD [52], subsequent

allergic sensitization, and allergic disorders [8]. Next to FLG, abnormalities in other

proteins expressed in the uppermost part of the epidermis have been identified to be

associated with AD. These include impaired expression in tight junction proteins,

such as claudins [17], and scaffolding proteins such as loricrin and involucrin [35],.

Importantly, the expression of these proteins can be influenced by ongoing inflam-

matory processes in the skin [32] and therefore could be cause or consequence of

AD. Another important factor in the maintenance of the barrier function of the

epidermis is the control of skin proteases by skin protease inhibitors, such as

SPINK, a gene absent in Netherton’s syndrome, which is characterized by an

extreme severe type of AD [10]. Increased protease functioning also occurs in

AD patients, including an increase in stratum corneum chymotryptic enzyme [66]

and mast cell chymase [4]. Allergens such as house dust mite and cockroach

themselves and Staphylococcus aureus can be proteolytically active, thereby

decreasing the skin barrier function [46]. A recent review [37] describes the role

of epidermal innate receptors in regulating the skin barrier and that defects in these

innate receptors play a role in the pathogenesis of AD.

Whether skin barrier dysfunction precedes skin inflammation that initiates the

development of AD remains to be fully elucidated.

7 Early Skin Colonization: Its Role in Atopic Dermatitis

The composition of the human skin microbiome is dynamic and has been demon-

strated to evolve over the first year of life along with the structural and functional

development of the skin [13]. The skin microbiome depends on the local environ-

ment of the skin area and differences have been reported between moist and dry

sites [25]. Capone et al. showed relative instability of the infant skin microbiome

that may provide the opportunity for aberrant skin development. Interestingly, the

newborn skin microbiome is extremely dynamic and initial differences, for
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example due to difference in mode of delivery, e.g., caesarean section vs. vaginal

delivery [20], disappear within a month of life.

The composition of the skin microbiota of AD patients differs from healthy

controls [18] and it was shown that the reduction in microbial diversity precedes

worsening of AD disease severity in children [36]. Interestingly, AD treatments

with topical steroids or oral antibiotics have been demonstrated to modify microbial

diversity preceding improvements in disease severity. However, from current data

it is not possible to determine whether the composition of the microbiome can be

the cause or result of AD. The skin microbiome is suggested to play an important

role in the development of the skin immune [48] and barrier function [27]. Aberrant

development of the skin immune system may be linked to the development of AD,

allergy [61] or even asthma [5].

8 Pro-Inflammatory Status of the Skin in the Onset
of Atopic Dermatitis

Although a number of immune abnormalities have been described in AD, including

increased TSLP and Th2 activation and decreased expression of AMPs, it remains

to be elucidated whether skin barrier dysfunction precedes immune dysregulation

(“outside-in” hypothesis) or immune dysregulation precedes barrier changes

(“inside-out” hypothesis) initiating the onset of AD [21]. Moreover, the increased

susceptibility to microbial colonization and infections in AD patients indicates the

complexity underlying the pathogenesis of AD.

Available data supports both hypotheses. Enhanced penetration of allergens and

pathogens due to impaired skin barrier can lead to inflammatory and allergic

immune responses. Experimental evidence demonstrated the elicitation of a

Th2-response after (mechanical) disruption of the skin barrier accompanied by an

increased expression of TSLP. TSLP plays a key role in the allergic inflammation

and activates different effector cells, including mast cells and basophils (reviewed

in [69]). Perturbations of the SC barrier also trigger the activation of Langerhans

Table 17.1 Summary of skin proteins associated with AD

Component Protein Reference

Skin barrier proteins Filaggrin [52]

Filaggrin2 [55]

Hornerin [55]

S100/A11 [31]

Scaffolding proteins Involucrin [35]

Loricrin [35]

Tight junctions Claudins [17]

Skin protease inhibitors SPINK [10]

Stratum corneum chymotryptic enzyme [66]
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cells [12]. Antigens can be taken up by Langerhans cells, subsequently migrating to

the draining lymph nodes and activate Th2 responses.

On the other hand, inflammation itself can also alter skin barrier integrity. Th2

cytokines have been reported to down regulate the expression of skin barrier

proteins, including filaggrin [32], involucrin, and loricrin [35]. Therefore, patients

with AD may have acquired skin barrier defects, which may explain why not all AD

patients are carriers of skin barrier mutations. The role of the microbial colonization

adds another layer of complexity to the underlying mechanisms in the onset of

AD [37].

9 Are There Epigenetic Mechanisms Involved in Atopic
Dermatitis?

The development of AD is influenced by multiple factors. Genetic as well as early

life environmental factors, including allergen environmental exposures [33], infec-

tions [7], autoimmunity [63] and alcohol intake during pregnancy [14, 44] are all

involved. Epigenetic mechanisms provide new insights on how the environment is

implicated in the development of genetically determined immune-mediated dis-

eases, including allergy, and how environmental changes drive the epidemics of

allergic diseases (reviewed by [45]). Although there is clear evidence that immune

development in under epigenetic regulation and that alterations in epigenetic

programming in allergy-prone infants are involved, little is known about epigenetic

mechanisms in AD. A recent study from Liang et al. demonstrated a role of

epigenetic changes in the pathogenesis of AD [43]. Their results indicated demeth-

ylation of specific regulatory elements within the FCER1G gene leading to

overexpression of the high affinity IgE receptor (FcεRI) on monocytes from

patients with AD. However, further research will be required to determine the

cause leading to the epigenetic changes and its potential role in the onset of AD.

10 A Model of Onset of Atopic Dermatitis in Early Infancy

Although progress has been made in the pathophysiology of AD, it remains a

complex disorder with a complex interplay between skin barrier, immune system,

skin microbiome, and epigenetics (Fig. 17.2). Environmental factor-induced

changes in gene expression may be key in the etiology of AD. It remains to be

elucidated whether epigenetic changes are causative in skin barrier impairments,

leading to altered skin microbial colonization and immune alterations or whether

immune alterations are the consequence of epigenetic changes causing skin barrier

dysfunction, causing increased allergen and pathogen penetration leading to
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AD. New insights into mechanisms underlying the onset of AD are pivotal to

develop early intervention strategies to prevent the development of AD.

11 Nutritional Intervention in Prevention and Treatment
of Atopic Dermatitis

Understanding how environmental changes modify gene expression and thereby

contribute to allergic diseases may provide an opportunity to strategies to prevent

allergic disease. Emerging evidence indicates that nutrition can influence epige-

netics. In particular, recent research has focused on the impact of prenatal nutri-

tional factors. One of the notable observations in an animal study is that maternal

supplementation with folate led to differential methylation and development of

allergic diseases in the offspring [30]. Nutritional intervention during pregnancy or

postnatally may reprogram gene expression and thereby prevent disease. Nutri-

tional factors may also directly interact with microbiota and with the immune

system, thereby modulating disease. Different nutritional factors are now under

active study for both prevention and treatment of AD, including probiotics, pre-

biotics, long-chain polyunsaturated fatty acids (LCPUFAs), and vitamin D.

In the context of prevention of AD with probiotics, a plethora of literature has

been published. Certain strains of probiotics are effective in the prevention of AD,

especially if administered prenatally [62]. However, there is evidence that

probiotics may increase the development of atopic sensitization [50, 64], thereby

questioning the effectiveness of probiotics in preventing AD. In addition, to date

there is one published study that addresses the capacity of oral supplementation

with probiotics to control microbial colonization of the skin in which no differences

on skin colonization was observed [49]. The use of probiotics for the treatment of

AD seems less promising despite some positive results [11].

Prebiotics are nondigestible oligosaccharides that reach the colon intact and are

known for their ability to selectively stimulate the growth and activity of bacteria

that exert positive health effects [23]. Beneficial effects have been observed on

prevention of AD in clinical trials with specific mixtures of oligosaccharides [62],

although more studies are required. To date, there are limited data to support the

therapeutic use of prebiotics in AD. There is one study that reported beneficial

effects of prebiotics in the treatment of AD [60].

Essential fatty acids must be acquired from the diet and are the precursors for

LCPUFAs that have been implicated as being important for the development of the

immune system. LCPUFAs have been shown to influence the immune system via

different mechanisms [24]. Although epidemiological studies support the hypoth-

esis of a relationship between higher intake of n-6 PUFA and increased prevalence

of allergic disease [28], clinical beneficial effects from intervention studies are

more conflicting and the protective effect is likely to be greatest in pregnancy [53].
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Vitamin D has important effects on the immune system and in particular has

been demonstrated to influence antimicrobial defenses and skin barrier function and

in dampening inflammatory responses, all important features of AD. However, the

role of vitamin D in prevention of AD has been controversial. Although available

evidence suggests a positive correlation between serum vitamin D levels and AD

[56], studies with oral supplementation with vitamin D showed an increased risk of

AD [3].

Further research to provide conclusive evidence on the effects of nutrient

supplementation as well as elucidating the underlying mechanisms is necessary.

12 Conclusion

In patients with AD, impairments in skin barrier and alterations in skin microbio-

logical colonization and the immune system are described. However, which of

these defects initiate AD remains to be established (Fig. 17.2). Insights in this

complex interplay will be important in the development of targeted preventive and

therapeutic strategies for AD that may also interrupt the progress to other allergic

disorders. Although there are different hypothesis on the onset of AD, it is becom-

ing increasingly clear that the skin barrier plays a key role in the process. New

techniques including high-throughput expression profiling and proteinomics may

facilitate the identification of relevant components in the onset of AD.
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Chapter 18

Cow’s Milk Allergy: Protein Hydrolysates or
Amino Acid Formula?

Christophe Dupont

1 Introduction

Cows’ milk protein allergy (CMPA) manifests by clinical symptoms related to the

abnormal immune response of the host after ingestion of these proteins and affects

2–7 % of children [1]. Symptoms that may affect the skin (urticaria, atopic

dermatitis), the digestive tract (vomiting, diarrhoea) as well as the respiratory

tract (rhinitis, asthma) are often combined and may be associated with failure to

thrive and anaemia, according to various syndromes. The immune mechanism may

be IgE mediated, non-IgE mediated or both. The diagnosis of CMPA, suggested

clinically, aided by skin tests (prick tests), specific IgE assays and/or patch tests,

requires the elimination-challenge procedure. CMPA has been subject to extensive

reviews and position papers [2–9]. When confirmed, CMPA requires the elimina-

tion of cows’ milk proteins (CMP) from the patient’s diet. In breastfed infants,

pursuing breastfeeding as long as possible is the best option. If mother does not

want to or cannot breastfeed, cows’ milk formulas are replaced by adapted ones,

based on cows’ milk hydrolysates, rice hydrolysates or amino acid mixtures in order

to avoid any protein of mammal or vegetal origin and thus further reduce the risk of

intolerance. Feeding this child always needs taking into account the potential

nutritional issues related to manipulating the child’s diet at an age of maximal

growth and nutrient/energy requirements. This chapter reviews the pros and cons of

the different nutritional options chosen.
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2 Nutritional Issues During CMPA

The nutritional impact of CMPA (see [7] for a review) varies considerably in

expression and intensity and should be systematically evaluated. Intestinal mucosal

inflammation may induce malabsorption and/or protein-losing enteropathy, but also

skin protein losses may be the consequence of atopic dermatitis. The elimination

diet prevents the deleterious effects of allergic inflammation but may impair the

adequate intake of essential nutrients: undernutrition may be the consequence of an

uncontrolled elimination diet [10–13]. This is all the more important in case of

multiple food allergies when exclusion of foods such as wheat or egg renders the

child’s menu very difficult to settle and nutritional and growth deficiencies more

likely to occur [14, 15, 13]: the nutritional risk increases in case of multiple food

allergies, since the elimination diet results in multiple exclusions. Children with at

least two food allergies might be slightly shorter than those with a single food

allergy ( p< 0.05) [14]. A low Ca intake is especially marked in children with

CMPA or multiple allergies. Children with CMPA and asthma, for more than

4 years, and who were treated with corticosteroids, ingested only 25 % of the

DRI of calcium [16]. Iron deficiency, the most common nutritional deficiency

associated with CMPA, has been rarely investigated. In an Italian study, 25 % of

patients with CMPA were iron deficient [17]. Isolated iron-deficiency anaemia can

reveal CMPA [18]. Some cases of infant CMPA manifest themselves in a failure to

thrive. The long-term consequences of these nutritional deficiencies are unknown.

3 The Need for Appropriate Replacement Formulas

Breastfeeding, if still possible, is the first choice for CMPA patients. When not

possible or not desired, breastfeeding is replaced by a substitute, which has to

provide normal growth and development. Most of the time, it is an extensively

hydrolysed formula (eHF), based on a source protein, usually from milk, which has

been “extensively hydrolysed” to considerably reduce allergenicity. eHFs are

distinct from partially hydrolysed formulas (pHFs), referred to as “hypoallergenic”

or “HA” in some countries, to be used only in non-breastfed infants considered at

risk for allergy [19]. In documented CMPA, the only suitable formulas are eHFs,

but there are no physical, chemical or immunological criteria that allow any

regulatory distinction between eHF and pHF [20]. eHFs may not be tolerated in a

certain number of children with CMPA, hence the need for amino acid-based

formulas (AAFs).
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4 Cows’ Milk Protein-Based Hydrolysates

eHFs used in replacement of cows’ milk formulas, cows’ milk and dairy products

have been analysed by the Committee of Nutrition of the French Society of

Pediatrics [20, 19, 7]. Previously, in 1993, the European Society for Paediatric

Gastroenterology and Nutrition (ESPGHAN) recommended to use formulas

containing proteins with a molecular weight (MW) <1,300 Daltons

(Da) [21]. This requirement is relevant in terms of quality control (reproducibility

among manufacturing processes) but does not allow predicting the degree of

immunogenicity or potential reaction in a given child [22].

eHFs also comply with the European Union Commission Directive 1999/21/EC

of 25 March 1999 on dietary foods for special medical purposes [23]. The European

Commission has set limits to the content of immunoreactive proteins in hydroly-

sates to<1 % of the total content of nitrogen-containing substances and determines

the adequacy and safety of a hydrolysate on (1) experimental studies (oral admin-

istration should not induce sensitisation, in animals, to the intact proteins from

which the hydrolysate is manufactured) and (2) on clinical trials, showing that the

hydrolysate is tolerated by more than 90 % of infants presenting with hypersensi-

tivity to the proteins from which the hydrolysate is manufactured [24]. This 1 %

threshold of immunoreactive proteins in hydrolysates dates back to the ESPGHAN

recommendation of 1999 [22] and does not rely on any clinical trials of good

scientific quality. Some authors indicate that suitable thresholds of reaction might

be closer to 1/1,000 [25]. Recommendations for adapted clinical trials have been

made in 2004 [26].

eHFs available in many European countries are almost all lactose free, and the

protein portion consists of either cows’ milk casein hydrolysates or cows’ milk

whey protein hydrolysates.

Comparison of the molecular weights of peptides and residual allergenicity of

cows’ milk hydrolysates is difficult, because manufacturing processes change and

are not always communicated by manufacturers. Early published data (from the

1990s) indicated the lowest residual allergenicity with Nutramigen®, lower than

that of Alfaré®, Peptijunior® and Nutrilon Pepti®, in that order [27–32]. Recent

modifications of the whey hydrolysate used in Alfaré led to a reduction of its

molecular weight profile, similar to that of the newly launched Althéra®,

characterised by a median peptide size of 362 Da, with 99.7 % of peptides

<2,400 Da [33].

Diagnostic tests, RAST specific and/or skin prick tests (SPT) of the

abovementioned eHFs, were performed in the same period in children presenting

with IgE-mediated CMPA. With Nutramigen®, the SPT was positive in 0/10 [34],

4/10 [35] and 1/42 [36] children. Comparative studies showed positivity in 0/15

with Nutramigen® and 1/15 with Alfaré® [37], in 0/17 with Nutramigen® and 2/17

with Alfaré® [29] and in 6/31 with Nutrilon Pepti® [38]. RAST was more frequently

positive, in 2/15 children with Nutramigen® and 7/15 with Peptijunior® [39], 4/10

with Nutramigen® and 5/10 with Alfaré® [29].
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Clinical studies confirming the efficacy of eHFs in the treatment of CMPA have

been rare, performed with a small number of children usually older than 6 months

with IgE-mediated allergies. Nutramigen® has been the more extensively investi-

gated, being frequently the reference formula in controlled trials. In a total of

97 children, its efficacy ranged from 93.8 to 100 % [29, 34, 35, 40–42]. The efficacy

of Nutrilon Pepti® in 75 children reached 79.5 % [43] and 98 % [38]. The efficacy

of Peptijunior® in 29 children, all less than 3 months of age, was 79.3 % [43]. The

efficacy of Alfaré® amounted to six cases out of eight children [29]. These older

studies have been carried out using product formulations frequently different from

those of currently marketed products, evolutions being however always towards

higher hydrolysis. Based on clinical practice, these products are well tolerated by

most allergic children.

Newly launched formulas are now tested much more extensively as

recommended. The recently launched eHF Althéra®, with a low peptide molecular

weight, identical to the reformulated Alfaré®, induced no reaction, similarly to the

AAF reference product in 34 infants with CMPA demonstrated by placebo-

controlled food challenge [33]. This whey eHF proved equally effective to

Nutramigen®, when both were enriched with different probiotic strains [44]. A

study conducted on Frisolac Allergycare® (also Allernova® and Allernova AR®

when thickened) that included 28 children over the age of 1.5 years showed an

efficacy of 100 % [42]. It was successfully used to feed 119 infants with CMA [45].

5 Rice Protein Hydrolysates

Protein hydrolysates not originating from cows’ milk have become available. A

prospective tolerance study of a rice eHF supplemented with lysine and threonine

enrolled 99 children with CMPA and a mean age of 3 years [46]. Patients often

developed serum anti-rice protein IgE (RAST: 21/91; immunoblotting: 70/96), but

only six reacted to the rice eHF, which makes the formula suitable for children with

CMPA. A rice eHF supplemented with lysine, threonine and tryptophan is available

in several European countries: a study showed that it was well tolerated by 90 % of

infants (mean age: 4.4 months) presenting with CMPA [47].

6 eHF Added with Lactose

Lactose is rarely used in eHFs. It is not, in theory, contra-indicated in the diets of

children with CMPA. However, lactose used in the food industry may, depending

on its degree of purification, contain significant traces of CMP, sometimes respon-

sible for allergic reactions, which has led some authors to consider it to be

inappropriate when used in food to be consumed by children with CMPA. The

reaction to CMP traces (up to 2 %) in “drug”-grade lactose is also possible [48].
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7 eHF Added with Probiotics

The putative interest of some probiotics has been suggested, but there is currently

no evidence that probiotics can be helpful in the treatment of a child with CMPA

[49]. A study argues against the efficacy of probiotics (Lactobacillus casei and
Bifidobacterium lactis Bb CRL431-12) in the process of tolerance acquisition

[45]. In contrast, a recent randomised trial showed that when incorporated into

Nutramigen®, Lactobacillus GG speeds up tolerance acquisition in infants with

CMPA [50].

The use of compounds presumed to be active on the immuno-allergic reaction, in

addition to the milk substitute, should be considered with great caution in the

current state of evidence. Similarly, allergic individuals may react to CMP con-

taminants after the ingestion of probiotics raised on lactose or milk [51, 52].

8 Allergy to eHF and Its Association with Multiple Food
Allergy

Calculating that 90–95 % of children allergic to CMP respond to eHFs [35, 21, 53]

implies that 5–10 % still react to them.

Numerous reports described hypersensitivity reactions to eHFs in infants with

CMPA both with immediate and delayed reactions [54–58]. Other options are

needed for children allergic to eHFs [59]. The availability of an AAF (Neocate®,

SHS International) [57, 60] provided one treatment option and offered the ability to

refine the diagnosis of eHF allergy [58, 61–63]. Sixteen children with slowly

evolving symptoms suggesting CMPA that persisted on an eHF diet [61] were

switched to this AAF. The response was good in 13 cases, with a decrease in

symptoms and an increase in weight gain. The intestinal permeability decreased,

probably due to a decrease in local inflammation. These children relapsed on

subsequent challenge with an eHF, confirming their allergy to eHF. In a similar

study [62], 28 children with CMPA and no response to eHF were fed the same AAF

for 2 weeks, with symptom resolution in 25 cases. When later challenged with an

eHF, 8 responders showed tolerance and 17 relapsed, confirming eHF allergy in

nearly half of the patients.

Allergy to eHF may be part of a more severe syndrome, multiple food allergy, as

described by Hill et al. [80]: 18 infants (median age 7 months) with suspected

multiple food allergy were given the AAF Neocate® for 2 months followed by a

7-day double-blind, placebo-controlled food challenge with the infant formula best

tolerated previously, e.g. whey hydrolysate, casein hydrolysate or soy. Twelve

infants experienced irritability, vomiting, diarrhoea and/or eczema during the

challenge. In infants more than 12 months old, parents also reported adverse
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reactions with a median of six from a panel of ten foods. This means that during

CMPA, allergy to eHF is associated with allergy to a number of other foods, from

which comes the wording “multiple food allergy”.

The time course of allergy to eHF may differ according to the presence or the

absence of multiple food allergy [63]. When allergy involves eHFs and several

other foods, tolerance of eHFs and of CMP occurs later and a restricted diet based

on AAF feeding is required for a longer duration. In the study of another AAF

EleCare® [81] in 31 consecutive children, 29 had multiple food allergy and 13 had

allergy to eHFs: enrolment occurred at a median age of 23.3 months, and the AAF

was given for a median of 21 months. In contrast, a lower age at diagnosis might be

beneficial, with a lesser duration of symptoms, a decreased number of foods

involved and a dominance of digestive symptoms [63, 80]).

9 Free Amino Acid-Based Formulas

Allergy to eHFs is one of the major clinical conditions leading to the use of AAF.

Being based on free amino acids, formulas are almost devoid of intact proteins and

peptides. The only traces that may occur in these formulae would come from

contaminants in the starch and lipid parts. AAFs available in the market are limited:

Neocate®, Neocate Advance® after 1 year (Nutricia) and Nutramigen AA® (Mead-

Johnson). Two companies are carrying out clinical trials with an AAF, Nestlé and

Novalac (thickened AAF) [68].

A systematic review of 20 studies on the use of an AAF (Neocate®) in patients

presenting with CMPA concluded as to its efficacy, tolerance and safety [64]. This

formula proved particularly efficient in IgE-mediated gastro-enteroproctitis with a

failure to thrive or a severe atopic eczema [60, 65]. A study shows that Nutramigen

AA® is efficient and allows normal growth in infants with CMPA [66]. A recent

study shows that the addition of a symbiotic to Neocate® allows hypolallergenicity

and normal growth in infants with CMPA [67]. A recent randomised controlled trial

was performed with a new, thickened, AAF (Novalac) in comparison with a

reference one, in infants with allergy to milk and to eHFs, showing efficacy and

safety for both formulas [68].

10 Growth of Children with CMPA Fed a Substitute
Formula

The ESPGHAN published in 2001 recommendations and comments on the nutri-

tional and safety assessment of breast milk substitutes and other dietary products for

infants for long- and short-term outcomes and encouraged health-care providers to
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promote the incorporation of these principles into their national regulatory pro-

cesses [69]. Only a few formulae marketed in Europe have been subject to studies

evaluating adequately their nutritional efficacy.

Healthy infants fed with casein eHF (including Nutramigen®) had a poorer iron

status and an excessive amino acid intake, resulting in a rise in blood urea nitrogen

and plasma amino acids, compared to infants fed with a standard formula,

warranting both reducing and balancing the amino acid composition of some

formulae [70]. The growth pattern feeding with hydrolysates has been nicely

investigated in the GINI study [71, 72]: feeding with a casein eHF (Nutramigen®)

induced a transient reduction in weight gain during the first year of life, without

long-term consequences on body mass index (BMI) [71, 72]. In children with

CMPA fed Althéra® for 6 months, length and head circumference were similar to

Euro growth standards, but weight gain was slightly lower, similarly to the com-

parator Neocate® [33]. In Finnish children with proven CMPA, and fed from

7.5 months with a soy protein follow-on formula or with a soluble protein eHF

(PeptidiTutteli®, Valio Ltd, Finland), often supplemented with Ca and vitamin D,

growth and nutritional status were adequate [73].

Several rice eHFs have been evaluated. Infants with confirmed CMPA-related

atopic dermatitis were given openly a rice eHF supplemented with lysine and

threonine, a soy protein IF or a casein eHF and compared with an unrestricted

diet in the absence of CMPA [74]. The mean weight/age Z score at 2 years of age

was similar in the three CMPA groups, but lower with the rice eHF diet than with

the unrestricted diet during the periods between 9 and 12 months and 12–18 months,

i.e. after the start of complementary feeding. Healthy infants fed for 16 weeks with

a rice eHF diet supplemented with lysine and threonine or with a cows’ milk IF had

comparable normal growth and biochemical parameters [75]. Infants breastfed for

at least 4 months and suffering from CMPAwere either breastfed until 12 months or

randomly weaned at 5–6 months of age to a soy protein IF, a casein eHF or a rice

eHF [76]. Weight/age and height/age Z scores were below the mean at 6 months of

age in all groups, probably due to CMPA. With the rice eHF, the height/age Z score

was identical to that of the soy group and the breastfed group at 9 and 12 months. A

rice eHF enriched with lysine, threonine and tryptophan was compared to a casein

eHF in infants with CMPA and a mean age of 4 months [47]. Infants with a baseline

weight lower than average normalised their weight by age 12 months using the rice

eHF versus 18 months using the casein eHF.

Several clinical trials have shown that Neocate® ensured normal growth in the

case of an allergy to eHF and in the case of multiple food allergies as well as a

growth pattern identical to that obtained with eHFs when they are well tolerated

[60, 65, 64]. Another study also showed that growth obtained with Nutramigen

AA® in children with CMPA is comparable to that obtained with Nutramigen®, a

casein-based eHF [66]. Recent data with a thickened AAF showed appropriate

growth during the first 1-month follow-up period [68].
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11 Social Conditions of Use: Reimbursement

The cost of formulae to be used during CMPA is as follows: AAFs>milk

eHFs> rice eHFs> soy protein formulae. Cows’ milk and rice eHFs (where avail-

able) are usually sold in pharmacies. On a family point of view, the cost largely

depends upon the reimbursement rate by the health-care system, with great varia-

tions from one country to another within the European Union (EU).

12 Using eHF or AAF During Cow’s Milk Allergy:
Recommendations by Expert Working Parties

Recommendations for the use of eHFs in CMPA are limited. The choice of a

hydrolysate varies from one country to another or within the same country. An

international working group has released draft recommendations for the manage-

ment of CMPA in infants, whether breastfed or not. In case of suspicion of CMPA

of moderate severity, the working group recommends using an eHF based on

soluble protein or casein; in severe cases (where there is either a life-threatening

risk or a severe failure to thrive), the recommendation is to readily use an AAF

[2]. An Australian expert’s panel suggests eHFs as the first choice in infants less

than 6 months of age, where a current allergy exists, concerning gastrointestinal

symptoms and atopic eczema. The group recommends soy protein IF in infants over

6 months with presently existing reactions to CMP and in the case of gastrointes-

tinal symptoms or atopic dermatitis with normal growth. In the case of anaphylaxis,

the group recommends AAFs as a first choice, until allergic tests have been

performed, in order to avoid any severe reaction to an eHF [77, 3].

In 2006, the ESPGHAN Committee on Nutrition recommended using eHFs in

cases of proven CMPA in infants and avoiding soy protein infant formulas before

the age of 6 months. Above this age, they have been proposed because of their

lower cost and greater acceptability, but a test of clinical tolerance to soy protein

has to be performed first [78]. In 2008, the American Academy of Pediatrics

recommended the use of eHFs as a first choice in the case of proven CMPA and

of AAFs in the case of a failure of eHFs [79].

The committee on Nutrition of the French Society of Pediatrics [7] made several

recommendations: (1) If the infant is not breastfed or if the mother cannot or no

longer wishes to breastfeed, the first choice is an extensive hydrolysate (eHF) of

CMP. (2) If the eHF fails to achieve the desired result, an AAF is warranted. (3) In

the case of anaphylaxis, eosinophilic oeso-gastro-enteropathy, failure to thrive or

severe colitis, the use in first intention of either an eHF or an AAF is a valid option.

(4) Rice protein eHFs offer an alternative to eHFs from animal origin. (5) Soy

protein infant formulas can be used after the age of 6 months, after ensuring a good

clinical tolerance to soy.
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13 Comments on the Respective Use of eHF or AAF
During CMPA

Several considerations can be made. Basically, we lack scientific data concerning

the use of these different formulas during CMPA. More data are available on the

efficacy and the safety of the new formulas coming on the market.

However, questions still not or partially answered are numerous. Is it possible to

use a formula based on rice hydrolysates in children allergic to milk-based ones?

What is the long-term outcome of the use of these different formulas in children

diagnosed with CMPA in terms of acquisition of tolerance? One might consider that

keeping a certain amount of milk peptides, using a milk-based eHF, might help the

child acquire tolerance to milk. However, nothing is proven on that matter. In

children with CMPA, the choice is actually between completely removing the milk

allergens, using rice-based hydrolysates or an AAF and providing small amounts of

milk peptides. No study to date has investigated the outcome of these different

options.

Another question relates to the diagnosis of allergy to hydrolysates: What

criteria should lead to consider this diagnosis? It is the experience of the author

that this condition is largely underrecognised, in infants with, e.g., inconsolable

crying resisting to eHF feeding and thus labelled non-allergic in its origin and in

children with atopic dermatitis or gastroesophageal reflux remitting only partially

with eHF feeding. Only a widely recognised definition of allergy to eHF may help

clinicians in deciding which formulas seem more appropriate.

On a general point of view, the recommendations made by several scientific

bodies, favouring first an eHF and then an AAF, seem the best approach.

Recognising rapidly the lack of effect of a hydrolysate is the key and requires a

close follow-up of children whose diet has been modified. Noticeably, such a close

follow-up is recommended by all working parties, with the goal of avoiding any risk

of nutritional problem in the child.

At last, the respective costs and reimbursement rates by the health-care system of

cows’ milk and rice protein eHFs, AAF and soy formulas are of considerable

weight in the physician decision, and it appears that variation is numerous from

one member state to another one in the European Union.
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Chapter 19

Allergen Avoidance Versus Tolerance
Induction

Prescilla V. Jeurink, Laura A.P.D. Meulenbroek, Johan Garssen,
and Léon M.J. Knippels

1 Introduction

The number of allergic individuals is still increasing and, to date, allergic diseases

cannot be effectively prevented or treated by the current management. Moreover,

the definition of prevention, treatment, or management is varying throughout

literature. This confusion is, at least partly, caused by the atopic march. The atopic

march “refers to the natural history of atopic manifestations, which is characterized

by a typical sequence of IgE antibody responses and clinical symptoms that appear

early in life, persist over years or decades, and often remit spontaneous with age”

[1]. This means that treatment of an early event like Atopic Dermatitis (AD) caused

by a cow’s milk allergy may at the same time prevent the onset of subsequent

allergic diseases, e.g., seasonal rhinitis. A graphical representation of the atopic

march is depicted in Fig. 19.1. Atopic sensitization is mostly determined by the

presence of specific IgE antibodies at different ages, amongst which the prenatal

period [2]. Whether these prenatal IgE antibodies in cord blood are originating from

the fetus or the mother remains inconclusive. In addition, the effect of maternal

exposure to allergens and its effect on the infants’ immune system are currently

extensively studied.

For now, management is limited to the identification and avoidance of allergens

that induce the allergies and the use of medical substances to ameliorate the

symptoms. In general, three different subtypes of IgE-mediated (food) allergy can

be distinguished: transient, persistent, and oral allergy syndrome [3]. Although the
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distinction between transient and persistent is not always clear, patients with

transient food allergy usually outgrow their allergy over time, supporting a food

avoidance strategy as recommended treatment [3]. However, the need to actively

prevent or treat allergies is currently resulting in several therapeutic approaches like

the use of biological [4, 5], allergen-specific immunotherapy [3, 6, 7], or the use of

dietary compounds like herbal formulations, probiotics, or non-digestible oligosac-

charides [8–10]. Furthermore, it is still debated whether avoidance of allergenic

foods is actually necessary as also reviewed by Du Toit et al. [11]. The same review

also highlighted another essential aspect when aiming for general conclusions from

all clinical trials investigating the protective effect of interventions on food allergy:

methodological differences that complicate the interpretation of the study

outcomes [11].

2 Therapeutic Approaches

2.1 The Use of Biologicals

A number of reviews provided a recent overview of the work done with biologicals.

Guttman et al. gave an extensive overview of all current targets for AD treatment

with biologicals [4], whereas Yang et al. focused on food allergy [5]. Although

these atopic diseases have a common ground, effectiveness of biologicals can differ

Fig. 19.1 Relative prevalence of common atopic childhood diseases according to age. The

different symptoms can occur simultaneously
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per outcome parameter. An example of such biologics is the humanized monoclonal

anti-IgE antibody, which binds to an allergic epitope in order to prevent binding to

mast cells and basophils. By blocking the binding of IgE to the IgE-receptor, cross-

linking of allergen-specific IgE antibodies, and subsequent degranulation of the

mast cell or basophil is omitted [4, 5]. Different types of anti-IgE antibodies have

shown similar results: anti-IgE not only reduces the amount of free IgE but also

markedly reduces the expression of the FcεRI on mast cells and basophils

[5]. Therefore, this biological is used for individuals that are already sensitized

and already display allergen-specific antibodies. It is thus considered as treatment

and not as prevention. Another biological that is used for the prevention of allergic

responses is the anti-interleukin (IL)-5 monoclonal antibody. Although an anti-IL-5

antibody (mepolizumab) has shown to be effective in reducing the peripheral and

tissue eosinophilia in eosinophilic esophagitis, there was only a limited effect on the

symptoms. In addition, moderate to severe AD patients on anti-IL-5 treatment also

showed less eosinophilia but no improvement of the clinical symptoms. Therefore

this approach needs to be tested in larger controlled trials in order to draw conclu-

sions about its efficacy [4, 5]. Rachid and Umetsu have written an extensive review

about the immunological mechanisms for desensitization and tolerance in food

allergy, showing the complexity of different immune cells involved [12]. This

complexity is one of the reasons why it is so difficult to fit the right type of

immunotherapy to the right type of patient.

2.2 The Use of Immunotherapy

In case of oral allergy syndrome, treatment with subcutaneous immunotherapy or

sublingual immunotherapy (SLIT) has displayed variable beneficial effects leaving

treatment recommendations controversial [3, 13]. However, the use of SLIT with

food allergens shows to be successful up to maximal dose limit of the tolerated

food. Recently, combination of SLIT with oral immunotherapy (OIT) seems to

provide a potential to increase the tolerated dosage of food allergens [3]. Also in the

case of anti-IgE treatment, a combination with allergen-specific immunotherapy

has shown promising results in patients with allergic rhinitis [5]. However, further

studies are needed to assess safety and to standardize the methods [3, 5, 12]. A

Cochrane report on the effectiveness of OIT for cow’s milk allergy has shown that

milk OIT is an effective method to induce desensitization in patients with

IgE-mediated cow’s milk allergy [7]. An additional percentage of patients only

had a partial desensitization, still leading to a larger safety margin in case of

accidental exposures. In any case, it is essential to realize that, although OIT is

successful in case of cow’s milk allergy, ingestion of tolerated amounts of cow’s

milk after the desensitization is crucial for the maintenance of the induced toler-

ance. A similar conclusion was drawn for peanut-specific OIT: it is a promising

therapeutic approach for the management of IgE-mediated peanut allergy, but there
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is insufficient evidence for long-term effectiveness, safety, and cost-effectiveness to

recommend its routine use in clinical practice [6].

2.3 The Use of Dietary Compounds

Several dietary compounds have been investigated for their impact on (food)

allergy. Lepski and Brockmeyer provide an overview of dietary compounds with

more details about the mechanistics of action. One example is the role of retinoic

acid (metabolite of vitamin A) in the promotion of secretory IgA-switch of B cells

and the development of regulatory T cells in mesenteric lymph nodes [8]. Also

dietary fibers and prebiotics have been investigated for their immunomodulating

role in the onset and management of allergies. It has been shown that these fibers

affect the gut microbiota and that the subsequently produced short chain fatty acids

can directly signal to immune cells [8]. Rijnierse et al. reviewed the influence of

dietary fibers on different allergic disorders, also highlighting the direct effects on

immune cells [9]. The underlying mechanism of the specific oligosaccharide

mixture was further unraveled by de Kivit et al., who described the upregulation

of the soluble lectin galectin-9 by intestinal epithelial cells exposed to a mixture of

short chain galacto-oligosaccharides (sc)GOS, long chain fructo-oligosaccharides

(lc)FOS, and TLR9 ligands [14]. Subsequently, they showed that an intervention

with scGOS/lcFOS and a beneficial microbe Bifidobacterium breve M-16 V

enhances serum galectin-9 levels, which is associated with the prevention of

allergic symptoms in food allergic mice and infants [15]. Although most investi-

gated compounds are (scarcely) present in the European/Western diet, some com-

pounds present in traditional Brazilian and Asian diets have also shown an effective

reduction of allergic diseases. An example of such compound is Arctium lappa L.,

which has shown to be effective in allergy-symptom reduction through the inhibi-

tion of mast cell degranulation and cys-leukotriene release [16]. Considering the

effectiveness of this example, a whole range of possibly immunomodulatory exotic

and/or traditional dietary opportunities are ready to be further explored. Another

possibility to interfere with allergic symptoms is to reduce the recruitment of

leucocytes from the circulation to the sites of allergic inflammation. Dietary

compounds that have shown such activity are sphingolipids. Sphingolipids are

present in various amounts in foods like fruits, dairy products, eggs, and soybean,

and are hydrolyzed throughout the gastrointestinal tract into metabolites that are

used in various cellular functions [17, 18].

To better understand which approaches will gain the most promising results, a

better understanding of the early immune development seems to be essential. An

obvious factor associated with early immune development is the effect of human

breast milk on the development of the newborn. Although multiple meta-analyses

have been performed to investigate the hypothesis that breastfeeding protects

against the development of allergic diseases [19, 20], conclusions from the meta-

analyses are contradictory [21]. However, despite this controversy, breastfeeding
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should still be promoted considering its psychological, nutritional, and immuno-

logical benefits [22]. In addition, the effects of the maternal diet on the composition

of human milk are investigated to substantiate the hypothesis that the susceptibility

of infants towards allergic diseases can be reduced by maternal imprinting or

epigenetic modification [10]. Or, in other words, the dietary habits of the mother

can influence the atopic susceptibility of the offspring. For example, maternal

cow’s milk avoidance is associated with lower levels of mucosal specific IgA and

the development of CMA in infants. As human milk IgA might play a role in

preventing excessive, uncontrolled food antigen uptake in the gut lumen, Järvinen

et al. propose that high specific IgA levels in human milk have a protective effect

against food allergy [23].

3 The Influence of the Maternal Diet

Modern “western” diets are characterized by a lower intake of omega-3 (ω-3)
polyunsaturated fatty acids (PUFAs) and a higher intake of ω-6 PUFAs. This

change in consumption has led to the assumption that postnatal intervention with

fish oil would reduce the development of allergic diseases [24]. For example,

dietary ω-3 PUFA supplementation in a murine model for cow’s milk allergy

largely prevented allergic sensitization by suppressing the humoral response,

enhancing local intestinal and systemic regulatory T cells, and reducing acute

allergic symptoms [25]. In addition, the same group has shown direct effects of

ω-3 PUFA on a key player in the allergic response, the mast cell [26]. Although this

hypothesis does not seem applicable to all postnatal administration studies, multiple

observational and intervention studies suggest the effectiveness of fish oil or

nourishment with fatty fish like salmon when applied during pregnancy [27, 28].

Besides PUFAs, antioxidants have been suggested as relevant dietary com-

pounds that can influence the allergic susceptibility. Patelarou et al. have published

a systematic review about the negative association of the antioxidant status of the

mother during pregnancy or the antioxidant intake of young infants and the allergic

susceptibility of the infants [29]. In addition, several studies have shown that a

Mediterranean diet of high antioxidant-containing foods like whole grain cereals,

fruit, vegetables, legumes, and nuts has been associated with reduced risk of

asthma, wheezing, and Allergic Rhinitis in Mexico, Spain, and Greece [30]. The

role of antioxidants in the onset of allergic diseases is, however, ambivalent. For

example, vitamin D has been described as both beneficial and counteractive in the

reduction of allergic susceptibility. This bivalent activity seems dependent on

the timing of vitamin D exposure [31]. Nevertheless, the antioxidants vitamin C,

vitamin E, β-carotene, and selenium have shown a protective capacity [21,

27]. Another dietary factor that has shown beneficial effects on the allergic suscep-

tibility is the use of probiotics. Although the use of general terms like “probiotics”

is debated (reviewed by [32]), prenatal and postnatal probiotic supplementation has

shown to reduce the allergic susceptibility of infants at risk [33]. In these studies,
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mostly combinations of different probiotics are administered, e.g., Lactobacillus
(L.) rhamnosus LPR and Bifidobacterium (B.) longum BL999 [33], L. paracasei
ST11 and B. longum BL999 [33], L. rhamnosus GG, L. acidophilus La-5 and

B. animalis subsp. lactis Bb-12 [34], and B. bifidum, B. lactis, and Lactococcus
lactis [35]. However, strategies for allergy prevention that can restore the favorable
patterns and diversity of enteric microbiota require knowledge on both strain-

specific effects and the timing of administration [36].

3.1 Allergens in the Maternal Diet

Even though part of the maternal diet can reduce the allergic susceptibility of her

offspring, the question whether a mother should omit the intake of allergens during

pregnancy or lactation is extensively debated in literature. One major concern of

this allergen avoidance is the nutritional welfare of both mother and infant [37]. In

addition, there are at least three possible routes for allergen exposure of a newly

born: (1) via ingestion of allergen-containing amniotic fluid into the gastrointestinal

(GI) tract of the fetus [37–39], (2) via direct transfer of allergens across the placenta

[37, 40, 41], and (3) via allergen-containing breast milk [41–43].

It is known that a fetus at week 19–20 of gestation already has detectable

IgM-positive B cells in the circulation, indicating that an already full functioning

sensitization process is in place [37, 39]. In addition, at 22 weeks of gestation,

allergen-specific immune responses are detected in cord blood mononuclear cells

[44]. Maternal dietary allergens are detected in both maternal and infants’ blood

directly after birth and there are indications that the fetus may be exposed to dietary

allergens from the second trimester of pregnancy onwards through both trans-

amniotic and trans-placental routes [37]. Furthermore, even when mothers are

following a strict dietary avoidance regime, e.g., eggs, this is still not a guarantee

that the infant will not be exposed to that allergen. This might be due to rare

unintended ingestion of the protein by the mother, but might also be the result of

environmental exposure through the mother’s skin as was shown in severe eczema

subjects [37].

In addition, the debate about whether parental atopy is a “guarantee” for atopic

offspring is still ongoing. Especially in mouse models, there seems to be a differ-

ence in how tolerance is induced. Hansen et al. directly compared the mechanism

by which tolerance was induced during pregnancy, early and late immunization.

They showed that both maternal allergen exposure and postnatal mucosal allergen

exposure of the offspring reduced allergen-specific IgE levels, albeit through

presumably different mechanisms that do not all rely on the maternal immune

response [45]. Also others suggested that early exposure to allergens like cow’s

milk protein and ovalbumin (OVA) conferred protection against allergy indepen-

dently of the parental atopy [45, 46]. Furthermore, Ellertsen et al. demonstrated that

maternal Th2-type immune responses are associated with a stronger reduction in

allergen-specific IgE levels in the offspring than maternal Th1-type immune
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responses. Although they used a limited set of microbial adjuvants, their findings do

support the concept of allergy prevention through maternal immunization [47].

3.1.1 Allergen Exposure During Pregnancy

In case of allergen exposure via the GI tract, it is necessary to highlight that

significant quantities of allergens like the House Dust Mite (HDM) allergen Der

p-1 and OVA from chicken egg have been detected in amniotic fluid [37–39]. Fur-

thermore, nutritive allergens such as OVA and beta-lactoglobulin (BLG) are also

capable of passing the placenta, and inhalant allergens like HDM and cat allergens

have been detected in umbilical cord blood [37, 40, 41]. However, it is not clear

whether these allergens will reach the placenta in an intact manner in an in vivo

situation, as diverse enzymes expressed in saliva, stomach, and intestine are able to

break down allergenic dietary proteins into peptides without antigenic capacity

[48]. Although it is good to keep this in mind, multiple research groups have shown

that manipulation of the murine maternal immune response by allergen immuniza-

tion during pregnancy reduces the allergen-specific IgE responses in their offspring

after immunization [45, 49]. It has been shown that these circulating maternal

antibodies in the offspring may diminish allergen processing and presentation by

antigen presenting cells to T cells, thereby preventing neonatal sensitization [50,

51]. Furthermore, maternal immunization up-regulates the inhibitory IgG receptor

FcγRIIb on neonatal B cells in early life [52]. If thereafter maternal antibodies and

the specific allergen form a complex, these complexes will cross-link the FcγRIIb,
leading to B cell inhibition [52].

Although these studies do not exclude that the effects are solely described to the

prenatal or the postnatal period, it is suggested that postnatal mucosal allergen

exposure could induce allergen-specific tolerance as the newborns’ immune system

is still maturing. However, there is still much debate about this early life introduc-

tion of allergens to prevent allergy [41, 45, 53–56]. Following the American

Academy of Peadiatrics in 2008 [57], Kramer and Kakuma performed another

systematic review in 2012 on the evidence for maternal allergen avoidance during

pregnancy, laction or both to reduce atopic diseases in their offspring. Similar to the

outcome in 2008, they conclude that allergen avoidance during pregnancy is

unlikely to reduce atopic disease in the offspring, whereas avoidance during

lactation might reduce atopic eczema if the mother is classified as high risk [58].

3.1.2 Allergen Exposure During Lactation

Daily consumption of one egg per day leads to higher OVA concentrations in

human breast milk than the concentrations found in egg-avoiding mothers [41]. A

similar finding has been reported in mice, where maternal exposure of OVA led to

antigen transfer to the offspring via breast milk, eventually leading to antigen-

specific tolerance [43]. This OVA-specific tolerance induction is attributed to the
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combined exposure to allergen and transforming growth factor-β (TGF-β) present
in breast milk, leading to the allergy-preventing development of regulatory T cells

(Tregs) in the offspring [42]. Since these findings were done in healthy, nonallergic

mice, the same group investigated whether similar results could be found in allergic

murine mothers. They showed that breastfeeding by antigen-exposed sensitized

mothers abolished asthma development in the offspring. However, in contrast to the

allergy-preventing development of Tregs in nonallergic mice, protection conferred

by sensitized mothers was more effective, and did not require the presence of

TGF-β in the milk [56]. When investigating the mechanism further, they discovered

that antigen–IgG complexes present in milk were effectively transferred to the

breastfed offspring through a specific receptor called FcRn which subsequently

induced active tolerance [56].

Fusaro et al. showed that prenatal murine exposure to allergens can both lead to

tolerance and sensitization of the offspring, depending on the timing and amount of

allergen administration [49]. Only little information is available about the presence

of allergens in human breast milk. This scarcity of data is partly due to the

difficulties in detecting allergenic proteins that have homologs in human milk, as

shown by Bertino et al. They investigated the presence of major cow’s milk

allergens called BLG and casein and described how human milk proteins interfere

in the detection method of bovine milk proteins [59]. Later on, this same group

identified bovine alpha-S1-casein in human colostrum from both preterm and term

births [60]. As mentioned before, also other dietary allergens like OVA are

transported to the breast milk. However, up to 25 % of the egg-consuming mothers

had a delayed or even absent excretion of OVA to the breast milk [41, 61]. It is,

however, unclear whether this is a specific phenomenon for this particular allergen,

or whether this is the case for more allergens in these “non-transporting” mothers.

Only a few groups are working on the mechanism by which proteins are

transported. One of these showed that dephosphorylation of OVA reduces the

passages through an intestinal epithelial Caco-2 cell monolayer [62]. Hopefully in

the future more of these mechanistic approaches will give a better insight into the

ways allergic proteins are recognized and/or processed differently by atopic com-

pared to non-atopic individuals.

4 Allergen Exposure Beyond Breastfeeding

Human milk is considered the best nutrition for newborn infants because it contains

optimal ingredients for healthy growth and development. Amongst others,

breastfeeding confers protection against allergic diseases [57, 63]. The protective

role of human milk seems to be the consequence of a synergistic action between a

wide range of health-promoting components, such as carbohydrates, nucleotides,

fatty acids, immunoglobulins, cytokines, immune cells, lysozyme, and lactoferrin

[64–67]. Recently, other immunomodulatory factors like exosomes and

microRNAs (miRNAs) have been found in human milk [68, 69]. However, to
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date, not much is known about their function or mechanism of action regarding their

role in the development of the infant’s immune system. Moreover, breast milk

content changes over time to ensure optimal passive and active protection and

growth for the child [70–72]. If a mother, for whatever reason, ceases breastfeeding,

an alternative nutritional source needs to be selected. Dependent on the geograph-

ical location, multiple infant formulae are available containing cow’s milk proteins

casein and/or whey or soybean proteins (mainly USA and UK). All infant formulae

available on the market should be produced according to the guidelines on Global

Standard for the Composition of Infant Formula, published by the ESPGHAN

coordinated international Expert Group [73] and set worldwide by the CODEX.

Whenever a child is susceptible for allergic diseases or already has an allergy,

multiple hydrolyzed formulae or an amino acid-based formula can be used to

prevent or reduce sensitization or elicitation by an allergen, respectively.

4.1 Hydrolyzed Formula

Especially in small infants, the options for allergen avoidance within nutrition are

limited. It is therefore of great importance to have a clear understanding of the

nutritional requirements and combine this with the current possibilities to reduce

allergic responses. In general, infant formulae nowadays contain whole proteins

(standard formula), partially or extensively hydrolyzed proteins or single amino

acids (AA). However, definitions of partial or extensively hydrolyzed proteins are

lacking, which make discussions on the suitability of such products on the preven-

tion or management of allergic diseases very complicated. Based on the degree of

hydrolysis and the length of the remaining peptides, hydrolyzed proteins are

categorized as partial or extensive hydrolyzates [74–76]. Extensively hydrolyzed

formulae contain only small peptides and are mainly used as a replacement for

cow’s milk-containing formulae in allergic children [57, 75]. In contrast, the partial

hydrolyzates may contain larger protein fragments and are used in infants at risk for

cow’s milk allergy. They were initially developed to reduce the allergen load and

improve the taste of hydrolyzates [77]. Later, it was hypothesized that less hydro-

lyzed proteins are more immunogenic and therefore may prevent cow’s milk

allergy by inducing tolerance towards cow’s milk proteins [74, 78]. However,

larger protein fragments also result in increased allergenicity, and therefore these

hydrolyzates are not suitable for the treatment of cow’s milk allergic children [75,

76, 79].

The efficacy and safety of every partially and extensively hydrolyzed formula

needs to be established as each manufacturer uses different protein sources,

hydrolyzation methods, and hydrolyzation degree. These compositions should

meet the requirements of the Commission Directive 1999/21/EC on dietary foods

for special medical purposes. In addition, cow’s milk allergic children can react to

different proteins in the milk. Although cow’s milk contains over 25 proteins, the

two major allergenic classes are caseins (ca. 30 g/L) and whey proteins (ca. 5 g/L).
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The major whey protein allergens are β-lactoglobulin (β-LG) and α-lactoglobulin
(ALA), whereas the main casein allergens are αS1-, αS2-, and β-caseins [80,

81]. The concentration of the allergenic proteins in cow’s milk is amongst others

dependent on the housing and feeding conditions of the cows [82].

The nutritional requirements of infants are amongst others dependent on the

availability of specific amino acids present in the protein fraction [73], which

normally are derived from unprocessed proteins that are cleaved by enzymes in

the digestive tract. It is known that hydrolyzed proteins are more rapidly digested

and absorbed when compared with intact proteins [83]. This may result in an

increased oxidation of essential AA and, subsequently, in a lower yield of essential

AA for protein synthesis [84]. The latter is one of the reasons why the “safe”

protein–energy ratio to go to market without clinical evidence on growth is higher

in hydrolyzed formula (2.25 g/100 kcal) when compared with intact protein formula

(2.0 g/100 kcal) [73].

Partially hydrolyzed whey formula have been safely and lawfully marketed in

Europe and the United States, but are not considered to be hypoallergenic as they

might cause allergic reactions in one-third to half of the cow’s milk allergic infants

[85]. The FDA therefore concludes that “partially hydrolyzed formula should not be

fed to infants who are allergic to milk or to infants with existing milk allergy

symptoms” [85]. Greer et al. state that there is no proof that the use of hydrolyzed

formula is any better than human milk in the prevention of atopic diseases

[57]. Especially since little is known about the allergens present in breast milk

and their role in the allergic susceptibility, the comparison between breast milk and

infant formula remains difficult. However, as mentioned before, Coscia

et al. showed the presence of intact bovine α-S1-casein in both term and preterm

colostrums [60], suggesting that also human milk can expose an infant to allergens

derived from cow’s milk. For this reason, mothers that exclusively breast feed and

have an infant with clinical allergic symptoms are advised to eliminate dairy

products from their diet for approximately 2–3 weeks after which the child’s

symptoms should rapidly disappear [86].

Whereas animal studies indicated that only partial hydrolyzates induce tolerance

[87, 88], both partial and extensive hydrolyzates seem to prevent cow’s milk allergy

and atopic dermatitis in high-risk children [57, 75, 89–94]. Alexander

et al. performed a systematic review on the capacity of 100 % partial whey

hydrolyzates to reduce the cumulative incidence of atopic outcomes including

AD and concluded that these formulae reduce the risk of AD compared to infants

fed an intact protein cow’s milk formula [95, 96]. In line with Greer et al. and the

WHO, they do also state that breastfeeding is the standard for infant nutrition, but if

breastfeeding cannot be utilized, a 100 % partial whey hydrolyzate may reduce the

risk of AD. However, evidence for this beneficial effect in humans is limited due to

methodological problems and inconsistent findings [57, 75, 85, 91, 97, 98]. As

mentioned above, the lack of specification of partial and extensively hydrolyzed

proteins and knowledge of which peptide size is required for sensitization in

different individuals, the discussion between suitability of partial compared to

extensively hydrolyzed formula to prevent sensitization remains to be elucidated.
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Up till now, this debate within the hydrolyzate field has led to the differential

availability of partial and/or extensive hydrolyzates in even different European

countries. For example, Germany, the Netherlands, and Austria have partial hydro-

lyzates on the market, whereas in the UK these products are not available. However,

the very limited clinical data to support the concept of allergy prevention by

hydrolyzed formula has recently led to an extensive debate within the scientific

literature on whether the used approach is the right one. It is under discussion that

allergy avoidance is the wrong way to go and that active tolerance induction is the

future route to go. Others state that if a formula should be used, an extensively

hydrolyzed formula is recommended [86]. One large (n¼ 2,252 high-risk infants)

randomized controlled trial designed to test the relative efficacy of cow’s milk,

partially hydrolyzed whey formula, extensively hydrolyzed whey formula, and

extensively hydrolyzed casein formula in preventing the cumulative incidence of

AD in the first 10 years of life was conducted. The conclusion of this GINI study

was that there was no effect by any of the hydrolyzates on the prevention of asthma,

allergic rhinitis, or allergen sensitization, and avoidance of cow’s milk proteins is

not the only factor that needs to be taken into account [99]. Statements that

researchers investigating allergies need to realize that hardly any applicable effec-

tive prevention strategies have been developed in the past 25 years, and that novel

ideas are essential to win the battle against the epidemic of the twenty-first century,

are emerging [100]. The fact that interest groups like the EAACI are writing a

position paper and introduce their efforts on systematic review protocols [101] are

indicative for the need of alternative measures to aid allergic individuals in their

battle against allergies.

4.2 Tolerogenic Peptides and Peptide Immunotherapy

Ideally, both a preventive and curative therapy for cow’s milk allergy should induce

tolerance without activating mast cells and basophils. To induce T cell anergy or

Tregs, T cells should be activated via their T cell receptor without co-stimulation or

in the presence of specific cytokines such as IL-10 and TGF-β [102–104]. The T cell

receptor recognizes peptides of 9–12 amino acids long, which are much smaller

than the peptides that are needed to cross-link IgE (minimal 35 amino acids) [105–

108]. Therefore, it has been suggested that using peptides that are too small to cross-

link IgE but long enough to induce T cell activation may be a safe alternative for

conventional immunotherapy. The potential of peptide immunotherapy has mainly

been investigated for inhalation allergies.

Preventive and curative treatment with peptides reduced T cell responses,

antibody production, and/or allergic symptoms in mice. Moreover, curative peptide

immunotherapy was effective in cat and bee venom-allergic patients [109–111]. In

these studies, a mixture of peptides (10–17 amino acids long) was administered

intradermally or subcutaneously. The treatment significantly reduced the allergic

symptoms and no acute allergic side effects were observed. In cat-allergic patients,
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the peptides did induce late allergic symptoms, but these side effects decreased

during treatment [112, 113]. Interestingly, Patel et al. showed that four injections of

a peptide mixture were already effective and decreased allergic symptoms even

9 months after the therapy was stopped [111]. To date, a limited number of studies

have investigated the potential of peptide immunotherapy for food allergy. For

example, Rupa et al. showed that oral treatment with a peptide of ovomucoid in a

curative setting significantly decreased allergic symptoms in a mouse model for egg

allergy [114]. For cow’s milk allergy, only the efficacy of preventive treatment has

been investigated. Hirahara et al. showed that preventive intradermal treatment

with a peptide of α-S1 casein reduced T cell and antibody responses to the intact

protein in mice [115]. Moreover, previous studies have shown that prophylactic

treatment with partial whey hydrolyzates reduced allergic symptoms in mouse

models for cow’s milk allergy [87, 88]. In addition, Bøgh et al. showed that

co-immunization of intact β-lactoglobulin with digested β-lactoglobulin reduces

the sensitizing capacity of intact BLG, which could result from tolerogenic mech-

anisms induced by the digestion products [116]. Interestingly, Knipping et al. have

indicated that during the hydrolysis of whey proteins there is a certain time point at

which the formed peptides are too small to induce basophil activation but long

enough to induce T cell activation [117]. However, whether these peptides are able

to induce tolerance is unclear.

Recently, Meulenbroek et al. showed that prior exposure to specific peptides of

β-lactoglobulin reduces the allergic response to whey [118]. They showed that

regulatory dendritic and T cells might be involved in this and that the combination

of peptides with a scGOS/lcFOS/pAOS-containing diet enhances this allergy

reducing effect. Although this approach seems to direct towards tolerance induc-

tion, still many questions regarding the tolerogenic peptides need to be validated.

For example, it is known that there are variations between individuals in the

sequences that are recognized as immunogenic or allergenic. Texier et al. showed

that each HLA-DR allele expressed a unique binding pattern of Api m1 peptides

(a major allergen of bee venom) [119]. Individuals that express different MHC

molecules on the antigen presenting cells may bind/present different peptides and

thus recognize different T cell epitopes. This may also explain the diverse T cell

response that were observed by Meulenbroek et al., who describe that none of the T

cell epitopes was recognized by all patients in their epitope-mapping experiments

with whey-derived peptides [118, 120]. Based on these data, it seems necessary to

not only look at the different allergens that cause a variety of allergic disease (e.g.,

asthma, food allergy, or eczema) but also at ethnic backgrounds, dietary habits, and

exposure to immune activating triggers like viruses, bacteria, and parasites [10].

5 Summary

The prevalence of allergies is still increasing and standard management is not

sufficient to stop this ascent. Over the last decades, more and more animal studies

and clinical trial are investigating the safety and clinical and immunological
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efficacy of biologics, immunotherapy, and other pharmaceuticals on the treatment

of the different allergies. It seems to become logic that there is no golden bullet that

will serve all allergic diseases and more specialized solutions are required. It is

likely that the way forward lies in the combination of life style management,

nutritional support (e.g., prebiotics, probiotics, PUFAs) to preset the immune

system towards tolerance induction and allergen-specific immunotherapies (e.g.,

SLIT, OIT) either based on whole proteins or tolerance inducing peptides (see

Fig. 19.2). It is clear that the future direction in allergy management is shifting away

from the classical allergen avoidance into active tolerance induction.
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MCI Mild cognitive impairment

MMSE Mini-mental state examination

MRI Magnetic resonance imaging

PET Positron emission tomography

RCT Randomized clinical trial

1 Background

Dementia is one of the most devastating chronic disorders in older persons. Indeed,

dementia is characterized by severe cognitive impairment that impacts social and

leisure activities, leading progressively to total dependency from others to perform

activities of daily living (ADL) [1]. After age 75, about one person in five is

affected by dementia [2]. Dementia generates a huge social and economic burden,

with an estimated average yearly per-person cost of US$ 33,329 for care purchased

in the market in the US [3]. Given the lack of curative treatment, the main

component of the costs is for institutional and home-based long-term care

[3]. Indeed, the two main causes of dementia in older persons are Alzheimer’s

disease (AD), accounting for about 70 % of cases [4], and vascular dementia,

including many mixed forms [5]. There is no etiological treatment for these

irreversible disorders. However, the dementia stage is preceded by several decades

of silent accumulation of neurodegenerative and vascular lesions in the brain before

the onset of the first cognitive symptoms [6]. This extremely long time frame allows

various environmental factors to accelerate or slow down disease progression and

subsequent cognitive decline. Indeed, late-life dementia results from a complex

interplay between non-modifiable risk factors such as age and genetics, and poten-

tially modifiable environmental factors including vascular risk factors, metabolic

disorders, and lifestyle [7, 8]. As discussed in another chapter of this book, nutrition

is a major component of lifestyle that might modulate neurodegeneration and

vascular pathology, preserve or impair cognitive reserve and plasticity, and even-

tually impact the rate of cognitive decline [9]. Indeed, excessive energy intake may

lead to obesity, metabolic syndrome, and diabetes, which have been linked to an

increased risk of AD and vascular dementia [10–12]. Conversely, basic research

and epidemiological studies suggest a protective effect of several classes of nutri-

ents including long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA)

[13], antioxidant vitamins C and E [14], carotenoids [15], polyphenols [16], B

vitamins [17], and vitamin D [18] against brain aging. Underlying mechanisms

include beneficial vascular and metabolic effects, decreased inflammation and

oxidative stress, and improved insulin sensitivity, in addition to more specific

effects on brain structure and functioning [9].

However, randomized clinical trials (RCT) that have administered various

nutritional supplements for the prevention or treatment of cognitive decline have

yielded extremely disappointing results so far. Recent meta-analyses or systematic

reviews of RCTs with LC n-3 PUFA [13, 19, 20] or B vitamins [21] have concluded
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there was a lack of benefit of the supplementation on cognitive function in older

people. Regarding antioxidants, the few available large placebo-controlled RCTs

did not demonstrate any beneficial impact on cognition [22–28], with the exception

of an older RCT in AD patients receiving high-dose vitamin E [29]. The most recent

RCT even showed a deleterious effect of an association of high dose antioxidants

including vitamins E and C and alpha-lipoic acid on cognitive function [30].

In a recent critical review, Dangour et al. concluded “whether the lack of

agreement in findings from mechanistic and observational data and from interven-

tion studies reflects a real absence of benefit on cognitive function from LC n-3

PUFA supplementation, or whether it reflects intrinsic limitations in the design of

published studies remains open to question” [31]. Given the discrepancies between

the results of epidemiological studies and RCTs, this statement also probably

applies to the effect of other nutrients on cognitive function in older people.

Methodological limitations of epidemiological studies in the field of nutrition are

well known, including measurement error and residual confounding, especially by

lifestyle [32]. However, RCTs are not devoid of methodological limitations that

may hamper their conclusions. The aim of this chapter was to examine the chal-

lenges and potential pitfalls of RCTs involving nutritional interventions for the

prevention or treatment of cognitive decline in older people. These methodological

considerations could open the door to new, well-designed RCTs in the field of

nutrition and cognition that would reconcile the results of basic and epidemiolog-

ical research with high-grade evidence coming from RCTs.

2 Time and Duration of a Nutritional Intervention

The optimal window of opportunity for a nutritional intervention during the long

process leading to dementia is not known: should we target healthy individuals for

primary prevention, those with mild cognitive symptoms for secondary prevention,

or demented patients for treatment (Fig. 20.1)?

Even if there is a continuum of neurodegeneration and clinical symptoms with

disease progression, the natural history of AD can be subdivided into three succes-

sive stages according to the model proposed by Jack et al. [6]: a long

presymptomatic phase without any detectable cognitive impairment with currently

available instruments, followed by a phase of incipient cognitive decline named

mild cognitive impairment (MCI), that may progressively worsen to reach the final

phase of irreversible dementia. During the presymptomatic phase, there is a pro-

gressive silent accumulation of the neuropathological hallmarks of AD in the brain:

β-amyloid peptide (Aβ) in senile plaques and hyperphosphorylated tau in neurofi-

brillary tangles [33]. Neurodegeneration is accompanied by impaired brain glucose

metabolism, exacerbated oxidative stress, inflammation with microglia activation,

and eventually neuronal death and brain atrophy, especially in the

hippocampus [33].
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Primary prevention of AD by nutrition, i.e., before neuropathology develops,

seems out of reach unless nutritional factors acting in early life can be identified

[34]. Indeed, healthy diets providing LC n-3 PUFA along with other essential

nutrients are necessary for brain development in infancy [35] and could contribute

towards a lifelong sustainable brain reserve. However, evidence from epidemio-

logical studies is weak [36, 37], and it is impossible to show the impact of diet in

early life on risk of AD decades later by the means of RCTs. Nevertheless, the

PREDIMED RCT showed that it was possible to decrease the incidence of cardio-

vascular disease with a Mediterranean diet enriched with virgin olive oil or nuts in

asymptomatic adults [38]. Given the important vascular component of dementia,

such a diet could also contribute to the prevention of cognitive decline. Moreover, a

recent RCT conducted in New Zealand showed that 6 months supplementation with

1.16 g docosahexaenoic acid (DHA)/d plus 0.17 g eisocosapentaenoic acid (EPA)/d

significantly improved episodic memory in women and reaction time of working

memory in men aged 18–45 years habitually consuming few fish [39]. Although it

is impossible to ensure that these apparently healthy individuals did not have any

neurodegenerative lesion in their brains yet, this positive RCT suggests that pre-

vention with nutritional supplements is possible and should probably target younger

individuals than those currently included in RCTs.

Secondary prevention of AD would encompass two groups of individuals: those

who already have neuropathological changes in their brains but remain still cogni-

tively asymptomatic (preclinical AD) and those with MCI. Co-occurrence of Aβ
and tau pathology seems necessary to produce cognitive deficits [33]. PET imaging

shows that Aβ accumulation generally follows a sigmoidal curve, with a steeper

slope during 15 years on average before reaching a plateau [40]. MCI would

manifest only once this plateau is reached. This 15-year interval represents a

large potential therapeutic window for secondary prevention with nutritional inter-

ventions. However, since individuals do not have any cognitive symptom at this

Primary preven�on Secondary preven�on Treatment

AbCogni�ve func�on

Demen�a
Time

MCIPresymptoma�cNormal 

Fig. 20.1 Natural history of Alzheimer’s disease and room for prevention
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stage yet, it is very difficult to target those who could actually benefit from such a

nutritional supplementation. In addition to biomarkers of AD pathology or impaired

brain glucose metabolism [41], dietary or genetic inclusion criteria might be useful,

as discussed in Sects. 4 and 5 of this chapter. Moreover, RCTs evaluating the

impact of nutritional interventions at this presymptomatic stage would require to

follow-up individuals for many years before a significant impact can be evidenced

on their rate of cognitive decline or incidence of dementia. Nevertheless, the

concept of age-related cognitive decline (ARCD) might prove useful to target

individuals for secondary prevention. In the MIDAS trial, ARCD in adults aged

55 years and over was defined as having a subjective memory complaint and a score

�1 standard deviation below the mean of younger adults aged 25–35 years on the

immediate or delayed recall of the Logical Memory sub-test of the Wechsler

Memory scale [42]. Thus, these individuals did not reach the criteria for MCI but

subjectively, they felt that they were declining, probably indicating a significant

neurodegenerative burden. Unfortunately, brain imaging was not available in this

RCT [42]. A meta-analysis of RCTs with LC n-3 PUFA for the prevention of

cognitive decline showed that in cognitively “healthy” participants defined as

having a Mini-Mental State Examination (MMSE) >25, supplementation with

EPA and/or DHA could have a significant impact on tests of verbal memory but

not on other neuropsychological tests [19]. Interestingly, there was no relationship

between length of the supplementation (up to 24 months) and its impact on

cognitive functions. Similarly, various combinations of antioxidants have been

inefficient in RCTs for the prevention of cognitive decline in apparently cognitively

healthy elderly [22, 23, 25] except an RCT of supplementation with 50 mg beta-

carotene on alternate days during 18 years on average, suggesting that supplemen-

tation over an extremely long period of time would be necessary to exert beneficial

effects [26]. However, this RCT had some methodological limitations including a

high selection rate of those participating in the second phase of the study.

At the MCI stage, brain atrophy and synaptic loss are accompanied by objective

cognitive deficits. This is an unstable stage: some individuals (about 16 %/year)

will revert to normal cognition at least for a certain period, while others will remain

in the MCI state, and about 20 % will progress to irreversible dementia during the

same time [43]. Thus, at this stage it would be theoretically easier for a nutritional

intervention to have an impact on the rate of cognitive decline or progression to

dementia. However, the meta-analysis of Mazereuuew et al. showed an impact of

supplementation with EPA or DHA on attention and processing speed but not on

other cognitive domains in individuals characterized as “cognitive impairment no

dementia” [19]. In particular, there was no impact on episodic memory, which is

impaired early in the course of AD [44].

At the dementia stage, all RCTs with LC n-3 PUFA failed to show any impact on

cognition [13, 45], except a few exploratory trials with methodological weaknesses

conducted in very small highly selected samples [46, 47]. Regarding antioxidants, a

single trial showed a benefit of supplementation with 2,000 IU alpha-tocopherol

(vitamin E)/d in patients with moderate AD on a primary outcome combining death,

institutionalization, loss of the ability to perform basic ADL, or severe dementia,
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but only after adjustment for baseline cognition [29]. This beneficial effect of

vitamin Ewas not reproduced inMCI patients with the same dosage [24]. Moreover,

at this extremely high dosage vitamin E may have adverse effects including higher

risk of mortality [48]. The most recent RCT compared the impact of a combination

of several antioxidants (vitamins E and C, lipoic acid), coenzyme Q and placebo for

16 weeks in patients with mild or moderate AD [30]. Unexpectedly, patients

receiving the combination of antioxidants experienced faster cognitive decline on

the MMSE despite reduction of oxidative stress in the brain as shown by decreased

isoprostanes in cerebrospinal fluid.

3 Cognitive Outcomes

The choice of the primary outcome in RCTs of nutritional interventions for the

prevention or treatment of cognitive decline is closely linked to the disease stage.

Two kinds of clinical outcomes are available: time to onset of dementia and rate of

cognitive decline. Additional outcomes include biomarkers of disease progression

and less specific outcomes such as functional decline in ADLs, institutionalization,

and mortality.

The incidence of dementia is too low in individuals without major cognitive

symptoms to be used as an outcome in RCTs whose duration ranges from several

months to a few years at most. This explains why a recent Cochrane review about

the effect of n-3 PUFA concluded that direct evidence on the effect of omega-3

PUFA on incident dementia is lacking [20]. Indeed, the sample size required to

achieve enough power to show an impact on incidence of dementia is extremely

large, as many as 44,000 healthy participants at baseline, depending on hypotheses

on dementia incidence and expected risk reduction [49]. Several studies have tried

to overcome this difficulty by nesting ancillary cognitive studies in larger RCTs,

such as the prevention of AD by vitamin E and selenium (PREADVISE) trial nested

in SELECT, a large prostate cancer prevention trial with a 2� 2 factorial design

[50]. However, the SELECT trial was discontinued because of an increased risk of

prostate cancer in men in the vitamin E only arm [51].

Regarding cognition, global tests such as the MMSE lack sensitivity to change

and they are limited by a strong ceiling effect in healthy individuals. No effect of

LC n-3 PUFA supplementation on MMSE was observed in the meta-analysis by

Mazereeuw et al. whatever the disease stage [19]. Similarly, the three RCTs of LC

n-3 PUFA conducted in AD patients did not show any impact on the AD assessment

scale—cognitive subscale (ADAS-cog), a global scale of cognitive function

[19]. Neuropsychological tests assessing cognitive domains that are affected early

in the dementing process are probably the best candidates as primary outcomes in

RCTs for the prevention of dementia. However, impairment in specific cognitive

domains depends on the etiology of dementia. Impairment in episodic memory is a

core feature of early AD [44] while vascular dementia affects more specifically

executive functions [52]. At a later stage, multiple domains of cognition are
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affected whatever the etiology of cognitive impairment. Most RCTs have used

various batteries of neuropsychological tests as main outcomes, giving rise to high

heterogeneity between studies. Indeed, some have used single tests to investigate

specific areas of cognition (e.g., episodic memory, executive functions, processing

speed), while others have combined several tests to encompass each cognitive

domain by computing Z-scores [39]. In the PAQUID study, we showed that subtle

cognitive decline on Isaac’s Set Test, a verbal test of semantic memory, could

already be evidenced 12 years before dementia onset [53]. Although not specific of

early AD, this kind of neuropsychological test could also be used as an outcome in

preventive interventions.

Impact on ADLs is one of the mandatory criteria for regulatory agencies when

assessing the impact of a drug in AD. This endpoint is less relevant in preventive

trials, when participants do not have any limitation on ADLs yet. At the dementia

stage, progressive impairment in instrumental and then basic ADLs results from

cognitive impairment [54], but also from physical impairments that are often

associated in this older population. Hence, little improvement can be expected

from nutritional interventions involving single nutrients. By contrast, interventions

to prevent or manage undernutrition might have a global impact on functioning in

patients with dementia. Unfortunately, this was not the case is the NutriAlz RCT, a

nutritional teaching and training intervention targeting home-living patients with

dementia and their physicians and caregivers [55].

Biomarkers of disease progression could be useful to evidence the impact of

nutrients on specific mechanisms: hippocampal atrophy assessed by magnetic

resonance imaging (MRI), amyloid load in the brain assessed by positron emission

tomography (PET) with amyloid markers, Aβ species in cerebrospinal fluid, brain

glucose metabolism assessed by FDG PET [44]. However, there is often a lack of

correlation between biomarkers and the severity or progression of cognitive impair-

ment. The VITACOG RCT showed that supplementation with folic acid, vitamin

B6, and vitamin B12 for 24 months was associated with lower rate of whole brain

atrophy, the primary outcome, in elderly individuals with MCI [56]. In the same

study, the cognitive benefit assessed as a secondary outcome was less consistent

[57]. Indeed, there was no significant overall effect of treatment on MMSE,

category fluency, or delayed recall but a significant impact on a test of executive

function. Moreover, there was an interaction with baseline plasma homocysteine,

the impact of the supplementation on some cognitive tests being more important in

individuals with raised homocysteine. This result makes sense knowing that raised

homocysteine is a vascular risk factor but also a risk factor of dementia, and hence

an expected impact of homocysteine lowering by B vitamins on executive func-

tions. Such prespecified working hypotheses could help to design more powerful

studies and allow subgroup analyses if they are mentioned in the original protocol

and do not only stem from preliminary statistical analysis.
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4 The Nutritional Intervention: Diet or Supplement?

RCTs can be classified as explanatory vs. pragmatic according to their aim [58]. In

the field of nutrition, explanatory trials aim to evidence the impact of a specific

nutrient or combination of nutrients on a select outcome in strictly controlled

experimental conditions. The results of explanatory trials can help to derive

evidence-based dietary recommendations before assessing their efficiency in the

real world by the means of pragmatic trials. An example of explanatory trial is the

SUVIMAX RCT whose objective was to demonstrate that a given amount of

antioxidant vitamins and minerals close to recommended dietary intake could

reduce the risk of major health problems, especially cancer and cardiovascular

disease [59]. The final aim was not to recommend a supplementation of the whole

population but to base dietary recommendations such as those of the French

National Program Nutrition and Health to increase fruit and vegetable intake on

the best available evidence.

4.1 RCTs with Nutritional Supplements: More Is Not Better

In opposition to therapeutic trials with drugs whose molecule is not present in the

body before treatment, RCTs with nutritional supplements are undertaken in indi-

viduals who already have a baseline level of these nutrients, with a great inter-

individual and intra-individual (day to day) variability, depending on their dietary

intake. This variability is particularly important for nutrients such as EPA and DHA

coming from fish and seafood which are rarely consumed on a daily basis. Many

foods are also fortified with various nutrients, e.g., vitamin D in milk or B vitamins

in flour, depending on the country. This baseline variability tends to underestimate

the strength of the association between nutrients and outcomes. Optimal quantities

and proportions of nutrients that should be ingested daily to prevent or slow down

cognitive decline are not known. Epidemiological studies can help to estimate the

amount of nutrients that are needed to have a protective effect on cognition, and by

difference between needs and actual intake, the amount that should be given in a

supplement. Dietary inclusion criteria in RCTs should also be taken into account.

Indeed, little benefit and even potentially harmful effects can be expected from a

nutritional supplementation in individuals whose dietary intake already meets the

recommendations. The Alzheimer’s Disease Cooperative Study was a placebo-

controlled RCT which included 402 individuals with mild or moderate AD who

consumed less than 200 mg DHA/d. There was no impact on cognition or any other

outcome of a supplementation with 2 g DHA/d for 18 months [45]. Although

participants had a low DHA intake at baseline, such a supplemental dose may

lead to an excessive daily amount. By contrast, a supplement with 1.33 g EPA

+DHA/d significantly improved reaction time for episodic memory and working

memory in adults who infrequently consumed fish (providing less than 200 mg
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EPA+DHA/week) [39]. Although these studies are not directly comparable and

differ by many other aspects, their discordant results suggest that habitual dietary

intake of the nutrient in question should be considered as an inclusion criterion.

Moreover, an increasing number of individuals already take various nutritional

supplements and should be excluded from RCTs. Identification of individuals who

could possibly benefit from a nutritional intervention because of their low dietary

intake requires reliable dietary surveys. However, estimation of actual intake of

some nutrients may be difficult and time-consuming especially for nutrients which

are not consumed on a daily basis such as EPA and DHA, or vitamin D also

provided in part by fatty fish. Simple dietary screening tools should be developed

and validated for this purpose. These tools could also help to target beneficiaries of

the nutritional supplementation in the general population. Biomarkers may be an

alternative for example for vitamin D status, but they are expensive and less easy to

generalize.

Most RCTs with nutritional supplements have used doses far above the

recommended allowances whatever the kind of nutrient. However, higher doses

of nutrients do not necessarily mean better effects on cognition or other outcomes.

Very variable amounts of EPA and DHA have been used in RCTs for prevention or

treatment of cognitive decline. Among the six RCTs conducted in cognitively

“healthy” (MMSE> 25) participants reported by Mazereeuw et al. quantities of

EPA varied from 0 to 1,093 mg/d and those of DHA from 59 to 1,700 mg/d, without

any clear relationship between dosage and effect [19]. These RCTs did not deter-

mine an optimal EPA–DHA ratio either. Because of their multiple double bonds,

LC n-3 PUFA are potentially prone to lipid peroxidation that will produce toxic

compounds. Intake of 1,600 mg DHA/d for 2 weeks is associated with increased

urinary isoprostanes, a marker of oxidative stress [60]. Concomitant supplementa-

tion with high dose vitamin E at 900 IU/d does not prevent lipid peroxidation

[61]. Indeed, vitamin E may become harmful at high dosages [51]. RCTs with

2,000 IU vitamin E/d such as those previously published [24, 29] in the field of

cognition can no longer be undertaken. As for drugs, phase-1 and 2 clinical trials

should precede phase-3 RCTs in order to ensure safety and estimate optimal doses

of nutrients that should be given in a supplement (Fig. 20.2).

4.2 Limits of a Single-Nutrient Approach: A Nutrient May
Hide Another One

A major reason for the lack of efficacy of nutritional supplements to prevent

cognitive decline may lie in their inability to reproduce the complexity of a healthy

diet. Indeed, except as supplements, nutrients are never consumed in isolation but

combined with others in food. Observational studies cannot disentangle the impact

of a given nutrient from that of others to which it is tightly associated in the diet,

such as LC n-3 PUFA and vitamin D provided by fatty fish. Thus, subsequent
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intervention studies may have targeted the wrong nutrient, e.g., EPA and DHA

instead of vitamin D. Moreover, nutrients may act in synergy. For example, dietary

antioxidants might contribute to protect LC n-3 PUFA against peroxidation.

Accordingly, we observed that regular intake of fruits and vegetables was necessary

to observe a cognitive benefit of fish consumption [62].

The Souvenaid© medical food was derived to improve synapse formation and

function [63]. Souvenaid© includes EPA, DHA, uridine, choline, B vitamins, and

antioxidants (vitamins C and E, selenium). The Souvenir II RCT was conducted in

259 drug naı̈ve patients with mild AD consuming <3 servings fatty fish/week,

randomized to receive either Souvenaid© or an isocaloric (125 kcal/d) placebo for

24 weeks [64]. At 24 weeks, patients receiving Souvenaid© significantly improved

on the primary outcome, the memory domain Z-score of the Neuropsychological

Test Battery. Although this RCT did not show a significant impact of the interven-

tion on executive functions or functional ability, it provides a proof-of-concept that

a nutritional intervention can improve cognitive functions in patients with AD.

Other RCTs of multivitamin and multimineral supplementation [65] or other

combinations of nutrients (e.g., B vitamins and LC n-3 PUFA [66]) have failed to

show any impact on cognitive function in healthy older adults. These discordant

findings suggest that the optimal combination of nutrients and their right target need

further research.

The brain has a high energy requirement and the aging brain is now known to

have regions of lower glucose uptake than in younger adults [67]. Furthermore,

asymptomatic individuals at genetic or familial risk of AD have lower regional

brain glucose uptake decades before the onset of cognitive decline; with the onset of

cognitive decline, the deterioration in brain glucose uptake becomes exacerbated

[67, 68]. The declining capacity of the aging brain to acquire sufficient fuel may

therefore be a factor limiting the efficacy of nutrient supplements aiming to correct

or delay the onset of progression of cognitive deficit. Insulin resistance associated

with type 2 diabetes is associated with higher risk of AD and may contribute to

deteriotrating brain glucose uptake in the elderly [69]. We therefore consider it to
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Fig. 20.2 Relationship between nutrient intake and health status
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be of paramount importance that nutritional interventions for the prevention of AD

be coupled with interventions aiming to improve brain fuel uptake.

4.3 Dietary Interventions

In the field of cognition in older persons, most published RCTs of nutritional

interventions have been explanatory so far. However, general dietary recommen-

dations providing several classes of nutrients along with optimal dietary energy

intake could be the most efficient nutritional strategy to slow down cognitive

decline and postpone the onset of dementia. Indeed, observational epidemiological

studies have shown that healthy dietary patterns were associated with better cog-

nitive outcomes [70, 71]. In particular, higher adherence to a Mediterranean type

diet rich in fruits, vegetables, legumes, cereals, fish, and olive oil has been associ-

ated with a lower risk of AD and cognitive decline [72]. This dietary pattern

provides antioxidant vitamins C and E, vitamin B6, and folate which could exert

a protective effect against cognitive decline [73]. Higher adherence to a Mediter-

ranean diet is also associated with higher plasma EPA and DHA concentrations

[74]. However, unlike in cardiovascular disease [38, 75], no RCT has shown the

impact of shifting to a Mediterranean type diet on cognitive function in older

persons. Nevertheless, this positive impact of the Mediterranean diet on cardiovas-

cular outcomes suggests a potential effect on the vascular component of cognitive

decline.

Very few published RCTs have investigated the impact of a dietary modification

on cognitive outcomes. Forty-nine older adults (20 healthy and 29 with amnestic

MCI) were randomized to follow a HIGH or LOW diet for 4 weeks [76]. The HIGH

diet was high in fat, especially saturated fat, and low in carbohydrates in proportion

of total energy intake but with a high glycemic index. Conversely, the LOW diet

was low in fat, especially saturated fat, and had a low glycemic index. The

proportion of protein was similar in both diets (15–20 %). Caloric needs were

estimated to maintain pre-intervention weight and meals were delivered at home,

and hence a strictly controlled condition. As expected, insulin sensitivity improved

with the LOW diet. The LOW diet was associated with improved verbal memory

but had no impact on other cognitive domains. In another RCT, 124 overweight

adults with high blood pressure were randomized to receive either the Dietary

Approaches to Stop Hypertension (DASH) diet (rich in fruits, vegetables, low-fat

dairy, and low in saturated fat and cholesterol) alone, or the DASH diet combined

with a weight management program, or a usual control diet [77]. The DASH

diet alone or associated with weight management was associated with better

psychomotor speed whereas only combination of the DASH diet with weight

management was associated with greater improvements in several tests of executive

functions and memory. These findings suggest that the impact of healthy diets could

be augmented by simultaneously taking into account other modifiable risk factors

of cognitive decline such as overweight or hypertension. Accordingly, several
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ongoing RCTs include dietary modifications along with other lifestyle recommen-

dations (e.g., increase physical activity) and management of cardiovascular risk

factors to prevent cognitive decline [49].

4.4 Definition of an Appropriate Control Arm

Defining an appropriate control arm is a general challenge of RCTs with nutritional

interventions. Explanatory trials with nutritional supplements are usually placebo

controlled, i.e., the control group receives a similar pill without the presumed

efficient nutrient(s). This design allows double blinding of the investigator and

the participant. However, the composition of the placebo is not trivial. Indeed, the

placebo must not provide a nutrient that could have an opposite effect on cognition

(e.g., trial of LC n-3 PUFA vs. placebo containing a high amount of n-6 PUFA such

as sunflower oil) and artificially inflate the expected difference between interven-

tion and control arms. Conversely, no beneficial impact on cognition should be

expected from the components of the placebo (e.g., trial of LC n-3 PUFA

vs. placebo containing olive oil, which provides polyphenols). The placebo must

also be isocaloric, as for the Souvenir II trial [64] in order to neutralize the potential

effects of higher or lower energy intake on cognition. Finally, the typical taste of

fish oils providing EPA and DHA should be neutralized as much as possible or

artificially introduced in the placebo so that participants cannot guess their group of

randomization. In an RCT of EPA for the treatment of psychological distress and

depressive symptoms, 50 % of women in the EPA group stated that the capsules had

a fishy taste compared with 6 % in the placebo group [78]. However, there were no

differences in the proportions of participants who guessed their allocation group.

RCTs of dietary interventions are complex interventions [79] faced with major

challenges. Indeed, it is very difficult to conceive a placebo intervention that would

have no impact on cognition without letting participants with the detrimental

feeling that they have no benefit to expect from their involvement—a situation

that may lead to massive dropout. General dietary recommendations may be used

for the control arm. However, they may have a favorable impact on cognition and

decrease the apparent efficacy of the specific intervention to evaluate. Blinding is

not possible, thus the participants and often field investigators are aware of the

group of randomization. Contamination between intervention and control groups is

also a concern. Even if participants of the different arms of the study should not

have the opportunity to meet at the investigation center, they may exchange about

their experience in social occasions, shops, etc. Cluster randomization of districts or

practices may limit this risk of contamination but it requires much larger sample

sizes. General dietary recommendations, e.g., to increase fish, fruit and vegetables

consumption provided by media campaigns may also interact with the intervention

and decrease its apparent efficacy. Moreover, many kinds of nutritional supple-

ments are widely available in stores or on the Web. Whatever the intervention,

supplement users and those with strong nutritional beliefs should not be included.
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Compliance to the intervention must be controlled with dietary surveys and bio-

markers in both arms in a blinded fashion, e.g., levels of EPA and DHA in plasma or

red blood cell membranes assessed at baseline and at the end of the RCT in order to

appreciate their change over time.

5 Interactions Between Nutrients and Genetic
Polymorphisms: Towards a Personalized Nutrition?

Most epidemiological studies have adjusted their statistical analyses for the ε4
allele of the apolipoprotein E gene (ApoE4), the main genetic risk factor for

AD. However, many studies did not mention whether there was an interaction

between nutrients and ApoE4 on cognitive function. When a significant interaction

is observed, stratified analyses should be run. The few studies that have presented

separate analyses according to ApoE genotype have yielded inconsistent results.

Regarding antioxidants, a few studies have reported significant interactions

between ApoE polymorphism and nutrients on cognitive functions. Higher beta-

carotene levels in serum were associated with a lower risk of cognitive decline over

7 years in ApoE4 carriers but not in ApoE4 negative healthy older adults [80]. Con-

versely, the protective association of dietary vitamin E against the risk of incident

AD was observed only among older persons who were ApoE4 negative

[81]. Another study did not find any significant interaction between ApoE4 geno-

type and dietary intake of several antioxidants (beta-carotene, flavonoids, vitamins

C and E) on the risk of AD [82]. ApoE4 carriers had significantly lower selenium

(Se) levels measured in nail samples than noncarriers after controlling for estimated

dietary Se intake in an elderly Chinese cohort [83]. AD patients with at least one

ApoE4 allele have lower serum level of total antioxidant status and lower activity of

oxidative stress enzymes catalase and glutathione peroxidase compared to healthy

individuals but also to AD patients without the ApoE4 [84]. Another study

suggested a functional vitamin E deficiency, and hence increased oxidative stress,

in AD patients with the ApoE4 genotype [85]. Taken altogether, these findings

suggest that ApoE4 exacerbates the role of oxidative stress in the pathogenesis of

AD [86].

Higher oxidative stress or impaired antioxidant defense mechanisms could also

explain why ApoE4 carriers seem to be less sensitive to intake of LC n-3 PUFA,

which are easily peroxidized. Indeed, several epidemiological studies but also two

RCTs [39, 45] have found an interaction between EPA, DHA, or fish intake and

ApoE4 in regard to cognitive function (for a review see [87]). In most studies,

individuals who are not ApoE4 carriers seem to be more responsive to dietary fat

and to its impact on cognitive functions [62, 87–91]. However, controversial

findings exist as well, with two studies showing that ApoE4 carriers had a higher

impact of increased LC n-3 PUFA on cognition [39, 92]. Underlying mechanisms

are still poorly understood. In addition to exacerbated oxidative stress, ApoE4
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carriers might have impaired cholesterol or fatty acid transport. Indeed, ApoE4

carriers have an exaggerated postprandial triglycerides elevation [93]. Other poten-

tial mechanisms involve impaired metabolism of n-3 PUFA, glucose or ketones,

and exacerbated brain inflammation [87]. More generally, the ApoE4 carriers may

be more vulnerable to deleterious environmental factors [94].

In addition, other recently discovered genetic polymorphisms associated with

the risk of AD could also interact with nutrients. For example, CLU (apolipoprotein

J), whose marker rs11136000 is associated with a decreased risk of AD, is one of

the most abundantly expressed apolipoproteins in the central nervous system,

suggesting a potential role in lipid transport or functionality.

In RCTs with nutritional interventions, stratified analyses according to ApoE4

genotype should be planned in the protocol. Indeed, the impact of antioxidant

nutrients might be more important in ApoE4 carriers who have an elevated level

of oxidative stress [95] while that of LC n-3 PUFA might be higher in ApoE4

noncarriers. Thus, the resulting effects may be not significant if ApoE4 carriers and

noncarriers are mixed. Eventually, when epidemiological studies strongly suggest a

modifying effect of a given genotype such as ApoE4, the randomization could be

stratified according to genetic polymorphisms to ensure that subgroups are perfectly

comparable at baseline of the RCT. This may have important implications in terms

of sample size calculation. Indeed, about 20 % of the general population is ApoE4

carrier. Thus, this group should be overrepresented to ensure similar power as in the

ApoE4 noncarriers. When antioxidant nutrients and LC n-3 PUFA are provided

simultaneously, a 2� 2 factorial design is needed to distinguish their respective or

synergistic effects. However, such a design combined with stratification according

to ApoE genotype would require extremely large sample sizes. As a result, many

RCTs are underpowered. Moreover, participants in RCTs are highly selected

individuals whose risk of cognitive decline or incidence of dementia is lower

than in comparable participants in observational epidemiological studies, and

hence an overestimation of the effect size and underestimation of the requested

sample size.

6 Conclusion

Epidemiological observational studies and RCTs have yielded conflicting results

regarding the impact of diet and nutrients on cognitive decline in older adults. More

research is needed to better identify the potential beneficiaries of a nutritional

intervention for the prevention of cognitive decline, function of their cognitive

status, dietary habits and genetic characteristics. Estimation of optimal quantities

and proportions of nutrients for the prevention of cognitive decline should be

refined, according to actual needs of the target population. Interactions between

genetic polymorphisms and nutrients must be identified in order to focus on the

most susceptible individuals, but also to better understand the pathophysiological

mechanisms linking nutrition and cognitive functions. Epidemiological studies are
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still necessary to investigate these new areas in the link between nutrition and

cognition and to provide relevant data that will be used to implement more

convincing RCTs.
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Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J,
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Chapter 21

Nutraceutical Regulation
of the Neuroimmunoendocrine Super-system

Paul Forsythe

1 Introduction

There is a strong relationship between nutrition, metabolism and immunity. It is

clear that nutrition affects a range of biological processes that are critical to the

immune response including cell proliferation and survival, signal transduction and

gene expression. On this basis there is an increased interest in the use of dietary

strategies to control a range of inflammatory and immune disorders including

inflammatory bowel disease, rheumatoid arthritis and allergy [1–

3]. Immunonutrition has also been proposed in early life, to support the develop-

ment of a healthy immune system [4] and in the elderly to protect against

immunosenescence [5, 6]. Two particularly promising nutritional approaches to

immunomodulation are the use of probiotics and n3 polyunsaturated fatty acid

(n3 PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid

(DHA). Indeed, both n3 PUFAs and probiotic bacteria are already used to supple-

ment infant formula [7, 8], and there is evidence that they may have synergistic

benefits [9, 10].

In recent years a convergence of the fields of immunology, microbiology and

nutrition has provided a “diet–microbiota” model that may underlie the increased

incidence of a range of immune disorders. The “microbiota hypothesis” proposes

that dietary changes and increased antibiotic use in “industrialised” countries lead

to changes in the composition of commensal bacteria in the gut, disruption of the

normal microbiota-mediated mechanisms of immunological tolerance in the

mucosa and consequently to increased susceptibility to immunological disorders

[11]. Attempts to exploit potential therapeutic benefits of modulating the gut

microbiota in inflammatory and other immune disorders have lead to extensive

research efforts in the field of probiotics. Defined as non-pathogenic bacteria that
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promote beneficial health effects when ingested [12]; these “beneficial microbes”

are most frequently Lactobacillus or Bifidobacterium species; however, a number

of lactic acid bacteria and non-pathogenic E.coli have also been identified as

probiotics [13]. There is now good evidence of that bacteria delivered orally can

regulate immune responses in the GI tract and beyond. In particular, the ability of

specific bacteria to protect against infection and attenuate allergic inflammation has

been well documented in animal models and clinical studies (For review see [14,

15]). Based on experimental evidence, a number of mechanisms underlying the

protective immune effects of bacteria have been proposed. These include enhanced

NK cell activity, altered antigen presentation by dendritic cells and subsequent

decrease in IgE responses [16], a skewing of T cell polarisation towards Th1

responses [17, 18], the induction of regulatory T cells [19–21] and inhibition of

mast cell responses to antigen [22–25].

Dietary lipids have also been reported to have immunomodulatory effects.

Polyunsaturated fatty acids (PUFAs) consist of two main groups of essential fatty

acids: omega-3 (n-3) and omega-6 (n-6). The n-6 PUFAs are generally regarded as

proinflammatory; diets rich in n-6 PUFAs result in predominance of arachidonic

acid in tissues, which in turn gives rise to eicosanoids such as prostaglandin E2

[26]. These eicosanoids subsequently enhance the synthesis of proinflammatory

Th2 cytokines and IgE antibodies. Conversely, n-3 PUFAs suppress immune

responses. Dietary n-3 PUFAs can be incorporated into cell membranes, displacing

arachidonic acid and modulating lipid–protein interactions [27, 28]. Such mem-

brane incorporation can lead to changes in receptor expression, reduction of

prostaglandin E2 synthesis and inhibition of the production of pro-inflammatory

cytokines (TNF-α, IL-1, IL-6) by several cell types [29–33]. n3 PUFAs can also

downregulate MHC II expression and function of antigen-presenting cells

[34]. Competitive inhibition of the cyclooxygenase (COX) inflammation pathway

is another way through which EPA suppresses inflammation. The COX pathway

converts the primary n-6 PUFA, arachidonic acid, to pro-inflammatory prostaglan-

dins and prostacyclins. However, high levels of EPA blocks production of

arachidonic acid derivatives by using the COX enzyme to form EPA derivatives

instead [26].

Within the body, the maintenance of homeostasis and defence against external

threats is not the sole preserve of the immune system but is undertaken through the

co-ordinated action of the nervous, endocrine and immune systems. These major

adaptive systems are in constant bidirectional communication forming effectively a

regulatory super system. Crosstalk between systems is facilitated by the expression

of common mediators and receptors. For example, many immune cells respond to

neurotransmitters, through an array of receptors including adrenergic, cholinergic,

neurokinin and NMDA receptors [35]. At the same time immune cells are capable

of producing nerve growth factors and a range of neuroactives including catechol-

amines, histamine, acetylcholine and GABA, as well as endocrine factors such as

corticotropin-releasing factor (CRF) [35]. Conversely, neurons can be activated by

cytokines allowing them to respond to the immune environment [36, 37].
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Disruption of any component of the regulatory super-system can result in loss of

homeostatic control, diminished defences and, subsequently, disease. Thus,

immune disorders may have origins in disrupted neuroendocrine control and neu-

rological symptoms may result from dysregulated immunity. With this in mind,

modulation of neural and endocrine responses may represent a potential therapeutic

approach to immune disorders.

The complex relationship between the nervous, endocrine and immune systems

is particularly apparent in the gut. The gastrointestinal (GI) tract sees a coming

together of the greatest concentration of immune cells in the body with a network of

500 million neurons in what is the body’s largest endocrine organ. In addition, the

GI tract is the point of interface between the body and the approximately 100 trillion

bacteria [38] that constitute the human gut microbiota. Indeed, it is the coordinated

action of immune, nervous and endocrine systems that allows the gut to maintain

the balance between supporting the advantageous relationship between host and

commensal organisms while at the same time maintaining protection from potential

pathogens. Also critical to maintaining homeostasis is the constant dialogue

between the gut and the brain. This brain–gut axis consists of clear “hard-wired”

anatomical connections, involving vagal and spinal nerves, together with humoral

components provided by the endocrine and immune systems. It is suggested that

defects in gut–brain axis communication are an underlying cause of functional

bowel disorders including irritable bowel syndrome (IBS) [39] and potentially

inflammatory bowel disease [40]. There is now also strong evidence that through

the gut–brain axis changes in gut function and/or the gut microbiota can result in

modulation of stress responses, central nervous system (CNS) function and conse-

quently mood and/or behaviour.

The realisation that the gut and gut-microbiota are deeply integrated into many

aspects of host physiology, influencing neural and endocrine responses that regulate

immune homeostasis, opens the possibility that changes in neuroendocrine envi-

ronment may have an important role in mediating effects of nutritional interven-

tions on systemic immunity. The following review focuses on the actions of

microorganisms and n3 PUFAs on neural and endocrine functions that may con-

tribute to the therapeutic effects of nutritional interventions in immune disorders

(Fig. 21.1).

2 The Enteric Nervous System

The enteric nervous system (ENS) consists of an estimated 108 neurons forming

ganglionated plexuses within the intestinal wall. Comprised of parasympathetic and

sympathetic systems the ENS and can operate independently of the central nervous

system and is essential for life.

The ENS innervates the intestinal mucosa, including the gut-associated lym-

phoid tissue, which instigates innate and acquired immune responses against
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luminal pathogens while at the same time maintaining tolerance to food antigens

and commensal bacteria.

ENS neurons secrete acetylcholine (ACh) and large number of other neurotrans-

mitters and neuropeptides including norepinephrine, nitric oxide, vasoactive intes-

tinal peptide (VIP), Calcitonin gene related peptide, neuropeptide Y and Substance

P (SP). The immune-modulatory activities of these neurotransmitters have been

well described, and they can influence lymphocyte proliferation and cytokine

production. For example VIP inhibits the migration of T lymphocytes into Peyer’s

patches [41, 42] and alters B cell-mediated immunoglobulin synthesis [43, 44]. On

the other hand SP stimulates immunoglobulin synthesis in Peyer’s patch B cells

[43–45]. The ENS may also regulate antigen presentation, being well placed to

interact with dendritic cells and macrophages, found throughout the intestine,

including the lamina propria of the small and large intestine, the Peyer’s patches,

intestinal lymphoid follicles and mesenteric lymph nodes. Indeed, both VIP and SP

have been demonstrated to confer tolerogenic or regulatory functions on dendritic

cells [46, 47] Thus, modulation of the ENS function can influence, not only well-

defined roles in regulating intestinal motility and transepithelial ion transport but

also intestinal immune functions related to mucosal protection and defence against

infection.

ImmuneCCK-1

CCK 
ENS

hypothalamus

pituitary

adrenal

Entero-
endocrine

LPS?

Decreased
intes�nal
permeability

Afferent vagus

Efferent vagus

n3PUFAs
Probio�cs

CRF

ACTH

CORTAch

neuropep�des

Fig. 21.1 Modulation of the immune system by n3 PUFAs and probiotics: In addition to acting

directly on immune cells both n3 PUFAs and probiotic bacteria have effects that include altering

activity of the enteric nervous system (ENS) activating the vagal anti-inflammatory pathway and

modulating the HPA response, all of which are involved in maintaining immune homeostasis. Ach
Acetylcholine, ACTH Adrenocorticotropic hormone, CCK Cholecystokinin, CCK1 Cholecystoki-

nin Receptor 1, CORT Corticosterone; CRF Corticotropin-releasing factor
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By far the richest innervation of intestinal mucosal epithelium derives from the

myenteric plexus, which provides more than 90 % of sensory neuropeptide

containing fibres to the mucosal layer [48, 49]. Each of these enteric intrinsic

primary afferent neurons (IPANs) innervates 80–120 villi [50]. Thus, IPANs are

well placed to respond to luminal content and are plausible targets through which

nutrients and microbes could influence gastrointestinal physiology and neuroendo-

crine responses.

Certainly, IPANs have been demonstrated to be cellular targets of putative

probiotic bacteria. Using whole cell patch clamp recording, myenteric IPANs in

rats fed a Lactobacillus rhamnosus strain were demonstrated to be more excitable

than those from controls. This increase in excitability was accompanied by a

reduction in the post-action potential slow after-hyperpolarization, which is par-

tially responsible for the neuronal refractory period; the time period following an

action potential during which a neuron cannot initiate a subsequent action potential.

[51]. Further experiments identified that the molecular mechanism underlying

increased IPAN excitability involved a reduction in current of an intermediate

conductance calcium-dependent potassium channel (IKCa) and application of the

IKCa channel blocker TRAM-34 mimicked the effects of the L. rhamnosus, [51,
52]. With regard to mechanism of action of L. rhamnosus on the IPANs, there are

few chemical correlates of the functional effects probiotics have on enteric neurons.

Ingestion of Saccharomyces boulardii has been shown to decrease the number of

pig myenteric AH cells that express the vitamin D-dependent cytosolic calcium

binding protein calbindin-D28k [53]. A change in calcium intracellular buffering,

as is suggested by this result, might be expected to alter the opening probability of

IKCa.

Recently, it was demonstrated that Bacteroides fragilis produces similar effects

to L. rhamnosus on the ENS. Significantly, the capsular exopolysaccharide, poly-

saccharide A (PSA), isolated from B. fragilis completely mimics the neuronal

effects of the parent organism. Furthermore, experiments with a mutant strain of

B. fragilis lacking PSA showed that the mutant had lost the neuromodulatory

activity of the parent bacteria. Overall these experiments identified that complex

carbohydrates may play an important role in mediating signals between bacteria

and the host nervous system.

It should be noted that modulation of the ENS in addition to regulating gut

motility and intestinal inflammation, likely contribute to afferent signalling to the

brain [51, 52, 54] and thus influence a range of physiological responses beyond

the gut.

3 The Vagus Nerve

The vagus nerve projects from the medulla oblongata in the brain stem to the colon

and consists largely of afferent nerve fibres. Innervating the pharynx, larynx and

visceral organs, the vagus is the main afferent pathway from the abdominal cavity
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to the brain. Sensory vagal inputs arrive in the nucleus of the solitary tract, and then

transmitted to widespread areas of the CNS, many of which [55], are associated

with stress-related behaviour and affective disorders.

Within the intestine there are 30,000–80,000 vagal nerves, 90 % of which are

afferent [56, 57]. Vagal afferents innervate the muscular and mucosal layers of the

entire gut with the coeliac branch supplying the intestine from the proximal

duodenum to the distal descending colon [58].

Intraganglionic laminar vagal afferent endings are located in the connective

tissue capsule of myenteric plexus ganglia, between the longitudinal and circular

muscle layers. These fibres respond to muscle tension generated by passive stretch

and active contraction of the muscle layers [59]. However, of particular relevance

to the sensing of luminal contents, there are also vagal afferent fibres with terminals

lying in the mucosa [56]. These mucosal vagal fibres express a large variety of

mechanosensitive and chemosensitive receptors [57] and represent a hard-wired

component of the gut–brain axis that is critical to many physiologic processes, such

as satiety and regulation of digestive activity. While mucosal vagal afferent fibres

are not in a position to sense luminal nutrients directly, not crossing the basal

membrane to innervate the epithelial layer of the gut [58], they are in close

anatomical apposition to the basal membrane of enteroendocrine cells [60]. The

chemosensitive receptors of mucosal vagal fibres are the targets of gut hormones

and regulatory peptides such as ghrelin, cholecystokinin, glucagon-like peptide-1

and peptide YY, that influence the control of food intake and regulation of energy

balance [57].

In addition to responding to gut hormones, the vagus nerve can also sense the

immune environment of the intestine and can be activated by inflammatory cyto-

kines. Perhaps the best-described consequence of vagal afferent signalling in

response to cytokines is sickness behaviour; the drastic changes in behaviour

responsible for reorganising perceptions and actions to enable ill individuals to

cope better with infection. The characteristic sickness behaviours are mediated by

proinflammatory cytokines particularly IL-1β and TNF [61] and include lethargy,

depression, anxiety, loss of appetite, sleepiness and hyperalgesia.

More recently, evidence has emerged suggesting that activation of the vagus by

electrical, immune, microbial or nutritional stimuli can have consequences beyond

changes in behaviour and digestive activity. While the majority of vagal fibres are

afferent, it has been identified that vagal efferents play a critical role in a neural

circuit that controls inflammatory responses. In this anti-inflammatory reflex the

vagus nerve senses inflammation sending afferent signals to the brain that then

activates efferent responses, releasing mediators including acetylcholine that,

through an interaction with immune cells, attenuates inflammation.
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3.1 Vagal Anti-inflammatory Response

The vagus innervates tissues with important immune functions such as thymus,

lung, liver, and the gastrointestinal tract. Furthermore, trunks or branches of the

vagus are often associated with lymph nodes that drain regions in which immune

activation occurs.

Tracey and colleagues were the first to highlight the anti-inflammatory role of

the vagus, demonstrating that direct electrical stimulation of the peripheral vagus

nerve prevented the development of shock in rats through the inhibition of TNF

synthesis by macrophages [62]. This inhibition of macrophage function is mediated

by Ach released by the vagus acting on nicotinic receptors expressed by the

immune cell. Similarly, macrophages have been suggested to be the main target

of the anti-inflammatory function of the vagus nerve in a murine model of inflam-

matory bowel disease (IBD) [63]. However, it is also clear that the vagus nerve acts

to regulate T cell function Sub-diaphragmatic vagotomy leads to a dramatic

increase in T cell proliferation and production of inflammatory cytokines when

compared to cells from sham-operated animals [64]. The effect of vagotomy is not

limited to the spleen as lymphocytes isolated from the mesenteric lymph nodes also

demonstrated a significant increase in inflammatory cytokine production. It is

possible that the actions of the vagus on T cells can also influence the development

of IBD. O’Mahony et al. [65] demonstrated that transfer of CD4+ T cells from

vagotomised donors into non-vagotomised with DSS induced colitis reduced the

number of splenic Foxp3+ regulatory T cells in recipient animals, and was associ-

ated with aggravated disease symptoms mimicking the effects of vagotomy on

colitis. Overall, data suggests that the vagus nerve is a tonic inhibitor of multiple

components of the immune system.

3.2 n3 PUFAs and the Vagus

Grundy and colleagues [66] demonstrated that long- and short-chain fatty acids

both activate rat jejunal vagal afferent nerve fibres but do so by distinct mecha-

nisms. Butyric acid, a short-chain fatty acid, appears to have a direct effect on vagal

afferent terminals while the long-chain fatty acids activate vagal afferents via a

CCK-mediated mechanism. Subsequently, Luyer et al. [67] demonstrated that the

interaction between long-chain fatty acids and the vagus results in activation of the

cholinergic anti-inflammatory pathway. They found that administration of high fat

nutrition reduced circulating levels of TNF and IL-6 in rats subjected to hemor-

rhagic shock. In keeping with this, it has also been demonstrated that continuous

enteral lipid application in the form of olive oil during sepsis significantly reduces

the inflammatory cytokine output of the gastrointestinal tract and associated septic

pulmonary dysfunction [68]. When Luyer et al. repeated their experiments in

vagotomized animals, the administration of the high-fat diet no longer prevented
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the increase in TNF and IL-6 [67]. In addition, nicotine receptor antagonism

blocked the ability of dietary fat to suppress the cytokine increase. Similarly,

deafferentation abrogates the protective effects of lipid-rich nutrition on systemic

inflammation and loss of intestinal integrity following shock [69]. Overall these

experiments provide strong evidence of a nutritional anti-inflammatory pathway

whereby the intake of dietary fat suppresses cytokine release through activation of

peripheral afferent vagus nerves that in turn initiate the cholinergic anti-

inflammatory response. The mechanism underlying the protective effects of long

chain fatty acids include a role for cholecystokinin (CCK), a neuropeptide that is

released after consumption of dietary fat and activates the afferent vagus nerve

signals that induce satiety. Administration of CCK receptor antagonists and spe-

cifically antagonists of the peripheral CCK-1 impaired the fat-induced suppression

of the shock response [67].

Clinically, studies indicate that dietary n-3 PUFA levels and n-3 PUFA supple-

mentation are related to improved heart rate variability suggesting increased vagal

tone [70, 71]. The relationship between the immunomodulatory actions of n-3

PUFA and their effects vagal tone has yet to be established. However, a number

of studies have associated control of inflammation with heart rate variability in

humans [72–75], while animal studies indicate that the threshold of vagus nerve

activity that initiates the cholinergic anti-inflammatory pathway is significantly

lower than that required to activate a change in heart rate variability [62, 76,

77]. It is possible that diet-induced activation of the cholinergic anti-inflammatory

pathway contributes to the reduced mortality from sepsis and organ damage

following early enteral feeding in trauma and surgery patients, [78–80].

It has also been suggested that this nutrient activated anti-inflammatory

vagovagal reflex may contribute to the highly selective intestinal immune response

that is required to preserve homeostasis and intestinal barrier function [76]. This

neural feedback loop could help maintain unresponsiveness of the GI tract to

luminal antigens, allowing the intestine to perform the dual role of sensing and

absorbing essential nutrients while protecting against invasion from potentially

damaging agents.

3.3 Probiotics and the Vagus

Non-pathogenic bacteria also activate vagal signalling from gut to brain. Tanida

et al. [81] demonstrated that intraduodenal injection of the bacterial strain Lacto-
bacillus johnsonii La1 enhanced gastric vagal nerve activity that was associated

with reduced renal sympathetic nerve activity and blood pressure. Denervation of

vagal nerve fibres surrounding the oesophagus eliminated the ability of L. johnsonii
La1 to reduce renal sympathetic nerve activity and blood pressure indicating that

vagal signalling is required for at least some of the effects of this bacterium on

autonomic nerve responses [81].
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The anxiolytic and antidepressant effects of chronic L. rhamnosus ingestion in

normal adult Balb/c mice were prevented by subdiaphragmatic vagotomy as was

the associated alterations in GABAAα2 mRNA expression in the amygdala

[82]. Similarly, the ability of B. longum to attenuate DSS colitis induced anxiety

was abolished by vagotomy [83]. Thus, it is clear that certain bacteria can alter gut–

brain axis communication through modulation of vagal signalling. Indeed, the

anxiolytic and antidepressive effects mediated by gut microbe induced activation

of the vagus nerve is in keeping with evidence suggesting direct electrical stimu-

lation of the vagus can lead to a reduction in anxiety and depression associated

behaviours [84, 85].

As yet, there is no evidence that the vagus nerve contributes to the immuno-

modulatory effects of gut bacteria and at least one study suggests that the local

protective effect of lactobacillus and bifidobacteria strains in models of colitis does

not depend on vagal nerves [86]. However, given what is known of the vagal anti-

inflammatory reflex it seems plausible that gut microbiota induced modulation of

vagal mediated “periphery to brain” signalling could translate into changes in

efferent neural pathways controlling immune responses.

4 The Hypothalamus–Pituitary–Adrenal Axis

The hypothalamus–pituitary–adrenal (HPA) axis is a major component of the

neuroendocrine response to stress. The HPA axis is initiated when neurons in the

paraventricular nucleus of the hypothalamus, secrete corticotropin-releasing hor-

mone (CRH). CRH, in turn, stimulates the anterior pituitary to secrete adrenocor-

ticotropin hormone (ACTH) into the peripheral circulation from where it acts on the

adrenal glands causing synthesis and release of cortisol. It is binding of cortisol to

the intracellular glucocorticoid receptor (GR) in a wide variety of tissues that

instigates signalling pathways crucial to an adaptive stress response [87, 88].

One of the major physiological roles for the HPA axis is preventing excessive

tissue damage due to inflammation and the immunomodulatory influences of the

HPA response have been described extensively [87]. While the initial response to

stress involves activation of the HPA axis, over time this activity diminishes and

cortisol secretion stabilises below normal levels. Indeed, reduced input from this

important negative regulator of inflammation may explain some of the detrimental

effects of chronic stress on immune disorders [87]. The immunologic effects of the

HPA axis are mediated largely through the action of adrenal corticosteroids on

intracellular receptors. For example, on T-cells these receptors in regulate expres-

sion of IL-4, 5, and 13 following exposure to allergen [89] while mast cells

constitutively express glucocorticoid receptors, where they function to inhibit

release of histamine and other allergic mediators, as well as reducing the recruit-

ment and activation of eosinophils [90].

Changes in HPA responsiveness has been shown in a variety of animal models as

well as human inflammatory and autoimmune diseases such as rheumatoid arthritis
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[91] inflammatory bowel disease [92] multiple sclerosis [93] and allergic disorders

including asthma and dermatitis [94, 95]. The potentially protective effects of HPA

activation have been well demonstrated in relation to allergic disease. CRH defi-

cient mice develop increased airway inflammation following OVA sensitization

and challenge compared to wild type mice [96]. In this case the detrimental effect of

CRH deficiency is believed to be the result of severely reduced corticosteroid and

catecholamine levels because of the absence of the stimulus for their release from

the adrenal gland. Short-term restraint stress inhibits antigen mediated cell influx to

the lungs of OVA sensitised mice, an effect that can be prevented by the glucocor-

ticoid receptor antagonist RU486. Similarly, scratching behaviour induced by the

mast cell degranulating agent, compound 48/80 increases following treatment with

RU486 or surgical removal of the adrenal gland in mice [97, 98]. Furthermore,

early-life stress in mice leads to a hypo-responsive HPA in the adult animals with an

associated increase in allergic airway response [98]. Several clinical reports also

suggest that normal function of the HPA axis might be critical for controlling

inflammation with evidence of a hypo-responsive HPA axis in patients with chronic

inflammatory disorders [99, 100]. It is clear that a normal HPA response is

important in maintaining optimal immune function and correspondingly the ability

to alter HPA activity has been identified as a potential therapeutic approach to

immune disorders.

4.1 Probiotics and the HPA Axis

Sudo and colleagues provided some of the earliest evidence that changes in gut

bacteria could alter central responses [101] and demonstrated that germ free

animals had an enhanced HPA axis response. This hyper-responsiveness was

reversed by reconstitution with faeces from animals kept in a pathogen free

environment or with a single probiotic strain, Bifidobacterium infantis [101]. In

contrast, mono-association with an enteropathogenic E. coli further exaggerated the
response to stress. Alterations in the HPA response has since been demonstrated to

be a common effect of gut bacteria in many model systems [82, 102, 103] Overall,

studies suggest that development in the absence of gut microbiota leads to HPA

hyperresponsiveness [101, 103] while certain commensal bacteria and potential

probiotics can attenuate HPA responses to stress [82, 102]. There is also evidence

that these observations made in animal models can be translated clinically. In a

double-blind, randomised parallel group study, healthy volunteers consuming a

mixed preparation of L. helveticus R0052 and B. longum R0175 or placebo for

30 days had lower urinary free cortisol levels indicative of a reduced HPA response

to daily stressors [104].

The mechanisms underlying the ability of certain probiotic bacteria t to modu-

late HPA responses is unclear but may be related to changes in gut permeability.

Ait-Belgnaoui et al. [105] demonstrated that treatment with L. farciminis for

2-week attenuated the HPA axis response to acute restraint stress in rats and
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prevented stress-induced colonic hyper-permeability and uptake of lipopolysaccha-

rides (LPS) in the portal blood. Use of antibiotics to reduce luminal LPS available

for uptake, also lead to attenuation of the neuroendocrine response to stress

suggesting the effect of L. farciminis-induced on HPA activity may be related to

the ability of the bacteria to enhance the intestinal epithelial barrier, thus, reducing

circulating LPS.

Regardless of mechanism of action, the clear ability of certain bacteria to

modulate HPA activity [82, 101–103] may contribute to improved homeostatic

function and thus to some of the observed beneficial effects of probiotics in allergy

and other immune disorders.

4.2 n3 PUFAs and the HPA Axis

n3 PUFAs specifically DHA and EPA, have been identified as having stress-

protective roles that are mediated potentially through an ability to modulate the

HPA response [106–108]. DHA deficiency has been associated with high CRF

levels in cerebrospinal fluid, indicating a potentially exaggerated stress responses

and hyperactive HPA [109]. Conversely, fish oil supplementation has been dem-

onstrated to attenuate mental stress-induced adrenal activation with associated

reduction in epinephrine and cortisol levels in healthy subjects [110] and reduced

basal cortisol levels and stress perception in recovering alcoholics [111]. A number

of studies have indicated that n3 PUFAs may have potential as therapy or adjunc-

tive treatment in depression and that such effects could also be related to an ability

to modulate HPA activity. In animal models, feeding DHA to rats significantly

decreased immobility time in the forced swim test, a well-validated indication of

antidepressant activity. The DHA induced behavioural change was associated with

decreased CRF levels in the hypothalamus and pituitary tissues, an indication of

changes in HPA activity [112, 113]. In human studies, Jazayeri et al. [114, 115]

reported that fluoxetine and EPA were equally effective in controlling depressive

symptoms and that a fluoxetine and EPA combination was superior to either

treatment alone. The same authors went on to show that EPA and fluoxetine,

alone or in combination, decreased serum cortisol after 8 weeks of treatment in

depressed patients leading to the suggestion that EPA may exert its therapeutic

effects through reduction of HPA hyperactivity [115]. There is also evidence that

action of n-3 PUFAs on the HPA axis may influence immune responses to psycho-

logical stressors. For example, low serum n-3 or higher n-6:n-3 ratios in medical

students prior to exams was associated with high LPS-stimulated TNF and IFN-γ
production by peripheral blood leukocytes obtained during exams [116].

While it is unclear how dietary DHA modulates the HPA response, there has

been extensive research into the beneficial effects of unsaturated fatty acids or high

linolenic acid diets on the CNS. DHA can act on NMDA receptors, increasing the

probability of channel opening [117]. DHA also modulates GABA responses [118,

119]. Indeed, DHA mediated attenuation of HPA may be explained by the
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demonstration that n-3 PUFAs, can act on GABAA receptors to potentiate

GABAergic inhibitory drive on CRF-secreting hypothalamic neurons [120]. In

this regard, it is interesting to note that the decreased anxiety and HPA response

to stress of mice fed with L. rhamnosus is also associated with changes in the central
GABAergic system [82]. In another similarity to the action of probiotics, it should

also be noted that DHA and EPA have been demonstrated to support intestinal

epithelial barrier integrity [121–123]. Given the evidence that changes in intestinal

permeability may be critical to probiotic regulation of the HPA response how this

relates to protective effect of n3 PUFAs on stress and HPA activity deserves

investigation.

5 Mast Cells

Mast cells are best known for their contribution to the inflammatory process and

particularly in IgE mediated allergic responses. However, mast cells also play an

important role in communication between the nervous, endocrine and immune

systems, acting as a “universal translator” between components of the adaptive

super-system [124].

A range of neurotransmitters and hormones can activate mast cells while recip-

rocally, mast cell derived cytokines including TNF and growth factors, such as

NGF, modulate the threshold for activation of local neurons and promote nerve

fibre growth [125–128]. In addition, a variety of molecules, including histamine and

serotonin, synthesised and released by mast cells can influence neuronal activity

and endocrine function [129, 130].

Mast cells have been described as the immune-gate to the brain [131] and can

influence behaviour, with mast cell deficient mice exhibiting a more anxious

phenotype [132]. Mast cells can also regulate the HPA axis [133]. Degranulation

of dog brain mast cells evokes HPA responses via histamine and CRH release

[133]. Conversely action of CRH on masts cells is critical for stress-induced

changes in intestinal and blood–brain barrier permeability [134, 135]. Mast cells

are found in close apposition to the vagus nerve in the intestine [136, 137], and there

is evidence for a bidirectional functional relationship between the two [136,

138]. There is also strong support for mast cells as important participants in visceral

hypersensitivity and pain perception, particularly in IBS [139, 140].

Inhibition of mast cell responses appears to be a component of the immuno-

modulatory effects of certain bacteria and may be a contributing factor to the ability

of candidate probiotic organisms to attenuate allergic inflammation [22–25].

Feeding of a L. rhamnosus strain (JB-1) to rats resulted in systemic attenuation

of mast cell activity that was associated with inhibition of cell membrane IKCa

current [22], the same current inhibited by the bacterium in IPANs of the ENS. The

IKCa current has been identified as critical to the function of many immune cells

[141–144] including [145, 146] having a key role in potentiating mast cell degran-

ulation. Indeed, the degree of attenuation in response to IgE mediated activation of
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mast cells from L. rhamnosus-fed animals was similar to that observed in KCa3.1-

deficient mice [146]. The mechanism through which feeding L. rhamnosus leads to
systemic mast cell inhibition is currently unknown. However, the activation of a

range of Gs-coupled receptors including β2-adrenoceptors, A2A adenosine receptors

and EP2 prostaglandin receptors can lead to inhibition of the IKCa current [147–

149] in the mast cell, and thus, there are many possible mediators of the stabilising

effect of L. rhamnosus on the cell.

The work of de Kivit et al. [150] also provides a mechanism thorough which

modulation of gut bacteria may result in a systemic alteration in mast cell function.

In this study a diet containing prebiotic galacto- and fructo-oligosaccharides and a

strain of Bifidobacterium breve protected against acute allergic symptoms and

suppressed mast cell degranulation in whey-sensitised mice. The anti-allergic

effects of the synbiotic treatment were correlated with increased galectin-9 expres-

sion by intestinal epithelial cells and increased levels of galectin-9 in serum [150].

Galectin-9 is soluble-type lectin that recognises β-galactoside-containing glycans.

Crucially, serum derived from whey sensitised synbiotic treated mice was able to

suppress IgE mediated mast cell degranulation and the extent of this suppression

was correlated with serum galectin-9 [150]. In vitro, galectin-9 has been demon-

strated to suppress antigen mediated mast cell degranulation by binding strongly

and specifically to IgE and preventing IgE-antigen complex formation [151]. These

findings strongly suggest that galectin-9 produced in response to synbiotic treat-

ment is responsible for the systemic suppression of IgE mediated mast cell activa-

tion. Whether the increase in galectin-9 production applies universally to probiotic

and prebiotic treatments that stabilise mast cells remains to be determined.

Long chain fatty acids can act directly on mast cells and have differential effects

on the cell function. Generally, results suggest that arachidonic acid and other n-6

PUFA increase degranulation and mediator release from stimulated mast cells,

while n-3 PUFA appear to suppress cell activation [152, 153]. Gamma-linolenic

acid was observed to increase tryptase activity but decrease histamine release

following mastoparan stimulation of a canine mastocytoma cell line [152]. In the

same study, DHA attenuated PGE2 production in stimulated cells [152]. More

recently van den Elsen et al. [153] have demonstrated that EPA and DHA dose-

dependently reduced PGD2 release and significantly suppressed IL-4 and IL-13

secretion from human mast cell lines. Overall these studies suggest that changes in

mast cell phenotype following dietary supplementation with EPA and/or DHA may

contribute to the susceptibility to develop and sustain allergic disease.

Overall, there are marked parallels between the neuroendocrine effects of mast

cell and those described for probiotic bacteria and n-3 PUFA, (altered intestinal

permeability and nociception, HPA regulation and changes in anxiety-like behav-

iour) and future studies designed to test potential causal relationships between

peripheral and central neural regulation and the ability of certain nutritional inter-

ventions to modulate mast cell function will be of great interest.
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6 Concluding Comments

The multiple physiological implications arising from modulating mast cells serves

as a good example of an integrated neuroimmunoendocrine system. Alteration in

the activity of what is ostensibly an immune cell can impact neural and endocrine

responses that in turn influence immunity. Indeed, when considering the physio-

logical processes of host defence and maintenance of homeostasis, distinctions

between nervous, endocrine or immune responses are largely artificial as in reality

none occur in isolation. This review has focused on potential mechanism through

which nutritional modulation of neural and endocrine responses may alter immune

cell activity. However, attention should be drawn to fact that due to the complexity

of the interactions simple cause and effects relationships between adaptive systems

are difficult to discern. For example, immune system dysfunction has been associ-

ated with mood disorders [154–156] and approximately one-third of people with

depression, without co-morbid disease, have higher levels of inflammatory markers

compared to the non-depressed population. Furthermore, inflammatory disorders

are associated with greater rates of major depression, while patients treated with

cytokines for various illnesses are at increased risk of developing major depression.

Conversely, successful treatment with an antidepressant decreases levels of

pro-inflammatory cytokines such as IL-6 and TNF [157, 158]. In this context,

while dietary/bacterial modulation of vagal afferent vagal signalling to the CNS

may alter brain function and behaviour directly, the bidirectional nature of com-

munication between nervous, immune and endocrine systems opens the possibility

that, under certain circumstances, the concomitant activation of the vagal anti-

inflammatory efferent responses may contribute to the antidepressive effects of

nerve stimulation. Indeed, there is evidence that pro-inflammatory cytokine levels

are reduced in epilepsy patients successfully treated with vagal nerve stimulation

[159, 160].

Similarly, inflammation is a stressor, and inflammatory cytokines can act at all

levels of the HPA axis to activate stress hormone release. This has lead to the

proposal that, in addition to direct effects on the CNS, the ability of n3 PUFAs to

reduce the HPA response and improve adaption to stress is, in part, mediated by

fatty acid induced suppression of cytokine production from immune cells.

We are still in the early stages of understanding how the gut microbiota and

nutritional factors integrate with adaptive systems and how this influences health

and disease. In addition to probiotics and n3 PUFAs, other nutritional elements

including vitamins, such as vitamin D [161–163], and trace elements, such as zinc

[164, 165] have been shown to have both immunomodulatory and neuroendocrine

effects. Moving forward, it is clear that we need further understanding of the extent

to which the putative pathways of neuro–endocrine–immune interaction outlined in

this review are actually involved in mediating the beneficial effects of specific

functional foods. In the body, nutrition, immunology, neurology and endocrinology

converge; it follows that research disciplines should do likewise if we are to

understand the common mechanisms underlying many immune disorders as well
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as develop probiotic and/or dietary strategies for the treatment and prevention of

disease.
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Chapter 22

Targeting (Gut)-Immune-Brain Axis
with Pharmaceutical and Nutritional
Concepts: Relevance for Mental
and Neurological Disorders

Aletta D. Kraneveld and Johan Garssen

1 Introduction

The immune system also serves a sensory role, a “sixth sense,” to detect factors the

body cannot otherwise hear, see, smell, taste, or touch [1]. The immune system has

evolved to detect foreign entities such as pathogens, tumors, and allergens with

great sensitivity and specificity. Consequently, as a sensory organ, it would be a

means to signal and mobilize the body to respond to these challenges including the

(central) nervous system. Since individual leukocytes are not physically connected

to the nervous system, the question arises how such signaling works. Nowadays a

lot of scientific evidence exists demonstrating bidirectional pathways between the

(central) nervous system and immune system.

Already in 400 B.C., Hippocrates described the importance of the gastrointesti-

nal tract in health and disease, by stating “bad digestion is the root of all evil.”

Although written in a period long before the major developments of modern

medicine, current understanding of the physiology of the GI tract proves him

right in many ways. The intestines have a profound effect on the entire body,

including the brain [2]. Discovery of the enteric nervous system (ENS) around

1,900 was pivotal in the field of gut–brain interactions. Consisting of a complexity

comparable to the central nervous system (CNS), the ENS is often described as the

“second brain” [3]. Bidirectional communications between the brain and the gut

occur via various pathways, involving the vagus nerve, autonomic nervous system
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and neuro-immune interactions both in the GI tract and in the brain [4]. Over the

past few decades, strong correlations have been observed between the occurrence of

gastrointestinal problems and psychiatric disorders, which have augmented the

interest in the gut–brain connection [5].

In this review the role of the neuro-immune axis and its targetability in relation

to neurological disorders, such as depression, neurodegenerative diseases and

autism is discussed.

2 Neuro-Immune Axis

First, nerves and immune cell are found in close proximity in the periphery as well

as in the CNS. Outside the CNS, this close contact between nerve endings and

immune cells is even enhanced during inflammatory responses at interfaces with

the external environment for example at mucosal sites of the intestinal tract.

Association between nerve fibers and immune cells helps to determine whether

there is a local threat that requires an (immune) response: the so-called neurogenic

inflammatory response [6, 7]. The nerve endings originating from peripheral sen-

sory neurons have two functions: first to conduct (electrical) signals from the

periphery to the CNS and secondly the release of neuropeptides and neurotrans-

mitters that can participate in the immune/inflammatory response close by. Though

the CNS has long been regarded as an immune-privileged organ, recent research

has shown that the CNS is a highly immunological active organ with complex

innate immune responses [8]. Microglial cells are the resident macrophages of the

CNS, align neuronal synapses, and are important in controlling neuronal prolifer-

ation and differentiation [9]. In addition to microglial cells, in the CNS astrocytes

are the most abundant cell type. Astrocytes contribute to the mechanical construc-

tion of nervous tissue in the brain and are important for the generation and

maintenance of the blood–brain barrier (BBB). There is a lot of evidence that

astrocytes can sense inflammatory an environment and consequently can respond

by changing their cell phenotype to react in an immunological way. In addition,

astrocytes can regulate the lymphocyte immune response in the brain via the release

of chemokines and cytokines [10]. Under pathological conditions in the brain,

lymphocytes are found crossing the BBB resulting in additive immune responses

in the neuronal network of the brain.

Secondly, the expression of cytokines, chemokines, and their receptors has been

demonstrated on peripheral as well as central nerves. For examples, enhanced

neuronal TNFα and its receptors TNFαR1 and R2 have been demonstrated in dorsal

root ganglia (DRG) neurons as well as in neurons of the brain strongly associated

with inflammation [11, 12]. Research has also demonstrated that neurons express

interleukin and chemokine receptors that could play a role in neuronal inflamma-

tion, dysfunction via (de)sensitization of nociceptive receptor, pain and

CNS-mediated disease symptoms [1, 13]. Besides cytokines and chemokines, also

immunoglobulins and their Fc receptors have been detected in neuronal sources.
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Ig-free light chains and IgE are able to mediate antigen-specific responses (sensi-

tization and activation) in cultured murine DRG [14, 15]. More recently, in murine

as well as human PNS and CNS neurons, IgG protein has been detected but further

research is necessary to elucidate the biological function of this neuronal IgG in the

neuro-immune crosstalk [16]. The direct immunoglobulin-neuron link may reveal a

novel potential pathway of antigen-specific neuronal activation in sensations such

as pain and itch, but also in local inflammation in chronic inflammatory diseases.

Thirdly, nonspecific leukocytes and lymphocytes produce neurotransmitters and

neuropeptides. The neurotransmitter serotonin is long known to have nonneuronal

cellular sources such as enterochromaffin cells in the gut and mast cells [17]. Ace-

tylcholine and other ligands for nicotinic acetylcholine receptors are synthesized by

activated B and T lymphocytes and are thought to regulate local innate immunity

[18] or inhibit vagus-induced cytokine production in an autocrine way [19]. In

addition, several neuropeptides are released by lymphocytes, macrophages, den-

dritic cells, eosinophils, and mast cells upon innate activation [20, 21]. Cytokine-

primed lymphocytes can locally secrete opoid peptides to induce local analgesic

effects via JAK/STA1/3 activation in the cell [1, 22]. Opioid peptides are found in

mast cells, granulocytes, lymphocytes, and macrophages. The prevailing peptides

are b-endorphin and Met-enkephalin, but dynorphin and endomorphins were also

detected. It is suggested that in a stressful (e.g., inflammation) situation, opioids are

tonically released in inflamed tissue and activate peripheral opioid receptors to

attenuate clinical pain [23]. Another example is the production of neurotrophins

such as brain-derived neurotrophic factor (BNDF) and nerve growth factor (NGF)

by activated lymphocytes that are suggested to be involved in a neuroprotective

effect during autoimmune reactions in the brain [24]. Vice versa, nonspecific

leukocytes and lymphocytes were reported to express classical neuronal receptors.

Besides opoid receptors, a prominent example is nicotinic cholinergic receptors.

Nonneuronal α7-nicotinic cholinergic receptors upon activation exerts anti-

inflammatory and immunomodulating activities on multiple cell types, including

as T cells, B cells, dendritic cells, mononuclear phagocytes, and polymorphonu-

clear leukocytes [25, 26]. Dendritic cells express various receptors for neurotrans-

mitters and neuropeptides like acetylcholine, norepinephrine, and vasoactive

intestinal peptide that alter dendritic cell co-stimulatory molecule expression,

cytokine release, and subsequent T-cell activation in an anti-inflammatory

fashion [26].

Lastly, cytokines like interleukin 1β (IL1β), IL6, and tumor necrosis factor-α
(TNFα) can directly act on the nervous system to affect behavior. Cytokines are

important for development and normal brain function, and have the ability to affect

neural activity and neurotransmitter systems that results in behavioral changes.

Inflammation (e.g., activation of the innate and/or adaptive immune system) or

inflammatory cytokine administration produces adaptive behavioral responses that

serve to safeguard energy use to fight infection or recovery from injury (so-called

sickness behavior) [27–29]. However, chronic exposure to elevated inflammatory

cytokines and long-lasting alterations in CNS neurotransmitter levels may contrib-

ute to the development of mental disorders such as autism, schizophrenia, and

22 Targeting (Gut)-Immune-Brain Axis with Pharmaceutical and Nutritional. . . 441



depression [28, 30–32]. Mechanisms of cytokine-induced behavioral effects

involve activation of inflammatory signaling pathways in the brain that results in

changes in monoaminergic, glutamatenergic, and neuropeptidonergic systems, and

decreases in growth factors, including BNDF [33, 34].

The hypothalamic–pituitary–adrenal (HPA) axis deserves special attention.

Glucocorticosteroids play an important role in regulating homeostasis under basal

and (immune) challenged conditions. Glucocorticosteroids protect the host from the

consequences of an overactive inflammatory immune response and have been

shown to be one of the most potent anti-inflammatory compounds ever. A disturbed

HPA axis response has been associated with allergic and autoimmune diseases as

well as with psychiatric and neurodevelopmental disorders. The latter disorders are

in turn associated with an enhanced inflammatory status. Pro-inflammatory cyto-

kines such as TNFα, IL1, and IL6 act at all three levels of the HPA axis:

(1) paraventricular nucleus of the hypothalamus resulting in the release of cortico-

trophin releasing hormone (CRH), (2) the pituitary that secretes adrenocorticotropic

hormone (ACTH), and (3) the adrenal cortex. The overall chronic inflammation or

stress-induced glucocorticosteroid response will eventually lead to glucocorti-

costeroid resistance at the level of the glucocorticoid receptor [35].

3 Afferent Pathways of the Neuro-Immune Axis

The afferent nerve pathways can be regarded as an immune-sensing pathway.

Either innate or adaptive activation of the immune system regulates CNS activity

through the release of inflammatory mediators such as cytokines, chemokines, and

even immunoglobulins that bind to receptors located peripherally on the vagal or

sympathetic nerve endings or centrally within the CNS or at the BBB. Cytokines

and chemokines act on afferent parasympathetic, sympathetic, and sensory nerve

endings to cause sickness behavior and, in relation to chronic inflammation, will

eventually leading to behavioral and cognitive changes that are associated with

mental disorders. Lymphocyte-derived neuropeptides and neurotransmitters mod-

ulate pain sensation by acting on peripheral sensory nerves and under chronic

conditions may lead to hyperalgesia. Inflammation-induced cytokine release can

also act on the HPA axis to produce CRH and ACTH, respectively, resulting in a

glucocorticosteroid response. Finally, white blood cell-derived neurotransmitters,

neuropeptides, and hormones cross the BBB and affect signaling within the CNS [1,

36].
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4 Efferent Pathways of Neuro-Immune Axis

The psychological or inflammatory stress-triggered CNS communicates to the

immune system by activating the sympathetic and parasympathetic neurons or the

HPA axis to release the neurotransmitter norepinephrine, acetylcholine, or cortico-

steroid hormones, respectively. Lymphocytes and nonspecific leukocytes express

receptors that bind norepinephrine, epinephrine, acetylcholine, and corticosteroids,

providing a mechanism for these ligands to activate intracellular signaling path-

ways, which regulate the level of immune cell activity. Vagal acetylcholine acts on

macrophages or dendritic cells to blunt proinflammatory cytokine synthesis and

consequently downregulate the adaptive immune system. Sympathetic outflow also

can regulate the function of immune tissues and their cells. Neuroendocrine hor-

mones from the HPA axis modulate lymphocyte function [1, 36].

5 The Neuro-Immune Axis in Major Depressive Disorder

Major depressive disorder (MDD) is characterized by persistent depressed mood,

loss of interest, and the inability to experience pleasure (anhedonia) that affects day

to day life. As described above cytokines have been demonstrated to influence

neurocircuitry and neurotransmitter systems in the CNS resulting in behavioral and

cognitive changes [1, 33, 37]. Chronic exposure to pro-inflammatory cytokines

results in persistent alterations in neurotransmitter function and behavior that in

turn may contribute to the development of mental disorders such as MDD [33]. A

growing body of evidence shows increases of pro-inflammatory cytokines, such as

TNFα, IL1β, and IL6 in blood and cerebrospinal fluid of patients suffering from

MDD [38, 39]. It has been shown that cytokines (for example, IL2 or interferon-α
used for anti-tumor therapy) induce depression in humans and laboratory animals

[40–42]. In addition, patients suffering from MDD show increased inflammatory

responses to stress [43]. Polymorphisms of genes encoding for immune and inflam-

matory molecules have been identified in association with MDD, further strengthen

the role of the neuro-immune axis in depression [44–46]. Nevertheless, the etiology

of cytokine-induced MDD is largely unknown.
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6 Future Directions for Treatment of Major Depressive
Disorder Targeting the Neuro-Immune Axis

6.1 The Link Between Immune Factors and Monoamine
Transporters

The role of serotonin and the serotonin transporter (SERT) have been studied

intensively in MDD and an important role for altered serotonergic neurotransmis-

sion in depression has been proposed [47]. In addition, selective serotonin reuptake

inhibitors (SSRIs), the first-line treatment for MDD, have been demonstrated to

decrease proinflammatory cytokines, such as IL1β, IL6, IL12, TNF-α, and

transforming growth factor-β as well [48–50]. Furthermore, the pro-inflammatory

cytokines TNF-α, interferon-α, and IL1β increase SERT function [51–54].

Lipopolysaccharide (LPS), a component of the outer membrane of gram-

negative bacteria that binds to toll-like receptor 4 (TRL4) leading to the rapid

systemic release of pro-inflammatory cytokines, induces anhedonia in rats and mice

as shown by increased thresholds in an intracranial self-stimulation (ICSS) para-

digm [55–57]. LPS-induced anhedonia was associated with increased extracellular

levels of monoamine metabolites of serotonin and dopamine in the nucleus

accumbens and prefrontal cortex, suggesting increased SERT and dopamine trans-

porter (DAT) function [58]. Similar results, though less profound, were found after

peripheral administration of TNFα. Anhedonia induced by LPS was totally

abolished in SERT(�/�) rats and as expected was still present in SERT(+/+) and

to a lesser extent in SERT(+/�) rats [57]. Moreover, simultaneous inhibition of the

reuptake of dopamine, serotonin, and norepinephrine by a triple reuptake inhibitor

(partly) attenuated the LPS-induced increase in monoamine metabolite formation in

the brain. This triple reuptake inhibitor induced a long-lasting hedonic effect

assessed by the ICSS paradigm in rats [59]. In conclusion, intact SERT function

is needed for pro-inflammatory cytokine-induced anhedonia and therefore these

cytokines can be regarded as novel targets in MDD.

6.2 Targeting the Cytokines TNFα, IL1β, and IL6 in Major
Depressive Disorder

Nowadays, monoclonal antibodies as well as small molecules targeting cytokines

are commonly used for the treatment of chronic inflammatory diseases, such as

rheumatoid arthritis or inflammatory bowel diseases. Only limited data are avail-

able on the effects of these cytokine blocking approaches in MDD. Anti-depressant

and anxiolytic effects of the TNF-α receptor antagonist, etanercept, were demon-

strated in rats [60]. Recently in humans, the anti-TNF-α-antibody, infliximab, has

been shown to improve depressive symptoms in MDD patients that were resistant to

444 A.D. Kraneveld and J. Garssen



anti-depressive treatments [61]. The potential beneficial antidepressant effect of

infliximab depended on the baseline levels of inflammatory biomarkers. Further-

more, IL1 receptor �/� mice and mice that have brain restricted overexpression of

IL1R antagonist are resistant to develop chronic mild stress-induced depression

[62]. In addition, in elderly people with high plasma levels of IL1R antagonist,

which was associated with a low grade of inflammation, have a higher risk of

developing depressive symptoms over time [63]. These results suggest that lower-

ing IL1β brain levels might be beneficial for patients suffering from MDD [64].

In addition to IL1β, IL6 has been identified as a potential biological target for the
treatment of MDD. In a meta-analysis, an association between MDD and IL6 has

been demonstrated [38]. In addition, in women suffering fromMDD high IL6 levels

were associated with low performance in verbal memory [65]. No reports have been

published on the effects of blocking IL6 in MDD patients, but in a clinical trial the

anti-IL6 receptor antibody, tocilizumab, improved significantly rheumatoid

arthritis-associated fatigue in 62 % of the patients [66, 67].

6.3 Immunomodulating Drugs

In animal models for depression induced by LPS and chronic stress, cyclo-

oxygenase (COX) inhibitors have been demonstrated effective [68–70]. In patients

suffering from MDD, celecoxib, a selective COX2 inhibitor, as well as

acetylsalicylic acid, a nonselective COX blocker, improved the antidepressant

effect of reboxetine, a norepinephrin reuptake inhibitor [71, 72]. Similar effects

were demonstrated for omega-3 fatty acids that have shown to have potent anti-

inflammatory effects [73]. In addition, a meta-analysis reported direct effects of

omega-3 fatty acids in MDD [74]. In addition, p38 mitogen-activated protein kinase

(p38 MAPK) inhibitors may have potential antidepressant effects [33, 54]. P38

MAPK is an inflammatory intracellular signaling molecule that currently is in

clinical investigation as target in chronic inflammatory diseases. Nuclear factor

(NF)-κB and nitric oxide, other inflammatory signal transducers, might also be a

novel target of interest in treatment of MDD. Inhibition of both signal transduction

molecules have been shown to have anti-depressant effects in animal models [33].

6.4 Nutritional Concepts

Intestinal problems have been reported neurological and mental diseases, such as in

Parkinson’s disease (PD) [75], Alzheimer disease [76, 77], depression [78, 79], and

anxiety disorders [79, 80]. A causal link between CNS and intestinal symptoms in

PD has been demonstrated [75]. However, the relationship between intestinal

distress with other neurodegenerative disorders, such as Alzheimer’s disease and

depression remains unknown. Nevertheless, the involved of the intestinal tract
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creates a potential target for treatment using nutritional concepts. Furthermore, the

lack of effective pharmaceutical treatments has created an urgent need for novel

and more integrative approaches.

Neuronal death occurring in neurodegenerative disorders is multifactorial in

origin with a complex set of pathological pathways [81–83]. Therefore, simulta-

neous manipulation of the various pathways involved may exert higher therapeutic

efficacy. Dietary components have emerged as potential prevention and/or treat-

ment for neurodegenerative disorders without the adverse side effects of the current

pharmo-therapies [84–86]. Recently, it was demonstrated that a combination diet of

food supplements impeded cognitive decline and neurodegeneration in a rodent

model for neurodegenerative diseases. The multifunctional experimental diet com-

posed of zinc, melatonin, eicosapentaenoic acid (EPA), docosahexaenoic acid

(DHA), uridine, choline, curcumin, and piperine [87]. These ingredients have

been shown to attenuate glutamate excitoxicity, exert potent anti-oxidant/anti-

inflammatory properties, and improve synaptogenesis; processes that all have

been implicated in neurodegenerative diseases. These new results as well as

human studies [86] support the hypothesis that simultaneously targeting multiple

disease etiologies might be more beneficial than the currently accepted “magic

bullet, single target” approach in the treatment of neurodegenerative diseases. The

diverse properties of our dietary intervention suggests that this multi-targeted

treatment might be a stepping stone into a new direction for the development of

therapeutic strategies in delaying/preventing neurodegeneration-related

pathologies.

7 The Gut-Immune-Brain Axis in Autism Spectrum
Disorders

Autism spectrum disorder (ASD) is a heterogeneous cluster of severe neurodeve-

lopmental disorders. It is characterized by impairments in social interaction and

communication and the presence of restricted, repetitive, and stereotyped interests

and behaviors [88]. Increased immune activation is repeatedly reported in ASD

patients. In postmortem brains of ASD patients as well as in various animal models,

marked activation of astroglia and microglia is observed, indicative of

neuroinflammation [89–93]. In addition, enhanced levels of a wide range of cyto-

kines and chemokines were found in the brain and in the cerebrospinal fluid of

autistic children [94, 95]. Peripheral immune abnormalities in autistic individuals

have also been reported, including differential monocyte responses to in vitro

stimulation, dysfunctional natural killer (NK) cells and altered serum immunoglob-

ulins, cytokine and chemokine levels [24, 96–106].

The intestinal tract has a very important immune function, but also exerts an

important neurological function and is called “the second brain,” because of its

abundant amount of enteric nerves and networks. Via these nerves, but also through
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other pathways, the intestinal tract is able to affect the brain and vice versa [2,

107]. Evidence is emerging that intestinal immune disturbances can influence the

brain and consequently behavior and cognition. A higher prevalence of ASD was

found in pediatric patients with chronic gastrointestinal diseases [108]. In addition,

gastrointestinal discomfort, changes in gut microflora, food aversion, and increased

intestinal permeability, has been shown to correlate with the severity of disturbed

behavior in ASD patients [109–115]. Worthwhile mentioning is the fact that,

besides the immunomodulatory role of the microbiome, recent accumulating data

now exist showing that intestinal bacteria can communicate with the CNS through

neuronal, immune, and endocrine pathways and consequently influence brain

function, behavior, and cognition [116]. Although still under debate, (non-)IgE-

mediated food allergy has been suggested to be involved in ASD [117–120]. In

ASD children allergic reactions against milk protein have been suggested to trigger

behavioral abnormalities and milk intake was reported to be a predictor of consti-

pation in this population [101, 121]. A gluten and milk protein-free diet improved

autistic behaviors and reduced the enhanced intestinal permeability [113, 122, 123].

8 Future Directions Targeting the Gut-Immune-Brain Axis
by Nutrition in ASD

Since existing evidence indicates involvement of the gut-immune-brain axis in

ASD, targeting the intestinal tract using immunomodulating medical food concepts

could be of potential therapeutic value [124, 125]. In murine models for food

allergy disturbed social interaction, repetitive behavior, anxiety, food aversion,

and cognitive deficits, all characteristics of ASD, have been demonstrated to be

associated with neuroinflammation and changed neuronal activation and different

monoamine levels in brain areas that are related to social, emotional, and cognitive

behavior [115, 126–130]. Moreover, recent reports exist that ASD and accompa-

nying gastrointestinal symptoms are characterized by distinct and a less diverse gut

microbiome [117, 130–132]. Modulation of gut bacteria with short-term antibiotic

treatment has been shown to lead to improvement in behavioral deficits in ASD

[131]. Specific beneficial bacteria (so-called probiotics, lactic acid producing bac-

teria, and bifidobacteria) influence the microbiome composition, intestinal barrier

and alter the mucosal immune response and possibly influence the brain [133]. In

addition, the underlaying mechanism of non-digestible oligosaccharides (so-called

prebiotic fibers) includes improved microbiome via the induction of growth of

beneficial bacteria and via direct action on epithelial cells restoration of intestinal

immune homeostasis [134]. Thus treatment with specific beneficial bacteria in

combination with non-digestible oligosaccharides to induce alterations in the

microbiome, restoration of intestinal epithelial barrier, and mucosal immune

homeostasis could be a novel approach to ameliorate gastrointestinal problems

and even behavioral symptoms in ASD. Several studies have reported that dietary
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intervention with specific beneficial bacteria in combination with non-digestible

oligosaccharides prevented food allergy in mice and man [134–137]. A recent study

of food allergic reaction in mice towards hen’s eggs protein demonstrated that

besides increased levels of antigen-specific IgE levels, diarrhea and disturbed

antigen-specific Th2/regulatory T cell balance in the ileum, impaired behavior,

and memory deficits were evident [129]. These aberrations ran in parallel with

decreased expression of mRNA of BDNF and a disturbed BBB in the hippocampus.

In addition, hippocampal neuroinflammation was found characterized by increased

numbers of activated macrophages and Th cells. Dietary intervention with specific

beneficial bacteria in combination with non-digestible oligosaccharides (Bifido
Breve with short chain galacto-oligosaccharides and long-chain fructo-oligosac-

charides, Bb/GF) normalized OVA-induced aberrant behavior and cognition and

cellular and molecular changes in the brain. These data demonstrate that food

allergic peripheral inflammation modifies the brain inflammatory status and

dampens the behavioral and cognitive abilities, suggesting that food allergy may

play a role in the development and/or progression of neurodevelopmental disorders.

In addition, targeting the gut-immune-brain axis with dietary intervention may have

implications for treatment of patients suffering from ASD. The molecular mecha-

nism by which specific beneficial bacteria in combination with non-digestible

oligosaccharides is protective in food allergy involves galectins. Galectins are

soluble type lectins that bind galactose/b-galactoside containing glycans [134,

138]. Intestinal epithelium-derived galectin 9 is responsible for the immunomodu-

latory anti-allergic effects of Bb/GF [137, 142]. Not much is known about the role

of galectins in neuroinflammation and brain development and function. Microglial

galectin 3 is involved in brain injury and neuroinflammation [139–141]. Neuronal

galectin 4 is required for neuronal differentiation in CNS [143]. Astrocyte-derived

galectins-1 plays a protective role in inflammation-induced neurodegeneration and

is involved in neurogenesis [144, 145]. As for galectins-9, increased expression is

found in IL1β-stimulated human astrocytes and in spinal fluid of ALS patients [141,

146]. Dietary and/or pharmacological modulation with small molecules targeting

the galectin response in neurodevelopment disorders such as ASD could be a future

therapeutic approach.

9 Conclusions

In this review the role of disturbed bidirectional pathways between the (central)

nervous system and immune system, regarded as the (gut)-immune-brain axis, in

neurological and mental disorders has been described.

The management of these multifactorial mental disorders needs a new and

integrated therapeutic approach and prospects for novel treatment are as follows:
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1. Targeting the neuroinflammatory response in the CNS that disturbs neurotrans-

mitter levels and connectivity, with existing immunomodulatory and anti-

inflammatory drugs or/and medical food concepts such as omega-3 fatty acids.

2. Targeting the HPA axis and resolve glucocorticosteroid resistance.

3. Targeting the disturbed (intestinal) immune system with existing immunomod-

ulatory drugs such as cytokine-specific therapeutic antibodies.

4. Targeting peripheral enteric, parasympathetic, or sympathetic nerves with anti-

inflammatory neurotransmitters and neuropeptides.

5. Targeting the disturbed intestinal barrier with immunomodulatory drugs and/or

medical food concepts, such as nondigestible oligosaccharides and specific

beneficial bacteria.

6. Targeting the disturbed intestinal microbiome with antibiotics, specific benefi-

cial bacteria, and/or nondigestible oligosaccharides.
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Chapter 23

Nutritional Approaches for Healthy Aging
of the Brain and the Prevention
of Neurodegenerative Diseases

Heike Asseburg∗, Stephanie Hagl∗, and Gunter P. Eckert

1 Brain Aging: An Inevitable Physiological Process

The aging of the brain is characterized by a decline in several physiological

abilities, including sensory, motor, and cognitive functions [78, 85, 87]. In mice,

brain aging is typically accompanied by substantial cognitive deficits, beginning in

late adulthood at around 12 months of age [90, 127]. Impaired function of signaling

mechanisms, altered gene expression, and perturbed energy production are signs of

aging on the cellular level. On the molecular level, oxidative stress results in the

accumulation of damaged proteins, lipids, carbohydrates, and nucleic acids [33,

104]. Physiological changes that occur during normal aging of the brain may be

exacerbated in vulnerable populations of neurons, initiating pathological processes

that finally lead to neurodegenerative disorders [87].

2 Aging: An Important Risk Factor for Neurodegeneration

To understand the onset and progression of neurodegenerative diseases is one of the

major challenges of the twenty-first century. The United Nations estimate that the

number of people suffering from age-related neurodegeneration, particularly from

AD, will exponentially increase from 25.5 million in 2000 to an estimated 114 mil-

lion in 2050 [143]. Several meta-analyses have consistently estimated the global

prevalence of dementia in people aged over 60 to be approximately 4 % [101]. The

global annual incidence of dementia is estimated to be about 8 per 1,000 population
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[29], with no substantial variations across continents, except Africa [100]. The

incidence rate of dementia increases exponentially, doubling approximately every

5–6 years with age and incidence rates of dementia are quite similar across regions

[100, 101, 148]. The largest increase in absolute numbers of old persons will occur

in developing countries [100]. Thus, the global trend in the phenomenon of

population aging has dramatic consequences on public health, health-care financ-

ing, and health care delivery systems in the world [100].

3 Alzheimer’s disease: A Devastating
Neurodegenerative Disorder

The clinical symptoms of Alzheimer’ disease (AD) include a progressive loss of

memory and impairment of cognitive abilities. Severe neurodegenerative alter-

ations occur in AD brains, including loss of synapses and neurons, atrophy, and

the selective depletion of neurotransmitter systems (e.g., acetylcholine) in the

hippocampus and cerebral cortex—two brain regions involved in learning and

memory [6]. Such defects are mainly observed in the later stage of the disease

and have also been partially demonstrated using transgenic animal models of AD

[71, 118].

AD is considered as a protein aggregation disorder, based on two key neuro-

pathological hallmarks. One hallmark is the hyperphosphorylation of the tau pro-

tein, resulting in the formation of neurofibrillary tangles (NFTs), and the second

hallmark is the increased formation and accumulation of amyloid-beta peptide (Aβ)
oligomers and fibrils derived from amyloid precursor protein (APP) [42]. Although

the exact underlying causes initiating the onset of AD are still unclear, an imbalance

in oxidative and nitrosative stress, intimately linked to mitochondrial dysfunction,

characterizes early stages of AD pathology [90].

4 Mitochondrial Dysfunction: A Common Event in Brain
Aging and Alzheimer’s Disease

Increasing evidence suggests that mitochondrial dysfunction plays an important

role in brain aging and in the pathogenesis of neurodegenerative diseases, including

AD [24, 48, 78, 82, 83, 86, 116, 135, 141]. Mitochondria are complex, network-

forming organelles, involved in different metabolic pathways, e.g., citric acid cycle

(TCA), energy transformation, amino-acid metabolism, and urea cycle [95]. Mito-

chondria consist of inner and outer membranes composed of phospholipid bilayers

and proteins. The inner mitochondrial membrane harbors the proteins of the

electron transfer system (ETS), responsible for oxidative phosphorylation. The

mitochondrial oxidative phosphorylation (OXPHOS) system is the final biochem-

ical pathway that produces energy in form of ATP by consuming oxygen. Electrons

are transferred through the complexes of the mitochondrial respiratory system chain

458 H. Asseburg et al.



and simultaneously, an electrochemical proton gradient is built across the inner

mitochondrial membrane, generating the proton-motive force that drives the pro-

duction of ATP [13, 124].

Alterations of mitochondrial efficiency and function are mainly related to

alterations in mitochondrial mass, amount of respiratory enzymes, or changes in

enzyme activities [11, 34, 65, 98]. A reduction in mitochondrial content or lowered

ETS results in a general limitation of cellular energy production. Dysfunction of

single complexes of the respiratory system are frequently accompanied by delete-

rious side effects, such as loss of mitochondrial membrane potential (MMP) and

subsequently decreased ATP levels, but also production of reactive oxygen species

(ROS) [91].

Apart from ROS enzymatically produced by NADPH oxidases, cytochrome

P450-dependent oxygenases, and xanthine dehydrogenases, mitochondria are

regarded as the primary site of ROS production within cells. The ETS constantly

generates ROS, which are usually kept in balance by various defense mechanisms,

i.e., anti-oxidative molecules (e.g., glutathione (GSH) or vitamin E) and antioxidant

enzymes (e.g., superoxide dismutase (SOD), catalase, glutathione peroxidase, and

glutathione reductase), as long as ROS levels are in the physiological range.

Furthermore, slight uncoupling of the ETS, e.g., by uncoupling proteins, may also

reduce ROS production. Low levels of ROS are produced constantly which might

have physiological functions as signaling molecules [38]. Functional failure of this

system can lead to deleterious effects, which may exaggerate the consequences of

mitochondrial dysfunction [46]. Insufficient defense mechanisms and excessive

ROS production (e.g., as superoxide anions) can lead to cell damage. The major

sources of superoxide anions are redox centers of complex I and III of the ETS, and

different mitochondrial flavoproteins. Superoxide is a rather weak radical, but it is

the precursor of various, potentially more toxic ROS [13, 69, 92]. Its transformation

into hydrogen peroxide and hydroxyl radicals, as well as its participation in the

formation of peroxynitrate, creates strong oxidants [31].

The proteins of the OXPHOS system and lipids are key targets of the deleterious

effects of ROS, potentially leading to membrane depolarization and subsequently,

impaired mitochondrial function [46, 90]. Thus, mitochondria play an important

role in producing energy, but also as major source of ROS. Therefore, efforts to

increase mitochondrial function should be accompanied by equal efforts to limit

deleterious ROS generation.

Early defects in the expression of several subunits of respiratory system chain

complexes [106], decreased mitochondrial respiration (mainly mediated by a

decline in complex I and complex IV function), and reduced MMP and ATP levels

have been detected in several AD cell culture and animal models [59, 73, 106,

141]. Direct effects of APP and Aβ on mitochondrial function may induce this early

dysfunction. Accumulation of APP in mitochondria, which has been found in both

transgenic cell lines and animals, correlates with mitochondrial dysfunction. This

may provide one causal link explaining the impaired energy metabolism and

subsequent rise in ROS/RNS in models of AD [5, 37, 58]. Aside from APP, Aβ
itself has also been suggested to affect mitochondrial function (Fig. 23.1). Data
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show that the presence of one of the key enzymes in Aβ release, namely,

γ-secretase, pinpoints to a direct production of Aβ in these organelles [45].

Recently, Leuner et al. showed that mitochondria-derived ROS are sufficient to

trigger amyloidogenic APP-processing in vivo, and that Aβ itself leads to mitochon-

drial dysfunction and increased ROS levels (Fig. 23.1) [73]. Finally, increasing evi-

dence suggests that mitochondrial dysfunction in AD originates not only from the

deleterious impact of APP/Aβ but also from its interplay with hyper-phosphorylated

Tau protein on the mitochondrial level [59].

Fig. 23.1 Increasing evidence suggests that mitochondrial dysfunction plays an important role in

brain aging and in the pathogenesis of neurodegenerative diseases. Dysfunction of single com-

plexes of the respiratory system are frequently accompanied by deleterious side effects, such as

decreased adenosine triphosphate (ATP) levels, but also production of reactive oxygen species

(ROS). Direct effects of Aβ peptides on mitochondrial function may induce early mitochondrial

dysfunction and explain the impaired energy metabolism in models of AD. Physiological changes

that occur during the normal aging of the brain may be exacerbated in vulnerable populations of

neurons, initiating pathological processes that finally lead to neurodegenerative disorders. Rice

bran, curcumin, anthocyanin-rich fruits, and olive polyphenols represent promising nutraceuticals

for modulating mitochondrial function in the brain
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5 Brain Aging, Dementia, and the Impact of Nutrition

The survival of any organism crucially depends on its nutrient intake, which pro-

vides all molecules for cell formation, maintenance and repair, in the form of either

ready-made building blocks or precursors [55]. In the case of humans, the impor-

tance of nutrition becomes obvious in the form of distinct patterns of clinical

symptoms caused by the inadequate intake of one of the macronutrients, vitamins,

or minerals [137]. The increase in life expectancy observed in the twentieth century

in many populations throughout the world attests to the impact nutrition

(in conjunction with better hygiene and medical practice) exerts on human health

[97]. At the same time, however, human aging beyond 50 years of age is typically

accompanied by the occurrence of one, often more, chronic, age-related diseases,

such as cancer, cardio-vascular dieseases, and neurodegeneration [14, 32]. Due to

its physiological characteristics, the brain is particularly prone to damage induced

by noxious changes or fluctuations in cellular homeodynamics [103, 111]. Thus, the

quest for primary prevention of neurodegeneration is imperative.

As stationary autotrophs, plants have evolved numerous pathways for the syn-

thesis of secondary plant metabolites. These phytochemicals act, for example, as

free radical scavengers or as defense against infectious microorganisms, with the

aim of increasing a plant’s chances for reproduction and survival [60].

In the following sections we discuss rice bran, curcumin, anthocyanin-rich fruits,

and olive polyphenols as promising nutraceuticals for modulating mitochondrial

function in the brain (Fig. 23.1).

5.1 Rice Bran

With an annual worldwide production of over 600 tons in 2006, rice is one of the

most important staple foods, especially in Asian countries. The outer layer of the

rice grain is called rice bran and is removed during the rice milling process to

produce white rice. As a by-product of the rice milling process, rice bran has an

annual production rate of 40–70 million tons per year and usually is used as animal

food [28, 53]. Since rice bran contains the enzyme lipase which quickly renders the

bran rancid and inedible it has to be stabilized before using it as human aliment, for

example in the form of oils and extracts as health food products [53].

Key components of the rice bran are tocopherols, tocotrienols (Fig. 23.2), and

γ-oryzanol. Known beneficial health effects of rice bran include anti-inflammatory,

cholesterol-lowering, antioxidant, and antidiabetic effects [3, 18, 57, 72]. We

recently found that a stabilized rice bran extract (RBE) also improves brain

mitochondrial function in guinea pigs by increasing mitochondrial content and

resistance against oxidative and nitrosative stress [43]. Therefore, RBE might be

a suitable substance for the prevention of mitochondrial dysfunction seen in brain

aging and neurodegenerative diseases like AD.
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Tocopherols and tocotrienols are ingredients of rice bran and very likely play an

important role in mediating the above mentioned health-promoting effects [21,

30]. In micromolar concentrations, tocopherols as well as tocotrienols act as radical

scavengers that react with free radicals to produce less reactive radicals, thus for

example preventing lipid peroxidation in membranes and lipoproteins [96, 144]. At

a concentration of 5 μM, a tocotrienol-rich fraction from palm oil was, for example,

able to inhibit oxidative damage in lipids and proteins from rat brain mitochondria

induced by ascorbate-Fe2+, the free radical initiator azobis(2-amidopropane)

dihydrochloride (AAPH) and photosensitization [54]. Supplementary vitamin E

also prevented mitochondrial dysfunction in rat liver perfused with tert-

butylhydroperoxide to induce lipid peroxidation by decreasing oxidative stress

[44]. Altogether, tocotrienols seem to be better antioxidants than tocopherols,

probably due to their faster recycling and better membrane distribution [113,

117]. Micromolar concentrations of tocopherols and tocotrienols that show

antioxidative effects can usually not be reached in plasma and brain tissue by

means of oral administration. On the other hand it has been reported that nanomolar

Fig. 23.2 Chemical structure of α-, β-, and γ-tocopherol (a) and tocotrienol (b)
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concentrations of tocotrienols are sufficient to exert neuroprotective effects since

they are able to modify several enzymes and signaling pathways in brain cells.

Nanomolar concentrations of tocotrienols can be reached in human plasma after

tocotrienol supplementation [30]. Among the cellular targets of tocotrienols are

prenyl transferases [146], phospholipase A2 [61], 12-lipoxygenase [62], and NF-κB
(nuclear factor kappa-light-chain-enhancer of activated B-cells) [35, 129].

Vitamin E has also been reported to directly interact with mitochondria [81],

another possible mechanism for the neuroprotective potential of vitamin E. Dietary

supplementation of rats with vitamin E (2.0 or 5.0 g/kg of food) for 3 months, for

example, restored the age-dependent decrease in mitochondrial respiration and

prevented an increase in oxidation products [93]. These effects are comparable to

the increase in mitochondrial function seen in guinea pigs fed with RBE for 3 weeks

[43], indicating that vitamin E at least partly accounts for the mitochondria-

protective effects of RBE.

Another key ingredient of rice bran is γ-oryzanol, a mix of ferulic acid esters of

triterpene alcohol and phytosterols (Fig. 23.3) [72]. Antitumoral as well as antiox-

idant properties (e.g., inhibition of lipid peroxidation) and the lowering of blood

cholesterol levels are the main known biological effects of γ-oryzanol [3, 64,

99]. Since γ-oryzanol is not water-soluble, it has a very low bioavailability when

orally administered [63]. It is largely de-ferulated in the gut [12], but no enhanced

ferulic acid concentrations could be detected in plasma after oral administration of

RBE to guinea pigs [43], confirming the low bioavailability.

We found that RBE enhances mitochondrial function by increasing mitochon-

drial content via activation of the peroxisome proliferator-activated receptor

gamma coactivator-1α (PGC-1α) [43]. One activator of PGC-1α is

AMP-activated kinase (AMPK) which is, amongst others, induced by certain poly-

phenols, including resveratrol [77]. Therefore, it seems likely that RBE contains

polyphenols or similar compounds able to activate PGC-1α. Identification of these

compounds will have to be the subject of further upcoming studies.

Due to the observed beneficial effects of its main ingredients on neurons and the

beneficial effects of RBE on mitochondrial function, rice bran appears to be a very

Fig. 23.3 Chemical structure of cycloartenyl ferulate, an exemplary member of the γ-oryzanol
family which is a mix of ferulic acid esters of triterpene alcohol and phytosterols
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promising substance for the long-term prevention of neurodegeneration and the

development of neurodegenerative diseases. Further studies need to be accom-

plished to examine the effects of rice bran administration in aging and neurode-

generative conditions.

5.2 Curcumin

Curcumin, demethoxycurcumin, and bisdemethoxycurcumin are derived from the

rhizome of the plant curcuma longa (Fig. 23.4). This plant has long been known as a
spice, a dye, and a remedy especially in Asian countries before it became generally

and worldwide common as main ingredient of curry powder. Apart from the use as

spice, curcumin is also applied as food additive (E100) and a pigment in textile and

cosmetic industry [27]. Curcumin has been associated with various beneficial health

effects, among them antioxidant, anti-inflammatory, antiviral, antibacterial, anti-

fungal, wound-healing, and anticancer properties [1, 40, 149]. Additionally

curcumin has been shown to inhibit Aβ aggregation and reduce amyloid plaque

burden in transgenic mouse models of AD [10, 75]. Taking all these effects into

account, curcumin is assumed to have potential to act against various chronic

diseases like diabetes, allergies, arthritis, and AD [1].

Epidemiologic evidence suggests that regular curry consumption decreases AD

risk in elderly people. The Indo-US Study compared AD incidence rates in a rural,

population-based cohort in India to those of a reference US population in Pennsyl-

vania and found that AD incidence rates in India, where people consume curry spice

on a daily basis, are much lower than those in the USA [16]. Ng and coworkers

reported that regular curry consumption is correlated with better cognitive function

in non-demented elderly Asians [94].

The antioxidative and anti-inflammatory effects of curcumin as well as its ability

to inhibit protein aggregation seem to be the most important properties for the

potential of curcumin against neurodegenerative diseases [22]. A lot of preclinical

in vitro and in vivo studies have been accomplished to verify the beneficial effects

of curcumin in neurotoxicity and AD. Apart from the reduction of amyloid plaque

formation, curcumin also decreased oxidative injury, DNA damage, cytokine

formation and memory deficits in mouse and rat models of AD [20, 22]. In a
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homocysteine-induced rat neurotoxicity model, i.p. curcumin treatment (5 and

50 mg/kg body weight) for 10 days led to a significant decrease in malondialdehyde

and superoxide anion levels, rescued hippocampal cells, and improved learning and

memory [8]. In an Alzheimer transgenic APPsw mouse model (Tg2576), 6 month

curcumin administration via a pelleted diet (160 and 5,000 ppm) decreased oxi-

dized protein and interleukin-1β content in the brain. Insoluble and soluble Aβ
concentrations as well as plaque burden were decreased in mouse brains by

low-dose curcumin administration [75].

Curcumin has been shown to have beneficial effects on mitochondrial function,

for example by inhibiting lipid peroxidation and protein oxidation in rat liver

mitochondria [142]. It further counteracted tert-butyl hydroperoxide (t-BHP)-

induced oxidative damage in rat cortical neurons by rescuing mitochondrial mem-

brane potential, decreasing cytochrome c release and preventing apoptosis [147]. In

the brains of streptozotocin-induced diabetic rats, activities of respiratory com-

plexes I and IV were downregulated, and ATP levels were reduced. Curcumin

administration to these rats (120 mg/kg bw p.o. for 4 weeks) rescued respiratory

enzyme complex activities and restored ATP levels [102]. We recently showed that

5 month feeding of curcumin (500 mg curcumin per kg diet) was able to compen-

sate mitochondrial dysfunction in a mouse model of accelerated aging. Thereby

curcumin elevated the mitochondrial membrane potential, ATP levels, restored

mitochondrial fusion processes, and elevated protein levels of PGC1α [25]. Since

mitochondrial dysfunction plays a major role in aging as well as in the development

of neurodegenerative diseases, this mechanism of action of curcumin might very

well contribute to the observed beneficial effects of curcumin on

neurodegeneration. Various in vitro and in vivo studies have also reported benefi-

cial effects of curcuminoids in chemically induced cell culture and rodent models of

Parkinson’s Disease (summarized by [22]).

Molecular mechanisms of action of curcumin mainly comprise its activity as

radical scavenger, its antioxidant and anti-inflammatory effects mediated through

nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and NF-κB as well as epigenetic

modulations. Due to its chemical structure, curcumin is a potent scavenger of free

radicals [2, 133]. Additionally, curcumin also exerts antioxidant effects by activat-

ing Nrf2, a transcription factor that controls the expression of antioxidant and

phase-II enzymes, for example heme oxygenase and glutathione synthesis enzymes

[109, 145]. By diminishing ROS production via radical scavenging and

upregulation of antioxidative enzymes, curcumin contributes to keeping oxidative

stress in the cell low, thus amongst others protecting mitochondrial function [102,

125]. Curcumin inhibits NF-κB, a transcription factor controlling the expression of

pro-inflammatory molecules (e.g., cytokines) [52, 56, 128]. In conditions of

neurodegeneration or AD, microglia in the brain become activated and produce

pro-inflammatory responses via NF-κB [84]. Curcumin is able to inhibit these

inflammatory responses in microglia cells, thus contributing to the prevention of

neurodegeneration and AD development [49, 139].

Despite these very promising in vitro and in vivo results, no clinical studies

testing curucmin in MCI or AD patients have reported positive outcome so far. Two
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24-week intervention studies with patients with possible/probable or mild to mod-

erate AD receiving curcumin doses up to 4 g/day reported no changes in clinical or

biomarker measures between the study groups [9, 107]. Probable reasons might be

the choice of subjects or the low bioavailability of curcumin. The best time for

prevention in sporadic AD is the preclinical stage when neurodegeneration has

already started but no clinical symptoms have yet occurred [136]. Therefore,

neurodegeneration might have been too far advanced in the subjects included in

these studies to be able to detect positive curcumin effects. Phase I clinical trials

have proven that curcumin is well tolerated even in high doses (up to 12 g), but oral

bioavailability is very low (plasma levels often below 1 μM) [27]. Curcumin

concentrations in the brains of mice were in the low ng/g tissue range 45 min

after oral administration of 120 mg curcumin/kg body weight (unpublished data).

Probable reasons for the low bioavailability are poor absorption, rapid metabolism,

and rapid systemic elimination of curcumin [4, 17].

To increase curcumin bioavailability, several different approaches have been

pursued. One is the simultaneous administration of other secondary plant com-

pounds like piperine which inhibit hepatic and intestinal metabolism of curcumin

and are able to increase curcumin bioavailability significantly [120]. Other

approaches comprise the production of curcumin nanoparticles or liposome-

encapsulated curcumin [70, 130]. We recently showed that administration of

curcumin micelles (AquaNova, Darmstadt, Germany) for 45 min increased

curcumin plasma concentrations 50-fold in C57BL/6 mice, curcumin brain con-

centrations were increased sixfold (unpublished data).

Altogether, curcumin appears to be a promising food ingredient to help in the

prevention of neurodegeneration seen in aging and, for example, in Alzheimer’s

Disease. To display its protective effects, data from clinical and epidemiological

studies suggest that curcumin might have to be administered over an extended

period of time starting before the onset of clinical symptoms of neurodegeneration.

This long-term preventive effect of curcumin will have to be proven in upcoming

clinical trials.

5.3 Anthocyanin-Rich Fruits

In the last decade, colorful fruits have emerged as potential neuroprotective food

components. Many animal intervention studies with blueberry, blackberry, straw-

berry, mulberry, Concord grape, and pomegranate provide evidence of the benefi-

cial effects of colorful fruits on aging (especially on age-related cognitive and

motor decline) and neurodegeneration. Anthocyanins, a flavonoid subgroup

(Fig. 23.5) with high antioxidant potential, are responsible for the characteristic

bright colors in these fruits and may also account at least in part for their

neuroprotective activity [110, 140].

In the late nineties, James Joseph and colleagues showed that feeding diets with

high antioxidant potential might prevent and even reverse age-related deficits in

motor and cognitive behavior in Fischer 344 (F344) rats. However, although based
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on equal antioxidant activity, the supplementations with blueberry and strawberry

did not lead to the same improvement in behavioral performance. Blueberry

supplementation ameliorated both motor and cognitive performance, whereas

strawberry supplementation only led to an improvement in motor performance

suggesting that simple antioxidant activity is not the sole explanation for the

neuroprotective activity [51]. To date, the theory that flavonoids like anthocyanins

exert their effects by direct scavenging of reactive-oxygen-species (ROS) is more

and more replaced by the assumption that they act by indirect antioxidant activity

and activation of signaling pathways [7, 112]. Supporting evidence for this theory

comes from bioavailability studies that often report <0.1 % recovery of ingested

anthocyanins in the urine [88, 110]. Like all polyphenols, anthocyanins are subject

to various degradation and biotransformation processes leading to a variety of

metabolites in the human body. Moreover, to exert direct effects in the brain

anthocyanins also have to cross the blood–brain barrier (BBB) separating the

CNS from the body periphery. Feeding studies with rodents and pigs have been

shown that anthocyanins are able to cross the BBB. After 15 days of supplemen-

tation with blackberry extract [131] and 2 h of administration of the anthocyanidin

pelargonidin (50 mg/body weight) [26], 0.25 nmol anthocyanins/g and 0.16 nmol

pelargonidin/g tissue, respectively, were detected in rat brain. Moreover, data from

pigs suggest that anthocyanins may accumulate in brain tissue. After a feeding

period with 1–4 % blueberries for 4 weeks, fasted pigs showed anthocyanin

concentration of about 0.3–0.4 ng/g tissue in the brain but not in plasma or urine.

However, there is a lack of data concerning the presence of anthocyanin metabolites

which are suggested to account at least in part for the in vivo effects of anthocyanin-

rich fruits [110].

Regarding neuroprotection, the most extensively studied anthocyanin-rich diet

in rodents is the 2 % blueberry-supplemented diet which led to improvements in

cognitive and motor performance of aged rats or models of increased oxidative

stress or inflammation [15, 23, 36, 105, 122]. The recent work by Rendeiro and

colleagues strengthens the theory that the containing flavonoids represent causal
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Fig. 23.5 Basic structure of anthocyanin aglycone and substituents of the 6 main structures found

in food. In plant material anthocyanins are usually present as 3-glycoside and 30 5-glycoside [19]
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neuroprotective agents in the blueberry diet. Purified blueberry anthocyanins in

equivalent doses to the whole blueberry extract led to the same improvement of

spatial working memory performance as whole blueberry-diet [105]. Several other

anthocyanin-rich fruits have shown to have a beneficial impact on behavioral

performance of rodents. However, there seem to be differences in the activity that

might be fruit or flavonoid specific as well as concentration-dependent. For exam-

ple, Concord grape juice in a concentration of 10 % in drinking water improved

cognitive performance in aged F344 rats whereas a concentration of 50 % of the

juice ameliorated motor function [121]. 2 % blueberry and 2 % strawberry extract

diets protected differently from 56Fe particle irradiation which induces oxidative

stress, inflammation and behavioral deficits similar to those seen in aging.

Strawberry-supplemented rats had a better ability to retain place information

(reduced spatial deficits) linked to hippocampus-mediated behavior, blueberry-

supplemented rats, in contrast, showed improved reversal learning which is more

dependent on intact striatal function [122]. Nevertheless, a recent study showed that
56Fe particle irradiation causes downregulation of genes involved in protective

stress signaling which could be ameliorated by blueberry- or strawberry-

supplemented diets to a similar extent [123].

A great deal of research has concentrated on the impact of berry fruits and

flavonoids on signaling cascades (reviewed in [89, 126]). In this regard, studies on

the mechanism of cognitive effects of blueberry diet in rats revealed an involve-

ment of neurogenesis, neurotrophic factor insulin-like growth factor-1 (IGF-1) and

its receptor, as well as mitogen-activated protein (MAP) kinase signal transduction

[15]. Grape powder in drinking water of rats (15 g/L) prevented the L-buthionine-

(S,R)-sulfoximine induced oxidative stress and cognitive impairment as well

as prevented the activation of brain extracellular signal-regulated kinase-1/2

(ERK-1/2) and decrease of glyoxalase-1 (GLO-1), glutathione reductase-1

(GSR-1), calcium/calmodulin-dependent protein kinase type IV (CAMK-IV),

cAMP response element-binding protein (CREB), and brain-derived neurotrophic

factor (BDNF) levels [150]. Research also concentrated on the effects of purple

sweet potato color (PSPC) which is composed of a mixture of anthocyanins. PSPC

(100 mg/kg) attenuated D-galactose-induced aging related changes in mouse brain

after oral administration for 4 weeks. The improvement of behavioral performance

was accompanied by an enhanced activity of the antioxidant enzymes copper/zinc

superoxide dismutase and catalase, less oxidative brain damage measured as

malondialdehyde, and diminished parameters related to neuroinflammation (e.g.,

nuclear translocation of NF-κB) [118]. Further studies using this model also

revealed the ability of PSPC to counteract the onset of neuronal apoptosis by

promoting survival mechanisms which involves ERK 1/2, phosphoinositide

3-kinase (PI3K), Akt, and c-Jun NH2-terminal kinase (JNK) [80]. Recently,

PSPC (200 mg/kg for 4 weeks) has also been tested in a mouse model of cognitive

impairment induced by hippocampal mitochondrial dysfunction in mice that were

treated with the neurotoxin domoic acid. The study results suggest that better

cognitive performance involved estrogen receptor-α-mediated mitochondrial

biogenesis signaling, restored mitochondrial dysfunction, decreased ROS and
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protein carbonyl levels, and suppressed endoplasmic reticulum stress-induced

apoptosis [79]. Further evidence for the amelioration of mitochondrial dysfunction

is provided by a study with anthocyanins from grape skin in rats with transient

memory impairment and mitochondrial dysfunction induced by scopolamine. The

i.p. treatment with 200 mg/kg grape skin anthocyanins reversed the impairment of

memory and restored ATP levels in hippocampus and cerebral cortex [41]. Mito-

chondrial dysfunction has also been investigated in cell cultures treated with

protocatechuic acid, a well-known metabolite of the anthocyanidin cyanidin,

which has been detected in the bloodstream of humans [138] and rats [134] after

consumption of cyanidin glucoside/cyanidin-glucoside-rich foods. Protocatechuic

acid was effective to decrease mitochondrial dysfunction and apoptotic cell death

induced by rotenone [39] and 1-methyl-4-phenylpyridinium ion [76] in the

neuronal-like cell line PC 12. Moreover, treatment of human neuroblastoma

SK-N-MC cells with metabolites obtained from in vitro digestion of wild black-

berry extract was effective in diminishing ROS, modulating GSH and maintaining

high mMP at levels approaching concentrations that are described for human

plasma [132].

Mitochondrial dysfunction, oxidative stress, and inflammation occur not only in

aging but also in age-related neurodegenerative changes (Fig. 23.1). Slowing down

or even preventing aging processes in the brain by nutritional approaches might

therefore as well contribute to the prevention of neurodegenerative diseases like

Alzheimer’s disease. Anthocyanin-rich fruits have a beneficial in mouse models of

AD. In amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice diet

supplementation with 2 % blueberry extract from 4 months of age prevented

behavioral deficits assessed at 12 months of age as well as enhanced memory-

associated neuronal signaling. No changes in Aβ burden were observed [50]. How-
ever, less accumulation of soluble Aβ42 and amyloid deposition was observed in

the hippocampus of APP transgenic mice after the treatment with pomegranate

juice concentrate in drinking water (1:80 or 1:160 dilution) for 6.5 months [47]. In

APP/PS1 transgenic mice drinking water supplemented with pomegranate extract

(6.25 mL/L) for 3 months led to improved spatial learning and memory, decreased

Aβ plaque load, reduced microgliosis as well as lowered tumor necrosis factor a

(TNF-α) concentrations and nuclear factor of activated T-cell (NFAT) transcrip-

tional activity [108]. Additionally, 0.18 or 0.9 % mulberry extract supplemented

diet for 3 months led to a decreased accumulation of Aβ as well as higher

antioxidant enzyme activity and less lipid oxidation in the brain of senescence-

accelerated mouse prone 8 (SAMP8) mice [119].

Importantly, preliminary studies in older adults with mild cognitive impairment

(MCI) show beneficial effects of Concord grape and blueberry juice [66–68]. MCI

is the first clinical appearance of neurodegeneration accompanied by increased risk

for dementia. In many individuals MCI progresses to AD. The consumption of wild

blueberry juice (6 and 9 mL/kg) for 12 weeks improved paired associate learning in

the Verbal Paired Associate Learning Test (V-PAL) and word list recall in the

California Verbal Learning Test (CVLT) in 9 older adults with MCI [68]. In a

similar study 12 older adults with MCI showed improved verbal learning in CVLT
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and a trend toward improved performance with respect to delayed verbal recall and

spatial memory after the consumption of Concord grape juice (6 and 9 mL/kg) for a

period of 12 weeks [67]. Recently, Concord juice treatment of MCI individuals for

16 weeks reduced semantic interference on memory tasks and led to a relatively

greater activation in anterior and posterior regions of the right hemisphere detected

using functional magnetic resonance imaging [66].

5.4 Olive Oil Polyphenols

Olive oil is a typical component of Mediterranean diets which have been related to

many health beneficial effects including the improvement of cognitive decline.

Interestingly, the health benefits of extra virgin olive oil (EVOO) seem to be not

only due to its high amount of mono-unsaturated fatty acids but also due to phenolic

minor components such as hydroxytyrosol [110]. The phenols present in the native

olive fruit differ from those in EVOO. Olives mainly contain the glycosides

oleuropein and ligstroside that are degraded to their aglycones and various derivates

during ripening. The aglycones and derivates are the most abundant phenols in

olive oil. Hydroxytyrosol and tyrosol are the end products of the hydrolysis of those

aglycones in olive oil (Fig. 23.6) [154].

Recently, EVOO showed beneficial effects in SAMP8 mice, a model of

age-related learning/memory impairment associated with increased amyloid-β pro-
tein and brain oxidative damage [151]. The oral administration of EVOO (75 μL/kg
body weight) for 6 weeks improved cognitive function and oxidative brain damage

in aged SAMP8 mice. Interestingly, mice that received EVOO with enhanced

amount of olive oil polyphenols showed a greater improvement in both cognitive

function and oxidative damage than mice that received regular EVOO [151].

Additionally, mice treated with EVOO (10 % wt/wt dry diet) rich in phenols

(6 mg/kg polyphenols/day) frommiddle age to senescence had improved contextual

memory in the step-down test and a better performance in motor coordination in the

rotarod test [152].

Data from human and animal studies indicate that olive oil phenols are well

absorbed and underlie biotransformation processes common for polyphenols in

general [154]. As ortho-diphenol, hydroxytyrosol contributes significantly to the

oxidation stability of olive oil and is attracting particular attention as antioxidant

[154, 110]. However, the intake of phenols in the amounts provided by dietary olive

oil is suggested to be too low for direct antioxidant activity in the human body

[154]. Several studies therefore concentrated on hydroxytyrosol-rich extracts.

Importantly, conjugated hydroxytyrosol was detected in brain tissue of rats

(50 nmol/g) after a single dose of a phenolic extract of olive cake (3 g/kg body

weight) [153]. An interesting source of hydroxytyrosol is olive mill water waste

which is currently discarded. Olive mill water waste is very rich in polyphenols that

can be recovered by ad hoc techniques [110]. Hydroxytyrosol-rich extract, prepared

from olive mill water waste administrated to mice (100 mg/kg) for 12 days led to a
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moderate, although statistically significant hyperpolarization of mitochondria in

dissociated mouse brain cells [115] which is an effect that has been related to a

decreased rate of cell death [74]. Moreover, hydroxytyrosol-rich extract was effec-

tive to reduce iron-stimulated lipid peroxidation ex vivo, suggesting a

neuroprotective effect of hydroxytyrosol intake [115]. Recent in vitro data mainly

confirm our previous observation of promising cytoprotection of brain cells by

HT-rich olive mill waste water extract in different stressor paradigms [114]. Fur-

thermore, correlation analyses revealed that the observed cytoprotective effects in

PC12 cells are likely due to HT present in the extract.

In summary, aging of the brain is characterized by a decline in several physio-

logical abilities, including sensory, motor, and cognitive functions. Physiological

changes that occur during normal aging of the brain may be exacerbated in

vulnerable populations of neurons, initiating pathological processes that finally

lead to neurodegenerative disorders, especially to AD. The incidence rate of AD

increases exponentially, doubling approximately every 5–6 years with age. The

global trend in the phenomenon of population aging has dramatic consequences on

public health, health-care financing, and health care delivery system in the world,

especially in developing countries. Increasing evidence suggests that mitochondrial

dysfunction plays an important role in brain aging and in the pathogenesis of

neurodegenerative diseases. The survival of any organism crucially depends on

its nutrient intake, which provides all molecules for cell formation, maintenance

and repair, either in the form of ready-made building blocks or precursors. Rice

bran, curcumin, anthocyanin-rich fruits, and olive polyphenols are promising

nutraceuticals for modulating mitochondrial function in the brain and might con-

tribute to the prevention of AD.
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